TWI376785B - Methdo to reduce plasma-induced charging damage - Google Patents

Methdo to reduce plasma-induced charging damage Download PDF

Info

Publication number
TWI376785B
TWI376785B TW95108443A TW95108443A TWI376785B TW I376785 B TWI376785 B TW I376785B TW 95108443 A TW95108443 A TW 95108443A TW 95108443 A TW95108443 A TW 95108443A TW I376785 B TWI376785 B TW I376785B
Authority
TW
Taiwan
Prior art keywords
plasma
conversion
during
impedance
transition
Prior art date
Application number
TW95108443A
Other languages
Chinese (zh)
Other versions
TW200701433A (en
Inventor
Michael C Kutney
Daniel J Hoffman
Gerardo A Delgadino
Ezra R Gold
Shawming Ma
Douglas H Burns
Ashok Sinha
Xiaoye Zhao
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/366,301 external-priority patent/US20070048882A1/en
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW200701433A publication Critical patent/TW200701433A/en
Application granted granted Critical
Publication of TWI376785B publication Critical patent/TWI376785B/en

Links

Description

1376785 性的氣體化學成分。在某些部署方式中,執行轉換前補償 包含設定一電源功率對偏壓功率比率 (source power-to-bias power ratio)在一低於對轉換而言大約1的 範圍内。在某些部署方式中,執行轉換前補償包含一在該 製程轉換前於該工作部件上偏壓功率的起始應用。1376785 Sexual gas chemical composition. In some deployments, performing pre-conversion compensation includes setting a source power-to-bias power ratio within a range of about one less than the conversion. In some deployments, performing pre-conversion compensation includes a starting application that biases power on the working component prior to the process transition.

在某些部署方式中,提供一方法用以抑制在自一製程 步驟至另一製程步驟之一製程轉換期間在一電漿製程腔體 中在一工作部件上的充電損害,該方法包含伴隨一平滑非 線性轉換(smooth non-linear transition)改變至少一製程 參數。在某些部署方式中,改變的製程參數包含逐步地自 一第一穩定狀態改變至一轉換狀態和逐步地自該轉換狀態 改變至一第二穩定狀態。在某些部署方式中,製程參數的 改變係順著一波茲曼曲線(Boltzmann curve)、或一 S型 理查曲線(Sigmoidal Richards curve)。在某些部署方式 中,製程參數的改變包含改變至少下列之一:一電漿電源 功率、一偏壓功率、一氣體流量、一腔體壓力、或一磁場 強度。 在某些部署方式中,提供一方法用以抑制在自一製程 步驟至另一製程步驟之一製程轉換期間在一電漿製程腔體 中在一工作部件上的充電損害,其包含連續改變複數的製 程參數,以致一電漿可在每一次的改變後在改變下一個選 定的製程參數之前穩定平衡。在某些部署方式中,改變複 數的製程參數包含在改變其他製程參數之前在腔體中提供 一非活性的氣體化學成分。在某些部署方式中,改變複數 7 1376785 的製程參數包含在增加一腔體壓力後改變一電源功率。在 某些部署方式中,改變複數的製程參數包含在該電漿製程 腔體中提供一非活性的氣體化學成分後改變一電源功率。 在某些部署方式中,改變複數的製程參數包含在開始應用 一偏壓功率於工作部件上後改變一電源功率。 【實施方式】In some deployments, a method is provided for suppressing charging damage on a working component in a plasma processing chamber during a process transition from one process step to another process step, the method comprising A smooth non-linear transition changes at least one process parameter. In some deployments, the changed process parameters include a stepwise change from a first stable state to a transition state and a stepwise change from the transition state to a second stable state. In some deployments, the process parameters are changed along a Boltzmann curve or a Sigmoidal Richards curve. In some deployments, the change in process parameters includes changing at least one of: a plasma power, a bias power, a gas flow, a chamber pressure, or a magnetic field strength. In some deployments, a method is provided for suppressing charging damage on a working component in a plasma processing chamber during a process transition from one process step to another, which includes continuously changing the plurality of The process parameters are such that a plasma can be stabilized after each change after changing the next selected process parameter. In some deployments, changing the process parameters of the complex includes providing an inactive gas chemistry in the cavity prior to changing other process parameters. In some deployments, changing the process parameters of the complex 7 1376785 involves changing the power of a power supply after adding a cavity pressure. In some deployments, changing the plurality of process parameters includes changing a power supply after providing an inactive gas chemistry in the plasma processing chamber. In some deployments, changing the plurality of process parameters includes changing a power supply after initially applying a bias power to the operating component. [Embodiment]

電漿引起的充電效應與腔體設計和製程條件有強烈的 關係。在感應積體電路之電漿式製程期間,對這些元件而言 有很大的機會會受到損害。在穩定狀態製程步驟期間降低 充電傷害已被重視。例如,在蝕刻或化學氣相沈積(CVD ) 製程期間,當製程參數實際上是固定的時候,電漿引起之 充電傷害可發生在穩定狀態製程步驟期間。然而,當製程 參數被改變時,損害也可發生在非穩定狀態期間。The charging effect caused by the plasma has a strong relationship with the cavity design and process conditions. During the plasma process of the inductive integrated circuit, there is a great chance that these components will be damaged. Reducing charge damage during steady state process steps has been taken seriously. For example, during an etch or chemical vapor deposition (CVD) process, when the process parameters are actually fixed, the charge damage caused by the plasma can occur during the steady state process step. However, when the process parameters are changed, damage can also occur during the unstable state.

關聯於非穩定狀態期間的電漿引起之充電損害問題存 在於較低的電源功率頻率和高頻率電漿電源功率的情況 下。需要高頻率電漿電源功率的原因在於其可提供比低頻 率電漿電源功率要為密集的電漿,其可有利於高方向比製 程和降低製程時間。而且,在閘極氧化層變薄和元件尺寸 縮小時,電漿引起的充電損害更行重要。然而,下列技術 並不加限制於:一特定的電漿反應裝置、頻率或製程形式; 但一般可適用於降低在各種形式之電漿製程中的充電損 害,包含沈積和蝕刻製程。 8 1376785 實施示例 利用.雙層鎮嵌f dual-damascene )盤短方法之多介y睹 層银刻 在此示例中’在一耦接超高頻率電容的介電質蝕刻腔體 中研究電漿的均勻性和穩定性,其可使用在次65奈米雙重 鎮嵌式結構的一體成形製程中。經驗結果指出過度的磁場強 度和步進式(Step-to_step )轉換是影響充電效應的主要變 數。電衆的穩定性可藉由控制這些製程參數做補償。 在雙重鑲嵌蝕刻期間,元件結構對可導致昂貴的元件良 率損失之電漿引起充電損害敏感,當金屬線在製造順序(依 序為:介電質層蝕刻、光阻剝除和阻擋層)的關鍵步驟期間 、.£ 由電 透明薄膜(electricaUy tranSparent mms)或直接暴 露在製程電漿中時,由於一元件在這些任一步驟期間電荷不 平衡的增大或突然超過安全充電限制,此損害風險是相當高 的β 在經由1 8 5或溝槽1 9 5蝕刻期間,電漿充電損害的風險 取決於·以雙重鑲嵌式結構形成的積體結構。顯示在第1圖中 的疋適用於次6 5奈米節點、超過7層雙重鑲嵌結構的一 肚成形蝕刻順序。層110_15〇(層150假定表示為一蝕刻硬 式遮蔽膜和光阻多重層)為下列的組合:光阻、硬式遮蔽膜、 物質和阻擋層。在用於形成溝槽(trench) 1 9 5和凹洞 (via)185 么士姐 、’·°構、具有超過7層之雙重鑲嵌堆疊的連續多重步 驟#刻期間’由於凹洞底層金屬1 8 G的曝露,溝槽和凹洞步 驟具有最尚的電漿引起充電損害風險。此順序形成在一超高 9 1376785 頻,率電容耦接的介電質蝕刻器中,且利用具有不戶 和偏屋功率組合之多重步驟以有效蝕刻相異的物$ 質包含雙重鑲嵌堆疊100的多重層11〇_15〇。 在多層雙重鑲嵌堆疊100蝕刻形成溝槽195寿 結構期間’由於凹洞低層金屬18〇的曝露,凹洞和 具有最高的電漿引起充電損害風險。 接著在第2圖令,在轉換自一電漿條件至另一 的電漿不穩定性為一風險因子。多重步驟參數通常 刻順序中的步驟間,包含偏壓功率、電源功率、壓 (其在某些反應器型形式中可利用—電荷形式 (charge species tuning unit 或 CSTU)來控制)和々 在任何兩種步驟轉換期間,調整的製程參數以一簡 方式躍升至新的設定點,如顯示在c繪線的21〇邊 是失去控制》另外,這些製程參數在每—步輝開始 改變,通常會引起多重參數在穩定至其步驟兮泛定點 產生改變的情況。 經驗數據顯示為補償的轉換增加電漿弓丨起充 風險,因為電漿經歷明顯的分佈、密度和能量改變 補的改變可為電漿傳導性所表示,其具有能量可經 流動的特徵。如第2圖、A繪線中所顯示,對於一 補轉換而言’在轉換至和轉換自穩定狀態蝕刻條件 第2步驟中)的期間電導在數量級方面顯著地隨 化。另外’該電導在第2步驟開始和之後清楚地自 姓刻步驟的數值脫離。所有的指標皆使人聯押到嘴 g電源功率 f,這些物 ;口凹洞I 8 5 ,溝槽步驟 條件期間 改變在# 力、磁續 協調單元 匕學成分。 單的線性 :2 1 5,或 時同.時地 前明顯地 電損害的 。此未修 由該電漿 般的未修 (顯示在 著時間變 穩定狀態 電漿在轉 10 1376785 換期間經歷明顯的改變。 * 在第2圖中’B續·線顯示補償轉換以在轉換期間產生更 ’ 穩定的電衆。如在第2圖中、B鳍·線所示,電導的偏離已明 顯地降低,和在蝕刻步驟2開始和之後的電導不再明顯地偏 離自步驟2令的穩定肤態電導。這些改善起因於小心地控制 和於下文中所討論的製程參數順序,這些參數經過改變且可 普遍實施於整個蝕刻製程、或任何其他電漿製程順序。 • 因此’第2圖顯示隨著電漿電導對一單步驟製程的穩定 狀態電導歸一化,當B繪線的補償轉換通常以較小偏離方式 • 變平時’ A繪線的未補償轉換顯著地受到偏離。這些變化表 .明經補償的電漿當轉換自一電漿狀態至另一狀態時可變的 更穩定。 第3圖顯示經驗數據證實當使用補償的轉換時可降低損 害風險。在一單一步驟蝕刻製程風險的降低程度顯示在第3 圖中的表格1。特別地,未補償的轉換對天線比例分別是 2 00 . 1和100,〇〇〇 : }而言導致32%和79%的漏電流良率。 • 這些良率隨著補償的轉換分別地改善到9 7 %和9 9 5 %。同樣 地’利用该單—步驟蝕刻形成的EEPROM式感測器顯示相同 於表格1中所示的改善。最後’當使用補償的轉換時,外部 _ 電源(externai_s〇urce)閘極崩潰電壓符合1〇〇%的良率標準。 對於使用未修補的轉換而言,對於天線比例分別& 1〇〇〇 :【 和1〇〇’〇〇〇 · 1而言,良率分別為88%和37% ,兩者皆是不可 接受的數值。 為了 '實暫時補償解決方法的穩固性,使用EEPROM式 11 1376785 感測器測試用於蝕刻一複雜之多層雙重鑲嵌式堆疊的一多 - t步驟順序。EEPROM式感測器對於未修補的多重步驟順序 s, 鑑定結果利用大電愿和電流回應(顯示在第5圖中的表格!) 作為指顯示出-非常大的損害風險。結合補償的轉換至 相同的順序中,EEPROM式感測器電壓和電流降低至可接受 的程度。另外,200毫米天線金屬氧化半導體電容閘極崩潰 電壓符合100%的良率標準《根據這些數據電漿的不穩定 性和電漿引起的充電損害風險可利用介於連續電漿蝕刻步 驟間之補償轉換減少到最小程度。 因此,在雙重鑲嵌製程的環境中,一歸因於電漿引起充 電敏感度的高風險因子可被補償以降低電漿充電損害。發生 在轉換自一電漿狀態至另一狀態期間的電漿不穩定性可被 補償。利用在一轉換期間連續控制電漿狀態,該電漿可更穩 定和可降低充電效應。隨著此風險因子的減輕,可發展出沒 有電漿充電損害項目的連續蝕刻製程,例如複雜多層堆疊的 蝕刻和去除(ashing )。此功能使得一體成形的凹洞和溝槽 钱刻成為可能’其為雙重鑲嵌式製程所需要的。 ϋ二Γ步的參數控制以j低在轉換期問奋雷指宝 另外,小心地控制製程參數,和因此在轉換介於多重製 程步驟間的電漿狀態、與藉由導入和控制穩定狀態轉換步 1 驟,可控制電漿引起充電損害且明顯地增加推薦的製程操作 窗口。 下文進一步地探討可用於降低電漿損害的製程參數。藉 12 1376785 由控制製程功率和功率比;製程壓力;製鞀 &狂化學成分 強度;和轉換躍升點、速率、對上述參數的 , %竿形式 低充電損害》 控制功率比電源楣率沬^^ —用於降低充電損害的方法為保證介热帝. ;r於電源功率和 壓功率間的功率比係在一低損害風險範圍内。 示 4 Α圖為〜 圖解圖像,其表示一概念上的充電損害風險為— ^ 电源功率对The problem of charging damage caused by plasma associated with the unsteady state is in the case of lower power supply frequency and high frequency plasma power. The reason for the need for high frequency plasma power is that it provides a denser plasma than the low frequency plasma power, which can facilitate high aspect ratio processing and reduced process time. Moreover, the charge damage caused by the plasma is more important when the gate oxide layer is thinned and the element size is reduced. However, the following techniques are not limited to a particular plasma reactor, frequency or process format; however, it is generally applicable to reduce charge damage in various forms of plasma processing, including deposition and etching processes. 8 1376785 Implementation example use. Double-layered in-line f dual-damascene) Multi-mode y-layer silver engraving in the short-circuit method In this example, study the plasma in a dielectric etching cavity coupled with ultra-high frequency capacitance. Uniformity and stability, which can be used in an integral forming process of a sub-65 nm dual-in-town structure. Empirical results indicate that excessive magnetic field strength and step-to-step conversion are the main variables that affect the charging effect. The stability of the battery can be compensated by controlling these process parameters. During dual damascene etching, the component structure is sensitive to charge damage caused by plasma that can cause expensive component yield loss when the metal lines are in the manufacturing order (sequence: dielectric layer etching, photoresist stripping, and barrier layer) During critical steps, when exposed to electrical plasma (electricaUy tranSparent mms) or directly exposed to process plasma, this damage is caused by an increase in charge imbalance during a component or a sudden overshoot of safe charging. The risk is quite high. During the etching through 185 or trench 195, the risk of plasma charging damage depends on the integrated structure formed by the dual damascene structure. The 疋 shown in Fig. 1 is suitable for a one-step forming etching sequence of a sub-65 nanometer node and more than seven layers of dual damascene structures. Layer 110_15 (layer 150 is assumed to be an etched hard masking film and photoresist multiple layer) is a combination of the following: photoresist, hard masking film, substance, and barrier layer. In the process of forming trenches 1 9.5 and vias 185 s s s s s s s s s s s s s s s s s s s s s s s s s The 8 G exposure, trench and cavity steps have the greatest resistance to charge damage caused by plasma. This sequence is formed in a super high 9 1376785 frequency, rate capacitively coupled dielectric etcher, and utilizes multiple steps with a combination of power and partial house power to effectively etch different materials including dual damascene stack 100 The multiple layers are 11〇_15〇. During the multilayer dual damascene stack 100 etched to form trenches 195 during the lifetime structure, the pits and the highest plasma cause the risk of charge damage due to the exposure of the lower layer of metal 18 凹. Then in the second figure, the plasma instability from one plasma condition to the other is a risk factor. The multi-step parameters are usually between the steps in the sequence, including bias power, power supply, voltage (which is controlled in some reactor type forms - charge species tuning unit or CSTU) and any During the two-step conversion, the adjusted process parameters jumped to the new set point in a simple way. If the display is on the 21〇 side of the c line, it is out of control. In addition, these process parameters start to change at each step, usually Causes multiple parameters to change until they are stable to their point. Empirical data shows that the compensation for the conversion increases the risk of charging the plasma because the plasma undergoes significant distribution, density, and energy changes. The change in complement can be expressed as plasma conductivity, which has the characteristic that energy can flow. As shown in Fig. 2, line A, the conductance is significantly proportional in magnitude for the period of 'converted to and converted from the steady state etching condition in the second step. In addition, the conductance is clearly separated from the value of the last step at the beginning and after the second step. All the indicators are made to be linked to the mouth g power supply f, these things; the mouth cavity I 8 5, the groove step condition changes during the #力, magnetic continuity unit dropout component. Single linearity: 2 1 5, or the same time before the ground is obviously electrically damaged. This unrepaired by the plasma is unrepaired (showing that the plasma in a steady state undergoes a significant change during the transition of 10 1376785. * In Figure 2, the 'B continued line shows the compensation conversion during the conversion period. Produces a more 'stable power. As shown in Figure 2, the B-fin line, the deviation of the conductance has been significantly reduced, and the conductance at the beginning and after the etching step 2 is no longer significantly deviated from the step 2 Stabilizing the skin conductance. These improvements result from careful control and the sequence of process parameters discussed below, which are modified and can be universally implemented throughout the etching process, or any other plasma process sequence. • Therefore 'Figure 2 It is shown that as the plasma conductance normalizes the steady state conductance of a single-step process, the compensated transition of the B-line is usually in a smaller deviation mode. • The flattened 'A-line's uncompensated transition is significantly deviated. These changes Table. Ming compensated plasma is more stable when converted from one plasma state to another. Figure 3 shows empirical data demonstrating that the risk of damage can be reduced when using compensated conversions. The degree of reduction in the risk of a single-step etch process is shown in Table 1 in Figure 3. In particular, the uncompensated conversion-to-antenna ratio is 200. 1 and 100, respectively, resulting in 32% and 79 for 〇〇〇: } % leakage current yield. • These yields are improved to 97% and 99.55% respectively with compensation conversion. Similarly, the EEPROM-type sensor formed by this single-step etching is the same as Table 1. The improvement shown in the end. Finally, when using compensated conversion, the external _ power supply (externai_s〇urce) gate breakdown voltage meets the 1% yield criterion. For unmodified conversions, the antenna ratio is & 1〇〇〇: [and 1〇〇'〇〇〇·1, the yields are 88% and 37%, respectively, both of which are unacceptable values. For the stability of the 'temporary compensation solution' Using a EEPROM type 11 1376785 sensor to test a multi-t step sequence for etching a complex multi-layer dual damascene stack. EEPROM-type sensors for unpatched multiple step sequences s, the results of the identification use the big power and Current response (shown in Figure 5 Grid!) as a sign shows - very large risk of damage. Combined with the compensation conversion to the same sequence, the EEPROM sensor voltage and current are reduced to an acceptable level. In addition, the 200 mm antenna metal oxide semiconductor capacitor gate The breakdown voltage meets the 100% yield standard. According to these data, the instability of the plasma and the risk of charge damage caused by the plasma can be minimized by the compensation conversion between successive plasma etching steps. Therefore, in the dual mosaic In the process environment, a high risk factor due to the charge sensitivity of the plasma can be compensated to reduce the plasma charging damage. The plasma instability occurring during the transition from one plasma state to another can be make up. By continuously controlling the plasma state during a transition, the plasma can be more stable and can reduce the charging effect. As this risk factor is mitigated, a continuous etching process without a plasma charging damage project, such as etching and ashing of complex multilayer stacks, can be developed. This feature makes it possible to form integrally formed cavities and grooves that are required for a dual damascene process.参数 Γ 的 的 的 的 的 的 的 的 的 的 的 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外 另外In step 1, the plasma can be controlled to cause charging damage and the recommended process window is significantly increased. Process parameters that can be used to reduce plasma damage are discussed further below. By 12 1376785 by controlling the process power and power ratio; process pressure; system amp & mad chemical composition intensity; and conversion jump point, rate, for the above parameters, % 竿 form low charge damage" control power than power rate 沬 ^ ^ - The method used to reduce the charging damage is to ensure that the power ratio between the power supply and the voltage power is within a low risk of damage. The 4 Α diagram is ~ graphic image, which represents a conceptual charging damage risk - ^ power power pair

偏壓功率比的函數。充電損害風險發生在—泠 又,偏壓功率的 電源頻率式製程中。可判定使用一僅用電源的電聚由於( 漿的)鞘層厚度變薄和變的不穩定,如第4A圖右邊所示電 而增加風險。由於不尋常的大電壓和電流梯度產 。又展玍在製程期 間的某一點上,該損害風險是相當高的。當鞘層厚度隨著低 偏Μ頻率而增加時’可觀察到充電損害的降低,證明晶片才。 害是受該鞘層所影響。因此’為了降低充電損害,一低電源 /偏壓功率比Ws/Wb是需要的,例如,具有一些最低量偏塵 功率的應用,在一低於接近1的範圍内。A function of the bias power ratio. The risk of charging damage occurs in the power frequency process of the bias power. It can be judged that the use of a power source-only electropolymer due to the thinning and instability of the sheath thickness of the slurry, as shown in the right side of Fig. 4A, increases the risk. Due to unusual large voltage and current gradients. At some point during the process, the risk of damage is quite high. When the thickness of the sheath increases with a low bias frequency, a decrease in charging damage can be observed, demonstrating the wafer. The damage is affected by the sheath. Therefore, in order to reduce charging damage, a low power/bias power ratio Ws/Wb is required, for example, an application having some minimum amount of dust power, in a range below approximately 1.

磁場 可降 設定低頻功率在一臨界範圍内,用以在不增加損害風險 情況下’對高頻電源功率製程維持足夠的鞘層。此低頻功率 與電毁密度和反應器形式有關,但一般對一 enabler反應 器而言約在10 0W的等級。該反應器可自美商應用材料公司 (Applied Materials,Inc Santa clara,Ca.)買到,其具有一 可操作在頻率高於1 00MHz電源功率的蝕刻工具。 田功率比被控制和最大化時,可藉此成功地將損害最小 化 $電源對偏壓功率比為小的時候,通常損害風險較小, 13 1376785 尤其在具有磁場時’因為風險在 衩同的偏壓功率和磁場情況 下變的較高》另一方面,當應用更名 印文夕的電源功率時,&損宝 窗口(damage-free window)隨著等效磁場強度而增加’、。。 因此,為了降低充電損害,僅 僅用電源功率的製程應避免 且使用微量的較低頻的偏壓功聿。 _ 刀旱另外,這對電漿轟擊 (plasma strike)、電漿抑制(! (dechucking)而言即可成立 V Plasma quench )和釋放時間 在一般僅用高頻The magnetic field can be lowered to set the low frequency power within a critical range to maintain a sufficient sheath for the high frequency power supply process without increasing the risk of damage. This low frequency power is related to the electrical destruction density and reactor form, but is typically on the order of 10 0W for an enabler reactor. The reactor is commercially available from Applied Materials, Inc Santa Clara, Ca., which has an etch tool operable at a power source above 100 MHz. When the field power ratio is controlled and maximized, the damage can be minimized by minimizing the damage to the power-to-bias power ratio, which is usually less risky, 13 1376785 especially when it has a magnetic field, because the risk is different. The bias power and magnetic field become higher. On the other hand, when the application power is changed to the power of the printed circuit, the &damage-free window increases with the equivalent magnetic field strength. . Therefore, in order to reduce the charging damage, the process using only the power supply should avoid and use a small amount of lower frequency biasing power. _ Knife Dry In addition, this is the plasma strike, plasma suppression (! (dechucking) can be established V Plasma quench) and release time in general only high frequency

(high-freqUenCy-〇nly )製程期間,本發明者觀察到在當應 用低頻偏壓功率時的期間降低損害風險。 田〜 通常’使用一磁場於電源頻率式製程期間係用於重新分 佈帶電的物質例如蝕刻分子。當使用足量的磁場時整片晶 片的蝕刻速率逐漸變得均句。因此,磁場強度的控制為—效 力強大的均勻性協調柩紐。使用大磁場的結果為增加在損害 風險方面,由於當過多的磁場使用時電壓和電流分佈通常為 負面的影響。 • 在轉換中使用較高的壓力以穩定雷槳 在降低充電損拿方面的—附加因子...為在轉換步驟期間 藉由增加壓力以控制壓力的穩定性》第4Β圖為一圖解圖像, 其表示一概念上的充電損害風險為一電源功率對偏壓功率 比的函數,表示較低和較高壓力的影響。如第4Β圖中所示, - 假如壓力增加時’如高壓虛線(the dashed Higher Pressure line )所示在轉換期間具有較低的損害風險。相較於未有麗 力補償的製程轉換而言,較高的壓力使電漿阻抗穩定和使損 14 1376785 害風險最小化。因此,在 牧得換其他參數前 生在製程步驟間之充θ壓力可降低發 j心兄電知害的風險。 時,相較於未有壓力修補的製程轉 父=壓力 險,如低壓虛線所示。 疋0加充電知害風 另-降低充電損害的 於製程參數的速率形狀(s'、工帛躍升點、速率和用 換自-製程步驟至另—製程 充“害對轉 .J. °疋敏感的。此靈Μ择® 與處理下一個製程條件 又更 在·有關。母一變數有許 & 性,尤其是當多數變數同時改 月匕 一需要改變的變數而言,用 弋為對母 ^^ 用於在一自—製程步驟至另一製裎 步騍的約1秒程度的時間内 裝程 2圖中去姑《缢ν 夺執仃—線性的躍升,如在第 2圖中未補償變化之c繪後的2 S琛的2 10或21 5所示。這些變救白 含低頻偏壓功率、高# a 龙電源功率和磁場強度。然而,其他變 數,例如壓力、溫度、氣 轧肢机量和背面的氦氣壓力,為數種 設汁用於盡快地(無限的 堆才迷羊)達到其下一設定點的變 數。在過去,功率和磁場強 设椎汁迷率分別固定在接近1,00 0 W/s 和 1 0 A/s β 然而’為了抑制充電損害,功率和磁場強度躍升速率如 同其他參數不應該突麩轡*七、A f 犬…、燹大或過小。再者,當躍升速率平順 時電漿在轉換期間會更穩定,例如在當模擬一波兹曼曲線 (Boltzmann curve)或—s型理查曲線㈠如以仏心 謝ve)時,斜率並未突然改變。例如―以曼曲線可表示 15 1376785 一A, yDuring the (high-freqUenCy-〇nly) process, the inventors observed a reduction in the risk of damage during the application of low frequency bias power. Field ~ Usually 'use a magnetic field during the power frequency process to redistribute charged species such as etch molecules. When a sufficient amount of magnetic field is used, the etching rate of the entire wafer gradually becomes uniform. Therefore, the control of the magnetic field strength is a powerful uniformity of uniformity. The result of using a large magnetic field is to increase the risk of damage, since voltage and current distributions are often negatively affected when too much magnetic field is used. • Use higher pressure in the conversion to stabilize the paddle in terms of reducing charge loss—additional factor... to increase pressure to control pressure stability during the conversion step. Figure 4 is a graphical image , which represents a conceptual charge damage risk as a function of power supply to bias power ratio, indicating the effect of lower and higher pressures. As shown in Figure 4, - if the pressure increases, as indicated by the dashed Higher Pressure line, there is a lower risk of damage during the transition. Higher pressures stabilize the plasma impedance and minimize the risk of damage compared to process conversions that do not have Lili compensation. Therefore, the θ pressure between the process steps before the change of other parameters can reduce the risk of ignoring the power. In the case of the process, the process is changed to the pressure of the process without pressure repair, as indicated by the low pressure dotted line.疋0 plus charging knows the wind another - reduce the rate of shape of the process parameters in the charging damage (s', work jump point, rate and use of the change-process process to another process charge). J. °疋Sensitive. This kind of choice is related to the processing of the next process condition. The mother-variable has a & sex, especially when most variables change at the same time, the variable that needs to be changed, The mother ^^ is used for a period of about 1 second from the self-process step to another process step. In the picture 2, the 缢 仃 仃 - linear jump, as in Figure 2 The uncompensated change c is plotted after 2 S 琛 2 10 or 21 5 . These salvage whites contain low frequency bias power, high power and magnetic field strength. However, other variables, such as pressure, temperature, The amount of gas-rolling limbs and the helium pressure on the back are several variables used to reach the next set point as quickly as possible (unlimited piles of sheep). In the past, power and magnetic fields were fixed. At close to 1,00 0 W/s and 1 0 A/s β However, in order to suppress charging damage, power And the magnetic field strength jump rate as other parameters should not be bran*7, Af dog..., large or too small. Moreover, when the jump rate is smooth, the plasma will be more stable during the conversion, for example, when simulating a wave The slope of the Boltzmann curve or the -s type of the curve (1) is not changed abruptly. For example, the mann curve can represent 15 1376785 A, y

Xr 為: 220或 於製程 地反應 電漿有 歷力和 體為製 :壓力。 導入替 損害風 且一般 。在某 高電源 裡。然 16 1376785Xr is: 220 or in the process of the reaction. The plasma has a force and a body system: pressure. Importing damages the wind and is generally. In a high power supply. Of course 16 1376785

而’可判定在電源功率躍升至和下降自穩定狀態的高功率期 間,需要具有一非活性的氣體(例如氬氣)存在於蝕刻機内。 在一般約為1秒程度的這段時間内,其他製程變數更改變自 一狀態至另一狀態。一旦變數達到其最終的製程狀態,接著 該化學成分可在顧及電漿引起的充電損害下安全地轉換。同 樣地,在穩定狀態製程條件躍升至下一狀態前(不需下降), 氬氣、或其他非活性的氣體需要存在於蝕刻機中用以降低反 應製程氣體的濃度。 一般而言,要求蝕刻機的滞留時間約在I至3秒程度用 以實質上改變蝕刻氣體的濃度。此時間必須包含使中性氣體 傳輸自氣體控制板上之氣閥至反應腔體的時間。藉由使用此 氣體清除(flushing )步驟,監測的晶片回報具有一較低的 損害風險。However, it can be judged that an inactive gas (e.g., argon) is present in the etching machine during the high power period in which the power supply jumps up and down from the steady state. During the period of about 1 second, other process variables change from one state to another. Once the variable reaches its final process state, the chemical composition can then be safely converted, taking into account the charge damage caused by the plasma. Similarly, argon, or other inactive gases, need to be present in the etch machine to reduce the concentration of the process gas before the steady state process conditions jump to the next state (without falling). In general, the residence time of the etching machine is required to be about 1 to 3 seconds to substantially change the concentration of the etching gas. This time must include the time it takes for the neutral gas to pass from the gas valve on the gas control panel to the reaction chamber. By using this gas flushing step, the monitored wafer returns have a lower risk of damage.

如第2圖中E繪線所示,該製程化學成分可包含導入氣 氣、或其他非活性的氣體持續3-5秒,確保氬氣已被導入電 襞腔體以在製程變數轉換之前稀釋蝕刻氣體濃度。因此,在 一製程變數的躍升210或 ” —一,',〜私乳口J解釋為 氣自氣體控制板傳送至腔體内的滯留時間。此擔保氣氣在 程變數的轉換前可稀釋反應氣體。同樣地,在一製程變數 下降215或225前通入數秒的氬氣。雖然氬氣流量被表示 導入超過躍升210或22〇和下降2丨5或的時間,。 轉換210、215、220或225之後釋放或維持吊旦 片付疋里的滯留氬 於腔體中,可在轉換210、215、2 20或22s 4士击斗 >結束前回復氣 種類為反應氣體。 17 1376785 特殊的部署方式中,可觀察到假如 功率比Ws/Wb大於1時,在_線;〜 千釘偏麼 充u _人錢將大大地降低 代,:;: 、’可預期可利用其他的補償方法取 一牙、之外,s電源,偏壓功率比ws/wb高於i時 非活性的氣體可明顯降低充電損害的風險。 體,::文所表示’雖然惰性氣體可使用作為非活性的氣 、他部署方式中可使用其他稀釋的氣體 期在某些製程中,可使用氣 m 此…使用乳氣(nltrogen)等同類氣體。因 本文中,非活性的氣體並不必為惰性氣雜,反而可為 3體,其稀釋反應氣體且限制在—轉換期4漿或 1且柷)的改變。 捏制磁塥公番 另-降低充電損害的方法為在轉換期間栓制磁場強度 =小)和磁場方向’以從磁場引起的電壓和電流梯度與變 〜充電風險減到最小。更已完成具有數種殘場組態的研 九其中修改遍及晶片表面之磁場半徑Br和 ^ ju . 成分。 二亡-沿箸整個晶片表面為零時,由於只有料方向的磁場將 :者晶片表面存在,磁場為在其反射m極端條件為 备軸方向為零時的尖頭組態,在該組態下半徑不為零。一尖 頭組態的示例揭示在由pu和Shan發行在1 997年1〇月7As indicated by the E line in Figure 2, the process chemistry can include introduction of gas or other inert gases for 3-5 seconds to ensure that argon has been introduced into the chamber to dilute prior to process variable conversion. Etching gas concentration. Therefore, the jump 210 or "-," in the process variable is interpreted as the residence time of the gas from the gas control panel to the chamber. This guaranteed gas can be diluted before the conversion of the variable. Gas. Similarly, argon gas is introduced for a few seconds before a process variable drops 215 or 225. Although the argon flow rate is indicated to be introduced over a jump of 210 or 22 Torr and a time of 2 丨 5 or less, conversion 210, 215, 220 Or after 225, release or maintain the retained argon in the cavity of the hanging piece, and return the gas type to the reaction gas before the end of the conversion of 210, 215, 2 20 or 22s 4 strokes. 17 1376785 Special In the deployment mode, it can be observed that if the power ratio Ws/Wb is greater than 1, in the _ line; ~ thousand nails biased y _ people money will greatly reduce the generation, :;:, 'can be expected to use other compensation methods Take a tooth, outside, s power supply, the bias power ratio ws / wb higher than i inactive gas can significantly reduce the risk of charging damage. Body,:: The text says 'although inert gas can be used as inactive Gas, other dilutions can be used in his deployment Gas phase In some processes, gas m can be used. This uses a gas such as nltrogen. Since the inert gas does not have to be an inert gas, it can be a 3-body, which dilutes the reaction gas and Limiting the change of -4 pulp or 1 and 柷) during the conversion period. Kneading the magnetic 塥 另 - - - 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低 降低The current gradient and the change to the charging risk are minimized. The research has been completed with several residual field configurations. The magnetic field radius Br and ^ ju. are modified throughout the surface of the wafer. Since only the magnetic field in the material direction will exist on the surface of the wafer, the magnetic field is a pointed configuration when the reflection m extreme condition is zero in the standby axis direction, and the radius is not zero in this configuration. An example of the release was published by Pu and Shan in 1 997 1 month 7

號、標題為 “METHOD AND APPARATUS FOR PRODUCING PLASMA UNIFORMITY IN A MAGNETIC FIELD-ENHANCED PLASMA REACTOR” ' 屬於美商應材公 司(Applied Materials, Inc.,Santa Clara,CA.)的美國專利 18 1376785 编號5,674,321中,在此作為本文的參考文獻。 尖頭組態相較於反射組態可明顯地降低損害風險程 度。因此,該損害風險正比於轴方向的磁場強度。如前文提 及的,具有一高電源對偏壓功率比之電源功率的使用可增加 無損窗口的尺寸大小,當轴磁場強度減少時該窗口可更進— 步的增加》 然而’在此揭示的方法,其用於使損害風險最小化,將 更可景;ί響在钱刻器中的半導體物質。這些方法更有益於最終 用於修改在一控制方式中之物質的製程。某些物質對製程參 數敏感且藉由放慢、加速、偏移和或改變中途至最後狀態的 方式,可影響該物質。 然而,藉由小心地控制製程參數和,因此在介於多重製 程步驟間之轉換前間的電漿狀態和藉由導入和控制穩定狀 態轉換步驟,可控制電漿引起的充電損害且明顯地增加建議 的製程操作窗口。為了達到降低風險的目的,可藉由在步驟 轉換期間導入替代的化學成分以控制製程化學成分,其中該 替代的化學成分可使損害風險和瞬間之電漿不均勻性減^ 最小。另外,可藉由增加壓力以在轉換步驟和步驟轉換期間 控制製程壓力’該壓力可穩定電梁阻抗和使損害風險減至最 小。再者,可藉由在轉換步驟間期,例如介於製程步驟 間、電聚形成(電“擊)期間和釋放期間(電裝抑制)維 持一最低P艮度的低頻偏壓等、級(1〇〇w等級)以控制製程功 率,其中該低頻偏壓等級維持一足量的電毁勒層厚度並使損 害風險減至最小。並且,可在轉換步驟和步驟轉換期間控制 19 1376785 磁場強度(大小)和磁場方向 與變動使損害風險減至最小。 電漿且使損害風險降至最小的 率'上述參數的速率形式。由 最小化的關係,可控制操作在 頻功率電源的功率比。 以自磁場引起電壓和電流梯度 此外’由於數值最佳化可穩定 關係,可控制製程躍升點 '速 於特定的功率比可使損害風險 —般低和高固定頻率之多重射No. entitled "METHOD AND APPARATUS FOR PRODUCING PLASMA UNIFORMITY IN A MAGNETIC FIELD-ENHANCED PLASMA REACTOR" ' belongs to US Patent 18 1376785 No. 5, Applied Materials, Inc., Santa Clara, CA. 674,321, hereby incorporated herein by reference. The pointed configuration significantly reduces the risk of damage compared to the reflective configuration. Therefore, the risk of damage is proportional to the strength of the magnetic field in the axial direction. As mentioned earlier, the use of a high power supply to the bias power ratio of the power supply can increase the size of the lossless window, which can be further increased as the axial magnetic field strength decreases. However, the disclosure herein The method, which is used to minimize the risk of damage, will be more visibly; the semiconductor material in the money engraver. These methods are more beneficial to the process of ultimately modifying the material in a controlled mode. Certain substances are sensitive to process parameters and can affect the substance by slowing, accelerating, shifting, and or changing the way to the final state. However, by carefully controlling the process parameters and, therefore, the plasma state between the transitions between the multiple process steps and the introduction and control of the steady state transition step can control the charge damage caused by the plasma and significantly increase Recommended process operation window. For the purpose of reducing risk, the process chemistry can be controlled by introducing an alternate chemical component during the step conversion, wherein the alternative chemical composition minimizes the risk of damage and transient plasma non-uniformity. In addition, the pressure can be controlled by increasing the pressure during the conversion step and step transitions. This pressure stabilizes the beam impedance and minimizes the risk of damage. Furthermore, the low frequency bias level, etc., can be maintained at a minimum P艮 during the conversion step, for example, between the process steps, during the electropolymerization (electrical strike), and during the release (electrical suppression). 1〇〇w level) to control process power, wherein the low frequency bias level maintains a sufficient amount of electrical damage layer thickness and minimizes the risk of damage. Also, the magnetic field strength can be controlled during the conversion step and step conversion. (Size) and the direction and variation of the magnetic field minimize the risk of damage. Plasma and the rate at which the risk of damage is minimized. The rate form of the above parameters. By minimizing the relationship, the power ratio of the operating power at the frequency power source can be controlled. The voltage and current gradients caused by the self-magnetic field can be controlled by the optimization of the numerical value, and the control jump point can be controlled to speed up the specific power ratio to make the damage risk--low and high fixed frequency multiple shots.

參照第2圖A和B繪線,纟某些部署方式中,使用電漿 的電導或阻抗作為一替代指標用以判定是否充電損害可能 發生在一轉換期間。在此討論的電漿參數可被補償以致電 抗,例如電漿的阻抗/電導比,並不涵蓋大於某些臨界值的偏 離值。自其穩定狀態數值(轉換前或轉換後的穩定狀態數值) 之可接受的電漿阻抗/電導比之偏離值臨界,將與該腔體、該 製程形式和該製程參數有關。Referring to Figures 2 and B, in some deployments, the conductance or impedance of the plasma is used as a surrogate to determine if charging damage may occur during a transition. The plasma parameters discussed herein can be compensated for by the call resistance, such as the impedance/conductivity of the plasma, and do not cover deviations above certain thresholds. The threshold value of the acceptable plasma impedance/conductivity ratio from its steady state value (the steady state value before or after the conversion) will be related to the cavity, the process form, and the process parameters.

如此,在穩定狀態期間可監測電漿的阻抗/電導比並可比 較在該轉換期間的電漿阻抗/電導比以對一特定製裎開發_ 補償方案。在某些部署方式中的最大阻抗/電導比誤差值可為 —百分比數值,當在其他部署方式中時其可能為一絕對值。 例如’假如該阻抗/電導比增加高於大約其穩定數值的 200%,將需提供額外的補償》相反地,假如該阻抗/電導比 減少50%,例如可提出以增加偏壓的方式補償以限制此一阻 抗/電導比的偏離。同樣地,阻抗/電導比之一臨界範圍數值 可使用在判定充電損害是否可能發生。可接受的偏離百分比 將基於製程形式、製程參數、腔體形式和元件結構與耐受 性。因此,可基於阻抗/電導比的量測決定適當的形式和補償 20 1376785 的數量。而且,基於電漿阻抗/電導比的量測可限制轉換。 在此揭示的部署方式並不加以限制於兩頻率’例如較低 頻率的偏壓功率和較高頻率的電源功率。三種或多種頻率可 使用於某些部署方式中。此外,某一些部署方式可使用射頻 頻率以外的東西’例如微波、红外線或χ_射線。再者,可結 合一些或所有在此揭示的數種補償部署方式和方法以進一 步降低充電損害的風險。 ▲本發明在此揭示為藉由特別的實施例和部署方式描 述。在不背離專利範圍中提出之本發明領域下,熟習該項技 藝者可聯想到變更和修改。 圖式簡單說明 one )蝕刻製程的雙重鑲 第1圖係一種一體成型(all_in_ 嵌式堆疊。 ^圖A繪線㈣未補㈣換,其介於作為電渡腔體 電導歸一至穩定狀態之製程步驟間。 第2圖B繪線圖示一補償 導歸-至穩定狀態之製程步驟間。、一於作為電装腔體電 化的^圖C繪線圖示—可隨著未補償之上升和下降轉換變 第2圖D繪線圖示一可 隨著補償 的製程。 .之上升和下降轉換變化 第2圖E繪線圖示一具有一 圖 補償製π m 程化學成分的計時 21 1376785 第3圖為一表格,其顯示對單一和多重步驟製程在補償 前和補償後電漿引起充電損害的結果。 第4A圖為一圖解圖像,其顯示一概念為:對於補償和 未補償製程而言,充電損害風險為電源功率對偏壓功率比的 函數。Thus, the impedance/conductivity of the plasma can be monitored during steady state and the plasma impedance/conductivity ratio during the conversion can be compared to develop a compensation scheme for a particular system. The maximum impedance/conductivity error value in some deployments may be a percentage value that may be an absolute value when in other deployments. For example, 'If the impedance/conductivity ratio increases above about 200% of its stable value, additional compensation will be required. Conversely, if the impedance/conductance ratio is reduced by 50%, for example, compensation can be proposed to increase the bias voltage. Limit the deviation of this impedance/conductivity ratio. Similarly, one of the impedance/conductivity ratios can be used to determine if charging damage is likely to occur. Acceptable percent deviations will be based on process format, process parameters, cavity form and component structure and tolerance. Therefore, the appropriate form and compensation amount of 20 1376785 can be determined based on the impedance/conductivity ratio measurement. Moreover, measurements based on plasma impedance/conductivity ratio can limit conversion. The deployment methods disclosed herein are not limited to two frequencies, such as lower frequency bias power and higher frequency power. Three or more frequencies can be used in some deployments. In addition, some deployment methods may use something other than radio frequency, such as microwave, infrared or xenon rays. Furthermore, some or all of the various compensation deployment methods and methods disclosed herein may be combined to further reduce the risk of charging damage. ▲ The invention is disclosed herein as being described by way of specific embodiments and deployments. Variations and modifications may be apparent to those skilled in the art without departing from the scope of the invention as set forth in the appended claims. The figure shows a simple one) The double inlay of the etching process is a one-piece molding (all_in_ embedded stacking. ^ Figure A is drawn (4) unfilled (four), which is a process that is normalized to the conductance of the electric cavity. Figure 2 is a diagram showing the process of compensating the derivative-to-steady state process, and the drawing of the figure C as the electrification cavity of the electrical component - which can rise and fall with uncompensated Conversion change Fig. 2D line drawing shows a process that can be compensated. The rise and fall conversion changes. Figure 2E is a line diagram showing the timing of a chemical composition with a picture compensation π m process. 21 1376785 3 The figure is a table showing the results of charging damage caused by plasma before and after compensation for single and multiple step processes. Figure 4A is a graphical image showing a concept for compensation and uncompensated processes The risk of charging damage is a function of the power supply to the bias power ratio.

第4B圖為一圖解圖像,其顯示一概念為充電損害風險 為電源功率對偏壓功率比的函數,顯示較低壓力和較高壓力 的影響。 【主要元件符號說明】 100雙重鑲嵌堆疊 1 1 0 阻擋層 120介電質物質#2 130介電質物質#1 140硬式遮蔽膜Figure 4B is a graphical image showing a concept of charge damage risk as a function of power supply to bias power ratio, showing the effects of lower pressure and higher pressure. [Main component symbol description] 100 dual mosaic stack 1 1 0 barrier layer 120 dielectric substance #2 130 dielectric substance #1 140 hard mask film

150蝕刻硬式遮蔽膜和光阻多重層 1 8 0凹洞低層金屬 1 8 5 凹洞 1 9 5溝槽 2 1 0 C繪線中的一段 2 1 5 C繪線中的一段 2 2 0 D繪線中的一段 225 D繪線中的一段 22150 etched hard masking film and photoresist multiple layers 1 80 0 hole low layer metal 1 8 5 hole 1 9 5 groove 2 1 0 C section of a line 2 1 5 C line of a section 2 2 0 D line A section of a section of the 225 D line drawn 22

Claims (1)

13767851376785 申請專利範圍: 第伯〇抑〇號專利 一種在自一第—電漿製程步驟至一第二電漿製程步频的 —製程轉換期間用於抑制在一電漿製程腔體中之— 作 部件上的充電損害的方法,其中該製程轉換包含改變至 少一製程參數而在該等第一與第二電漿製程步驟之間改 變一電漿條件,該方法包含以下步驟:在該第一電激製 程步驟起始之後’執行至少一其他製程參數的一轉換前Patent Application Range: A method for suppressing a plasma processing chamber during a process transition from a first-plasma process step to a second plasma process step frequency And a method of charging damage, wherein the process conversion comprises changing at least one process parameter to change a plasma condition between the first and second plasma process steps, the method comprising the steps of: After the start of the process step, 'perform a conversion of at least one other process parameter before 補償’以抑制因在該製程轉換期間的電漿條件的改變所 引起的充電損害。 2. 如申請專利範圍第1項所述之方法,其中執行該轉換前 補償之步驟包含:在該製程轉換前增加一腔體壓力。 3. 如申凊專利範圍第2項所述之方法,更包含以下步驟: 在該製程轉換後,降低用於製程之該腔體壓力。 4. 如申請專利範圍第2項所述之方法,其中執行該轉換前 補償之步驟包含:假如一電源功率對偏壓功率比大於大 約1’在該製程轉換前增加一腔體壓力。 5·如申請專利範圍第1項所述之方法,其中該第一及第二 電漿製程為電漿蝕刻製程,及其中執行該轉換前補償之 步驟包含.在該製程轉換前’藉由導入一非活性氣體來 改變在該腔體中之—氣體化學成分,且其中該方法更包 3以下步驟.在該製程轉換後,以—活性氣體取代該非 活性氣體。 6.如申請專利範圍第5項所述之方法,其中在該製程轉換 23 1376785Compensation' to suppress charging damage caused by changes in plasma conditions during the process transition. 2. The method of claim 1, wherein the step of performing the pre-conversion compensation comprises: adding a cavity pressure prior to the process transition. 3. The method of claim 2, further comprising the step of: reducing the pressure of the cavity for the process after the process is switched. 4. The method of claim 2, wherein the step of performing the pre-conversion compensation comprises: if a power-to-bias power ratio is greater than about 1', adding a cavity pressure prior to the process transition. 5. The method of claim 1, wherein the first and second plasma processes are plasma etching processes, and wherein the step of performing the pre-conversion compensation comprises: by introducing before the process conversion An inert gas is used to change the gas chemistry in the chamber, and wherein the method further comprises the following steps. After the process is switched, the inert gas is replaced by a reactive gas. 6. The method of claim 5, wherein the process is converted 23 1376785 前導入該非活性氟體至該電漿製程腔 在該製程轉換前的一時間點通入該非 程腔體中,其令該時間點到該製程轉 該非活性氣體自/氣體控制板到達該 間。 7. 如申請專利範圍第6項所述之方法, 氣體至該電漿製程腔體中之步驟包含 換前2秒導入氬氣》 8. 如申請專利範圍第5項所述之方法, 補償之步驟包含:假如一電源功率對 約1,在該製程轉換前改變在該腔體: 為一非活性氣體。 9. 如申請專利範圍第1項所述之方法, 補償之步驟包含:對該轉換設定一電 比在低於大約1的範圍内。 1 0.如申請專利範圍第1項所述之方法, 補償之步驟包含:在該製程轉換前起 11. 如申請專利範圍第10項所述之方法 率之步驟包含:在該製程轉換前設定 1 00W。 12. —種在自一製程步驟至另一製程步驟 用於抑制在一電漿製程腔體中之一工 害的方法,該方法包含以下步騍:以 體中之步驟包含: 活性氣體流至該製 換的間隔時間大於 製程腔體之滯留時 其中導入該非活性 :至少在該製程轉 其中執行該轉換前 偏壓功率比大於大 卜之一氣體化學成分 其中執行該轉換前 源功率對偏壓功率 其中執行該轉換前 始一偏壓功率。 ,其中起始該偏壓功 該偏壓功率至大約 的一製程轉換期間 作部件上的充電損 一預定的平滑非線 24 1376785 性轉換改變至少一製程參數,以抑制充電損害發生在該 製程轉換期間。 13·如申請專利範圍第12項所述之方法’其中以該預定的平 滑非線性轉換改變至少一製糕參數之步驟包含:依據(a) 一波茲曼曲線或— S逛理查曲線之一者來改變該至 少一製程參數。The inactive fluorine is introduced to the plasma processing chamber and is introduced into the chamber at a point before the process transition, which causes the process to transfer the inert gas from the gas control panel to the process. 7. The method of claim 6, wherein the step of introducing gas into the plasma processing chamber comprises introducing argon gas 2 seconds before the change. 8. The method of claim 5, compensation The step includes: if a power supply is about 1, the cavity is changed in the cavity before the process is switched: an inactive gas. 9. The method of claim 1, wherein the step of compensating comprises setting a ratio of less than about 1 for the conversion. 1 0. The method of claim 1, wherein the step of compensating comprises: before the process conversion. 11. The method of claim method according to claim 10 includes: setting before the process conversion 1 00W. 12. A method for inhibiting one of the work processes in a plasma processing chamber from a process step to another process step, the method comprising the steps of: the step of: the active gas flow to The interval of the replacement is greater than the retention time of the process cavity, wherein the inactive is introduced: at least the process in which the bias power ratio is greater than the gas chemistry before the conversion is performed, wherein the source power is biased before the conversion is performed The power in which the first bias power is before the conversion is performed. Initiating the biasing power to the biasing power to approximately one of the process transitions during the charging of the component to a predetermined smoothing line 24 1376785. The characteristic conversion changes at least one process parameter to suppress charging damage occurring in the process conversion period. 13. The method of claim 12, wherein the step of changing the at least one cake parameter by the predetermined smooth nonlinear transformation comprises: (a) a Boltzmann curve or a One is to change the at least one process parameter. 14·如申請專利範圍第12項所述之方法’其中改變至少一製 程參數之步驟包含:逐步自’第一穩定狀態改變至一轉 換狀態及逐步自該轉換狀態改變至~第二穩定狀態。 15·如申請專利範圍第12項所述之方法’其中以該預定的平 滑非線性轉換改變至少一製擇參數之步驟包含:改變下 列項目之至少一者:(a )〆電漿電源功率;(b ) 一偏 壓功率;(c) 一氣體流;(d) ~腔體壓力.;或(^) 一 磁場強度。 16.如申請專利範圍第12項所述之方法,其中假如一電源功14. The method of claim 12, wherein the step of changing the at least one process parameter comprises: gradually changing from the first stable state to a transition state and gradually changing from the transition state to the second stable state. The method of claim 12, wherein the step of changing the at least one selection parameter by the predetermined smooth nonlinear transformation comprises: changing at least one of the following items: (a) 〆 plasma power; (b) a bias power; (c) a gas flow; (d) ~ cavity pressure; or (^) a magnetic field strength. 16. The method of claim 12, wherein a power source is used 率對偏覆功率比大於大約1,以該預定的平滑非線性轉換 改變至少一製程參數。 製程轉換期間 ^•―種在自一製程步驟至另,製程步驟的 電損 用於抑制在一電漿製程腔體中之一工作部件上的充 害的方法,該方法包含以下步驟: a ) 在一穩定狀態中監測〆電漿的—阻抗; b ) 在一製程轉換期間監測該電鳆的該阻抗及 c ) 限制在該製程轉換期間該電漿的兮Κβ > 的該阻抗之改變,以 25 ^/6785 抑制在該工作部件上的充電損害。The rate versus bias power ratio is greater than about 1, and the predetermined smooth nonlinear transition changes at least one process parameter. During the process conversion process, the method of controlling the electrical damage of a process step from one process step to another is used to suppress the damage of a working part in a plasma processing chamber, and the method comprises the following steps: a) Monitoring the impedance of the plasma in a steady state; b) monitoring the impedance of the electrode during a process transition and c) limiting the change in the impedance of the plasma 兮Κβ > during the process transition, The charging damage on the working part is suppressed by 25 ^/6785. 18. 如申請專利範圍第17項所述之方法,其中在該製程轉換 期間.限制該阻抗之步驟包含:補償至少一製程參數。 19. 如申請專利範圍第17項所述之方法,更包含以下步驟: 限制在該製程轉換期間該電漿阻抗的改變為少於大約2 倍的該穩定狀態期間的—阻抗數值。18. The method of claim 17, wherein the step of limiting the impedance during the process transition includes compensating for at least one process parameter. 19. The method of claim 17, further comprising the step of: limiting the change in plasma impedance during the process transition to less than about 2 times the impedance value during the steady state. .如申明專利範圍第17項所述之方法,更包含以下步鄉: 限制在該製程轉換期間該電漿阻抗的改變為少於大約 1.5倍的該穩定狀態中的阻抗數值。 1.如申睛專利範圍第17項所述之方法,更包含以下步驟: a ) 限制在該製程轉換期間該電漿阻抗的增加為少於大 約2倍的該穩定狀態期間的電漿阻抗數值;及 b ) 限制在該製程轉換期間該電漿阻抗的降低為少於大 約1.5倍的該穩定狀態中的電漿阻抗數值。The method of claim 17, further comprising the step of: limiting the change in impedance of the plasma during the process transition to less than about 1.5 times the value of the impedance in the steady state. 1. The method of claim 17, further comprising the steps of: a) limiting the increase in plasma impedance during the process transition to less than about 2 times the plasma impedance value during the steady state And b) limiting the plasma impedance reduction during the process transition to less than about 1.5 times the plasma impedance value in the steady state. 22.如申請專利範圍第I?項所述之方法,包含以下步驟:比 較在穩定狀態中的電漿阻抗與在製程轉換中的電漿阻 抗’並根據該轉換前的電漿阻抗的穩定狀態數值,限制 在該轉換期間的電漿阻抗數值。 26 137678522. The method of claim 1, wherein the method comprises the steps of: comparing the plasma impedance in a steady state with the plasma impedance in the process transition and based on the steady state of the plasma impedance before the conversion. The value limits the value of the plasma impedance during this conversion. 26 1376785 七、指定代表圖: (一) 、本案指定代表圖為:第2圖。 (二) 、本代表圖之元件代表符號簡單說明: 210 C繪線中的一段 215 C繪線中的一段 22 0— D繪線中的一段 … 225 D繪線中的一段VII. Designated representative map: (1) The representative representative of the case is: Figure 2. (2) The representative symbol of the representative figure is a simple description: a section of the 210 C line: a section of the 215 C line 22 0 - a section of the D line ... 225 D section of the line 八、本案若有化學式時,請揭示最能顯示發明 特徵的化學式:8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW95108443A 2005-03-11 2006-03-13 Methdo to reduce plasma-induced charging damage TWI376785B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US66066205P 2005-03-11 2005-03-11
US11/366,301 US20070048882A1 (en) 2000-03-17 2006-03-01 Method to reduce plasma-induced charging damage

Publications (2)

Publication Number Publication Date
TW200701433A TW200701433A (en) 2007-01-01
TWI376785B true TWI376785B (en) 2012-11-11

Family

ID=48087819

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95108443A TWI376785B (en) 2005-03-11 2006-03-13 Methdo to reduce plasma-induced charging damage

Country Status (1)

Country Link
TW (1) TWI376785B (en)

Also Published As

Publication number Publication date
TW200701433A (en) 2007-01-01

Similar Documents

Publication Publication Date Title
US20220159820A1 (en) Plasma processing method and plasma processing apparatus
TWI594087B (en) Method for processing resist mask and method for producing semiconductor
US20030180968A1 (en) Method of preventing short circuits in magnetic film stacks
KR101821056B1 (en) Method and system for selective spacer etch for multi-patterning schemes
JP2008198988A (en) Method of plasma processing
KR20160102356A (en) Material processing to achieve sub-10nm patterning
JP2011071522A (en) Dc/rf hybrid processing system
US10586710B2 (en) Etching method
TWI791328B (en) Method of forming pixel isolation structure on semiconductor substrate and semiconductor structure
JP2011192718A (en) Plasma etching method, plasma etching apparatus, and computer-readable storage medium
KR101204603B1 (en) Method for manufacturing semiconductor device
KR20150016498A (en) Plasma etching method
CN106158595B (en) The forming method of semiconductor devices
KR102304163B1 (en) Etching method
KR20090008240A (en) Dry etch stop process for elimination electrical shorting in mram device structures
US8664122B2 (en) Method of fabricating a semiconductor device
US11017985B2 (en) Plasma processing apparatus, impedance matching method, and plasma processing method
TWI376785B (en) Methdo to reduce plasma-induced charging damage
US20070048882A1 (en) Method to reduce plasma-induced charging damage
TW200828433A (en) Method of manufacturing gate dielectric layer
KR20010112277A (en) Fluorine based plasma etch method for anisotropic etching of high open area silicon structures
US10424491B2 (en) Etching method
TWI389178B (en) Methods to avoid unstable plasma states during a process transition
US20120094499A1 (en) Method of performing an in situ chamber clean
JP2006080355A (en) Manufacturing method of semiconductor device