TWI377254B - Process for preparation of aglucone isoflavones - Google Patents

Process for preparation of aglucone isoflavones Download PDF

Info

Publication number
TWI377254B
TWI377254B TW98103083A TW98103083A TWI377254B TW I377254 B TWI377254 B TW I377254B TW 98103083 A TW98103083 A TW 98103083A TW 98103083 A TW98103083 A TW 98103083A TW I377254 B TWI377254 B TW I377254B
Authority
TW
Taiwan
Prior art keywords
hours
soy
rpm
spp
glucoside
Prior art date
Application number
TW98103083A
Other languages
Chinese (zh)
Other versions
TW201028478A (en
Inventor
Kung Ta Lee
Ching Jang Huang
Lun Cheng Kuo
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW98103083A priority Critical patent/TWI377254B/en
Publication of TW201028478A publication Critical patent/TW201028478A/en
Application granted granted Critical
Publication of TWI377254B publication Critical patent/TWI377254B/en

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

1377254 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種製備具有高植物雌激素活性之組合物 的方法。詳言之,本發明係關於一種用於製備具有高濃度 去葡萄糖苷大豆異黃酮之組合物的方法。本發明亦係關於 一種具有尚濃度去葡萄糖皆大豆異黃酮之組合物。 【先前技術】1377254 6. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method of preparing a composition having high phytoestrogenic activity. In particular, the present invention relates to a process for preparing a composition having a high concentration of deglucoside soy isoflavones. The invention is also directed to a composition having a concentration of deglucose soy isoflavones. [Prior Art]

大豆異黃酮例如染料木黃酮及大豆黃酮在結構上類似於 雌激素且因此稱作「植物雌激素」。已知大豆異黃酮與某 些增進健康之過程有關,諸如癌症之預防(CappeUetti等 人,2000 ; Miura 等人,2002 ; Ravindranath 等人, 2004)、心血管疾病風險之降低(Anth〇ny等人,1996 ;Soy isoflavones such as genistein and daidzein are structurally similar to estrogens and are therefore referred to as "phytoestrogens". Soy isoflavones are known to be involved in certain health-promoting processes, such as the prevention of cancer (Cappe Uetti et al., 2000; Miura et al., 2002; Ravindranath et al., 2004), and the reduction in cardiovascular disease risk (Anth〇ny et al. , 1996;

Goodman-Gruen及Kritz-Silverstein 2001)、骨骼健康之改 良(Cotter及 Cashman 2003 ; Weaver及 Cheong 2005)及停經 後症候群的緩解^詳言之,大豆異黃酮已經臨床實驗證實 對骨質疏鬆症具有治療作用’包括抑制停經後女性之骨質 流失及骨質再吸收,並可促進骨質形成,且未觀察到對乳 房及子宮有不良作用。 植物中之大豆異黃酮含量極低。舉例而言,大豆僅含有 約0.1 /〇(w/w)之大豆異黃酮。此外,植物中之大豆異黃酮 係呈葡萄糖苷大豆異黃酮形式,其須水解成去葡萄糖苷大 豆異黃酮後方可由腸吸收(Setche丨丨等人,The J〇urnal 〇f Nutrition 2001,第 131 卷,1362S 1375S)。研究已顯示, 投予去帛萄糖苦大豆異㈣後血液中之大豆異黃嗣濃度比 113300.doc 1377254 才又予葡萄糖苷大豆異黃酮後血液中之大豆異黃酮濃度高2 至 5倍(Izumi 等人 ’ The J〇urnal Nutriti〇I1 2000,第 130 卷 ’ 1695·1699)。 儘管如此,人類腸中水解大豆異黃酮葡萄糖苷之能力隨 年齡的增長而降低’而使得年長族群出現健康問題。解決 該等問題之一種方法為直接在食品或食品補充劑中提供去 葡萄糖苦大豆異黃鲷。 美國專利第 5,320,949號、第 5,352,384號、第 5,637,561 號、第5,637,562號、第5,726,034號及第5,821,361號揭示 使用源自植物或微生物之β_葡萄糖苷酶使含有葡萄糖苷大 豆異黃嗣之物質轉化為含有去葡萄糖苷大豆異黃酮之物質 的方法。亦有其他專利文件揭示使用源自微生物之葡萄 糖苷酶使葡萄糖苷大豆異黃酮水解成去葡萄糖苷大豆異黃 酮的方法。舉例而言,美國專利第5,554,519號教示一種使 用紅色糖多抱菌(Saccharopolyspora erythraea)使大豆酸酵 以產生染料木黃酮之方法;PCT專利申請案第 PCT/JP94/02103號教示一種自使用麴菌(k0ji}醱酵之豆類作 物製備去葡萄糖苷大豆異黃酮之方法;及曰本專利申請案 2003070439教示將多色青黴菌(peniciiHum multicolor)及其 他麴)產生之經純化β_葡萄糖苷酶添加至納豆製備過程 中,以增強大豆異黃酮之去糖基化作用。 以納豆枯草桿菌(Bacillus subtilis natto)使黑豆酸酵而讓 黑豆中之葡萄糖苷大豆異黃酮轉化成去葡萄糖苷大豆異黃 _之方法亦已被揭示(Kuo等人,2006)。 H3300.doc 1377254 然而’上述方法僅能產生具有低含量去葡萄糖苷大豆異 頁嗣之產物’而無法應用於醫藥領域或健康食品領域以大 規模製備。因此’仍有開發製備高濃度去葡萄糖苷大豆異 黃酮之方法的必要。 【發明内容】 本發明提供一種製備包含高濃度去葡萄糖苷大豆異黃酮 之組合物的方法’其包含將葡萄糖苷大豆異黃酮添加至以 微生物進打醱酵的大豆基質令,此微生物一般認為安全且 可表現或產生β-醣苷酶之。 本發明進一步提供一種用於製備去葡萄糖苷大豆異黃酮 之方法,其中使用卜葡萄糖苷酶使大豆基物質中之葡萄糖 苷大豆異黃酮去糖基化,改良之處在於添加葡萄糖苷大豆 異黃鲷。 本發明亦提供一種包含高濃度去葡萄糖苷大豆異黃酮之 組合物’其係根據本發明之方法製備。 【實施方式】 本發明提供一種用於製備含有高濃度去葡萄糖苷大豆異 黃酮之組合物的方法,其包含將葡萄糖苷大豆異黃酮添加 至以微生物的大豆基質中,此微生物一般認為安全且可表 現或產生β-醣苷酶。 如本文中所用,術語Γ葡萄糖苷大豆異黃酮」係指例如 大豆苷(daizin)及染料木苷(genistin)之植物葡萄糖苷大豆 異黃酮,A「去葡萄糖苷大豆異黃酮」係指例如大豆黃鲷 及染料木黃酮之植物去葡萄糖苷大豆異黃酮。 113300.doc 1377254 如本文中所用,術語「大豆基質」係指含有大豆或源自 大豆之任何形式之基質。適合於根據本發明使用之大豆基 基質包括(但不限於)豆類作物、大豆粕、豆乳、大豆粉、 黑豆粕、黑豆奶、黑豆粉及其類似物。 可根據在此項技術中已知之方法(例如在上文所提及之 參考文獻中所教示之彼等方法),以—般認為安全且可表 現或產生陶酶之微生物進行大豆基質撥酵。在接種微 生物之前’大豆基質可以習知之方法滅菌,例如高壓滅 菌0 接種微生物使其濃度在醱酵開始時為1〇2 cfu/ml之範圍,且在醱酵結束時為1〇5cfu/mi至i〇i2cfu/mi 之範圍。較佳地’醱酵過程中微生物之濃度在醱酵開始時 為103 efu/n^1()6 efu/mk範圍’且在酸酵結束時為⑽ cfu/ml至1010 cfu/ml之範圍。最佳地,醱酵過程中微生物 之濃度在醱酵開始時為1〇5 cfu/m卜且在醱酵結束時為 cfu/ml 〇 本發明之醱酵可使用一般認為安全且表現或產生卜醣苷 酶之微生物。該等微生物包括(但不限於)雅致放射毛黴 (Actinomucor elegans)、臺灣放射毛黴(A以〜⑽印仏)、 泡盛麴菌(Aspergillus awamori)、米麴菌(A 〇ryzae)、醬油 麴菌(A. Sojae)、枯草桿菌、枯草桿菌(納豆)、動物雙又桿 菌(Bifidobacterium animalis)、短型雙又桿菌(B breve)、 嬰兒雙又桿菌(B. infantis)、長型雙叉桿菌(B」〇ngum)、嗜 熱雙又桿菌(B. thermophilum)、念珠菌屬(Candida spp)、 113300.doc 1377254 德巴利酵母屬(Debaryomyces spp)、靈芝(Ganoderma lucidum)、嗜酸乳酸桿菌(Lactobacillus acidophilus)、乾路 乳酸才干菌(L. casei)、德氏礼酸桿菌(L. delbrueckii)、副乾 酪乳酸桿菌(L. paracase)、植物乳酸桿菌(l. piantarum)、 乳酸乳酸球菌(Lactococcus lactis)、紅麯黴屬(Monascus spp)、毛徵g屬(Mucor spp)、無接合孢子根黴菌(Rhiz〇pus azyg〇Sporus)、酵母菌屬(Sacchar〇myces spp)、紅色糖多抱 菌、嗜熱鍵球函(Streptococcus thermophilus)及接合酵母菌 屬(Zygosaccharomyces spp)。最佳為納豆枯草桿菌菌株。 接種細菌後,在合適條件下培養一段時間。舉例而言, 培養可在約丨(TC至約6(TC之溫度下進行。培養亦可以約2〇 Πμπ至約2000 rpm之震盛速率進行。較佳地,培養在約 20C至約40C之溫度下且以約5〇 rpm至約1〇〇〇 rpm之震盪 速率進行。最佳地,培養在約坑至約贼之溫度下且以 約12〇 rpm至約2〇〇 rpm之震盪逮率進行。 醱酵進4亍#又時間,使葡萄糖普大豆異黃嗣足以轉化為 去葡萄糖脊大豆異黃酮。所需時間隨著培養溫度、震遺速 率、細菌濃度等而轡卜,+ α β + 此所‘時間可由一般熟習此項技 術者確定。一般而令,η±ρ日 °時間可為約8小時至240小時,較佳 約20小時至120小時範圍。 β-葡萄糖苷酶習知用 其仆〜 將葡萄糖苷大豆異黃酮去葡萄糖 土化’以製備去葡萄糖苷大 酶會受到所產生之翁姑 然而在反應中,該 « ^ ^ 糖抑制,使得難以獲得高濃度之去 葡萄糖苷大豆異黃酿^ 枚又又舌 113300.doc [S] 1377254Goodman-Gruen and Kritz-Silverstein 2001), improvement of bone health (Cotter and Cashman 2003; Weaver and Cheong 2005) and relief of postmenopausal syndrome. In detail, soy isoflavones have been clinically proven to have a therapeutic effect on osteoporosis. 'Including inhibition of bone loss and bone resorption in women after menopause, and can promote bone formation, and no adverse effects on the breast and uterus were observed. The soy isoflavone content in plants is extremely low. For example, soybeans contain only about 0.1/〇 (w/w) soy isoflavones. In addition, the soy isoflavones in plants are in the form of glucoside soy isoflavones which are hydrolyzed to deglucoside soy isoflavones and then absorbed by the intestine (Setche et al, The J〇urnal 〇f Nutrition 2001, Vol. 131 , 1362S 1375S). Studies have shown that the concentration of soy isoflavones in the blood after the administration of sucrose sucrose (4) is 2 to 5 times higher than the concentration of soy isoflavones in the blood after the glucoside soy isoflavones are added to 113300.doc 1377254 ( Izumi et al. 'The J〇urnal Nutriti〇 I1 2000, Vol. 130 '1695·1699). Despite this, the ability of the human intestine to hydrolyze soy isoflavone glucosides decreases with age', causing health problems in the older population. One way to address these problems is to provide de-glucose soy isoflavones directly in food or food supplements. U.S. Patent Nos. 5,320,949, 5,352,384, 5,637,561, 5,637,562, 5,726,034, and 5,821,361 disclose the use of plant- or microbial-based β-glucosidase to convert a substance containing glucoside soy isoflavone A method of containing a substance derived from glucoside soy isoflavones. There are also other patent documents which disclose the use of microbial glucosidase to hydrolyze glucoside soy isoflavones to deglucoside soy isoflavones. For example, U.S. Patent No. 5,554,519 teaches a method for the acidification of soybeans to produce genistein using Saccharopolyspora erythraea; PCT Patent Application No. PCT/JP94/02103 teaches a self-use fungus (k0ji) a method for preparing a glucoside soy isoflavone by a yeast bean crop; and the patent application 2003070439 teaches the addition of purified β-glucosidase produced by Penicii Hum multicolor and other cockroaches to In the preparation of natto, to enhance the deglycosylation of soy isoflavones. A method in which black bean acid is fermented by Bacillus subtilis natto to convert glucoside soy isoflavones in black beans into deglucoside soy yellow is also disclosed (Kuo et al., 2006). H3300.doc 1377254 However, the above method can only produce a product having a low content of deglucosidin soy oxime, and cannot be applied to a large-scale preparation in the field of medicine or health food. Therefore, there is still a need to develop a method for preparing a high concentration of glucoside glycoside. SUMMARY OF THE INVENTION The present invention provides a method for preparing a composition comprising a high concentration of deglucosidin soy isoflavones, which comprises adding glucoside soy isoflavones to a soy matrix which is fermented by microorganisms, which is generally considered safe And can express or produce β-glucosidase. The present invention further provides a method for preparing deglucoside soy isoflavones, wherein glucoside soy isoflavones in soybean-based substances are deglycosylated by using glucosidase, and the improvement is to add glucoside soy isoflavone . The present invention also provides a composition comprising a high concentration of deglucoside soy isoflavones, which is prepared according to the method of the present invention. [Embodiment] The present invention provides a method for preparing a composition containing a high concentration of deglucosidin soy isoflavones, which comprises adding glucoside soy isoflavones to a soybean matrix in a microorganism which is generally considered safe and Express or produce beta-glucosidase. As used herein, the term "glucosinolate isoflavone" refers to plant glucoside soy isoflavones such as daizin and genistin, and A "deglucoside soy isoflavones" means, for example, soy yellow鲷 and genistein plants to glucoside soy isoflavones. 113300.doc 1377254 As used herein, the term "soybean substrate" refers to a substrate containing soy or derived from any form of soybean. Soy-based matrices suitable for use in accordance with the present invention include, but are not limited to, legume crops, soybean meal, soy milk, soy flour, black soybean meal, black soy milk, black soy flour, and the like. Soybean matrix fermentation can be carried out in accordance with methods known in the art, such as those taught in the references mentioned above, in a microorganism that is generally considered safe and can exhibit or produce a terrain. The soy substrate can be sterilized by conventional methods prior to inoculation of the microorganism, for example, autoclaving 0 inoculation of the microorganism to a concentration of 1〇2 cfu/ml at the start of fermentation, and 1〇5 cfu/mi at the end of the fermentation to The range of i〇i2cfu/mi. Preferably, the concentration of the microorganism during the fermentation is 103 efu/n^1() 6 efu/mk range at the start of the fermentation and (10) cfu/ml to 1010 cfu/ml at the end of the acid fermentation. Optimally, the concentration of the microorganism during the fermentation is 1〇5 cfu/m b at the start of the fermentation and cfu/ml at the end of the fermentation. The fermentation of the present invention can be generally considered safe and manifests or produced. A microorganism of glycosidase. Such microorganisms include, but are not limited to, Actinomucor elegans, Taiwan's Phytophthora (A to ~ (10) neem), Aspergillus awamori, A 〇ryzae, soy sauce 麴Bacterium (A. Sojae), Bacillus subtilis, Bacillus subtilis (natto), Bifidobacterium animalis, B breve, B. infantis, Bifidobacterium longum (B"〇ngum), B. thermophilum, Candida spp, 113300.doc 1377254 Debaryomyces spp, Ganoderma lucidum, Lactobacillus acidophilus (Lactobacillus acidophilus), L. casei, L. delbrueckii, L. paracase, Lactobacillus (L. piantarum), Lactobacillus lactis ( Lactococcus lactis), Monascus spp, Mucor spp, rhiz〇pus azyg〇Sporus, Sacchar〇myces spp, red sugar Hobby Ball key letter (Streptococcus thermophilus) and joining the Saccharomyces genus (Zygosaccharomyces spp). The best is the Bacillus subtilis strain. After inoculating the bacteria, they are cultured for a while under suitable conditions. For example, the culture can be carried out at a temperature of about TC (about TC to about 6 (TC). The culture can also be carried out at a shaking rate of about 2 〇Πμπ to about 2000 rpm. Preferably, the culture is carried out at about 20 C to about 40 C. At a temperature and at an oscillating rate of from about 5 rpm to about 1 rpm, optimally, the culture is incubated at a temperature of from about 10 rpm to about 2 rpm.酦 进 进 亍 亍 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又 又+ The time of this can be determined by those skilled in the art. Generally, the η±ρ日° time can be from about 8 hours to 240 hours, preferably from about 20 hours to 120 hours. β-Glucosidase is known. Using its servant ~ degluconosine glucoside soy isoflavones to prepare a large glucosinolate enzyme will be produced in the reaction, the « ^ ^ sugar inhibition, making it difficult to obtain high concentrations of glucoside Soybean different yellow stuffed ^ and again tongue 113300.doc [S] 1377254

令人驚訝地發現,若在醱酵期間添加葡萄糖苦大豆異巧 酮,則在根據本發明使用微生物醱酵大豆基質期間,&& 高濃度之去葡萄糖苷大豆異黃_。吾人相信根據本發明添 加之葡萄糖苷大豆異黃酮,在以微生物醱酵大豆基質時去 葡萄糖基化,其所產生之葡萄糖用作細菌增殖之碳源,因 此增強細菌增殖,其繼而產生高濃度之去葡萄糖苦大豆異 黃酮。與習知方法(以能產生去葡萄糖基化作用所需之卜葡 萄糖苷酶之微生物,醱酵含有葡萄糖苷大豆異黃嗣之物 質)相比’本發明之方法顯著提升所產生之去葡萄糖苦大 豆異黃酮的量。 本發明進一步提供一種用於製備去葡萄糖苷大豆異黃明 之方法’其十使用β·葡萄糖苷酶使大豆基物質中之葡萄糖 苷大豆異黃酮去糖基化,改良之處在於添加葡萄糖苷大豆 異黃酮。 根據本發明,可藉由批次、批次饋料或連續饋料方式將Surprisingly, it has been found that when glucose soy ketone is added during fermentation, &&> is highly concentrated during the use of the microorganism to ferment the soy substrate according to the present invention. It is believed that the glucoside soy isoflavones added according to the present invention are glucosylated when the soybean substrate is fermented by microorganisms, and the glucose produced is used as a carbon source for bacterial proliferation, thereby enhancing bacterial proliferation, which in turn produces high concentrations. Glucosinolate isoflavones. Compared with the conventional method (in the case of a microorganism capable of producing glucosidase required for glucosylation, fermenting a substance containing glucoside soy isoflavone), the method of the present invention significantly enhances the glucose-depleted soybean produced by the method of the present invention. The amount of isoflavones. The present invention further provides a method for preparing glucosinolate isoflavones, which uses deglycosylase to glucosylose isoflavones in soy-based substances, and the improvement is to add glucosides and soy Flavonoids. According to the invention, it can be by batch, batch feed or continuous feed

葡萄糖苷大豆異黃酮添加至使用微生物之大豆基基質醱酵 中。 如在此項技術中所熟知,醱酵可在任何合適容器中進 行,該等容器包括(但不限於)燒瓶、醱酵器及生物反應 器。 ’ 本發明之方法產生具有高濃度去葡萄糖苷大豆異黃酮之 產物,其表現高植物雌激素活性,亦即高卜受體親合力及 低a-受體親合力,因此適合應用於醫藥領域或健康食品領 域0 113300.doc ί S] 1377254 本發明進一步提供一種包含高濃度去葡萄糖芽大豆異黃 酮之組合物,其係根據本發明之方法所製備。 由於本發明之組合物的植物雌激素活性較高,所以可用 於藥物或健康食品中以維持骨密度、降低心血管疾病風 險、防止癌症(諸如乳癌及前列腺癌)發生及緩解停經後症 候群。 本發明方法之產物可經習知加工處理,使呈適用於藥物 或健康食品令之形式。根據不同需要,本發明之組合物可 調配成键劑、丸劑、散劑、溶液、糖漿或其類似物的形 式。舉例而言,組合物可以習知方式冷凍乾燥。 下文之特定實例僅為說明性質,並非限制揭示外之其餘 部分。吾人相信一般熟習此項技術者可基於本文中之描 述’將本發明之利用發揮至最大極致。 實例 實例1 在SOOnd燒瓶中,製備100m丨含有5%(w/v)大豆柏的培養 基且在121。〇下進行高壓滅菌,歷時15分鐘。接著將納豆 枯草桿菌接種於培養基,在震盪器中以37。(:、125 rpm培 養。培養開始時,生菌數為9.6x1〇3 cfu/m卜12小時後, 生菌數為6x108 Cfu/m卜將其維持至培養結束(接種後以小 時)。以硝基苯基-β-D-糖苷(PNPG)作為受質以測定在整個 培養過程中β-葡萄糖普酶之酶活性。接種後第8小時可伯 測到β-葡萄糖苷酶活性,第15小時至第18小時活性增加至 最大值(3.3 U/ml),接著在培養21小時後β_葡萄糖苷酶活性 113300.doc -9- 1377254 =低至〇·3 u/mi ^大豆苷及染料木苷之濃度在培養開始時 分別為76.5 μM及82.7 μΜ,於培養8小時後開始降低。第 】時,大豆苷及染料木苷之濃度分別為25 9 ^^及t 5 ^Μ,而大豆黃酮及染料木黃酮之濃度在i2小時内分別自 28·5 μΜ增加至m.6 μΜ,以及自54 2 μΜ增加至ι〇ΐ 6 μΜ(圖 1)。 實例2 在5〇〇ml燒瓶中製備100ml25〇/〇(w/v)大豆粕培養基,立 添加含有葡萄糖皆大豆異黃酮(含有1〇 m 叫大豆们之物質。在121〇c下高壓滅菌15分鐘後木 枯草才干菌接種至培養基,在震盈器中以37。〇、⑵『㈣只 養。培養開始時,生菌數為10405 efu/ml。培養12小努 後,生i數為6.9X108 cfu/m卜將其維持至培養結束㈣ 後24小時)。在整個培養過程中監測卜葡萄糖㈣之酶活 性。β_葡萄糖苦酶活性在接種後第8小時可偵測到,並且 逐漸增加。其活性在接種後第12小時達到最大值,並且在 培養叫、時後降至h7編小時與㈣小時之 間,酶活性保持於以u/mI。研究整個培養期間納豆枯草 桿菌對大豆異黃嗣葡萄糖苦之去糖基化作用。大豆苦及染 料木芽之濃度在培養開始時分別為脈3 _及2517 培養8小時後,大豆答及染粗女 一尤.、,、 甘及木+分別開始去糖基化為大 丑κ網及染料木黃_。接籍德當 甘夕,曲成、小時,大豆芽及染料木 皆之浪度分別降至⑽·2 _及116 μΜ,而大豆黃網 料木相之濃度在U小時内分別自35 5 _^^4 II3300.doc 1377254 μΜ以及自26.9 μΜ增加至168 〇 μΜ。接種後第21小時, 所有大豆Μ㈣木料轉化為大豆黃酮及染料木黃鋼, 大且黃嗣及染料木相之濃度分別為帆6 μΜ及2〇6·3 μΜ(圖 2)。 實例3 在00 ml燒報中製備1〇〇 mk5%(w/v)大豆柏培養基,並 且添加含有經熱提取之葡萄糖苦大豆異黃酮(含有ι〇呵染 料木苦及30 mg大豆苷)之物質。在12r(:下高壓滅菌⑽ 鐘後,將1 ml預培養之納豆枯草桿菌接種至培養基,並且 在震盪器中以37°C、250 rpm培養。培養15小時後,每6小 時饋入葡萄糖苷大豆異黃酮,總共8次饋料且總共添加266 mg染料木苷及1〇36 mg大豆苷。結果顯示細菌在第1小時與 第10小時之間增殖,培養開始時生菌數為8.5x104 efu/ml ’第1〇小時增加至i 7χ1〇9 cfu/inl,此時進入 1.4\108。仏/1111至2.7<108。!'11/1111之穩定期直至培養結束(接 種後63小時)。接種後第12小時可偵測到p_葡萄糖苷酶活 性’且逐漸增加。其活性在接種後第27小時達到9 7 u/ml 之最大值’接著在培養45小時後降低至6,3 U/m卜8次進料 後’亦即接種後第63小時,培養基中之大豆黃酮及染料木 黃酮濃度分別達到1 1548.0 μΜ及2636.1 μΜ(圖3)。pH值之 變化自7.5至8.0。將產物冷凍乾燥之後,每公克粉末含有 66 mg大豆黃酮及24 mg染料木黃酮,其為大豆中含量的 100 倍。 實例4 I13300.doc [S] 1377254The glucoside soy isoflavone is added to the soy-based matrix fermentation of the microorganism. As is well known in the art, the fermentation can be carried out in any suitable container including, but not limited to, flasks, decimators, and bioreactors. The method of the present invention produces a product having a high concentration of deglucoside soy isoflavones, which exhibits high phytoestrogen activity, that is, high receptor affinity and low a-receptor affinity, and thus is suitable for use in the medical field or Healthy Food Field 0 113300.doc ί S] 1377254 The present invention further provides a composition comprising a high concentration of deglucose soy isoflavones prepared according to the method of the present invention. Since the composition of the present invention has high phytoestrogenic activity, it can be used in medicines or health foods to maintain bone density, reduce cardiovascular risk, prevent cancer (such as breast cancer and prostate cancer) from occurring, and alleviate postmenopausal syndrome. The product of the method of the present invention can be processed by conventional methods to provide a form suitable for use in a pharmaceutical or health food order. The composition of the present invention may be formulated into a form of a key, a pill, a powder, a solution, a syrup or the like according to various needs. For example, the composition can be freeze dried in a conventional manner. The specific examples that follow are illustrative only and are not intended to limit the remainder of the disclosure. It is believed that those skilled in the art will be able to utilise the use of the present invention to the fullest extent. EXAMPLES Example 1 A 100 m crucible containing 5% (w/v) soy cypress was prepared in a SOOnd flask and was at 121. Autoclaving under the armpit for 15 minutes. The Bacillus subtilis was then inoculated into the medium at 37 in the shaker. (:, 125 rpm culture. At the beginning of the culture, the number of bacteria was 9.6 x 1 〇 3 cfu / m for 12 hours, the number of bacteria was 6 x 108 Cfu / m, and it was maintained until the end of the culture (in hours after inoculation). Nitrophenyl-β-D-glycoside (PNPG) was used as a substrate to determine the enzyme activity of β-glucosidase throughout the culture. Beta-glucosidase activity was detected at 8 hours after inoculation, 15th Activity increased to a maximum (3.3 U/ml) from hour to hour 18, followed by β-glucosidase activity 113300.doc -9- 1377254 = as low as 〇·3 u/mi ^ daidzein and dye after 21 hours of culture The concentration of lignin was 76.5 μM and 82.7 μΜ at the beginning of the culture, and began to decrease after 8 hours of culture. The concentration of daidzin and genistein was 25 9 ^^ and t 5 ^Μ, respectively. The concentrations of flavonoids and genistein increased from 28.5 μΜ to m.6 μΜ in i2 hours and from ι〇ΐ 6 μΜ from 54 2 μΜ (Figure 1). Example 2 In a 5〇〇ml flask Prepare 100 ml of 25 〇/〇 (w/v) soybean meal medium, and add the soy isoflavones containing glucose (containing 1 〇m called soybeans). After autoclaving for 15 minutes at 121 °c, the woody grass was inoculated into the medium, and in the shaker, 37. 〇, (2) 『(4) was raised only. When the culture started, the number of bacteria was 10405 efu/ml. After that, the number of raw i was 6.9×10 cfu/m b and was maintained until the end of the culture (four) 24 hours later. The enzyme activity of glucose (iv) was monitored throughout the culture. The β-glucosidase activity was 8 hours after inoculation. It was detected and gradually increased. Its activity reached its maximum at 12 hours after inoculation, and decreased to h/mI between h7 and (4) hours after culture and time. The whole culture was studied. During the period, the glutathionization of glucosinolates of soybean isoflavones was carried out. The concentration of soybean bitter and dyed wood buds was pulsed at the beginning of the culture for 3 hours and cultured for 8 hours. Soybean answered and dyed the rough female one. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 2 _ and 116 μΜ, while the concentration of soybean yellow net wood phase is at U hour Internally increased from 35 5 _^^4 II3300.doc 1377254 μΜ and increased from 26.9 μΜ to 168 〇μΜ. At the 21st hour after inoculation, all soybean meal (4) wood was converted to daidzein and dye wood yellow steel, large and xanthine and dye The concentrations of the wood phase were 6 μΜ and 2〇6·3 μΜ (Fig. 2). Example 3 1 〇〇mk 5% (w/v) soybean cedar medium was prepared in 00 ml burned, and the addition contained heat extraction. A substance of glucosinolate soy isoflavones (containing 〇 〇 、 、 、 、 、 、 、 、 、 、 、 、 After 12 r (: autoclave (10) minutes, 1 ml of pre-cultured B. natto was inoculated into the medium, and cultured in an oscillator at 37 ° C, 250 rpm. After 15 hours of incubation, glucoside was fed every 6 hours. Soy isoflavones, a total of 8 feeds and a total of 266 mg of genistein and 1〇36 mg of daidzin. The results showed that the bacteria proliferated between the first hour and the tenth hour, and the number of bacteria at the start of the culture was 8.5x104 efu. /ml 'The first hour is increased to i 7χ1〇9 cfu/inl, then enter 1.4\108. 仏/1111 to 2.7<108.!'11/1111 stable period until the end of culture (63 hours after inoculation) The p_glucosidase activity was detected and gradually increased at 12 hours after inoculation. Its activity reached a maximum of 9 7 u/ml at 27 hours after inoculation, and then decreased to 6,3 after 45 hours of culture. U/m b after 8 feedings, that is, at 63 hours after inoculation, the concentrations of daidzein and genistein in the medium reached 1 1548.0 μΜ and 2636.1 μΜ, respectively (Fig. 3). The pH value varied from 7.5 to 8.0. After lyophilizing the product, each gram of powder contains 66 mg of daidzein and 24 mg of genistein. The content of soybean which is 100 times. Example 4 I13300.doc [S] 1377254

在5 L·酸酵器中製備2 L之5〇/〇(w/v)大豆粕培養基且在 121C下進行高壓滅菌’歷時15分鐘。將燒瓶中預培養之 10 ml納豆枯草桿菌接種至培養基中,在通氣及攪動下以 37°C、700 rpm培養。結果顯示細菌在第1小時與第12小時 之間增殖’培養開始時生菌數為7 2xl〇5 Cfu/m卜第12小 時增加至2.3x 109 cfu/m卜並且進入穩定期直至培養結束 (接種後48小時)(圖4A)。接種8小時後進行葡萄糖苷大豆異 黃酮基質的連續饋料。接種後第8小時至第2〇小時以i 5 ml/mm之速率饋入葡萄糖苷大豆異黃酮溶液,歷時I]小 時。在饋料結束時’大豆黃酮及染料木黃酮分別為2464 μΜ及 541 μΜ(圖 4B)。 實例52 L of 5 〇/〇 (w/v) soybean meal medium was prepared in a 5 L·acid starter and autoclaved at 121 C for 15 minutes. The precultured 10 ml of Bacillus subtilis Bacillus was inoculated into the medium, and cultured at 37 ° C, 700 rpm under aeration and agitation. The results showed that the bacteria proliferated between the 1st hour and the 12th hour. 'The number of bacteria at the start of the culture was 7 2xl 〇 5 Cfu/m. The 12th hour increased to 2.3x 109 cfu/m b and entered the stable phase until the end of the culture ( 48 hours after inoculation) (Fig. 4A). A continuous feed of the glucoside soy isoflavone matrix was carried out 8 hours after the inoculation. The glucoside soy isoflavone solution was fed at a rate of i 5 ml/mm from 8 hours to 2 hours after inoculation for 1 hour. At the end of the feed, daidzein and genistein were 2464 μΜ and 541 μΜ, respectively (Fig. 4B). Example 5

將實例3之在生物反應器中藉由分批饋料方式進行去葡 萄糖普大豆異黃酮轉化之經醱酵培養基之樣品,在接種後 第〇小時、21小時、5 1小時及63小時取出,且將其冷床乾 燥,並測試其雌激素活性。在50%乙醇溶液中雌激素活性 測定樣品之濃度為1〇 ng/ml&100 ng/m卜將ch〇-K1細胞 (ATCC,CCL 61以2.5xi〇4個細胞/孔之密度培養於%孔盤) 與含有10%胎牛血清之Ham's F-12培養基於37〇c、5%(:〇2 下一起培養24小時。接著使用報導載體pBK_CMv_GaM_ 1^尺(1(或0)及口8〖-匸1^-(1;八8)4-11<;-驗性磷酸酶(八?)將細胞 轉染5小時。之後,移除含有轉染劑之培養基,用培養基 稀釋待測試之樣品。以17β-雌二醇(E2, Sigma,E2758)作為 對照。使雌激素活性待測樣品及對照兩者均進行雌激素活 113300.doc ^2 ' [S] 1377254 化反應48小時,接著自培養物 ^ θ ^ ^ ;取出一定量培養基來測定鹼 性%酸酶(ΑΡ)活性。以六水合 σ 场基本基鱗酸二鋼鹽 (ΡΝΡΡ)作為受質,在96孔盤中 Υ興樣品反應15分鐘,接著在 405 nm下測定吸光值。A sample of the fermentation medium of Example 3 in which the glucosinolate isoflavone conversion was carried out in a bioreactor by batch feeding was taken out at the second hour, 21 hour, 51 hour, and 63 hours after inoculation. The bed was dried and tested for estrogenic activity. The concentration of estrogen activity in a 50% ethanol solution was 1 ng/ml & 100 ng/m. The ch〇-K1 cells (ATCC, CCL 61 were cultured at a density of 2.5 xi 4 cells/well in %). The well plate was incubated with Ham's F-12 medium containing 10% fetal bovine serum at 37 ° C, 5% (: 〇 2 for 24 hours. Then use the reported vector pBK_CMv_GaM_ 1^ ruler (1 (or 0) and mouth 8 〖-匸1^-(1;8-8)4-11<;-test phosphatase (eight?) Transfect the cells for 5 hours. After that, remove the medium containing the transfection agent and dilute the medium to be tested. Samples. 17β-estradiol (E2, Sigma, E2758) was used as a control. Estrogen activity test samples and controls were subjected to estrogen activity 113300.doc ^2 '[S] 1377254 for 48 hours, followed by 48 hours. From the culture ^ θ ^ ^ ; Take a certain amount of medium to determine the alkaline % acid enzyme (ΑΡ) activity. Take the hexahydrate σ field basic bis-bisaluminate salt (ΡΝΡΡ) as the substrate, and in the 96-well plate The sample was reacted for 15 minutes and then the absorbance was measured at 405 nm.

數據顯示’與臨床利之雌激㈣β.雌二醇相比,無論 在10 ng/ml下抑或在100 ng/mlT,根據本發明之去葡萄糖 苦大豆異黃_轉化所獲得之產物均不會使α·受體表現增加 (圖胃經轉化之產物將不會增加乳癌相關疾病發 生之風險。同時,無論在10 ng/ml下抑在或1〇〇 下, 樣品皆使β·受體表現隨轉化時間増加而增加(圖5b),此結 果表示該產物對增加骨鈣吸收及抑制心血管疾病發生具有 正面效果。 【圖式簡單說明】 圖1在燒瓶中大豆異黃酮糖苷之去糖基化作用。 圖2在燒瓶中大豆異黃酮糖苷之去糖基化作用。The data show that the product obtained according to the present invention does not make the product obtained by the de-glucosinolate-yellow-yield conversion according to the present invention, whether it is at 10 ng/ml or at 100 ng/ml T, compared with the clinically-producing (iv) β. estradiol. Increased expression of α·receptors (the product of gastric transformation will not increase the risk of breast cancer-related diseases. At the same time, whether at 10 ng/ml or at 1 ,, the sample will make the β receptors follow The conversion time increased and increased (Fig. 5b). This result indicates that the product has a positive effect on increasing bone calcium absorption and inhibiting cardiovascular disease. [Simplified illustration] Figure 1 Deglycosylation of soybean isoflavone glucoside in flask Figure 2. Deglycosylation of soy isoflavone glucosides in flasks.

圖3在燒瓶中以分批饋料方式製備去葡萄糖苦大豆異黃 酮。 圖4A在生物反應器中連續製備去葡萄糖苷大豆異黃酮過 程中之細胞數》 圖4B在生物反應器中連續製備去葡萄糖苦大豆異黃酿j過 程中之大豆異黃酮濃度。 圖5A生物轉化期間的植物雌激素活性(α-受體)。 圖5Β生物轉化期間的植物雌激素活性(β-受體)。 113300.doc •13··Figure 3 shows the preparation of deglucose soy isoflavone in a batch feed in a flask. Figure 4A shows the number of cells in the bioreactor for the continuous preparation of glucosinolate soy isoflavones. Figure 4B shows the concentration of soy isoflavones in the bioreactor for the continuous preparation of glucosinolate. Figure 5A Phytoestrogens activity (alpha-receptor) during biotransformation. Figure 5. Phytoestrogens activity (beta-receptor) during biotransformation. 113300.doc •13··

Claims (1)

第098103083號專利申請案 七Patent Application No. 098103083 可表現或產生β_醣苷酶者,其中高濃度去葡萄糖苷大豆 異畀酮係濃度分別為699.6 μΜ及206.3 μΜ以上之大豆黃 _ (daidzein)及染料木黃網(genjstein)。 2. 如吻求項1之方法,其中葡萄糖苷大豆異黃酮係藉由批 次、批次饋料或連續基質饋料方式添加。 3·如請求項丨之方法,其中該等微生物係選自由以下各者 、’且成之群’雅致放射毛徽似)、臺灣放 射毛黴 taiwanensis) ' 泡盛麴菌 aw⑽〇rZ)、米麴菌(儿、整油麴菌(儿吻如)、枯 草桿菌μ如·/⑷、納豆枯草桿菌(5ac㈧w Subtilis natto)、動物雙又桿亀(mfid〇bacterium a«z_ma/z\s)、短型雙叉桿菌(及办、嬰兒雙又桿菌 /«/(3«沿)、長型雙又桿菌(B. /〇„gWW)、嗜熱雙又桿菌(_g. i/^rwo/?/n7ww)、念珠菌屬(Ca«心ί/α spp) '德巴利酵母屬 (Debaryomyces spp) &gt; $ {Ganoderma lucidum) ' 'f ik % 酸桿菌(Z^cio6acz7/w izci’afop/n'/wj)、乾酪乳酸桿菌(Z. ca*sez·)、德氏乳酸桿菌(L. G?ei6rwecA:/z·)、副乾酪乳酸桿菌 (Z. paracase)、植物乳酸桿菌(I,、乳酸乳酸 球菌(Laciococcws /ac&quot;··?)、紅麵黴屬(Λ/οπαΜΜί spp)、毛 黴菌屬(Mwcor spp)、無接合孢子根黴菌(及;„·ζ〇尸似 I13300-I010113.doc rl377254 azjvgosporws)、酵母菌屬spp)、紅色糖夕 抱議(Saccharopolyspora eryi/7rae&lt;3)、嗜熱鏈球菌 {Streptococcus i/iermop/n./ws)及接合酵母菌屬 (Zygosaccharomyces spp) ° 4·如請求項3之方法,其中該微生物為納豆枯草桿菌 (Bacillus subtilis natio)。 5·如請求項1至4中任一項之方法,其中該醱酵係在約10°c 至約60°C之溫度下以約20 rpm至約2000 rpm之震盪速率 進行約8小時至約240小時。 6.如請求項5之方法,其中該醱酵係在約2〇°c至約4〇。〇之溫 度下以約5〇 rpm至約1000 rpm之震盪速率進行約2〇小時 至約240小時。 7.如清求項6之方法,其中該醱酵係在約35。〇至約4〇。〇之溫 度下以約12〇 rpm至約2〇〇 rpm之震盪速率進行約2〇小時 至約120小時。 8. 9. 10.Those who can express or produce β-glycosidase, wherein the high concentration of glucosinolate isofonone is 699.6 μΜ and 206.3 μΜ, respectively, daidzein and genjstein. 2. The method of claim 1, wherein the glucoside soy isoflavone is added by batch, batch feed or continuous matrix feed. 3. The method of claim </ RTI> wherein the microorganisms are selected from the group consisting of: 'and the group of 'radial hairy hairs'), Taiwan's Phytophthora taiwanensis, 'Aphis faecalis aw (10) 〇rZ), rice bran Bacteria (child, whole oil fungus (baby kiss), Bacillus subtilis μ such as / (4), Bacillus subtilis (5ac (eight) w Subtilis natto), animal double scorpion (mfid〇bacterium a«z_ma/z\s), short Type Bifidobacterium (and office, infant Bifidobacterium / « / (3 « along), long Bifidobacterium (B. / 〇 „gWW), thermophilic bacillus (_g. i / ^ rwo /? / N7ww), Candida (Ca «heart ί/α spp) 'Debaryomyces spp &gt; $ {Ganoderma lucidum) ' 'f ik % Acid bacillus (Z^cio6acz7/w izci'afop/n '/wj), Lactobacillus casei (Z. ca*sez), Lactobacillus delbrueckis (L. G?ei6rwecA: /z·), Lactobacillus paracasei (Z. paracase), Lactobacillus plantarum (I, Lactobacillus lactis (Laciococcws / ac&quot;··?), Rhodobacter genus (Λ/οπαΜΜί spp), Mucor spp, and Rhizopus genus (and; „·ζ〇尸似I13300-I010113. Doc Rl377254 azjvgosporws), Saccharomyces spp), red sugar sleigh (Saccharopolyspora eryi/7rae&lt;3), Streptococcus thermophilus {Streptococcus i/iermop/n./ws) and Zygosaccharomyces spp ° 4 The method of claim 3, wherein the microorganism is Bacillus subtilis natio. The method of any one of claims 1 to 4, wherein the fermentation is carried out at a temperature of from about 10 ° C to about 60 ° C at an oscillating rate of from about 20 rpm to about 2000 rpm for about 8 hours to about 240 hours. 6. The method of claim 5, wherein the fermentation is between about 2 ° C and about 4 〇. The enthalpy at a temperature of from about 5 rpm to about 1000 rpm is carried out for about 2 hours to about 240 hours. 7. The method of claim 6, wherein the fermentation is at about 35. 〇 to about 4 〇. The enthalpy at a temperature of from about 12 rpm to about 2 rpm is carried out for about 2 hours to about 120 hours. 8. 9. 10. -種用於製備去葡萄糖苷大豆異黃酮之方法,其包含 用β-葡萄糖㈣使大豆基物f中之葡萄糖#大豆異黃 去糖基化,改良之處在於添加葡萄糖苷大豆異黃酮。 二:項8之方法’其中該等葡萄糖苷大豆異黃酮係 -人、批次饋料或連續基質饋料方式添加。 一種包含高濃度去葡萄糖苷 根據如請求項⑦ &quot;酮之組合物’其 項1至8中任-項之方法製備。 113300-10101 i3.d〇,A method for preparing a deglucoside soy isoflavone comprising the deglycosylation of glucose # soy isoflavone in soybean base f with β-glucose (IV), modified by the addition of glucoside soy isoflavones. Two: The method of Item 8 wherein the glucoside soy isoflavones are added in a human, batch feed or continuous matrix feed. A method comprising a high concentration of deglucoside according to any one of items 1 to 8 of the composition of claim 7 &quot; ketones. 113300-10101 i3.d〇,
TW98103083A 2009-01-23 2009-01-23 Process for preparation of aglucone isoflavones TWI377254B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98103083A TWI377254B (en) 2009-01-23 2009-01-23 Process for preparation of aglucone isoflavones

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98103083A TWI377254B (en) 2009-01-23 2009-01-23 Process for preparation of aglucone isoflavones

Publications (2)

Publication Number Publication Date
TW201028478A TW201028478A (en) 2010-08-01
TWI377254B true TWI377254B (en) 2012-11-21

Family

ID=44853595

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98103083A TWI377254B (en) 2009-01-23 2009-01-23 Process for preparation of aglucone isoflavones

Country Status (1)

Country Link
TW (1) TWI377254B (en)

Also Published As

Publication number Publication date
TW201028478A (en) 2010-08-01

Similar Documents

Publication Publication Date Title
US20200255795A1 (en) Method for preparing microbial preparation and microbial preparation produced by the same
JP5734477B2 (en) Equol-containing fermented soybean hypocotyl and method for producing the same
Raimondi et al. Bioconversion of soy isoflavones daidzin and daidzein by Bifidobacterium strains
CN101560523A (en) Nutrient compound based on mixed fermented culture of five probiotics
WO2020175939A1 (en) Composition for preventing, alleviating, or treating obesity or fatty liver disease, comprising weissella hellenica wikim0103
KR101709281B1 (en) Composition for Prevention or Treatment of Osteoporosis Comprising Herbal Extract and Fermentation Product thereof with Lactic acid Bacteria
CN110087661A (en) Aglycon generates promotor
JP4808715B2 (en) Menopause prevention / amelioration agent and functional food and drink
JP6371055B2 (en) Method for producing isoflavanones
TWI377254B (en) Process for preparation of aglucone isoflavones
US20100190844A1 (en) Process for preparation of aglucone isoflavones
CN103652346A (en) Method for improving soy isoflavone conversion rate of composite probiotics fermented soybean meal feed
Lopes et al. The importance of microbial and enzymatic bioconversions of isoflavones in bioactive compounds
CN112538439B (en) Lactobacillus plantarum and application thereof in preparing plant coagulated yoghurt and improving intestinal bacterial facies
JP7008435B2 (en) Intestinal environment improving agent for the small intestine
KR20110062002A (en) Composition for improving blood flow including fermented product of dioscorea batatas, preparing method thereof and health care food comprising thereof
CN101325881A (en) Equol-containing fermentation product of soybean embryonic axis, and method for production thereof