TWI377196B - Ruthenium complex and photoelectric component using the same - Google Patents

Ruthenium complex and photoelectric component using the same Download PDF

Info

Publication number
TWI377196B
TWI377196B TW097138544A TW97138544A TWI377196B TW I377196 B TWI377196 B TW I377196B TW 097138544 A TW097138544 A TW 097138544A TW 97138544 A TW97138544 A TW 97138544A TW I377196 B TWI377196 B TW I377196B
Authority
TW
Taiwan
Prior art keywords
dye
metal complex
sensitized solar
solar cell
ruthenium
Prior art date
Application number
TW097138544A
Other languages
Chinese (zh)
Other versions
TW201014821A (en
Inventor
Ching Lin Chen
Ta Chung Yin
Der Gun Chou
Original Assignee
Everlight Chem Ind Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Everlight Chem Ind Corp filed Critical Everlight Chem Ind Corp
Priority to TW097138544A priority Critical patent/TWI377196B/en
Publication of TW201014821A publication Critical patent/TW201014821A/en
Application granted granted Critical
Publication of TWI377196B publication Critical patent/TWI377196B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Description

1377196 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種釕金屬錯合物及用此錯合物製作之 光電元件,特別是一種適用於染料敏化太陽能電池 5 (Dye-Sensitized Solar CeU,DSSC)之釕金屬錯合物及染料 敏化太陽能電池。 【先前技術】 ® 隨著人類文明發展,全球面臨嚴重的能源危機及環境 10 污染等問題,以光電太陽能電池將太陽能直接轉變成電 能,是解決全世界能源危機及降低環境污染的重要方法之 一;其中染料敏化太陽能電池以其製造成本低、可製成大 面積、可撓性、透光性可用於建築物上等優異特性,而成 為一種有前景的新型太陽能電池。 15 近年,Gratzel等人發表一系列染料敏化太陽能電池相 關文獻(例如 0’ Regan, B.; GrStzel,M. Nature 1991,353, • 737),顯示染料敏化太陽能電池具有實用性。一般而言, 染料敏化太陽能電池的結構包括有陰/陽電極、奈米二氧化 鈦、染料及電解質;染料敏化太陽能電池中的染料對電池 20 效率有關鍵性的影響,理想的染料要具有可以吸收較大範 . 圍的太陽光譜、高莫耳吸收係數(absorption coefficient)、 高溫安定性及光安定性等。1377196 VI. Description of the Invention: [Technical Field] The present invention relates to a base metal complex and a photovoltaic element produced using the same, and in particular to a dye-sensitized solar cell 5 (Dye-Sensitized Solar) CeU, DSSC) bismuth metal complexes and dye-sensitized solar cells. [Prior Art] ® With the development of human civilization, the world faces serious energy crisis and environmental pollution. The photoelectric solar cell directly converts solar energy into electrical energy, which is one of the important methods to solve the global energy crisis and reduce environmental pollution. Among them, the dye-sensitized solar cell has become a promising new type of solar cell because of its low manufacturing cost, large area, flexibility, and light transmittance for use in buildings. 15 In recent years, Gratzel et al. published a series of dye-sensitized solar cell related literatures (eg 0' Regan, B.; GrStzel, M. Nature 1991, 353, • 737), showing the utility of dye-sensitized solar cells. In general, the structure of a dye-sensitized solar cell includes a cathode/anode electrode, a nano titanium dioxide, a dye, and an electrolyte; a dye in a dye-sensitized solar cell has a critical influence on the efficiency of the battery 20, and an ideal dye has an Absorption of a large range of solar spectrum, high absorption coefficient (absorption coefficient), high temperature stability and light stability.

GrStzel實驗室發表了一系列之釕錯合物作為染料敏化 太陽能電池中的染料。1993年GrStzel實驗室發表使用N3染 1377196 5 料所製備之染料敏化太陽能電池,其效率達10.0%(ΑΜ 1.5)。N3染料之單波光光電流轉換效率(IPCE)值在 400nm〜600nm範圍可達80%,而其後所開發之數百種染料錯 合物,其效能測試皆無法超越N3染料。N3染料之結構如下 式(a)所示。GrStzel Laboratories has published a series of complexes as dyes in dye-sensitized solar cells. In 1993, GrStzel Laboratories published a dye-sensitized solar cell prepared using N3 dye 1377196 5 with an efficiency of 10.0% (ΑΜ 1.5). The single-wave photo-current conversion efficiency (IPCE) of the N3 dye can reach 80% in the range of 400 nm to 600 nm, and hundreds of dye complexes developed thereafter cannot exceed the N3 dye. The structure of the N3 dye is as shown in the following formula (a).

COOHCOOH

10 直至2003年GrStzel實驗室發表使用N719染料所製備 之染料敏化太陽能電池,其效率提升到10.85%(AM 1.5)。 N719染料之結構如下式(b)所示。10 Until 2003, GrStzel Laboratories published a dye-sensitized solar cell prepared using N719 dye, which increased its efficiency to 10.85% (AM 1.5). The structure of the N719 dye is as shown in the following formula (b).

COOTBACOOTBA

(b) 5 1377196 而後2004年同實驗室發表使用黑染料(Black dye)所製 備之染料敏化太陽能電池,其效率則達到11.04%(AM 1.5)。黑染料可強化紅光區和紅外光區的光譜應答,從而提 昇染料敏化太陽能電池的效能。黑染料之結構如下式(c)所 5 示。(b) 5 1377196 Then, in 2004, the dye-sensitized solar cell prepared by using the black dye was published in the laboratory with an efficiency of 11.04% (AM 1.5). The black dye enhances the spectral response of the red and infrared regions, thereby improving the performance of the dye-sensitized solar cell. The structure of the black dye is as shown in the following formula (c).

COOTBACOOTBA

除了 GrStzel實驗室發表之N3染料、N719染料與黑染料 等相關系列之釕錯合物之外,其他類似的有鉑錯合物、锇 10 錯合物、鐵錯合物、銅錯合物...等等。但是經過許多研究 顯示釕錯‘合物的效率仍為較佳。 由於染料敏化太陽能電池中的染料對電池效率有關鍵 ® 性的影響。因此,尋找可以提高染料敏化太陽能電池效率 的染料分子,是改善染料敏化太陽能電池效率的重要方法 15 之一。 【發明内容】 本發明提供一種新穎釕金屬錯合物,其適用於染料敏 化太陽能電池,可以增加染料敏化太陽能電池之光電效率。 1377196 本發明另提供一種染料敏化太陽能電池,其有較高的 光電效率。 本發明之釕金屬錯合物,其結構如下式 5In addition to the related series of N3 dyes, N719 dyes and black dyes published by GrStzel Laboratories, other similar compounds are platinum complexes, 锇10 complexes, iron complexes, and copper complexes. ..and many more. However, after many studies, it has been shown that the efficiency of the compound is still better. Because dyes in dye-sensitized solar cells have a critical ® effect on cell efficiency. Therefore, finding dye molecules that can improve the efficiency of dye-sensitized solar cells is one of the important methods to improve the efficiency of dye-sensitized solar cells. SUMMARY OF THE INVENTION The present invention provides a novel base metal complex which is suitable for dye-sensitized solar cells and which can increase the photoelectric efficiency of dye-sensitized solar cells. 1377196 The present invention further provides a dye-sensitized solar cell having a high photoelectric efficiency. The base metal complex of the present invention has the following structure:

RuL2(NCS)2Ai (I) 其中 L 為 2,2’-雙。比咬-4,4,-二甲酸(2,2’-bipyridyl-4,4’-dicarboxylic acid)、2,2’-雙 °比咬-4,4,-二磺酸 (2,2’-bipyridyl-4,4’-disulfonic acid)或 2,2,-雙吡啶·4,4’-二 碌酸(2,2’-bipyridyl-4,4’_diphosphonicacid); n-r5RuL2(NCS)2Ai (I) where L is 2,2'-double. Than 4,4,-dicarboxylic acid (2,2'-bipyridyl-4,4'-dicarboxylic acid), 2,2'-double ratio bite-4,4,-disulfonic acid (2,2' -bipyridyl-4,4'-disulfonic acid) or 2,2,-bipyridyl 4,4'-dibronic acid (2,2'-bipyridyl-4,4'-diphosphonic acid); n-r5

A 為 N R1R2R3R4A is N R1R2R3R4

其令,Ri為C5-20 烷基(alkyl)、Let Ri be a C5-20 alkyl group,

15 獨立 苯基(phenyl)或苯甲基(benzyl),R2、R3、及R4各自獨立八 別為Cwo烷基、苯基或苯甲基,R5、'及R7各自 乃 分別為CbM烷基; m為1至4的整數。 於上述式(I)中,L可為2,2’·雙0比啶-M,·二甲峻、2 2 雙吡啶-4,4’-二確酸或2,2’-雙吡啶_4,4’-二磷酸。较佳的 L為2,2’-雙吡啶-4,4’-二甲酸。 20 1377196 於上述式(I)中,A可為N,RiR2R3R4、Q^Rs15 independently phenyl (phenyl) or benzyl (benzyl), R2, R3, and R4 are each independently Cw alkyl, phenyl or benzyl, and R5, 'and R7 are each CbM alkyl; m is an integer from 1 to 4. In the above formula (I), L may be 2,2'·bis 0-pyridine-M,·dimethyl sulphate, 2 2 bispyridin-4,4′-dicarboxylic acid or 2,2′-bipyridine _ 4,4'-diphosphate. Preferred L is 2,2'-bipyridine-4,4'-dicarboxylic acid. 20 1377196 In the above formula (I), A may be N, RiR2R3R4, Q^Rs

為C5-20炫基、笨基& | 其中R! 土次本f基,R2、R3、及 別為C,_2G烷基、笨基戌 自獨立分 5For C5-20 炫, 笨基 & | where R! soil sub-f, R2, R3, and other C, _2G alkyl, stupid 戌 from independent 5

忒本〒基,R5、R6、及R7各白鉬A 分別為〇ν20貌基;較佳的,A為Mm,其令 10 :炫基、苯基或苯f基’ R 2、R 3、及r 4各自獨立分別‘.、 為Cl-20烧基、苯基或苯甲基;更佳的,A為N+RlR2R3R, 其中R!為C5-2〇烷基、苯基或苯甲基,Rs、&、及心各4自 獨立刀別為C!·6燒基、苯基或苯甲基;最佳的,a為 N+RlR2R3R4,其令心為c52〇烷基、苯基或苯甲基,I、 R3、及R4各自獨立分別為CN6烷基。 於上述式(I)中,m可為1至4的整數;較佳的, 2或3的整數。 …忒 〒 ,, R5, R6, and R7 each of the white molybdenum A is 〇ν20 appearance; respectively, preferably, A is Mm, which makes 10: danic, phenyl or benzene f-based 'R 2, R 3, And r 4 are each independently '., a Cl-20 alkyl group, a phenyl group or a benzyl group; more preferably, A is N+RlR2R3R, wherein R! is a C5-2 alkyl group, a phenyl group or a benzyl group. , Rs, &, and heart 4 from independent knife is C! · 6 alkyl, phenyl or benzyl; optimal, a is N + RlR2R3R4, which makes the heart c52 alkyl, phenyl Or benzyl, I, R3, and R4 are each independently a CN6 alkyl group. In the above formula (I), m may be an integer of 1 to 4; preferably, an integer of 2 or 3. ...

上述式(I)之釕金屬錯合物具體實例有:Specific examples of the ruthenium metal complex of the above formula (I) are:

(1-1) 15 1377196(1-1) 15 1377196

(1-2)(1-2)

13771961377196

(1-4)(1-4)

• (1-5)• (1-5)

10 1377196 (1-6)10 1377196 (1-6)

(1-7) 5(1-7) 5

Ο 0=S-0* ^(CHzCHiCHzCHaJjiCHjPh)Ο 0=S-0* ^(CHzCHiCHzCHaJjiCHjPh)

(1-8) IS] 11 1377196(1-8) IS] 11 1377196

本發明提供之染料敏化太陽能電池,其含有上述之釕 金屬錯合物。 此外,本發明之染料敏化太陽能電池,包括:一含有 10 上述釕金屬錯合物之光電陽極(photoanode); —陰極 12 1377196 - (cathode);以及位於光電陽極及陰極之間的電解質層 (electrolyte layer)。 於本發明之染料敏化太陽能電池中,光電陽極包括 有:透明基板、透明導電琪、多孔性半導體膜、以及釕金 5 屬錯合物染料。 於本發明之染料敏化太陽能電池中,光電陽極之透明 基板之材質並無特別限制,只要是透明的基材均可使用。 較佳地’透明基板之材質為對於由染料敏化太陽能電池外 • 部侵入之水分或氣體具有良好的遮斷性、耐溶劑性、耐候 1·0 性等之透明基材》透明基板之具體列舉,包括有:石英、 玻璃等透明無機基板;聚乙烯對苯二甲酸酯(ΡΕΤ)、聚(萘二 甲酸乙二酯)(ΡΕΝ)、聚碳酸酯(PC)、聚乙烯(ΡΕ)、聚丙烯 (ΡΡ)、聚醯亞胺(ΡΙ)等透明塑膠基板,但是,並非限定於這 些。此外’透明基板之厚度並無特別限制,可依照透光率、 15 染料敏化太陽能電池特性要求而自由選擇。較佳的,透明 基板之材質為玻璃。 • 此外’於本發明之染料敏化太陽能電池申,透明導電 膜的材料可為氧化銦錫(ΙΤΟ)、氟摻雜的氧化錫(FT〇)、氧 化辞-三氧化二鎵(Zn〇_Ga2〇3)、氧化辞_三氧化二鋁 .20 (Zn〇-A12〇3)、或以鍚為基礎的氧化物材料。 再者,於本發明之染料敏化太陽能電池中,多孔性半 導體膜是用半導體微粒所製成。適當的半導體微粒可包 括:矽、二氧化鈦、二氧化錫、氧化鋅、三氧化鎢、五: 化二银、三氧化鈦錄、及其組合;較佳的,半導體微粒是 IS1 13 1377196 -二氧化鈦。半導體微粒的平均粒徑為5至500奈米,較佳的 為10至50奈米。多孔性半導體膜的厚度為5〜25微米。 於本發明之染料敏化太陽能電池中,釕金屬錯合物染 料如上所述之釕金屬錯合物。 5 此外,作為染料敏化太陽能電池之陰極材料並無特別 限制,可包括任何具有傳導性之材料。或者,陰極材料也 可以是一絶緣材料,只要有傳導層形成於朝向光電陽極的 表面上。電化學穩定的物質就可作為陰極,且適用於陰極 • 材料的非限制實例包括:鉑、金、碳、及其相似物》 10 再者,作為染料敏化太陽能電池之電解質層並無特別 限制,可包括任何具有電子及/或電洞傳導性之基材。 【實施方式】 本發明之釕金屬錯合物可以下列方式合成。 15 廣-二硫氰基雙(2,2’_雙吡啶-4,4’-二甲酸基)釕(II) (c/i-di(thiocyanato)-iV,i^,-bis(2,2,-bipyridyl-4,4,-dicarboxylic acid)ruthenium(II),N3 dye)依照 Inorganic _ Vol. 38,No. 26,1999,6298-6305 的方法合成。 將廣·二硫氰基-从雙(2,2、雙吡啶-4,4’-二甲酸基)釕 20 (II)溶於蒸餾水中,再滴入10%的氫氧苯甲基三丁基銨 (benzyltributylammonium hydroxide)水溶液(用氣化苯甲基 三丁基錄試劑(benzyltributylammonium chloride reagent, ACROS,98%)所配製)到反應液中,直到反應液的pH值穩 定達到10,然後濃縮得到黏稠液。將此黏稠液溶於甲醇 25 (methanol)中,然後加入乙鱗(diethyl ether)沈澱出產物,取 1377196 出此吸濕性固體產物後在真空下乾燥一天。將此乾燥後的 固體溶於蒸餾水中,再用0.1 Μ的硝酸(nitric acid)水溶液 調整pH值到5以下,即可得到式(1-1)之釕金屬錯合物。 本發明之染料敏化太陽能電池的製造方法並無特別限 5 制’可用一般已知的方法製造。 透明基板之材質並無特別限制,只要是透明的基材均 可使用。較佳地,透明基板之材質為對於由染料舞化太陽 能電池外部侵入之水分或氣體具有良好的遮斷性、耐溶劑 | 性、耐候性等之透明基材,具體列舉,有石英、玻璃等透 明無機基板’聚乙烯對苯二甲酸酯(PET)、聚(萘二甲酸乙二 醋)(PEN)、聚碳酸醋(PC)、聚乙烯(PE)、聚丙烯(pp)、聚酿 亞胺(PI)等透明塑膠基板,但是,並非限定於這些。透明基 板之厚度並無特別限制’可以藉由透光率、染料敏化太陽 能電池特性要求而自由選擇。在一具體實例中,透明基板 15 是使用玻璃基板。 透明導電膜的材料可以選自氧化銦錫(IT0)、氟摻雜的 φ 氧化錫(FT〇)、氧化鋅-三氧化二鎵CZnO-Ga^:)、氧化鋅_ 三氧化二銘(ΖηΟ-Α12〇3)、以及鍚為基礎的氧化物材料。在 一具體實例中’透明導電膜是使用氟摻雜的氧化錫。 20 多孔性半導體膜是用半導體微粒所製成。適當的半導 體微粒包括有矽、二氧化鈦、二氧化錫、氧化鋅、三氧化 嫣、五氧化二銳、三氧化鈦銘及其組合。首先,先將半導 體微粒配製成糊狀物,再將其塗佈到透明導電基板上,塗 佈方法可用刮墨刀、網印、旋轉塗佈、喷灑等或一般濕式 15 1377196 塗佈。此外,為了得到適當的臈厚,可以塗佈一次或多次。 半導體膜層可以為單層或多層,多層是指各層使用不同粒 徑的半導體微粒。例如,可先塗佈粒徑為5至5〇奈米的半導 體微粒,其塗佈厚度為5至2〇微米,然後再塗佈粒徑為細 5至4〇0奈米的半導體微粒,其塗佈厚度為3至5微米》然後在 50至100乞乾燥後,再在燒結3〇分鐘可製得一多 層半導體膜層。 釘金屬錯合物染料可以溶於適當的溶劑配製成染料溶 10 15 20 液。適當的溶劑包括有乙腈、子醇、乙醇、丙醇、丁醇、 一甲基甲醯胺、N-甲基吡咯垸_或其混合物,但是,並非 限定於這些。在此,將塗佈有半導體膜的透明基板浸泡到 染料溶液中,讓其充分吸收染料溶液中的染料,並於 吸收完成後取出乾燥’可製得一染料敏化太陽能電池: 電陽極》 作為陰極的材料並無特別限制,可包括任何具有傳導 性之材料。或者,陰極材料也可以是一絶緣材料,只要有 傳導層形成於朝向光電陽極的表面上。此外,電化學穩定 :物質就可作為陰極’且適用於陰極材料的非限制實例包 括.鉑、金、碳、及其相似物。 電解質層並無特別限制,可以包括任何具有電子及 :洞傳導性之基材…卜,液態電解質可以是含碘的乙腈 :液、含碘的N-甲基料烷酮溶液、或含碘的%甲氧基丙 液。在一具體實例中,液態電解f為-含有碘的乙腈 [S) 16 1377196 本發明之染料敏化太陽能電池一具體製造方式如下。 首先’將包括具有粒徑為20〜30奈米(nm)之氧化鈦微 粒的糊狀物’藉由一次或數次的網印塗佈在覆蓋有氟摻雜 的氧化錫(FTO)玻璃板上,而後在45〇。(:燒結30分鐘。 5 將釕金屬錯合物溶於乙腈(acetonitrile)及三.敍-丁醇 (i-butanol)的混合液(1:1 v/v)中,配成釕金屬錯合物染料溶 液°接著’將上述含有多孔氧化鈦膜的玻璃板浸泡在染料 溶中,讓其吸收染料溶液中的染料後,取出乾燥即可得到 ^ 一 光電陽極(photoanode)。 •° 將覆蓋有氟摻雜的氧化錫玻璃板鑽一直徑為0.75毫米 之注入口’以備注入電解質用。再將氯化鉑酸(H2PtCl^溶 液塗佈在覆盍有氟摻雜的氧化錫玻璃板上,然後加熱到4〇〇 °C處理15分鐘即可得到一陰極(cath〇de)<> 然後’將厚度60微米的熱塑性聚合物膜配置在光電陽 15極和陰極之間,在120至14〇。(:下施加壓力於此二電極,以 黏合此兩電極。 • 將電解液(〇.〇3 Μ I2/〇.3 M LiI/0.5 Μ三級丁基吡啶的乙 腈溶液)注入,再用熱塑性聚合物膜將注入口密封,即可得 到本發明之染料敏化電池。 2〇 以下實例僅用以說明本發明,本發明之申請專利範圍 =不會因此而党限制。若無特別註明,則溫度為攝氏溫度, 份數及百分比係以重量計。重量份數和體積份數之關係就 如同公斤和公升之關係。 >5 ~ 實施例1 17 1377196 合成廢·二硫氰基雙(2,2,-雙吡啶-4,4’-二甲酸基)釕(II) 雙(苯甲基三丁基銨)(c&-di(thiocyanato)-_^,7\r-bis(2,2’-bi pyridyl-4,4,-dicarboxylic acid)ruthenium(II)bis(benzyl tributyl ammonium)) (1-1) 5 將0.50份廣-二硫氰基-W’-雙(2,2’_雙吡啶-4,4’-二曱 酸基)釕(II) (c/j-di(thiocyanato)-iV,iV’-bis(2,2’-bipyridyl-4,4’-dicarboxylic acid)ruthenium(II),N3 dye)(依照 Inorganic Chemistry, Vol. 38 , No. 26, 1999, 6298-6305 6-j _ 法合成)以及10份蒸餾水加入反應瓶中攪拌混合,再滴入 10 10% 的氫氧笨甲基三 丁基鍵(benzyltributylammonium hydroxide)水溶液(用氣化苯甲基三丁基銨試劑 (benzyltributylammonium chloride reagent,ACROS,98%)所 配製)到反應液中,直到反應液的pH值穩定達到10,然後 用旋轉蒸發儀(rotary-evaporator)蒸除溶劑得到黏稠液。接 15 著,將此黏稠液溶於曱醇(methanol)中,然後加入乙醚 (diethyl ether)產生沈澱物,取出此吸濕性固體產物後在真 _ 空下乾燥一天。將此乾燥後的固體溶於10份的蒸餾水中, 再用0.1 Μ的碗酸(nitric acid)水溶液調整pH值到5以下, 用燒結玻璃過慮器(sintered glass niter)過渡收集產物,並用 20 5份pH 4.1的蒸餾水沖洗產物,得到式(1-1)之黑色固體產 物0.52份,產率61.5%。 實施例2 合成廣-二硫氰基-愚#’-雙(2,2’_雙吡啶-4,4’-二甲酸基)釕(II) 25 雙(苯曱基三乙基銨)(di-di(thiocyanato)-^#,-bis(2,2,-bi 18 1377196 pyridyl-4,4,-di carboxylic acid)ruthenium(II)bis(benzyl triethyl ammonium)) (1-2) 同實施例1之相同步驟製備本實施例之化合物,除了 使用氫氧苯甲基三乙基敍(benzyltriethylammonium 5 hydroxide)水溶液(TCI Co·,Ltd.,)取代氫氧笨曱基三丁基銨 水溶液。得到式(1-2)之黑色固體產物0.30份,產率41.1%。 實施例3 I 合成廢-二硫氰基-况雙(2,2’_雙吡啶-4,4’-二甲酸基)釕(II) 10 雙(三乙基己基敍)(cz\s-di(thiocyanato)-iV,_/V’-bis(2,2’-bi pyridyl-4,4,-dicarboxylic acid)ruthenium(II)bis(triethyl hexyl ammonium)) (1-3) 將0.50份廣-二硫氰基-W,-雙(2,2’·雙吡啶-4,4’-二甲 酸基)釕(II)以及10份蒸餾水加入反應瓶中攪拌混合,再滴 15 入 10%的氫氧三乙基己基敍(triethylhexylammonium hydroxide)水溶液(用溴化三乙基己基銨試劑 (triethylhexylammonium bromide reagent, ALDRICH , 99%) • 所配製)到反應液中,直到反應液的pH值穩定達到12,然 後用旋轉蒸發儀蒸除溶劑得到黏稠液。接著,將此黏稠液 20 溶於甲醇中,然後加入乙醚產生沈澱物,取出此吸濕性固 體產物後在真空下乾燥一天。將此乾燥後的固體溶於10份 的蒸餾水中,再用0.1 Μ的硝酸水溶液調整pH值到4以下, 用燒結玻璃過濾器過濾收集產物,並用5份pH 4.1的蒸餾 水沖洗產物,得到式(1-3)之黑色固體產物0.44份,產率 25 81.5%» 1377196 實施例4 合成/#-二硫氰基-愚ΛΤ-雙(2,2’_雙吡啶-4,4’-二甲酸基)釕(II) 雙(1-十二烧基0比咬)(£^,di(thiocyanato)-iV,;V’-bis(2,2’-bi 5 pyridyl-4,4,-dicarboxylic acid)ruthenium(II)bis(l-dodecyl pyridinium)) (1-4) 同實施例3之相同步驟製備本實施例之化合物,除了 使用氫氧 1-十二炫基0比咬(1-dodecylpyridinium hydroxide) _ 水溶液(用氯化1 -十二烧基。比咬試劑(1-dodecylpyridinium 10 chloride reagent,ALDRICH,98%)所配製)取代氫氧三乙基 己基銨水溶液。得到式(1-4)之黑色固體產物0.20份,產率 ' 32.8%。 實施例5 15 合成廣-二硫氰基-雙(2,2,-雙吡啶-4,4’-二曱酸基)釕(II) 三(苯甲基三乙基敍)(cz\s-di(thiocyanato)-i^,_/V’-bis(2,2’-bi pyridyl-4,4,-dicarboxylic acid)ruthenium(II)tris(benzyl • triethyl ammonium)) (1-5) 將0_20份10°/。的氩氧苯甲基三乙基銨水溶液及100份 20 曱醇加入反應瓶中擾拌混合,再加入0.10份廣-二硫氰基 雙(2,2’_雙吡啶-4,4’-二甲酸基)釕(II)雙(苯甲基三乙 基銨)(1-2)到反應液中,攪拌混合反應2.5小時。然後用旋 轉蒸發儀蒸除溶劑得到析出之產物,用燒結玻璃過濾器過 濾收集產物,並用10份的蒸餾水沖洗產物,得到式(1-5)之 25 黑色固體產物0.08份,產率74.0%。 [S] 20 1377196 實施例6 合成廢-二硫氰基雙(2,2’_雙吡啶-4,4’-二曱酸基)釕(II) 四(苯曱基三乙基敍)(cz\s-di(thiocyanato)-A^iV’-bis(2,2’-bi 5 pyridyl-4,4,-dicarboxylic acid)ruthenium(II)tetrakis (benzyl triethyl ammonium)) (1-6) 將0.50份廣-二硫氰基-W’-雙(2,2’-雙吡啶-4,4’-二甲 酸基)釕(II)以及50份蒸餾水加入反應瓶中攪拌混合,再滴 | 入10%的氫氧苯甲基三乙基銨水溶液到反應液中,直到反 10 應液的pH值穩定達到7,然後用旋轉蒸發儀蒸除溶劑得到 黏稠液。將此黏稠液溶於曱醇中,然後加入乙醚產生沈澱 ' 物,取出此吸濕性固體產物後在真空下乾燥一天,得到式 (1-6)之黑色固體產物0.43份,產率68.0%。。 15 實施例7 製造染料敏化太陽能電池 將包括具有粒徑為20〜30奈米(nm)之氧化鈦微粒的糊 B 狀物,藉由一次或數次的網印塗佈在覆蓋有氟摻雜的氧化 錫(FTO)玻璃板(厚度4 mm,電阻ΙΟΩ/口)上,使得燒結後 20 的多孔氧化鈦膜的厚度為10至12微米(// m),而後在450 °C燒結30分鐘。 將實施例1之釕金屬錯合物溶於乙腈(acetonitrile)及 三.敍-丁醇(i-butanol)的混合液(1:1 v/v)中,配成釕金屬錯合 物濃度為0.5 Μ的染料溶液,接著,將上述含有多孔氧化 25 鈦膜的玻璃板浸泡在染料溶中,讓其吸收染料溶液中的染 21 1377196 料16至24小時後,取出乾燥即可得到一光電陽極 (photoanode)〇 將覆蓋有氟摻雜的氧化錫玻璃板鑽一直徑為〇 75毫 米’以備注入電解質用,再將氣化鉑酸(H2ptCl6)溶液(1毫 升的乙醇中含有2毫克的鉑)塗佈在氧化錫玻璃板上,然後 加熱到400°C處理15分鐘即可得到一陰極(cath〇de)。 將厚度60微米的熱塑性聚合物膜配置在光電陽極和 陰極之間’在120至140°C下施加壓力於此二電極,以黏合 該兩電極。 將電解液(0.03 Μ Ι2/0·3 M LiI/0.5 Μ三級丁基吡啶的乙 腈溶液)注入’再用熱塑性聚合物膜將注入口密封,可得本 實施例之染料敏化太陽能電池》 實施例8 15 製造染料敏化太陽能電池 同實施例7之相同步驟製備本實施例之染料敏化太陽 _ 能電池,除了使用實施例2之釕金屬錯合物取代實施例1 之釕金屬錯合物。 -20 實施例9 製造染料敏化太陽能電池 同實施例7之相同步驟製備本實施例之染料敏化太陽 能電池,除了使用實施例3之釕金屬錯合物取代實施例1 之釕金屬錯合物。 [S] 22 25 1377196 實施例ίο 製造染料敏化太陽能電池 同實施例7之相同步驟製備本實施例之染料敏化太陽 能電池,除了使用實施例4之釕金屬錯合物取代實施例i 5 之釕金屬錯合物。 實施例11 製造染料敏化太陽能電池 I 同實施例7之相同步驟製備本實施例之染料敏化太陽 1〇忐電池,除了使用實施例5之釕金屬錯合物取代實施例1 之釕金屬錯合物。 實施例12 製造染料敏化太陽能電池 同實施例7之相同步驟製備本實施例之染料敏化太陽 能電池,除了使用實施例6之釕金屬錯合物取代實施例i 之釕金屬錯合物。 比較例 同實施例7之相同步驟製備染料敏化太陽能電池,除 了使用N719取代實施例1之釕金屬錯合物。 測試方法與結果 光電效率測試 將實施例7至12及比較例之染料敏化太陽能電池在 τ S] 23 1377196 AM 1.5的照明下,測試其短路電流(Jsc)、開路電壓(v〇c)、 填充因子(FF)、光電轉換效率(η)及單波光光電流轉換效率 (Incident Photon to Current Conversion Efficiency > IPCE) 0 測試結果整理如下表1 : 表1染料敏化太陽能池之測試結果 染料 Jsc (mA/cm2) V〇c (V) FF η (%) 實施例7 1-1 8.22 0.78 0.64 4.09 實施例8 1-2 9.42 0.79 0.62 4.54 實施例9 1-3 8.46 0.80 0.64 4.33 實施例10 1-4 6.98 0.68 0.63 3.00 實施例11 1-5 7.84 0.81 0.65 4.12 實施例12 1-6 7.99 0.75 0.62 3.74 比較例 N719 7.36 0.76 0.61 3.38 由表1之測試結果顯示,用本發明實施例之釕金屬錯 • 合物所製作的染料敏化太陽能電池,與比較例用N719所製 10 作的染料敏化太陽能電池相比,本發明之釕金屬錯合物可 以提高染料敏化太陽能電池之短路電流、開路電壓及填充 因子’因而增加染料敏化太陽能電池的光電轉換效率。 綜上所述,本發明無論就目的、手法及功效,或就其 技術層面與研發設計上’在在均顯示其迥異於習知技術之 15 特徵。惟應注意的是’上述諸多實施例僅係為了便於說明 故舉例闡述之’然其並非用以限定本發明,任何熟習此技 [S1 24 1377196The dye-sensitized solar cell provided by the present invention contains the above-described ruthenium metal complex. Further, the dye-sensitized solar cell of the present invention comprises: a photoanode containing 10 of the above-described base metal complex; a cathode 12 1377196 - (cathode); and an electrolyte layer between the photoanode and the cathode ( Electrolyte layer). In the dye-sensitized solar cell of the present invention, the photoanode includes: a transparent substrate, a transparent conductive film, a porous semiconductor film, and a ruthenium complex. In the dye-sensitized solar cell of the present invention, the material of the transparent substrate of the photoanode is not particularly limited, and any substrate can be used as long as it is transparent. Preferably, the material of the transparent substrate is a transparent substrate which has good barrier properties, solvent resistance, weather resistance, and the like for the moisture or gas invaded by the dye-sensitized solar cell. Listed include: transparent inorganic substrates such as quartz and glass; polyethylene terephthalate (poly), poly(ethylene naphthalate) (ruthenium), polycarbonate (PC), polyethylene (ΡΕ) A transparent plastic substrate such as polypropylene (poly) or polyimine (fluorene), but is not limited thereto. Further, the thickness of the transparent substrate is not particularly limited, and can be freely selected in accordance with the light transmittance and the characteristics of the dye-sensitized solar cell. Preferably, the transparent substrate is made of glass. In addition, in the dye-sensitized solar cell of the present invention, the material of the transparent conductive film may be indium tin oxide (yttrium oxide), fluorine-doped tin oxide (FT〇), or oxidized-gallium trioxide (Zn〇_). Ga2〇3), oxidized word_aluminum oxide.20 (Zn〇-A12〇3), or a cerium-based oxide material. Further, in the dye-sensitized solar cell of the present invention, the porous semiconductor film is made of semiconductor fine particles. Suitable semiconductor microparticles may include: ruthenium, titanium dioxide, tin dioxide, zinc oxide, tungsten trioxide, five: two silver, titanium oxide, and combinations thereof; preferably, the semiconductor microparticles are IS1 13 1377196 - titanium dioxide. The semiconductor fine particles have an average particle diameter of 5 to 500 nm, preferably 10 to 50 nm. The thickness of the porous semiconductor film is 5 to 25 μm. In the dye-sensitized solar cell of the present invention, the base metal complex dye is a base metal complex as described above. Further, the cathode material of the dye-sensitized solar cell is not particularly limited and may include any material having conductivity. Alternatively, the cathode material may be an insulating material as long as a conductive layer is formed on the surface facing the photoanode. Electrochemically stable materials can be used as cathodes and are suitable for cathodes. Non-limiting examples of materials include: platinum, gold, carbon, and the like. 10 Further, there is no particular limitation on the electrolyte layer of the dye-sensitized solar cell. Any substrate having electrical and/or hole conductivity can be included. [Embodiment] The base metal complex of the present invention can be synthesized in the following manner. 15-Dithiocyanobis(2,2'-bipyridine-4,4'-dicarboxylic acid) ruthenium (II) (c/i-di(thiocyanato)-iV,i^,-bis(2, 2,-bipyridyl-4,4,-dicarboxylic acid)ruthenium (II), N3 dye) was synthesized according to the method of Inorganic _ Vol. 38, No. 26, 1999, 6298-6305. Dissolve guangxi-dithiocyano-from bis(2,2,bipyridine-4,4'-dicarboxylic acid) oxime 20 (II) in distilled water, and then add 10% hydroxybenzyl-3-butane An aqueous solution of benzyltributylammonium hydroxide (formulated with benzyltributylammonium chloride reagent (ACROS, 98%)) is added to the reaction solution until the pH of the reaction solution reaches 10, and then concentrated. Viscous liquid. The viscous liquid was dissolved in methanol (methanol), and then the product was precipitated by adding diethyl ether, and 1377196 of the hygroscopic solid product was taken and dried under vacuum for one day. The dried solid was dissolved in distilled water, and the pH was adjusted to 5 or less with a 0.1 Torr aqueous nitric acid solution to obtain a ruthenium metal complex of the formula (1-1). The method for producing the dye-sensitized solar cell of the present invention is not particularly limited to being produced by a generally known method. The material of the transparent substrate is not particularly limited as long as it is a transparent substrate. Preferably, the material of the transparent substrate is a transparent substrate having good barrier properties, solvent resistance, weather resistance, and the like for moisture or gas invaded by the outside of the dye-dyeing solar cell, and specifically, there are quartz, glass, and the like. Transparent inorganic substrate 'polyethylene terephthalate (PET), poly(ethylene naphthalate) (PEN), polycarbonate (PC), polyethylene (PE), polypropylene (pp), poly brewing A transparent plastic substrate such as an imine (PI), but is not limited thereto. The thickness of the transparent substrate is not particularly limited, and can be freely selected by the light transmittance and the characteristics of the dye-sensitized solar cell. In a specific example, the transparent substrate 15 is a glass substrate. The material of the transparent conductive film may be selected from the group consisting of indium tin oxide (IT0), fluorine-doped φ tin oxide (FT〇), zinc oxide-diazonium oxide CZnO-Ga^:), zinc oxide _ three-oxide bismuth (ΖηΟ) - Α12〇3), and bismuth-based oxide materials. In a specific example, the transparent conductive film is tin oxide doped with fluorine. 20 The porous semiconductor film is made of semiconductor fine particles. Suitable semi-conducting particles include antimony, titanium dioxide, tin dioxide, zinc oxide, antimony trioxide, antimony pentoxide, titanium oxide, and combinations thereof. First, the semiconductor microparticles are first formulated into a paste, which is then applied to a transparent conductive substrate. The coating method can be applied by a doctor blade, screen printing, spin coating, spraying, etc. or a general wet type 15 1377196. . In addition, one or more times may be applied in order to obtain a suitable thickness. The semiconductor film layer may be a single layer or a plurality of layers, and the plurality of layers means semiconductor particles having different particle diameters for each layer. For example, semiconductor particles having a particle diameter of 5 to 5 nanometers may be coated first, and the coating thickness is 5 to 2 micrometers, and then semiconductor fine particles having a particle diameter of 5 to 4 nanometers are coated. The coating thickness is 3 to 5 μm. Then, after drying at 50 to 100 Torr, a multilayer semiconductor film layer can be obtained by sintering for 3 minutes. The nail metal complex dye can be dissolved in a suitable solvent to prepare a dye solution. Suitable solvents include, but are not limited to, acetonitrile, mercaptan, ethanol, propanol, butanol, monomethylformamide, N-methylpyrrole or a mixture thereof. Here, the transparent substrate coated with the semiconductor film is immersed in the dye solution to fully absorb the dye in the dye solution, and after the absorption is completed, the dried 'a dye-sensitized solar cell: an electric anode can be obtained as the The material of the cathode is not particularly limited and may include any material having conductivity. Alternatively, the cathode material may be an insulating material as long as a conductive layer is formed on the surface facing the photoanode. In addition, electrochemically stable: the substance acts as a cathode' and non-limiting examples of suitable cathode materials include platinum, gold, carbon, and the like. The electrolyte layer is not particularly limited and may include any substrate having electrons and hole conductivity. The liquid electrolyte may be an iodine-containing acetonitrile: liquid, an iodine-containing N-methyl ketene solution, or an iodine-containing solution. % methoxypropane solution. In one embodiment, the liquid electrolysis f is - acetonitrile containing iodine [S) 16 1377196 A dye-sensitized solar cell of the present invention is specifically manufactured as follows. First, 'a paste comprising titanium oxide particles having a particle diameter of 20 to 30 nanometers (nm) is coated on a fluorine-doped tin oxide (FTO) glass plate by one or several screen printings. Up and then at 45 baht. (: Sintering for 30 minutes. 5 Dissolving the ruthenium metal complex in a mixture of acetonitrile and i-butanol (1:1 v/v) to form a ruthenium metal The dye solution is then immersed in the dye solution in the above-mentioned glass plate containing the porous titanium oxide film, and then absorbed in the dye solution, and then taken out and dried to obtain a photoanode (photoanode). A fluorine-doped tin oxide glass plate is drilled with a 0.75 mm diameter injection port for injection of electrolyte. The chlorinated platinum acid (H2PtCl^ solution is coated on a fluorine-doped tin oxide glass plate, Then heating to 4 ° C for 15 minutes to obtain a cathode (cath〇de) <> then 'a 60 micron thick thermoplastic polymer film between the photoelectric anode 15 and the cathode, at 120 to 14〇. (: Apply pressure to the two electrodes to bond the two electrodes. • Inject the electrolyte (〇.〇3 Μ I2/〇.3 M LiI/0.5 Μ tri-butylpyridine in acetonitrile), The dye sensitized electricity of the present invention can be obtained by sealing the injection port with a thermoplastic polymer film. The following examples are only intended to illustrate the invention, and the scope of the invention is not limited by the party. If not specified, the temperature is in degrees Celsius, and the parts and percentages are by weight. The relationship between the parts by volume is like the relationship between kilograms and liters. >5 ~ Example 1 17 1377196 Synthetic waste · Dithiocyanatobis(2,2,-bipyridine-4,4'-dicarboxylic acid) ruthenium ( II) bis(benzyltributylammonium) (c&-di(thiocyanato)-_^,7\r-bis(2,2'-bi pyridyl-4,4,-dicarboxylic acid)ruthenium(II) Bis(benzyl tributyl ammonium)(1-1) 5 0.50 parts of broad-dithiocyano-W'-bis(2,2'-bipyridine-4,4'-didecanoyl) ruthenium (II) (c/j-di(thiocyanato)-iV, iV'-bis(2,2'-bipyridyl-4,4'-dicarboxylic acid)ruthenium(II), N3 dye) (according to Inorganic Chemistry, Vol. 38 , No 26, 1999, 6298-6305 6-j _ method synthesis) and 10 parts of distilled water was added to the reaction flask, stirred and mixed, and then added dropwise 10 10% aqueous solution of benzyltributylammonium hydroxide (using gasified benzene) Methyl tributylammonium reagent Ylammonium chloride reagent, ACROS, 98%) was added to the reaction solution until the pH of the reaction solution was stabilized to 10, and then the solvent was distilled off by a rotary-evaporator to obtain a viscous liquid. Next, the viscous liquid was dissolved in methanol, and then diethyl ether was added to produce a precipitate, which was taken out and dried under a vacuum for one day. The dried solid was dissolved in 10 parts of distilled water, and the pH was adjusted to 5 or less with a 0.1 Torr aqueous solution of nitric acid, and the product was continuously collected by a sintered glass niter and used for 20 5 . The product was washed with distilled water of pH 4.1 to give 0.52 part of a white solid product of formula (1-1), yield 61.5%. Example 2 Synthesis of G-Dithiocyanato-Foo #'-bis(2,2'-bipyridine-4,4'-dicarboxylic acid) ruthenium (II) 25 bis(phenylmercaptotriethylammonium) ( Di-di(thiocyanato)-^#,-bis(2,2,-bi 18 1377196 pyridyl-4,4,-di carboxylic acid)ruthenium(II)bis(benzyl triethyl ammonium) (1-2) The compound of this example was prepared in the same manner as in Example 1 except that an aqueous solution of hydroxytriphenylammonium 5 hydroxide (TCI Co., Ltd.) was used in place of the aqueous solution of oxyhydroidenyltributylammonium. 0.30 parts of a black solid product of the formula (1-2) was obtained in a yield of 41.1%. Example 3 I Synthesis of waste-dithiocyano-state bis(2,2'-bipyridine-4,4'-dicarboxylic acid) ruthenium (II) 10 bis(triethylhexyl) (cz\s- Di(thiocyanato)-iV,_/V'-bis(2,2'-bi pyridyl-4,4,-dicarboxylic acid)ruthenium(II)bis(triethyl hexyl ammonium)) (1-3) will be 0.50 parts wide -Dithiocyano-W,-bis(2,2'-bipyridine-4,4'-dicarboxylic acid) ruthenium (II) and 10 parts of distilled water were added to the reaction flask, stirred and mixed, and then dropped into 10%. An aqueous solution of triethylhexylammonium hydroxide (prepared with triethylhexylammonium bromide reagent (ALDRICH, 99%)) is added to the reaction solution until the pH of the reaction solution reaches 12 Then, the solvent was distilled off by a rotary evaporator to obtain a viscous liquid. Next, the viscous liquid 20 was dissolved in methanol, and then diethyl ether was added to give a precipitate, which was taken out and dried under vacuum for one day. The dried solid was dissolved in 10 parts of distilled water, and the pH was adjusted to 4 or less with a 0.1 Torr aqueous solution of nitric acid, and the product was collected by filtration through a sintered glass filter, and the product was washed with 5 parts of distilled water of pH 4.1 to obtain a formula ( 1-3) Black solid product 0.44 parts, yield 25 81.5%» 1377196 Example 4 Synthesis / #-Dithiocyano-Fool-bis(2,2'-bipyridine-4,4'-dicarboxylic acid ()) bis(II) bis (1-dodecyl group 0 to bite) (£^,di(thiocyanato)-iV,;V'-bis(2,2'-bi 5 pyridyl-4,4,-dicarboxylic Acid) ruthenium (II) bis (l-dodecyl pyridinium) (1-4) The same procedure as in Example 3 was carried out except that the compound of the present example was used, except that 1-oxecylpyridinium was used. Hydroxide _ aqueous solution (formulated with 1-dodecylpyridinium 10 chloride reagent, ALDRICH, 98%) in place of an aqueous solution of triethylhexylammonium hydroxide. 0.20 parts of a black solid product of the formula (1-4) was obtained in a yield of 32.8%. Example 5 15 Synthesis of bis-dithiocyano-bis(2,2,-bipyridine-4,4'-didecanoyl) ruthenium (II) tris(phenylmethyltriethyl) (cz\s) -di(thiocyanato)-i^,_/V'-bis(2,2'-bi pyridyl-4,4,-dicarboxylic acid)ruthenium(II)tris(benzyl • triethyl ammonium)) (1-5) 0_20 parts 10°/. An aqueous solution of argonoxybenzyltriethylammonium and 100 parts of 20 sterol were added to the reaction flask to mix and mix, and then 0.10 parts of gal-dithiocyanobis(2,2'-bipyridine-4,4'- Dicarboxylic acid) ruthenium (II) bis(benzyltriethylammonium) (1-2) was added to the reaction mixture, and the mixture was stirred and mixed for 2.5 hours. Then, the solvent was distilled off by a rotary evaporator to obtain a precipitated product. The product was collected by filtration using a fritted glass filter, and the product was washed with 10 parts of distilled water to obtain 0.08 parts of a black solid product of formula (1-5) in a yield of 74.0%. [S] 20 1377196 Example 6 Synthesis of waste-dithiocyanobis(2,2'-bipyridine-4,4'-didecanoyl) ruthenium (II) tetrakis(phenylindoletriethyl) Cz\s-di(thiocyanato)-A^iV'-bis(2,2'-bi 5 pyridyl-4,4,-dicarboxylic acid)ruthenium(II)tetrakis (benzyl triethyl ammonium)) (1-6) 0.50 parts of poly-dithiocyano-W'-bis(2,2'-bipyridine-4,4'-dicarboxylic acid) ruthenium (II) and 50 parts of distilled water were added to the reaction flask, stirred and mixed, and then dropped into A 10% aqueous solution of hydroxyphenoxytriethylammonium was added to the reaction solution until the pH of the anti-10 aqueous solution was stabilized to 7, and then the solvent was distilled off by a rotary evaporator to obtain a viscous liquid. The viscous liquid was dissolved in decyl alcohol, and then diethyl ether was added to give a precipitate. The hygroscopic solid product was taken out and dried under vacuum for one day to obtain 0.43 parts of a black solid product of the formula (1-6) in a yield of 68.0%. . . 15 Example 7 Production of a dye-sensitized solar cell will comprise a paste B having titanium oxide particles having a particle diameter of 20 to 30 nanometers (nm), coated with fluorine by one or several screen printings. On a heterogeneous tin oxide (FTO) glass plate (thickness 4 mm, resistance ΙΟ Ω / port), the thickness of the porous titanium oxide film after sintering is 10 to 12 μm (//m), and then sintered at 450 ° C. minute. The ruthenium metal complex of Example 1 was dissolved in a mixture of acetonitrile and i-butanol (1:1 v/v) to form a ruthenium metal complex concentration of 0.5 Μ dye solution, then, immersing the above glass plate containing porous oxidized 25 titanium film in the dye solution, allowing it to absorb the dyed 21 1377196 material in the dye solution for 16 to 24 hours, and then taking out and drying to obtain a photoanode. (photoanode) 〇 will be covered with a fluorine-doped tin oxide glass plate with a diameter of 〇75 mm' for injection into the electrolyte, and then vaporized platinum acid (H2ptCl6) solution (1 ml of ethanol contains 2 mg of platinum) It was coated on a tin oxide glass plate and then heated to 400 ° C for 15 minutes to obtain a cathode (cath〇de). A thermoplastic polymer film having a thickness of 60 μm was disposed between the photoanode and the cathode. A pressure was applied to the two electrodes at 120 to 140 ° C to bond the electrodes. The dye-sensitized solar cell of the present example can be obtained by injecting an electrolyte (0.03 Μ Ι 2/0·3 M LiI/0.5 Μ tri-butyl pyridine in acetonitrile) into a 're-use thermoplastic polymer film to seal the injection port. Example 8 15 Preparation of Dye-Sensitized Solar Cell The dye-sensitized solar cell of this example was prepared in the same manner as in Example 7, except that the base metal complex of Example 2 was used instead of the base metal of Example 1. Things. -20 Example 9 Production of Dye-Sensitized Solar Cell The dye-sensitized solar cell of this example was prepared in the same manner as in Example 7, except that the ruthenium metal complex of Example 3 was used in place of the ruthenium metal complex of Example 1. . [S] 22 25 1377196 Example ί Manufacturing of dye-sensitized solar cell The same procedure as in Example 7 was carried out to prepare the dye-sensitized solar cell of the present example, except that the base metal complex of Example 4 was used instead of Example i 5 Base metal complex. Example 11 Production of Dye-Sensitized Solar Cell I The same procedure as in Example 7 was carried out to prepare a dye-sensitized solar cell of the present example, except that the base metal complex of Example 5 was used instead of the base metal of Example 1. Compound. Example 12 Production of Dye-Sensitized Solar Cell The dye-sensitized solar cell of this example was prepared in the same manner as in Example 7 except that the ruthenium metal complex of Example 6 was used in place of the ruthenium metal complex of Example i. Comparative Example A dye-sensitized solar cell was prepared in the same manner as in Example 7, except that N719 was used instead of the base metal complex of Example 1. Test Methods and Results Photoelectric Efficiency Test The dye-sensitized solar cells of Examples 7 to 12 and Comparative Examples were tested for short-circuit current (Jsc), open circuit voltage (v〇c) under illumination of τ S] 23 1377196 AM 1.5, Filling factor (FF), photoelectric conversion efficiency (η) and single-wave photocurrent conversion efficiency (Incident Photon to Current Conversion Efficiency > IPCE) 0 The test results are summarized as follows: Table 1 Test results of dye-sensitized solar cells Dye Jsc ( mA/cm2) V〇c (V) FF η (%) Example 7 1-1 8.22 0.78 0.64 4.09 Example 8 1-2 9.42 0.79 0.62 4.54 Example 9 1-3 8.46 0.80 0.64 4.33 Example 10 1- 4 6.98 0.68 0.63 3.00 Example 11 1-5 7.84 0.81 0.65 4.12 Example 12 1-6 7.99 0.75 0.62 3.74 Comparative Example N719 7.36 0.76 0.61 3.38 The test results of Table 1 show that the base metal of the embodiment of the present invention is wrong. The dye-sensitized solar cell produced by the compound can improve the short-circuit current and open circuit of the dye-sensitized solar cell as compared with the dye-sensitized solar cell produced by the comparative example using N719. And fill factor 'thereby increasing the photoelectric conversion efficiency of the dye-sensitized solar cell. In summary, the present invention has been shown to be different from the prior art in terms of purpose, technique, and efficacy, or in terms of its technical level and R&D design. It should be noted that the above-mentioned embodiments are merely illustrative for ease of explanation. However, it is not intended to limit the present invention, and any of the techniques [S1 24 1377196

55

10 藝者,在不脫離本發明之精神及範圍内,當可作些許之更 動與潤飾,因此本發明所主張之權利範圍自應以申請專利 範圍所述為準,而非僅限於上述實施例。 上述實施例僅係為了方便說明而舉例而已, 主張之權利範圍自應以申請專利範圍所 明所 於上述實施例。 所4為準,而非僅限 【圖式簡單說明】 無。 【主要元件符號說明】 無。 25The present invention claims to be limited and limited to the above embodiments without departing from the spirit and scope of the invention. . The above-described embodiments are merely examples for the convenience of the description, and the claims are intended to be within the above-described embodiments. 4 is the standard, not limited to [Simple description] None. [Main component symbol description] None. 25

Claims (1)

1377196 第97138544號’丨〇丨年9月修正頁 七、申請專利範圍: 1. 一種釕金屬錯合物,其結構如下式(j): RuL2(NCS)2Am (I) 5 其中 L 為 2,2’-雙比啶 _4,4’-二甲酸(2,2,柳丫1^1-4,4’-dicarboxylic acid); A 為 N+RiR2R3R4,其中,R丨為苯甲基(benzyl) , r2、&、 及R·4各自獨立分別為Cuo烷基、苯基或苯曱基;以及 10 m為2、3或4,且所有a均相同。 2. 如申請專利範圍第1項所述之釕金屬錯合物,其中 A為N+R丨R2R3R4’ R丨為笨甲基,n、及R4各自獨立分 別為CN6烷基。 3. 如申請專利範圍第1項所述之釕金屬錯合物,其該 句金屬錯合物是-種用於染料敏化太陽能電池之染料 物。 4. 一種釕金屬錯合物,其結構如下式(〗_2),1377196 No. 97138544 'Amendment in September of the following year VII. Scope of application: 1. A ruthenium metal complex with the following structure (j): RuL2(NCS)2Am (I) 5 where L is 2, 2'-bisbiidine_4,4'-dicarboxylic acid (2,2, 丫1^1-4,4'-dicarboxylic acid); A is N+RiR2R3R4, wherein R丨 is benzyl (benzyl) ), r2, &, and R·4 are each independently Cuoalkyl, phenyl or phenylhydrazine; and 10 m is 2, 3 or 4, and all a are the same. 2. The base metal complex according to claim 1, wherein A is N+R丨R2R3R4' R丨 is a methyl group, and n and R4 are each independently a CN6 alkyl group. 3. The metal complex according to claim 1, wherein the metal complex is a dye for a dye-sensitized solar cell. 4. A base metal complex, the structure of which is as follows (〗 〖) 26 1377196 (1-2)。 5·如申請專利範圍第4項所述之釕金屬錯合物,其該 釕金屬錯合物是—種用於染料敏化太陽能電池之染料化合 物。 5 6.-⑷一 其中 種染料敏化太陽能電池,其包括: 光電陽極,其包括一如下式⑴之釕金屬錯合物; RuL2(NCS)2Am (I) 10 L為2,2’-雙吡啶_4 4,二甲酸; A為N+R〗R2R3R4 ’其中,&為苯甲基,R2、心、及&各 自獨立分別為Ci-2〇烷基、苯基或苯曱基;且 m為2、3或4,且所有八均相同; (b)—陰極;以及 15 (C)一電解質層,其在光電陽極與陰極間。 7. 一種染料溶液,其包括: (A)如下式⑴之釕金屬錯合物’其含量為0.01〜1重量 百分比: 20 其中 RuL2(NCS)2Am (I) L為2,2’-雙。比咬_4,4’二曱酸: A為N+RiR2H,其中,R,為苯甲基,R2 ' r3、及r4各 自獨立分別為C,_20烷基、苯基或笨曱基;且 25 m為2、3或4 ’且所有A均相同;以及 27 1377196 (B)—種有機溶劑,其含量為99.99〜99重量百分比,且 該有機溶劑係選自由:乙腈、甲醇、乙醇、丙醇、丁醇、 二曱基甲醯胺、及N-曱基吡咯烷酮所組成之群組。 2826 1377196 (1-2). 5. The base metal complex according to claim 4, wherein the base metal complex is a dye compound for use in a dye-sensitized solar cell. 5 6.-(4) A dye-sensitized solar cell comprising: a photoanode comprising a ruthenium metal complex of the following formula (1); RuL2(NCS)2Am (I) 10 L being 2,2'-double Pyridine-4 4, dicarboxylic acid; A is N+R〗 R2R3R4 ' wherein & is benzyl, R2, heart, and & are each independently Ci-2 alkyl, phenyl or phenylhydrazine; And m is 2, 3 or 4, and all eight are the same; (b) - cathode; and 15 (C) an electrolyte layer between the photoanode and the cathode. A dye solution comprising: (A) a ruthenium metal complex of the following formula (1) in an amount of 0.01 to 1% by weight: 20 wherein RuL2(NCS)2Am(I) L is 2,2'-double. Specific biting _4,4' diterpenic acid: A is N+RiR2H, wherein R is benzyl, R2 'r3, and r4 are each independently C, _20 alkyl, phenyl or alum; 25 m is 2, 3 or 4' and all A are the same; and 27 1377196 (B) is an organic solvent having a content of 99.99 to 99% by weight, and the organic solvent is selected from the group consisting of: acetonitrile, methanol, ethanol, and C A group consisting of alcohol, butanol, dimethylformamide, and N-decylpyrrolidone. 28
TW097138544A 2008-10-07 2008-10-07 Ruthenium complex and photoelectric component using the same TWI377196B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097138544A TWI377196B (en) 2008-10-07 2008-10-07 Ruthenium complex and photoelectric component using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097138544A TWI377196B (en) 2008-10-07 2008-10-07 Ruthenium complex and photoelectric component using the same

Publications (2)

Publication Number Publication Date
TW201014821A TW201014821A (en) 2010-04-16
TWI377196B true TWI377196B (en) 2012-11-21

Family

ID=44829795

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097138544A TWI377196B (en) 2008-10-07 2008-10-07 Ruthenium complex and photoelectric component using the same

Country Status (1)

Country Link
TW (1) TWI377196B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI406424B (en) * 2010-04-26 2013-08-21 Nat Univ Tsing Hua Process for impregnating photosensitizing dye of photoanode on a conductive substrate

Also Published As

Publication number Publication date
TW201014821A (en) 2010-04-16

Similar Documents

Publication Publication Date Title
Carella et al. Research progress on photosensitizers for DSSC
Nogueira et al. Polymers in dye sensitized solar cells: overview and perspectives
JP5181814B2 (en) Photoelectric conversion element and solar cell
JP5206092B2 (en) Photoelectric conversion element and solar cell
JP2009269987A (en) Novel compound, photoelectric transducer and solar cell
US20100294368A1 (en) Photoelectric conversion element and solar cell
JP5351693B2 (en) Ruthenium complex and photoelectric component using the same
TW201116593A (en) Dye-sensitized solar cell and photoanode thereof
US20110005596A1 (en) Dye for dye-sensitized solar cell and dye-sensitized solar cell including the same
Yu et al. Restrain recombination by spraying pyrolysis TiO2 on NiO film for quinoxaline-based p-type dye-sensitized solar cells
JP5239262B2 (en) Solar cell
US8278447B2 (en) Ruthenium complex and photoelectric component using the same
TWI383988B (en) Novel ruthenium complex and photoelectric component using the same
JP5233318B2 (en) Photoelectric conversion element and solar cell
TWI377196B (en) Ruthenium complex and photoelectric component using the same
TWI377199B (en) Ruthenium complex and photoelectric component using the same
JP2012116824A (en) New ruthenium complex and photoelectric component using the same
JP5250989B2 (en) Photoelectric conversion element and solar cell
CN102443025B (en) Ruthenium metal complex and photoelectric component produced by using same
KR20120057959A (en) Novel ruthenium complex and photoelectric component using the same
JP2013055060A (en) Photoelectric conversion element, and solar cell
IE85727B1 (en) Ruthenium complex and photoelectric component using the same
IE85728B1 (en) Ruthenium complex and photoelectric component using the same
TW201115810A (en) Electrolyte composition and dye-sensitized solar cell using the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees