TW201014821A - Ruthenium complex and photoelectric component using the same - Google Patents

Ruthenium complex and photoelectric component using the same Download PDF

Info

Publication number
TW201014821A
TW201014821A TW097138544A TW97138544A TW201014821A TW 201014821 A TW201014821 A TW 201014821A TW 097138544 A TW097138544 A TW 097138544A TW 97138544 A TW97138544 A TW 97138544A TW 201014821 A TW201014821 A TW 201014821A
Authority
TW
Taiwan
Prior art keywords
metal complex
dye
group
benzyl
independently
Prior art date
Application number
TW097138544A
Other languages
Chinese (zh)
Other versions
TWI377196B (en
Inventor
Ching-Lin Chen
Ta-Chung Yin
Der-Gun Chou
Original Assignee
Everlight Chem Ind Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Everlight Chem Ind Corp filed Critical Everlight Chem Ind Corp
Priority to TW097138544A priority Critical patent/TWI377196B/en
Publication of TW201014821A publication Critical patent/TW201014821A/en
Application granted granted Critical
Publication of TWI377196B publication Critical patent/TWI377196B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

The present invention relates to a ruthenium complex and a photoelectric component using the same, and the ruthenium complex is represented by the following formula (I): RuL2(NCS)2Am (I) wherein L, L' and X are defined the same as the specification. The ruthenium complex of the present invention is suitable for Dye-Sensitized Solar Cell (DSSC). Hence, the photoelectric characteristics of the DSSC manufactured with the ruthenium complex of the present invention can be improved.

Description

201014821 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種釕金屬錯合物及用此錯合物製作之 光電元件,特別是一種適用於染料敏化太陽能電池 5 (Dye-Sensitized Solar Cell,DSSC)之釕金屬錯合物及染料 敏化太陽能電池。 【先前技術】 • 隨著人類文明發展,全球面臨嚴重的能源危機及環境 10 污染等問題,以光電太陽能電池將太陽能直接轉變成電 能,是解決全世界能源危機及降低環境污染的重要方法之 一;其中染料敏化太陽能電池以其製造成本低、可製成大 面積、可撓性、透光性可用於建築物上等優異特性,而成 為一種有前景的新型太陽能電池。 15 近年,Gratzel等人發表一系列染料敏化太陽能電池相 關文獻(例如 0’ Regan,B·; GrStzel,M. Nature 1991,353, _ 737),顯示染料敏化太陽能電池具有實用性。一般而言, 染料敏化太陽能電池的結構包括有陰/陽電極、奈米二氧化 鈦、染料及電解質;染料敏化太陽能電池中的染料對電池 20 效率有關鍵性的影響,理想的染料要具有可以吸收較大範 圍的太陽光譜、高莫耳吸收係數(absorption coefficient)、 高溫安定性及光安定性等。201014821 VI. Description of the Invention: [Technical Field] The present invention relates to a base metal complex and a photovoltaic element produced using the same, in particular to a dye-sensitized solar cell 5 (Dye-Sensitized Solar) Cell, DSSC) metal complex and dye-sensitized solar cells. [Previous technology] • With the development of human civilization, the world faces serious energy crisis and environmental pollution, and the direct conversion of solar energy into electrical energy by photoelectric solar cells is one of the important methods to solve the global energy crisis and reduce environmental pollution. Among them, the dye-sensitized solar cell has become a promising new type of solar cell because of its low manufacturing cost, large area, flexibility, and light transmittance for use in buildings. 15 In recent years, Gratzel et al. published a series of related literatures on dye-sensitized solar cells (eg 0' Regan, B.; GrStzel, M. Nature 1991, 353, _ 737), showing the utility of dye-sensitized solar cells. In general, the structure of a dye-sensitized solar cell includes a cathode/anode electrode, a nano titanium dioxide, a dye, and an electrolyte; a dye in a dye-sensitized solar cell has a critical influence on the efficiency of the battery 20, and an ideal dye has an Absorbs a wide range of solar spectrum, high absorption coefficient, high temperature stability and light stability.

Gratzel實驗室發表了一系列之釕錯合物作為染料敏化 太陽能電池中的染料。1993年GrStzel實驗室發表使用N3染 4 201014821 料所製備之染料敏化太陽能電池,其效率達10.0°/〇(ΑΜ 1.5)。Ν3染料之單波光光電流轉換效率(IPCE)值在 400nm〜600nm範圍可達80%,而其後所開發之數百種染料錯 合物,其效能測試皆無法超越N3染料。N3染料之結構如下 式(a)所示。Gratzel Laboratories has published a series of complexes as dyes in dye-sensitized solar cells. In 1993, GrStzel Laboratories published a dye-sensitized solar cell prepared using N3 Dye 4 201014821 with an efficiency of 10.0 ° / 〇 (ΑΜ 1.5). The single-wave photo-current conversion efficiency (IPCE) of the Ν3 dye can reach 80% in the range of 400 nm to 600 nm, and hundreds of dye complexes developed thereafter cannot exceed the N3 dye. The structure of the N3 dye is as shown in the following formula (a).

COOHCOOH

ίο φ 直至2003年Gratzel實驗室發表使用N719染料所製備 之染料敏化太陽能電池,其效率提升到10.85%(AM 1.5)。 N719染料之結構如下式(b)所示。Ίο φ Until 2003, Gratzel Laboratories published a dye-sensitized solar cell prepared using N719 dye, which increased its efficiency to 10.85% (AM 1.5). The structure of the N719 dye is as shown in the following formula (b).

COOTBACOOTBA

(b) 5 201014821 而後2004年同實驗室發表使用黑染料(Black dye)所製 備之染料敏化太陽能電池,其效率則達到11.04%(AM 1.5)。黑染料可強化紅光區和紅外光區的光譜應答,從而提 昇染料敏化太陽能電池的效能。黑染料之結構如下式(c)所 示。(b) 5 201014821 Then in 2004, the same laboratory published a dye-sensitized solar cell using Black dye, which achieved an efficiency of 11.04% (AM 1.5). The black dye enhances the spectral response of the red and infrared regions, thereby improving the performance of the dye-sensitized solar cell. The structure of the black dye is as shown in the following formula (c).

COOTBACOOTBA

TBAOOCTBAOOC

HOOCHOOC

/NCS RU\/NCS RU\

'NCS'NCS

NCS (C) 10NCS (C) 10

除了 GrStzel實驗室發表之N3染料、N719染料與黑染料 等相關系列之釕錯合物之外,其他類似的有鉑錯合物、餓 錯合物、鐵錯合物、銅錯合物…等等。但是經過許多研究 顯示釕錯合物的效率仍為較佳。 由於染料敏化太陽能電池中的染料對電池效率有關鍵 性的影響。因此,尋找可以提高染料敏化太陽能電池效率 的染料分子,是改善染料敏化太陽能電池效率的重要方法 之一。 【發明内容】 本發明提供一種新穎釕金屬錯合物,其適用於染料敏 化太陽能電池,可以增加染料敏化太陽能電池之光電效率。 15 201014821 Μ 本發明另提供一種染料敏化太陽能電池,其有較高的 光電效率。 本發明之釕金屬錯合物,其結構如下式(1): 5In addition to the related series of N3 dyes, N719 dyes and black dyes published by GrStzel Laboratories, other similar platinum-compounds, hungry complexes, iron complexes, copper complexes, etc. Wait. However, after many studies, the efficiency of the ruthenium complex is still better. Dyes in dye-sensitized solar cells have a critical impact on cell efficiency. Therefore, finding dye molecules that can improve the efficiency of dye-sensitized solar cells is one of the important methods to improve the efficiency of dye-sensitized solar cells. SUMMARY OF THE INVENTION The present invention provides a novel base metal complex which is suitable for dye-sensitized solar cells and which can increase the photoelectric efficiency of dye-sensitized solar cells. 15 201014821 Μ The present invention further provides a dye-sensitized solar cell having a high photoelectric efficiency. The base metal complex of the present invention has the following structure (1): 5

RuL2(NCS)2Am (I) 其中 L 為 2,2’-雙口比咬 _4,4’_ 二甲酸(2,2’-1)1?3^(1丫1-| 4,4,-dicarboxylic acid)、2,2,-雙吡啶-4,4’-二磺酸 10 (2,2’-bipyridyl-4,4’-disulf〇nic acid)或 2,2’-雙吡啶-4,4’-二 鱗酸(2,2,-bipyridyl-4,4,-ciiphosphonicacid);RuL2(NCS)2Am (I) where L is 2,2'-double mouth ratio _4,4'_ dicarboxylic acid (2,2'-1)1?3^(1丫1-| 4,4, -dicarboxylic acid), 2,2,-bipyridine-4,4'-disulfonic acid 10 (2,2'-bipyridyl-4,4'-disulf〇nic acid) or 2,2'-bipyridine-4 , 4'-discalic acid (2,2,-bipyridyl-4,4,-ciiphosphonic acid);

❹ 苯基(Phenyl)或苯甲基(benzyl),R2、R3、及尺4各自獨立分 15 別為Cwo烧基、苯基或苯甲基’R5、Re、及尺7各自獨立 分別為C^o烷基; m為1至4的整數。 於上述式(I)中,L可為2,2’-雙吡啶-4,4,-二甲酸、2,2,_ 雙吡啶_4,4,-二磺酸或2,2’-雙吡啶-4,4,-二磷酸。較佳的, 20 L為2,2’-雙吡啶-4,4,-二甲酸》 201014821❹ Phenyl or benzyl, R2, R3, and 尺4 are each independently 15 as Cwo alkyl, phenyl or benzyl 'R5, Re, and 尺7 are each independently C ^oalkyl; m is an integer from 1 to 4. In the above formula (I), L may be 2,2'-bipyridine-4,4,-dicarboxylic acid, 2,2,-bipyridine-4,4,-disulfonic acid or 2,2'-double Pyridine-4,4,-diphosphate. Preferably, 20 L is 2,2'-bipyridine-4,4,-dicarboxylic acid 201014821

於上述式(1)中,A可為、In the above formula (1), A can be,

ίο 為烷基、苯基或苯甲基,' R3、及&各自獨立分 別為Cwo炫基、苯基或苯甲基,&、&、及尺7各自獨立 分別為(:丨_2〇烷基;較佳的,a為n+R^H,其中R丨為 C5-2〇烧基、苯基或苯甲基,&、R3、及R4各自獨立分別 為C^o烧基、苯基或苯甲基;更佳的,a為N+Ril^n, 其中R〗為C5-2〇烷基、苯基或苯曱基,R2、R3、&R4各自 獨立分別為Cw烷基 '笨基或苯甲基;最佳的,a為 N+HH ’其中Rl為C5 2〇烷基、苯基或苯曱基,^、 R3、及R4各自獨立分別為cN6烷基。 於上述式(I)中,m可為1至4的整數;較佳的,〇1為 2或3的整數。Ίο is alkyl, phenyl or benzyl, 'R3, and & are each independently Cwo, phenyl or benzyl, and &, & and ruler 7 are each independently (: 丨_ 2〇alkyl; preferably, a is n+R^H, wherein R丨 is C5-2〇, phenyl or benzyl, and &, R3, and R4 are each independently C^o More preferably, a is N+Ril^n, wherein R is a C5-2 decyl group, a phenyl group or a phenyl fluorenyl group, and R2, R3, & R4 are each independently Cw alkyl 'stupyl or benzyl; best, a is N + HH 'wherein R 1 is C 5 2 alkyl, phenyl or phenyl fluorenyl, ^, R 3 , and R 4 are each independently cN 6 alkyl In the above formula (I), m may be an integer of 1 to 4; preferably, 〇1 is an integer of 2 or 3.

上述式(I)之釕金屬錯合物具體實例有:Specific examples of the ruthenium metal complex of the above formula (I) are:

15 20101482115 201014821

(1-2)(1-2)

(1-3) 9 201014821 ❿(1-3) 9 201014821 ❿

(1-4)(1-4)

4 (I_5)4 (I_5)

ίο 201014821 (1-6) 〇.、/O'N^CI^CHWPh)Οο 201014821 (1-6) 〇., /O'N^CI^CHWPh)

5 0^0- N+(CH2CH3)3CPh) (1-7) ο5 0^0- N+(CH2CH3)3CPh) (1-7) ο

11 20101482111 201014821

本發明提供之染料敏化太陽能電池,其含有上述之釕 金屬錯合物。 此外,本發明之染料敏化太陽能電池,包括:一含有 10 上述釕金屬錯合物之光電陽極(photoanode); —陰極 12 201014821 (cathode);以及位於光電陽極及陰極之間的電解質層 (electrolyte layer)。 於本發明之染料敏化太陽能電池中,光電陽極包括 有:透明基板、透明導電膜、多孔性半導體膜、以及釕金 5 屬錯合物染料^ 於本發明之染料敏化太陽能電池中,光電陽極之透明 基板之材質並無特別限制,只要是透明的基材均可使用。 較佳地,透明基板之材質為對於由染料敏化太陽能電池外 φ 部侵入之水分或氣體具有良好的遮斷性、耐溶劑性、耐候 10 性等之透明基材。透明基板之具體列舉,包括有:石英、 玻璃等透明無機基板;聚乙稀對苯二甲酸酯(PET)、聚(萘二 甲酸乙二酯)(PEN)、聚碳酸酯(PC)、聚乙烯(pE)、聚丙烯 (PP)、聚醯亞胺(PI)等透明塑膠基板,但是,並非限定於這 些。此外’透明基板之厚度並無特別限制,可依照透光率、 15 染料敏化太陽能電池特性要求而自由選擇。較佳的,透明 基板之材質為玻璃。 ❹ 此外 ’於本發明之染料敏化太陽能電池中,透明導電 膜的材料可為氧化銦錫(ITO)、氟摻雜的氧化錫(FT〇)、氧 化辞-二氧化一鎵(Zn0-Ga203)、氧化鋅·三氧化二銘 20 (Ζη〇-Α12〇3)、或以鍚為基礎的氧化物材料。 再者,於本發明之染料敏化太陽能電池中,多孔性半 導體膜是用半導鱧微粒所製成。適當的半導體微粒可包 括:矽、二氧化鈦、二氧化錫、氧化鋅、三氧化鎢、五氧 化一鈮、二氧化欽錄、及其組合;較佳的,半導體微粒是 13 201014821 ’ 二氧化鈦。半導體微粒的平均粒徑為5至500奈米,較佳的 為10至50奈米。多孔性半導體膜的厚度為5〜25微米。 於本發明之染料敏化太陽能電池中,釕金屬錯合物染 料如上所述之釕金屬錯合物。 5 此外,作為染料敏化太陽能電池之陰極材料並無特別 限制,可包括任何具有傳導性之材料。或者,陰極材料也 可以是一絶緣材料,只要有傳導層形成於朝向光電陽極的 表面上。電化學穩定的物質就可作為陰極,且適用於陰極 φ 材料的非限制實例包括:鉑、金、碳、及其相似物。 10 再者,作為染料敏化太陽能電池之電解質層並無特別 限制,可包括任何具有電子及/或電洞傳導性之基材。 【實施方式】 本發明之釕金屬錯合物可以下列方式合成。 15 廣-二硫氰基雙(2,2,-雙吡啶-4,4’-二甲酸基)釕(II) (cz'i-di(thiocyanato)-Ar,iV,-bis(2,2,-bipyridyl-4,4,-dicarboxylic .acid)ruthenium(II),N3 dye)依照 Inorganic 參 Vol. 38,No. 26,1999, 6298-6305 的方法合成。 將廣-二硫氰基-MiT-雙(2,2’-雙吡啶-4,4’-二甲酸基)釕 20 (II)溶於蒸餾水中,再滴入10%的氫氧苯曱基三丁基銨 (benzyltributylammonium hydroxide)水溶液(用氣化苯甲基 三丁基錄試劑(benzyltributylammonium chloride reagent, ACROS,98%)所配製)到反應液中,直到反應液的pH值穩 定達到10,然後濃縮得到黏稠液。將此黏稠液溶於甲醇 25 (methanol)中,然後加入乙醚(diethyl ether)沈澱出產物,取 14 201014821 出此吸濕性固趙產物後在真空下乾燥一天。將此乾燥後的 固體溶於蒸館水中,再用ο] M的确酸(nitHe aeid)水溶液 調整pH值到5以下,即可得到式(M)之舒金屬錯合物。 本發明之染料敏化太陽能電池的製造方法並無特別限 5 制,可用一般已知的方法製造^ 透明基板之材質並無特別限制,只要是透明的基材均 可使用。較佳地,透明基板之材質為對於由染料敏化太陽 能電池外部侵入之水分或氣體具有良好的遮斷性、耐溶劑 # 性、耐候性等之透明基材,具體列舉,有石英、玻璃等透 10明無機基板,聚乙烯對苯二甲酸酯(PET)、聚(萘二甲酸乙二 酯)(PEN)、聚碳酸酯(PC)、聚乙烯(pE)、聚丙烯(pp)、聚醯 亞胺(PI)等透明塑膠基板,但是,並非限定於這些\透明基 板之厚度並無特別限制,可以藉由透光率、染料敏化太陽 能電池特性要求而自由選擇。在一具體實例中,透明基板 15 是使用玻璃基板。 透明導電膜的材料可以選自氧化銦錫(ITO)、氟摻雜的 Φ 氧化錫(FT〇)、氧化辞-三氧化二鎵(ZnO-Ga2〇3)、氧化辞_ 二氧化一銘(ΖηΟ-Α12〇3)、以及鍚為基礎的氧化物材料。在 一具體實例中’透明導電膜是使用氟摻雜的氧化錫。 20 多孔性半導體膜是用半導體微粒所製成。適當的半導 體微粒包括有矽、二氧化鈦、二氧化錫、氧化辞、三氧化 鎢、五氧化二鈮、三氧化鈦鳃及其組合。首先,先將半導 體微粒配製成糊狀物,再將其塗佈到透明導電基板上,塗 佈方法可用刮墨刀、網印、旋轉塗佈、喷灑等或一般濕式 15 201014821 ' 塗佈。此外’為了得到適當的膜厚,可以塗佈一次或多次β 半導體膜層可以為單層或多層,多層是指各層使用不同粒 徑的半導體微粒。例如,可先塗佈粒徑為5至5〇奈米的半導 體微粒,其塗佈厚度為5至20微米,然後再塗佈粒徑為2〇〇 5 至400奈米的半導體微粒,其塗佈厚度為3至5微米。然後在 50至100 C乾燥後,再在400至5 00°C燒結30分鐘可製得一多 層半導體膜層。 釕金屬錯合物染料可以溶於適當的溶劑配製成染料溶 Ο 液。適當的溶劑包括有乙腈、甲醇、乙醇、丙醇、丁醇、 10 二曱基曱醯胺、N-曱基吡咯烷酮或其混合物,但是,並非 限定於這些。在此,將塗佈有半導體膜的透明基板浸泡到 染料溶液中,讓其充分吸收染料溶液中的染料,並於染料 吸收完成後取出乾燥,可製得一染料敏化太陽能電池之光 電陽極。 15 作為陰極的材料並無特別限制,可包括任何具有傳導 性之材料。或者,陰極材料也可以是一絶緣材料,只要有 傳導層形成於朝向光電陽極的表面上。此外,電化學穩定 的物質就可作為陰極,且適用於陰極材料的非限制實例包 括:鉑、金、碳、及其相似物。 20 電解質層並無特別限制,可以包括任何具有電子及/或 電洞傳導性之基材。另外,液態電解質可以是含碘的乙腈 溶液、含碘的N-甲基吡咯烷酮溶液、或含碘的3_甲氧基丙 腈溶液。在一具體實例中,液態電解質為一含有碘的乙腈 溶液。 16 201014821 本發明之染料敏 首先,將包括具陽能電 池一具體製造方式如下。 粒的糊狀物,藉由粒徑為20〜30奈米(nm)之氧化鈦微 的氧化錫(FTO)破壤/或數次的網印塗佈在覆蓋有氣換雜 ⑽瑕上’而後在450〇c燒結30分鐘。 #釕金屬錯合物溶於乙腈(acet〇nitrile)及終丁醇 ibutan’l合液(1:1 v/v)中配成釕金屬錯合物染料溶 10 接著’將上述含有多孔氧化鈦膜的玻璃板浸泡在染料 ’夺中,讓其吸收染料溶液中的染料後,取出乾燥即可得到 一光電陽極(photoanode)。 將覆蓋有氟摻雜的氧化錫玻璃板鑽一直徑為0.75毫米 之注入口,以備注入電解質用。再將氣化鉑酸(H2PtCl6)溶 液塗佈在覆蓋有氟摻雜的氧化錫玻璃板上,然後加熱到400 C處理.15分鐘即可得到一陰極(cathode)。 然後,將厚度60微米的熱塑性聚合物膜配置在光電陽 15 極和陰極之間,在120至140°C下施加壓力於此二電極,以 黏合此兩電極。 〇 將電解液(0.03 M I2/0.3 M LiI/0.5 Μ三級丁基吡啶的乙 腈溶液)注入,再用熱塑性聚合物膜將注入口密封,即可得 到本發明之染料敏化電池。 20 以下實例僅用以說明本發明,本發明之申請專利範圍 並不會因此而受限制。若無特別註明,則溫度為攝氏溫度, 份數及百分比係以重量計。重量份數和體積份數之關係就 如同公斤和公升之關係。 25 貧施例1 17 201014821 合成膺-二硫氰基-况ΛΓ-雙(2,2’_雙吡啶-4,4’-二甲酸基)釕(II) 雙(苯甲基三 丁基銨)(cz\s-di(thiocyanato)-7V,7V,-bis(2,2’-bi pyridyl-4,4,-dicarboxylic acid)ruthenium(II)bis(benzyl tributyl ammonium)) (1-1) 5 將0.50份廣-二硫氰基-况雙(2,2’_雙吡啶_4,4’-二曱 酸基)釕(Π) (cz\s-di(thiocyanato)-W’-bis(2,2’-bipyridyl-4,4’-dicarboxylic acid)ruthenium(II),N3 dye)(依照 Inorganic Chemistry, Vol. 38 , No. 26, 1999, 6298-6305 ^ ©法合成)以及10份蒸餾水加入反應瓶中攪拌混合,再滴入 10 10% 的氫氧苯甲基三 丁基敍(benzyltributylammonium hydroxide)水溶液(用氣化苯甲基三丁基錄試劑 (benzyltributylammonium chloride reagent, ACROS,98%)所 配製)到反應液中,直到反應液的pH值穩定達到10,然後 用旋轉蒸發儀(rotary-evaporator)蒸除溶劑得到黏稠液。接 15 著,將此黏稠液溶於甲醇(methanol)中,然後加入乙醚 (diethyl ether)產生沈澱物,取出此吸濕性固體產物後在真 空下乾燥一天。將此乾燥後的固髏溶於10份的蒸餾水中, ® 再用0.1 Μ的確酸(nitric acid)水溶液調整pH值到5以下, 用燒結玻璃過濾器(sintered glass filter)過漶收集產物,並用 20 5份pH 4.1的蒸餾水沖洗產物,得到式(1-1)之黑色固體產 物0.52份,產率61.5%。 實施例2 合成膺-二硫氰基雙(2,2’-雙吡啶-4,4’-二曱酸基)釕(II) 25 雙(苯甲基三乙基錢 Kc/j-diGhiocyanatcO-A^A^’-bisQJ’-bi 18 201014821 pyridyl-4,4,-dicarboxylic acid)ruthenium(II)bis(benzyl triethyl ammonium)) (1-2) 同實施例1之相同步驟製備本實施例之化合物,除了 使用氫氧苯甲基三乙基敍(benzyltriethylammonium 5 hydroxide)水溶液(TCI Co., Ltd.,)取代氫氧苯曱基三丁基銨 水溶液。得到式(1-2)之黑色固體產物0.30份,產率41.1%。 實施例3 合成廣-二硫氰基雙(2,2’_雙吡啶-4,4’-二甲酸基)釕(II) % 雙(三乙基己基銨 Xch-dKthiocyanato)-见 i\T-bis(2,2’,bi pyridyl-4,4,-dicarboxylic acid)ruthenium(II)bis(triethyl hexyl ammonium)) (1-3) 將0.50份膺-二硫氟基-AT,#,-雙(2,2’_雙吡啶-4,4’-二曱 酸基)釕(Π)以及1〇份蒸餾水加入反應瓶中攪拌混合’再滴 15 入 10%的氫氧三乙基己基兹(triethylhexylammonium hydroxide)水溶液(用溪化三乙基己基敍試劑 (triethylhexylammonium bromide reagent,ALDRICH,99¾) 0 所配製)到反應液中’直到反應液的pH值穩定達到12 ’然 後用旋轉蒸發儀蒸除溶劑得到黏稠液°接著’將此黏稠液 2〇 溶於甲醇中,然後加入乙謎產生沈澱物,取出此吸滿性固 體產物後在真空下乾燥一天。將此乾燥後的固體溶於10份 的蒸館水中,再用0.1 Μ的硝酸水溶液調整pH值到4以下, 用燒結玻璃過濾器過濾收集產物,並用5份pH 4.1的蒸德 水沖洗產物,得到式(1-3)之黑色固體產物0.44份,產率 25 81.5%。 19 201014821 實施例4 合成廣-二硫氰基-AT,#’-雙(2,2’_雙吡啶-4,4’-二曱酸基)釕(II) 雙(1-十二烧基0比咬 Xc/s-diGhiocyanatc^-T^iV’-bispe’-bi 5 pyridyl-4,4,-dicarboxylic acid)ruthenium(II)bis(l-dodecyl pyridinium)) (1-4) 同實施例3之相同步驟製備本實施例之化合物,除了 使用氫氧 1-十二烧基0比咬(1-dodecylpyridinium hydroxide) • 水溶液(用氯化1-十二烧基》比咬試劑(1-dodecylpyridinium 1〇 chloride reagent,ALDRICH,98%)所配製)取代氫氧三乙基 己基銨水溶液。得到式(1-4)之黑色固體產物0.20份,產率 32.8%。 實施例5 15 合成廣-二硫氰基-况#,-雙(2,2’_雙吡啶-4,4,-二甲酸基)釕(Π) 三(苯甲基三乙基錄)(ci5_di(thiocyanato)-iV,iV’-bis(2,2’,bi pyridyl-4,4,-dicarboxylic acid)ruthenium(II)tris(benzyl 參 triethyl ammonium)) (1-5) 將0.20份10%的氫氧苯甲基三乙基銨水溶液及100份 20 甲醇加入反應瓶中攪拌混合,再加入〇.1〇份廣-二硫氰基 雙(2,2’_雙吡啶-4,4,-二曱酸基)釕(II)雙(苯曱基三乙 基銨)(1-2)到反應液中,攪拌混合反應2.5小時》然後用旋 轉蒸發儀蒸除溶劑得到析出之產物,用燒結玻璃過濾器過 濾收集產物,並用10份的蒸餾水沖洗產物,得到式(1-5)之 25 黑色固鱧產物0.08份,產率74.0%。 20 201014821 實施例6 合成廣-二硫氰基-况雙(2,2’_雙吡啶-4,4’-二甲酸基)釕(II) 四(苯甲基三乙基鍵 Xc^-diGhiocyanatcO-iV^iV’-bisPJ’-bi 5 pyridyl-4,4,-dicarboxylic acid)ruthenium(II)tetrakis(benzyl triethyl ammonium)) (1-6) 將0.50份廣-二硫氰基-况雙(2,2’_雙吡啶-4,4’-二甲 酸基)釕(II)以及50份蒸餾水加入反應瓶中攪拌混合,再滴 0 入10%的氫氧苯甲基三乙基銨水溶液到反應液中,直到反 10 應液的pH值穩定達到7,然後用旋轉蒸發儀蒸除溶劑得到 黏稠液。將此黏稠液溶於甲醇中,然後加入乙醚產生沈澱 物,取出此吸濕性固體產物後在真空下乾燥一天,得到式 (1-6)之黑色固艘產物0.43份,產率68.0%。。 15 實施例7 製造染料敏化太陽能電池 將包括具有粒徑為20〜30奈米(nm)之氧化欽微粒的糊 β 狀物’藉由一次或數次的網印塗佈在覆蓋有氟摻雜的氧化 錫(FTO)玻璃板(厚度4 mm,電阻ΙΟΩ/口)上,使得燒結後 2〇 的多孔氧化鈦膜的厚度為10至12微米(ym),而後在450 °C燒結30分鐘。 將實施例1之釕金屬錯合物溶於乙腈(acetonitrile)及 毅-丁醇Obutanol)的混合液(ΐ··ΐν/ν)中,配成釕金屬錯合 物濃度為0.5 Μ的染料溶液,接著,將上述含有多孔氧化 25 欽膜的玻璃板浸泡在染料溶中,讓其吸收染料溶液中的染· 21 201014821 ’ 料16至24小時後,取出乾燥即可得到一光電陽極 (photoanode) ° 將覆蓋有氟摻雜的氧化錫玻璃板鑽一直徑為0.75毫 米,以備注入電解質用,再將氮化鉑酸(H2PtCl6)溶液(1毫 5 升的乙醇中含有2毫克的鉑)塗佈在氧化錫玻璃板上,然後 加熱到400°C處理15分鐘即可得到一陰極(cathode)。 將厚度60微米的熱塑性聚合物膜配置在光電陽極和 陰極之間,在120至140°C下施加壓力於此二電極,以黏合 ❹ 該兩電極。 10 將電解液(0.03 Μ Ι2/0·3 M LiI/0.5 Μ三級丁基吡啶的乙 腈溶液)注入,再用熱塑性聚合物膜將注入口密封,可得本 實施例之染料敏化太陽能電池》 實施例8 15 製造染料敏化太陽能電池 同實施例7之相同步驟製備本實施例之染料敏化太陽 能電池,除了使用實施例2之釕金屬錯合物取代實施例1 之釕金屬錯合物。 20 實施例9 製造染料敏化太陽能電池 同實施例7之相同步驟製備本實施例之染料敏化太陽 能電池,除了使用實施例3之釕金屬錯合物取代實施例1 之釕金屬錯合物。 22 25 201014821 實施例ίο 製造染料敏化太陽能電池 同實施例7之相同步驟製備本實施例之染料敏化太陽 能電池,除了使用實施例4之釕金屬錯合物取代實施例1 5 之釕金屬錯合物。 實施例11 製造染料敏化太陽能電池 φ 同實施例7之相同步驟製備本實施例之染料敏化太陽 1〇 能電池,除了使用實施例5之釕金屬錯合物取代實施例1 之釕金屬錯合物。 實施例12 製造染料敏化太陽能電池 15 同實施例7之相同步驟製備本實施例之染料敏化太陽 能電池,除了使用實施例6之釕金屬錯合物取代實施例1 之釘金屬錯合物。 φ 比較例 20 同實施例7之相同步驟製備染料敏化太陽能電池,除 了使用N719取代實施例1之釕金屬錯合物。 測試方法舆結果 光電效率測試 25 將實施例7至12及比較例之染料敏化太陽能電池在 23 201014821 ' AM 1.5的照明下,測試其短路電流(Jsc)、開路電壓(Voc)、 填充因子(FF)、光電轉換效率(η)及單波光光電流轉換效率 (Incident Photon to Current Conversion Efficiency,IPCE) 〇 測試結果整理如下表1 : 表1染料敏化太陽能池之測試結果 染料 Jsc (mA/cm2) V〇c (V) FF η (%) 實施例7 1-1 8.22 0.78 0.64 4.09 實施例8 1-2 9.42 0.79 0.62 4.54 實施例9 1-3 8.46 0.80 0.64 4.33 實施例10 1-4 6.98 0.68 0.63 3.00 實施例11 1-5 7.84 0.81 0.65 4.12 實施例12 1-6 7.99 0.75 0.62 3.74 比較例 N719 7.36 0.76 0.61 3.38 由表1之測試結果顯示,用本發明實施例之釕金屬錯 ® 合物所製作的染料敏化太陽能電池,與比較例用N719所製 10 作的染料敏化太陽能電池相比,本發明之釕金屬錯合物可 以提高染料敏化太陽能電池之短路電流、開路電壓及填充 因子,因而增加染料敏化太陽能電池的光電轉換效率。 綜上所述,本發明無論就目的、手法及功效,或就其 技術層面與研發設計上,在在均顯示其迥異於習知技術之 15 特徵。惟應注意的是,上述諸多實施例僅係為了便於說明 故舉例闡述之,然其並非用以限定本發明,任何熟習此技 24 201014821 藝者’在不脫離本發明之精神及範圍内,當可作些許之更 動與潤飾,因此本發明所主張之權利範圍自應以申請專利 範圍所述為準,而非僅限於上述實施例。 5 上述實施例僅係為了方便說明而舉例而已 主張之權利範圍自應以申請專利範圍所 月所 於上述實施例。 ‘、”平’而非僅限 【圏式簡單說明】 ❹無。 10 【主要元件符號說明】 無。 ❹ 25The dye-sensitized solar cell provided by the present invention contains the above-described ruthenium metal complex. Further, the dye-sensitized solar cell of the present invention comprises: a photoanode containing 10 of the above-described base metal complex; a cathode 12 201014821 (cathode); and an electrolyte layer between the photoanode and the cathode (electrolyte) Layer). In the dye-sensitized solar cell of the present invention, the photoanode includes: a transparent substrate, a transparent conductive film, a porous semiconductor film, and a ruthenium 5 conjugate dye; in the dye-sensitized solar cell of the present invention, photoelectric The material of the transparent substrate of the anode is not particularly limited, and any substrate can be used as long as it is transparent. Preferably, the material of the transparent substrate is a transparent substrate having good barrier properties, solvent resistance, weather resistance, and the like for moisture or gas invaded by the φ portion of the dye-sensitized solar cell. Specific examples of the transparent substrate include: transparent inorganic substrates such as quartz and glass; polyethylene terephthalate (PET), poly(ethylene naphthalate) (PEN), polycarbonate (PC), A transparent plastic substrate such as polyethylene (pE), polypropylene (PP), or polyimine (PI), but is not limited thereto. Further, the thickness of the transparent substrate is not particularly limited, and can be freely selected in accordance with the light transmittance and the characteristics of the dye-sensitized solar cell. Preferably, the transparent substrate is made of glass. Further, in the dye-sensitized solar cell of the present invention, the material of the transparent conductive film may be indium tin oxide (ITO), fluorine-doped tin oxide (FT〇), oxidized-gallium-gallium oxide (Zn0-Ga203). ), zinc oxide, antimony oxide 20 (Ζη〇-Α12〇3), or oxide-based oxide materials. Further, in the dye-sensitized solar cell of the present invention, the porous semiconductor film is made of semiconductive particles. Suitable semiconductor microparticles may include: ruthenium, titanium dioxide, tin dioxide, zinc oxide, tungsten trioxide, pentoxide, bismuth oxide, and combinations thereof; preferably, the semiconductor microparticles are 13 201014821 'titanium dioxide. The semiconductor fine particles have an average particle diameter of 5 to 500 nm, preferably 10 to 50 nm. The thickness of the porous semiconductor film is 5 to 25 μm. In the dye-sensitized solar cell of the present invention, the base metal complex dye is a base metal complex as described above. Further, the cathode material of the dye-sensitized solar cell is not particularly limited and may include any material having conductivity. Alternatively, the cathode material may be an insulating material as long as a conductive layer is formed on the surface facing the photoanode. Electrochemically stable materials are available as cathodes, and non-limiting examples of materials suitable for use in the cathode φ material include platinum, gold, carbon, and the like. Further, the electrolyte layer as the dye-sensitized solar cell is not particularly limited and may include any substrate having electron and/or hole conductivity. [Embodiment] The base metal complex of the present invention can be synthesized in the following manner. 15 bis-dithiocyanobis(2,2,-bipyridine-4,4'-dicarboxylic acid) ruthenium (II) (cz'i-di(thiocyanato)-Ar,iV,-bis(2,2 ,-bipyridyl-4,4,-dicarboxylic .acid)ruthenium (II), N3 dye) was synthesized according to the method of Inorganic, Vol. 38, No. 26, 1999, 6298-6305. Dissolving gal-dithiocyano-MiT-bis(2,2'-bipyridine-4,4'-dicarboxylic acid) oxime 20 (II) in distilled water, and then dropping 10% hydroxybenzoyl group An aqueous solution of benzyltributylammonium hydroxide (formulated with benzyltributylammonium chloride reagent (ACROS, 98%)) is added to the reaction solution until the pH of the reaction solution reaches 10, and then Concentrate to obtain a viscous liquid. The viscous liquid was dissolved in methanol (methanol), and then diethyl ether was added to precipitate the product, which was taken to dryness and dried under vacuum for one day. The dried solid is dissolved in steaming water, and the pH is adjusted to 5 or less with an aqueous solution of ο] M acid (nitHe aeid) to obtain a metal complex of the formula (M). The method for producing the dye-sensitized solar cell of the present invention is not particularly limited, and it can be produced by a generally known method. The material of the transparent substrate is not particularly limited, and any transparent substrate can be used. Preferably, the material of the transparent substrate is a transparent substrate having good barrier properties, solvent resistance, weather resistance, etc., for moisture or gas invaded by the exterior of the dye-sensitized solar cell, and specifically, quartz, glass, etc. Through 10 inorganic substrates, polyethylene terephthalate (PET), poly(ethylene naphthalate) (PEN), polycarbonate (PC), polyethylene (pE), polypropylene (pp), The transparent plastic substrate such as polyimide (PI) is not limited to these. The thickness of the transparent substrate is not particularly limited, and can be freely selected by the light transmittance and the characteristics of the dye-sensitized solar cell. In a specific example, the transparent substrate 15 is a glass substrate. The material of the transparent conductive film may be selected from indium tin oxide (ITO), fluorine-doped Φ-tin oxide (FT〇), oxidized-di-gallium oxide (ZnO-Ga2〇3), and oxidized word_2 ΖηΟ-Α12〇3), and yttrium-based oxide materials. In a specific example, the transparent conductive film is tin oxide doped with fluorine. 20 The porous semiconductor film is made of semiconductor fine particles. Suitable semi-conducting particles include antimony, titanium dioxide, tin dioxide, oxidized, tungsten trioxide, antimony pentoxide, antimony trioxide, and combinations thereof. First, the semiconductor microparticles are first formulated into a paste, which is then applied to a transparent conductive substrate. The coating method can be applied by a doctor blade, screen printing, spin coating, spraying, etc. or a general wet type 15 201014821 ' cloth. Further, in order to obtain an appropriate film thickness, the β semiconductor film layer may be applied one or more times in a single layer or a plurality of layers, and the multilayer layer means semiconductor particles having different particle diameters in each layer. For example, semiconductor particles having a particle diameter of 5 to 5 nanometers may be coated first, and the coating thickness is 5 to 20 micrometers, and then semiconductor particles having a particle diameter of 2 to 5 to 400 nm are coated and coated. The cloth has a thickness of 3 to 5 microns. Then, after drying at 50 to 100 C, and sintering at 400 to 500 ° C for 30 minutes, a multilayer semiconductor film layer can be obtained. The ruthenium metal complex dye can be dissolved in a suitable solvent to form a dye lysate. Suitable solvents include acetonitrile, methanol, ethanol, propanol, butanol, 10 decyl decylamine, N-decyl pyrrolidone or a mixture thereof, but are not limited thereto. Here, the transparent substrate coated with the semiconductor film is immersed in the dye solution to sufficiently absorb the dye in the dye solution, and is taken out and dried after the dye absorption is completed, whereby a photoelectrode anode of a dye-sensitized solar cell can be obtained. The material as the cathode is not particularly limited and may include any material having conductivity. Alternatively, the cathode material may be an insulating material as long as a conductive layer is formed on the surface facing the photoanode. In addition, electrochemically stable materials can serve as the cathode, and non-limiting examples of suitable cathode materials include platinum, gold, carbon, and the like. The electrolyte layer is not particularly limited and may include any substrate having electron and/or hole conductivity. Further, the liquid electrolyte may be an iodine-containing acetonitrile solution, an iodine-containing N-methylpyrrolidone solution, or an iodine-containing 3-methoxypropionitrile solution. In one embodiment, the liquid electrolyte is an acetonitrile solution containing iodine. 16 201014821 Dye sensitivity of the present invention First, a solar cell will be included as follows. The granule paste is grounded by tin oxide micro-tin oxide (FTO) with a particle size of 20-30 nanometers (nm) and/or several times of screen printing on the gas-filled (10) 瑕It was then sintered at 450 ° C for 30 minutes. #钌metal complex dissolved in acetonitrile (acet〇nitrile) and final butanol ibutan'l solution (1:1 v / v) into a ruthenium metal complex dye soluble 10 followed by 'the above containing porous titanium oxide The glass plate of the film is immersed in the dye, and after it absorbs the dye in the dye solution, it is taken out and dried to obtain a photoanode. A fluorine-doped tin oxide glass plate was drilled with an injection port having a diameter of 0.75 mm for injection into the electrolyte. The vaporized platinum acid (H2PtCl6) solution was coated on a fluorine-doped tin oxide glass plate and then heated to 400 C for 15 minutes to obtain a cathode. Then, a thermoplastic polymer film having a thickness of 60 μm was placed between the photovoltaic anode and the cathode, and a pressure was applied to the two electrodes at 120 to 140 ° C to bond the two electrodes. The dye-sensitized battery of the present invention is obtained by injecting an electrolyte (0.03 M I2/0.3 M LiI/0.5 Μ tri-butylpyridine in acetonitrile) and sealing the injection port with a thermoplastic polymer film. The following examples are merely illustrative of the invention, and the scope of the invention is not limited thereby. Unless otherwise stated, the temperature is in degrees Celsius and the parts and percentages are by weight. The relationship between parts by weight and parts by volume is like the relationship between kilograms and liters. 25 Lean application 1 17 201014821 Synthesis of hydrazine-dithiocyano-state bismuth-bis(2,2'-bipyridine-4,4'-dicarboxylic acid) ruthenium (II) bis(benzyltributylammonium) (cz\s-di(thiocyanato)-7V,7V,-bis(2,2'-bi pyridyl-4,4,-dicarboxylic acid)ruthenium(II)bis(benzyl tributyl ammonium) (1-1) 5 0.50 parts of poly-dithiocyano-state bis(2,2'-bipyridine-4,4'-didecanoyl) hydrazine (cz) (cz\s-di(thiocyanato)-W'-bis (2,2'-bipyridyl-4,4'-dicarboxylic acid)ruthenium(II), N3 dye) (according to Inorganic Chemistry, Vol. 38, No. 26, 1999, 6298-6305 ^ by synthesis) and 10 parts Distilled water was added to the reaction flask, stirred and mixed, and then dropped into 10 10% aqueous solution of benzyltributylammonium hydroxide (benzyl tributary lammonium chloride reagent (ACROS, 98%). ) was prepared in the reaction solution until the pH of the reaction solution was stabilized to 10, and then the solvent was distilled off by a rotary-evaporator to obtain a viscous liquid. Next, the viscous liquid was dissolved in methanol, and then diethyl ether was added to produce a precipitate, which was taken out and dried under vacuum for one day. The dried solid mash was dissolved in 10 parts of distilled water, and the pH was adjusted to 5 or less with a 0.1 ni aqueous solution of nitric acid, and the product was collected by a sintered glass filter and used. The product was washed with 20 parts of distilled water of pH 4.1 to give 0.52 part of a white solid product of formula (1-1), yield 61.5%. Example 2 Synthesis of hydrazine-dithiocyanobis(2,2'-bipyridine-4,4'-didecanoyl) ruthenium (II) 25 bis(benzyltriethyl hydroxy-Kc/j-diGhiocyanatcO- A^A^'-bisQJ'-bi 18 201014821 pyridyl-4,4,-dicarboxylic acid)ruthenium(II)bis(benzyl triethyl ammonium) (1-2) The same procedure as in Example 1 was carried out to prepare the present example. The compound was replaced by an aqueous solution of hydroxytriphenylammonium tributylammonium using an aqueous solution of benzyltriethylammonium 5 hydroxide (TCI Co., Ltd.). 0.30 parts of a black solid product of the formula (1-2) was obtained in a yield of 41.1%. Example 3 Synthesis of bis-dithiocyano bis(2,2'-bipyridine-4,4'-dicarboxylic acid) ruthenium (II) % bis(triethylhexyl ammonium Xch-dKthiocyanato) - see i\T -bis(2,2',bi pyridyl-4,4,-dicarboxylic acid)ruthenium(II)bis(triethyl hexyl ammonium)) (1-3) 0.50 parts of 膺-dithiofluoro-AT, #,- Bis(2,2'-bipyridyl-4,4'-didecanoyl) ruthenium (Π) and 1 part distilled water were added to the reaction flask and stirred to mix 're-drop 15 into 10% triethylhexyl hexahydrochloride (triethylhexylammonium hydroxide) aqueous solution (prepared with triethylhexylammonium bromide reagent (ALDRICH, 993⁄4) 0) into the reaction solution 'until the pH of the reaction solution stabilizes to 12' and then distilled off with a rotary evaporator The solvent gave a viscous liquid. Then the viscous liquid 2 was dissolved in methanol, and then a precipitate was added to produce a precipitate. The solid product was taken out and dried under vacuum for one day. The dried solid was dissolved in 10 parts of steaming water, and the pH was adjusted to below 4 with a 0.1 Torr aqueous solution of nitric acid. The product was collected by filtration through a sintered glass filter, and the product was washed with 5 parts of steamed water of pH 4.1. 0.44 parts of a black solid product of the formula (1-3) was obtained in a yield of 25 81.5%. 19 201014821 Example 4 Synthesis of broad-dithiocyanato-AT, #'-bis(2,2'-bipyridine-4,4'-didecanoyl) ruthenium (II) bis(1-dide) 0 ratio bite Xc/s-diGhiocyanatc^-T^iV'-bispe'-bi 5 pyridyl-4,4,-dicarboxylic acid)ruthenium(II)bis(l-dodecyl pyridinium)) (1-4) The same procedure as in Example 3 was carried out except that the compound of the present example was used, except that 1-dodecylpyridinium hydroxide was used (aqueous solution of 1-dodecylpyridinium hydroxide) (1-dodecylpyridinium) 1 〇 chloride reagent, ALDRICH, 98%) was prepared by substituting an aqueous solution of triethylhexylammonium hydroxide. 0.20 parts of a black solid product of the formula (1-4) was obtained in a yield of 32.8%. Example 5 15 Synthesis of bis-dithiocyano-state #,-bis(2,2'-bipyridine-4,4,-dicarboxylic acid) ruthenium (Π) Tris(benzyltriethylep) Ci5_di(thiocyanato)-iV,iV'-bis(2,2',bi pyridyl-4,4,-dicarboxylic acid)ruthenium(II)tris(benzyl gintriethyl ammonium) (1-5) 0.20 parts 10% An aqueous solution of hydroxybenzylidene triethylammonium and 100 parts of 20 methanol were added to the reaction flask, stirred and mixed, and then 〇.1 〇 part of bis-dithiocyano bis(2,2'-bipyridine-4,4, - bis(decanoic acid) ruthenium (II) bis(phenylmercaptotriethylammonium) (1-2) into the reaction mixture, and the mixture is stirred and stirred for 2.5 hours. Then the solvent is distilled off by a rotary evaporator to obtain a precipitated product. The product was collected by filtration through a sintered glass filter, and the product was washed with 10 parts of distilled water to obtain 0.08 parts of a black solid product of formula (1-5) in a yield of 74.0%. 20 201014821 Example 6 Synthesis of broad-dithiocyano-state bis(2,2'-bipyridine-4,4'-dicarboxylic acid) ruthenium (II) tetrakis(phenylmethyltriethyl bond Xc^-diGhiocyanatcO -iV^iV'-bisPJ'-bi 5 pyridyl-4,4,-dicarboxylic acid)ruthenium(II)tetrakis(benzyl triethyl ammonium) (1-6) 0.50 parts of broad-dithiocyano-state double 2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) and 50 parts of distilled water were added to the reaction flask, stirred and mixed, and then added with 10% aqueous solution of hydroxyoxybenzyltriethylammonium. In the reaction solution, until the pH of the reaction solution was stabilized to 7, the solvent was distilled off by a rotary evaporator to obtain a viscous liquid. The viscous liquid was dissolved in methanol, and diethyl ether was added to give a precipitate. The hygroscopic solid product was taken out and dried under vacuum for one day to obtain 0.43 parts of a black solid product of formula (1-6) in a yield of 68.0%. . 15 Example 7 Production of a dye-sensitized solar cell A paste β comprising 'oxidized granules having a particle diameter of 20 to 30 nanometers (nm) was coated with fluorine by one or several times of screen printing. a heterogeneous tin oxide (FTO) glass plate (thickness 4 mm, resistance ΙΟ Ω / port), so that the thickness of the porous titanium oxide film after sintering is 10 to 12 μm (ym), and then sintered at 450 ° C for 30 minutes. . The ruthenium metal complex of Example 1 was dissolved in a mixture of acetonitrile and butaneol (ΐ··ΐν/ν) to prepare a dye solution having a ruthenium metal complex concentration of 0.5 Μ. Next, the above-mentioned glass plate containing the porous oxide 25 immersion film is immersed in the dye solution, and it is absorbed in the dye solution. After 16 to 24 hours, the film is taken out and dried to obtain a photoanode. ° A fluorine-doped tin oxide glass plate is drilled to a diameter of 0.75 mm for injection into the electrolyte, and then a solution of platinum oxynitride (H2PtCl6) (1 mg of platinum in 1 liter of ethanol) is applied. The cathode was placed on a tin oxide glass plate and then heated to 400 ° C for 15 minutes to obtain a cathode. A thermoplastic polymer film having a thickness of 60 μm was placed between the photoanode and the cathode, and a pressure was applied to the two electrodes at 120 to 140 ° C to bond the electrodes. 10 Injecting an electrolyte solution (0.03 Μ Ι 2/0·3 M LiI/0.5 Μ tri-butyl pyridine in acetonitrile), and sealing the injection port with a thermoplastic polymer film, the dye-sensitized solar cell of the present embodiment can be obtained. Example 8 15 Preparation of Dye-Sensitized Solar Cell The dye-sensitized solar cell of this example was prepared in the same manner as in Example 7, except that the ruthenium metal complex of Example 2 was used in place of the ruthenium metal complex of Example 1. . 20 Example 9 Production of dye-sensitized solar cell The dye-sensitized solar cell of this example was prepared in the same manner as in Example 7, except that the base metal complex of Example 1 was used instead of the base metal complex of Example 1. 22 25 201014821 Example ί Manufacturing a dye-sensitized solar cell The same procedure as in Example 7 was carried out to prepare the dye-sensitized solar cell of the present example, except that the ruthenium metal complex of Example 4 was used instead of the ruthenium metal of Example 15. Compound. Example 11 Production of Dye-Sensitized Solar Cell φ The dye-sensitized solar cell of the present Example was prepared in the same manner as in Example 7 except that the ruthenium metal complex of Example 5 was used instead of the ruthenium metal of Example 1. Compound. Example 12 Production of Dye-Sensitized Solar Cell 15 A dye-sensitized solar cell of this example was prepared in the same manner as in Example 7, except that the metal-metal complex of Example 6 was used in place of the nail metal complex of Example 1. φ Comparative Example 20 A dye-sensitized solar cell was prepared in the same manner as in Example 7 except that N719 was used instead of the ruthenium metal complex of Example 1. Test Methods 舆 Results Photoelectric Efficiency Test 25 The dye-sensitized solar cells of Examples 7 to 12 and Comparative Examples were tested for short-circuit current (Jsc), open circuit voltage (Voc), and fill factor under illumination of 23 201014821 ' AM 1.5 ( FF), photoelectric conversion efficiency (η) and single-photon photo-current conversion efficiency (IPCE) 〇 test results are organized as follows: Table 1 Test results of dye-sensitized solar cells Dye Jsc (mA/cm2) V 〇 c (V) FF η (%) Example 7 1-1 8.22 0.78 0.64 4.09 Example 8 1-2 9.42 0.79 0.62 4.54 Example 9 1-3 8.46 0.80 0.64 4.33 Example 10 1-4 6.98 0.68 0.63 3.00 Example 11 1-5 7.84 0.81 0.65 4.12 Example 12 1-6 7.99 0.75 0.62 3.74 Comparative Example N719 7.36 0.76 0.61 3.38 The test results shown in Table 1 show that the ruthenium metal complex of the present invention was used. The dye-sensitized solar cell of the present invention can improve the short-circuit current and open circuit voltage of the dye-sensitized solar cell as compared with the dye-sensitized solar cell manufactured by N719 in Comparative Example. Fill factor, thereby increasing the photoelectric conversion efficiency of the dye-sensitized solar cell. In summary, the present invention exhibits its characteristics different from those of the prior art in terms of purpose, technique, and efficacy, or in terms of its technical level and R&D design. It should be noted that the above-described embodiments are merely illustrative for the sake of convenience of description, and are not intended to limit the invention, and that the skilled artisan will be able to do so without departing from the spirit and scope of the invention. The invention may be modified and modified, and the scope of the claims is intended to be limited to the above embodiments. The above-described embodiments are merely exemplified for the convenience of the description, and the claims are intended to be within the scope of the above-mentioned embodiments. ‘,“平’ instead of only [圏式说明] ❹无. 10 [Main component symbol description] None. ❹ 25

Claims (1)

201014821 七、申請專利範圍: 1. 一種釕金屬錯合物,其結構如下式(I): RuI>2(NC S)2Am (I) 5 其中 L 為 2,2,-雙吡啶 _4,4’_ 二甲酸(2,2,-bipyridyl-4,4’-dicarboxylic acid)、2,2’-雙吡咬·4,4’_ 二磺酸 (2,2’_bipyridyl-4,4’-disulfonic acid)或 2,2’_雙"比咬 _4,4,-二 參 填酸(2,2’-bipyridyl-4,4’_diphosphonic acid);201014821 VII. Patent application scope: 1. A ruthenium metal complex with the following structure (I): RuI>2(NC S)2Am (I) 5 wherein L is 2,2,-bipyridine _4,4 '_Dicarboxylic acid (2,2,-bipyridyl-4,4'-dicarboxylic acid), 2,2'-dipyridyl 4,4'-disulfonic acid (2,2'-bipyridyl-4,4'- Disulfonic acid) or 2,2'_double" than 2,2'-bipyridyl-4,4'-diphosphonic acid; 苯基(phenyl)或苯曱基(benzyl),R_2、R_3、及R_4各自獨立分 別為Cuo炫基、苯基或苯甲基,、及r7各自獨立 分別為C1.2。烧基;以及 15 m為1至4的整數。 2·如申請專利範圍第1項所述之旬·金屬錯合物,其中 L為2,2’-雙β比咬_4,4’·二甲酸。 3.如申請專利範圍第1項所述之釕金屬錯合物,其中 L為2,2’-雙η比咬_4,4’-二續酸。 2〇 4.如申請專利範圍第1項所述之釕金屬錯合物,其中 L為2,2’-雙吡啶_4,4’-二磷酸。 26 201014821 5·如申請專利範圍第1項所述之釕金屬錯合物,其中 N+RlR2R3R4 ’ R!為 C5.20烷基、苯基或苯甲基,R2、r3、 及R4各自獨立分別為匕扣烷基、苯基或苯甲基。 6.如申請專利範圍第2項所述之釕金屬錯合物,其中 A為N+RlR2R3R4 ’ RAC5_20烷基、苯基或苯甲基,R2、r3、 及R4各自獨立分別為Cl 6烷基β 7·如申請專利範圍第2項所述之釕金屬錯合物,其中Phenyl or benzyl, R_2, R_3, and R_4 are each independently a Cuoxyl group, a phenyl group or a benzyl group, and each of R7 is independently C1.2. An alkyl group; and 15 m is an integer from 1 to 4. 2. The metal complex according to claim 1, wherein L is 2,2'-double β ratio _4,4'·dicarboxylic acid. 3. The base metal complex according to claim 1, wherein L is 2,2'-double n to bite 4,4'-dihydro acid. 2. The base metal complex according to claim 1, wherein L is 2,2'-bipyridine-4,4'-diphosphate. 26 201014821 5. The metal ruthenium complex as described in claim 1, wherein N+RlR2R3R4 'R! is C5.20 alkyl, phenyl or benzyl, and R2, r3, and R4 are each independently It is an alkyl group, a phenyl group or a benzyl group. 6. The ruthenium metal complex according to claim 2, wherein A is N+RlR2R3R4 'RAC5_20 alkyl, phenyl or benzyl, and R2, r3, and R4 are each independently a C6 alkyl group. 7 7· The ruthenium metal complex as described in claim 2, wherein 且R5為c 烧基。 8·如申請專利範圍第2項所述之釕金屬錯合物,其中And R5 is a c-based group. 8. The ruthenium metal complex as described in claim 2, wherein 9. 如申請專利範圍第3項所述之釕金屬錯合物,其中 Α為’ r^C5 2〇烷基、苯基或苯甲基,r2、^、 及R4各自獨立分別為Cl 6烷基。 10. 如申請專利範圍第3項所述之釕金屬錯合物,其中 15 m為2或3 » 11. 如申請專利範圍第4項所述之釕金屬錯合物,其中9. The ruthenium metal complex according to claim 3, wherein Α is 'r^C5 2〇 alkyl, phenyl or benzyl, and r2, ^, and R4 are each independently a C6 alkane. base. 10. The base metal complex according to claim 3, wherein 15 m is 2 or 3 » 11. The base metal complex according to claim 4, wherein ’且及5為Ci_2〇烧基。 12·如申請專利範圍第4項所述之釕金屬錯合物,其中 in為2或3。 13.如申請專利範圍第1項所述之釘金屬錯合物,其該 舒金屬錯合物是一種用於染料敏化太陽能電池之染料化合 物0 27 201014821 14. 一種釕金屬錯合物,其結構如下式(1-2)或下式 (1-3),And 5 is Ci 2 oxime. 12. The base metal complex as described in claim 4, wherein in is 2 or 3. 13. The nail metal complex according to claim 1, wherein the metal complex is a dye compound for a dye-sensitized solar cell. 0 27 201014821 14. A base metal complex, The structure is as follows (1-2) or the following formula (1-3), (1-3)。 15. 如申請專利範圍第14項所述之釕金屬錯合物,其該 釕金屬錯合物是一種用於染料敏化太陽能電池之染料化合 10 物。 16. —種染料敏化太陽能電池,其包括: (a)—光電陽極,其包括一如下式(I)之舒金屬錯合物; RuL2(NCS)2Am 28 (i) 201014821 其中 二磺酸或 L為2,2’-雙吼咬-4,4,-二甲酸、2,2,_雙〇比唆_4,4, 2,2’-雙吡啶-4,4,_二磷酸; ’ 10 4 »5 、 R? ,n-R5(1-3). 15. The base metal complex according to claim 14, wherein the base metal complex is a dye compound for a dye-sensitized solar cell. 16. A dye-sensitized solar cell comprising: (a) a photoanode comprising a sulphide complex of the following formula (I); RuL2 (NCS) 2Am 28 (i) 201014821 wherein disulfonic acid or L is 2,2'-double bite-4,4,-dicarboxylic acid, 2,2,_biguanide 唆4,4,2,2'-bipyridine-4,4,_diphosphate; 10 4 »5 , R? , n-R5 r5R5 N、 、Rs、 ,其中,R!為c 苯甲基,m R4各自獨立分別為Ci2。烷基、苯基 或苯甲基’ R5、R6、及R7各自獨立分別為Ci-2。烧基;且 :5·20烷基、笨基或 m為1至4的整數; (b)—陰極;以及 (c)一電解質層,其在光電陽極與陰極間。 17. —種染料溶液,其包括: (A)—如下式(I)之釕金屬錯合物,其含量為owq重量 @ 百分比: 15 RuL2(NCS)2Am (I) 其中 L為2,2’-雙吡啶-4,4’-二甲酸、2,2’-雙吡啶-4,4,-二磺酸或 2,2’-雙吡啶-4,4’_二磷酸;N, Rs, wherein, R! is c benzyl, and m R4 are each independently Ci2. The alkyl group, the phenyl group or the benzyl group 'R5, R6, and R7 are each independently Ci-2. And: (b) a cathode; and (c) an electrolyte layer between the photoanode and the cathode. 17. A dye solution comprising: (A) - a ruthenium metal complex of the following formula (I) in an amount of owq weight @ percentage: 15 RuL2(NCS)2Am (I) wherein L is 2, 2' -bipyridine-4,4'-dicarboxylic acid, 2,2'-bipyridine-4,4,-disulfonic acid or 2,2'-bipyridine-4,4'-diphosphate; 29 20 20101482129 20 201014821 Re—N- ,5 ' ’其中’ Rl為C5-2。烷基、苯基或 本甲基,R2、m各自獨立分别為Ci2。烧基、苯基 或苯甲基’R5、R6、及r7各自獨立分別以12。烧基;且 m為1至4的整數;以及 5 (B)—種有機溶劑,其含量為99 %〜99重量百分, 該有機溶劑係選自由:乙腈、甲醇、乙醇、丙醇、丁醇、 甲基甲酿胺、及N·甲基略燒酮所組成之群組。 30 201014821 四、指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明:無。 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式: RuL2(NCS)2Am (I) 其中,L、A、及m之定義如說明書中所述。 3Re-N- , 5 ' ' where 'Rl is C5-2. The alkyl group, the phenyl group or the methyl group, and R2 and m are each independently Ci2. The alkyl group, the phenyl group or the benzyl group 'R5, R6, and r7 are each independently 12. And m is an integer of from 1 to 4; and 5 (B) an organic solvent in an amount of from 99% to 99% by weight, the organic solvent being selected from the group consisting of: acetonitrile, methanol, ethanol, propanol, butyl A group consisting of an alcohol, methyl amanta, and N. methyl ketone. 30 201014821 IV. Designated representative map: (1) The representative representative of the case is: None. (2) A brief description of the symbol of the representative figure: None. 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: RuL2(NCS)2Am (I) where L, A, and m are as defined in the specification. 3
TW097138544A 2008-10-07 2008-10-07 Ruthenium complex and photoelectric component using the same TWI377196B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097138544A TWI377196B (en) 2008-10-07 2008-10-07 Ruthenium complex and photoelectric component using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097138544A TWI377196B (en) 2008-10-07 2008-10-07 Ruthenium complex and photoelectric component using the same

Publications (2)

Publication Number Publication Date
TW201014821A true TW201014821A (en) 2010-04-16
TWI377196B TWI377196B (en) 2012-11-21

Family

ID=44829795

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097138544A TWI377196B (en) 2008-10-07 2008-10-07 Ruthenium complex and photoelectric component using the same

Country Status (1)

Country Link
TW (1) TWI377196B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI406424B (en) * 2010-04-26 2013-08-21 Nat Univ Tsing Hua Process for impregnating photosensitizing dye of photoanode on a conductive substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI406424B (en) * 2010-04-26 2013-08-21 Nat Univ Tsing Hua Process for impregnating photosensitizing dye of photoanode on a conductive substrate

Also Published As

Publication number Publication date
TWI377196B (en) 2012-11-21

Similar Documents

Publication Publication Date Title
Nogueira et al. Polymers in dye sensitized solar cells: overview and perspectives
JP5351693B2 (en) Ruthenium complex and photoelectric component using the same
TW201116593A (en) Dye-sensitized solar cell and photoanode thereof
US8278447B2 (en) Ruthenium complex and photoelectric component using the same
TWI383988B (en) Novel ruthenium complex and photoelectric component using the same
KR101551074B1 (en) Solid-state dye-sensitized solar cell with long-term stability containing pyridine compound as an adhesive
TWI377196B (en) Ruthenium complex and photoelectric component using the same
TWI377199B (en) Ruthenium complex and photoelectric component using the same
JP2012116824A (en) New ruthenium complex and photoelectric component using the same
JP2010126724A (en) Pigment compound for solar cell, dye-sensitized photoelectric conversion element, and dye-sensitized solar cell
CN102443025B (en) Ruthenium metal complex and photoelectric component produced by using same
JP5250989B2 (en) Photoelectric conversion element and solar cell
AU2010237860B2 (en) Electrolyte composition and dye-sensitized solar cell using the same
Li et al. Effect of cationic groups in organic sulfide electrolyte on the performance of CdS quantum dot sensitized solar cells
KR20120057959A (en) Novel ruthenium complex and photoelectric component using the same
IE85727B1 (en) Ruthenium complex and photoelectric component using the same
IE85728B1 (en) Ruthenium complex and photoelectric component using the same
JP2013055060A (en) Photoelectric conversion element, and solar cell
CN102347138A (en) Electrolyte composite for dye sensitization solar battery and solar battery using same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees