TWI376695B - - Google Patents

Download PDF

Info

Publication number
TWI376695B
TWI376695B TW97101636A TW97101636A TWI376695B TW I376695 B TWI376695 B TW I376695B TW 97101636 A TW97101636 A TW 97101636A TW 97101636 A TW97101636 A TW 97101636A TW I376695 B TWI376695 B TW I376695B
Authority
TW
Taiwan
Prior art keywords
threshold value
data
unit
memory
value
Prior art date
Application number
TW97101636A
Other languages
Chinese (zh)
Other versions
TW200933636A (en
Inventor
Kazunori Kasuga
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to TW97101636A priority Critical patent/TW200933636A/en
Publication of TW200933636A publication Critical patent/TW200933636A/en
Application granted granted Critical
Publication of TWI376695B publication Critical patent/TWI376695B/zh

Links

Description

第971016¾號申請案1〇16 27修正替換 -^---- 九、發明說明: 【發明所屬之技術領域】 發明領域 本發明係有關於一種藉由2值或多值,於記憶單元呓情 資料之半導體記憶裝置、半導體控制裝置及半導體控制二 法0Application No. 9710163⁄4 1〇16 27 Correction Replacement-^---- IX. Description of the Invention: [Technical Field of the Invention] Field of the Invention The present invention relates to a sensation in a memory unit by means of two or more values Data semiconductor memory device, semiconductor control device and semiconductor control method

【先前技術:J 發明背景 近年來,USB記憶體、快閃記憶卡、快閃磁磲等非揮 發性記憶體所構成之記憶體裝置廣泛普及。又,用以使該 等記憶體裝置大容量化之技術,已知有如第28圖所示增 加各記憶體記憶單元的電壓門檻值,例如為4值型記憶體記 憶單元的情形下,可藉由令“11”、“1〇”、“01”、“〇〇,,等各2 位元資料對應電壓各基準值,以在丨個記憶體記憶單元記憶 3值以上之多值化技術。 另,本發明相關之習知技術,已知為大容量、具有高 仏賴性且可域保快速動作之非揮發性半導體記憶裝置及資 料記憶糸統(例如,參考專利文獻1 )。 【專利文獻1】日本公開公報第2〇〇1_21〇〇82號 【有^明内溶L迴 發明揭示 本發明欲解決之課題 然而,以多值化技術達成大容量化之多值記憶體裝置 有信賴性低等問題。以下,利用第29〜第3丨圖,說明多值化 1376695 第97101636號申請案101.6.27修正替換 技術的問題點。 第29圖係顯示2值型記憶體記憶單元與4值型記憶體記 憶單元邊限之圖示;第30圖係顯示2值型記憶單元的記憶單 元分佈與門檻值關係之圖示;第31圖係顯示4值型記憶體記 5 憶單元的記憶單元分佈與門檻值關係之圖示。[Prior Art: J Background of the Invention In recent years, memory devices composed of non-volatile memory such as a USB memory, a flash memory card, and a flash memory have been widely used. Further, in order to increase the capacity of the memory devices, it is known to increase the voltage threshold of each memory cell as shown in FIG. 28, for example, in the case of a 4-value memory cell, A multi-valued technique in which each of the two-bit data of "11", "1", "01", "〇〇", and the like corresponds to a voltage reference value, and a value of three or more is stored in one memory memory unit. Further, the prior art related to the present invention is known as a non-volatile semiconductor memory device and a data memory system which are large-capacity, highly reliable, and fast-acting (for example, refer to Patent Document 1). [Document 1] Japanese Laid-Open Patent Publication No. 2-21-82 [There is a problem to be solved by the present invention. However, a multi-value memory device that achieves a large capacity by multi-value technology has reliability. Low-level problems. In the following, the problem of multi-valued 1376695, application No. 97101636, 101.6.27, correction and replacement technology is explained by using the 29th to the 3rd drawings. Figure 29 shows the 2-value memory memory unit and 4 Value memory memory cell margin Figure 30 shows a diagram showing the relationship between the memory cell distribution and the threshold value of the 2-value type memory cell; and Figure 31 shows the relationship between the memory cell distribution and the threshold value of the 4-value type memory memory. Show.

如第29圖所示,2值型記憶單元,由於在判定“0”與“1” 之電壓門檻值具有充分的邊限,因而資料反轉的可能性 低、且可實現高信賴性。另一方面,4值型記憶單元,由於 在判定“00”、“01”、“10”、“11”之電壓門檻值不具有充分的 10 邊限,因而資料反轉的可能性高、且信賴性低。As shown in Fig. 29, since the binary-type memory cell has sufficient margins for determining the voltage threshold values of "0" and "1", the possibility of data inversion is low, and high reliability can be realized. On the other hand, in the 4-value type memory cell, since it is determined that the voltage threshold values of "00", "01", "10", and "11" do not have sufficient 10 margins, the possibility of data inversion is high, and Low reliability.

具體而言,在如第30圖所示之2值型記憶單元的情形 下,在門檻值Ref-1、Ref-2、Ref-3中,以Ref-2為門檻值、 若電壓低於Ref-2,則電壓即使為位準-0或位準-1,資料亦 判定為“1” ;若電壓高於Ref-2,即使為位準-2或位準-3,資 15 料亦判定為“0”。相對於此,在如第31圖所示之4值型記憶 單元的情形下,若電壓低於Ref-Ι,則資料判定為“11” ;若 電壓高於Ref-Ι且低於Ref-2,則資料判定為“10” ;若電壓高 於Ref-2且低於Ref-3,則資料判定為“01” ;若電壓高於 Ref-3,則資料判定為“00”。因此,2值型記憶單元,電壓即 20 使為位準-0或位準-1,亦不判定為相同資料。例如,對寫入 “11”的資料之記憶單元施加位準-1的電壓,在讀出時,該記 憶單元的資料判定為“10”。另,如第30圖所示之Ref-2及 Ref-3,係用以比較4值型記憶單元之圖示;在2值型記憶單 元中,實際上僅Ref-2作為門檻值存在。 6 1376695 第97101636號申請案101.6.27修正替換 如上所述,多值型記憶裝置,記憶有可實現大容量化 之資料其信賴性是低的。然而,由於希望可藉由影像與圖 像等使用資料的大容量化,以獲得更大容量之記憶裝置, 因而可實現高信賴性與大容量之記憶裝置是必須的。 5 本發明係用以解決上述問題點所製成者,目的在於提 供一種可依據管理資訊,以2值或多值保存資料之半導體記 憶裝置、控制裝置及其控制方法。Specifically, in the case of the binary-type memory cell as shown in FIG. 30, in the threshold values Ref-1, Ref-2, and Ref-3, Ref-2 is used as the threshold value, and if the voltage is lower than Ref -2, if the voltage is level-0 or level-1, the data is judged as "1"; if the voltage is higher than Ref-2, even if it is level-2 or level-3, the material is judged It is "0". On the other hand, in the case of the 4-value type memory cell as shown in FIG. 31, if the voltage is lower than Ref-Ι, the data is judged as "11"; if the voltage is higher than Ref-Ι and lower than Ref-2 , the data is judged as "10"; if the voltage is higher than Ref-2 and lower than Ref-3, the data is judged as "01"; if the voltage is higher than Ref-3, the data is judged as "00". Therefore, for a 2-value type memory cell, the voltage of 20 is level-0 or level-1, and is not judged to be the same data. For example, a voltage of level -1 is applied to the memory cell of the data written with "11", and the data of the memory cell is judged to be "10" at the time of reading. Further, Ref-2 and Ref-3 as shown in Fig. 30 are diagrams for comparing 4-value type memory cells; in the 2-value type memory cell, only Ref-2 actually exists as a threshold value. 6 1376695 Application No. 97101636 101.6.27 Correction and Replacement As described above, the multi-value type memory device has low reliability in memory having a large capacity. However, since it is desired to increase the capacity of data used by images and images to obtain a memory device of a larger capacity, it is necessary to realize a memory device of high reliability and large capacity. The present invention is directed to solving the above problems, and aims to provide a semiconductor memory device, a control device, and a control method thereof that can store data in two or more values in accordance with management information.

為解決上述問題,本發明之半導體記憶裝置包含有: 複數記憶單元,係可記憶資料者;門檻值決定部,係依據 10 用以管理資料之資訊之預定管理資訊,將分別寫入前述複 數記憶單元之值決定為2值或多值,並依據業已決定之分別 寫入前述複數記憶單元之值決定門檻值者;及寫入部,係 依據前述門檻值決定部所決定之門檻值,將前述資料寫入 前述複數記憶單元者。 15 又,本發明之控制裝置係用以控制以可記憶資料之複 數記憶單元所構成之半導體記憶裝置之裝置,且該控制裝 置包含有:門檻值決定部,係依據用以管理資料之資訊之 預定管理資訊,將分別寫入前述複數記憶單元之值決定為2 值或多值,並依據業已決定之分別寫入前述複數記憶單元 20 之值決定門檻值者;及寫入部,係依據以前述門檻值決定 部所決定之門檻值,將前述資料寫入前述複數記憶單元者。 又,本發明之控制方法係用以控制藉由可記憶資料之 複數記憶單元所構成之半導體記憶裝置之方法,且該控制 方法執行以下步驟:門檻值決定步驟,係依據用以管理資 7 1376695 第97101636號申請案ι〇ι·6·27修正替換 料之資訊之預定管理資訊’將分別寫入前述複數記憶單元 之值決定為2值或多值’並依據業已決定之分別寫入前述複 數δ己憶單元之值決定門權值:及寫入步驟,係依據以前述 門檻值決定步驟所決定之門檻值,將前述資料寫入前述複 5 數記憶單元。 圖式簡單說明 【第1圖】係顯示實施型態1中資訊處理裝置之圖示。 【第2圖】係顯示實施型態1中資訊處理裝置的硬體 構造之圖示。 10 【第3圖】係顯示實施型態1中NAND快閃記憶體構 造之方塊圖。 【第4圖】係顯示控制ic構造之方塊圖。 【第5圖】係顯示構成NAND快閃陣列之複數記憶單 元之回路圖。 【第6圖】係顯示感測放大器/比較器回路之回路圖。 【第7圖】係顯示感測放大器/比較器回路之回路圖。 【第8圖】係顯示儲存於NAND快閃陣列之資料構造 圖。 【第9圖】係顯示設定表之圖示。 【第10圖】係顯示檔案系統識別處理的動作之流程 【第11圖】係顯示實施型態1中寫入處理的動作之流 程圖。 【第12圖】係顯示屬性資訊識別處理的動作之流程 8 1376695 _ 第97101636號申請案101.6.27修正替換 . 5 • 圖。 【第13圖】係顯示切換處理的動作之流程圖。 【第14圖】係顯示投入電源時進行轉換處理其處理的 動作之流程圖。 【第15圖】係顯示停機時進行轉換處理其處理的動作 之流程圖。 【第16圖】係顯示在預定時間無指令時進行轉換處理 其處理的動作之流程圖。 【第17圖】係顯示轉換處理的動作之流程圖。 10 【第18圖】係顯示改寫處理的動作之流程圖。 【第19圖】係顯示子目錄檢視處理的動作之流程圖。 【第20圖】係顯示分別發送2值與多值使用量之處理 的動作之流程圖。 【第21圖】係顯示將2值使用量轉換成多值使用量,並 15 送信至主機之處理的動作之流程圖。 • 【第22圖】係顯示空間容量算出處理的動作之流程 圖。 【第23圖】係顯示對大於空間容量的資料回覆錯誤之 處理的動作之流程圖。 . 20 【第24圖】係顯示門檻值修正處理的動作之流程圖。 【第25圖】係顯示實施型態2中寫入處理的動作之流 程圖。 【第26圖】係顯示實施型態3中寫入處理的動作之流 程圖。 9 1376695 第97101636號申請案101.6.27修正替換 【第27圖】係顯示實施型態4中寫入處理的動作之流 程圖。 【第28圖】係顯示儲存於2值型記憶單元、4值型記憶 單元及8值型記憶單元之位元圖示。 5 【第29圖】係顯示2值型記憶單元與4值型記憶單元的 邊限之圖示。 【第30圖】係顯示2值型記憶單元的記憶單元分佈與 門檻值關係之圖示。In order to solve the above problems, the semiconductor memory device of the present invention comprises: a plurality of memory cells, which are memory data; and a threshold value determining unit, which is respectively written into the foregoing complex memory according to predetermined management information for managing information of the data. The value of the unit is determined to be two or more values, and the threshold value is determined according to the value determined to be written into the complex memory unit, respectively; and the writing unit is based on the threshold value determined by the threshold value determining unit. The data is written to the aforementioned plural memory unit. Further, the control device of the present invention is a device for controlling a semiconductor memory device composed of a plurality of memory cells capable of memorizing data, and the control device includes: a threshold value determining portion based on information for managing data. Predetermining the management information, determining the value of each of the plurality of memory units to be a value of 2 or more, and determining the threshold according to the value determined to be written into the complex memory unit 20; and the writing unit is based on The threshold value determined by the threshold value determining unit writes the data into the complex memory unit. Moreover, the control method of the present invention is a method for controlling a semiconductor memory device composed of a plurality of memory cells capable of memorizing data, and the control method performs the following steps: a threshold value determining step, which is based on management of funds 7 1376695 In the application No. 97101636, ι〇ι·6·27, the predetermined management information for correcting the information of the replacement materials is to be respectively written into the above-mentioned complex memory unit, and the value is determined to be 2 or more values, and the above-mentioned plural number is written according to the determined decision. The value of the delta memory unit determines the gate weight value: and the writing step is based on the threshold value determined by the threshold value determining step, and the foregoing data is written into the complex fifth memory unit. BRIEF DESCRIPTION OF THE DRAWINGS [Fig. 1] is a diagram showing an information processing apparatus in the first embodiment. Fig. 2 is a view showing the hardware structure of the information processing device in the first embodiment. 10 [Fig. 3] shows a block diagram of the NAND flash memory structure in the implementation type 1. [Fig. 4] is a block diagram showing the control ic structure. [Fig. 5] shows a circuit diagram of a plurality of memory cells constituting a NAND flash array. [Fig. 6] shows the circuit diagram of the sense amplifier/comparator circuit. [Fig. 7] shows the circuit diagram of the sense amplifier/comparator circuit. [Fig. 8] shows the data structure diagram stored in the NAND flash array. [Fig. 9] is a diagram showing the setting table. [Fig. 10] shows the flow of the operation of the file system recognition processing. Fig. 11 is a flow chart showing the operation of the write processing in the embodiment 1. [Fig. 12] shows the flow of the action of the attribute information recognition processing. 8 1376695 _ No. 97101636 application 101.6.27 correction replacement. 5 • Figure. [Fig. 13] is a flowchart showing the operation of the switching process. [Fig. 14] is a flow chart showing the operation of performing the conversion processing when the power is turned on. [Fig. 15] is a flow chart showing the operation of performing the conversion processing at the time of the shutdown. [Fig. 16] is a flowchart showing an operation of performing conversion processing when there is no instruction at a predetermined time. [Fig. 17] is a flowchart showing the operation of the conversion processing. 10 [Fig. 18] is a flow chart showing the operation of the rewriting process. [Fig. 19] A flow chart showing the operation of the subdirectory view processing. [Fig. 20] is a flowchart showing an operation of separately transmitting a 2-valued and multi-valued usage amount. [Fig. 21] is a flow chart showing the operation of converting the 2-value usage amount into the multi-value usage amount and 15 processing to the host. • [Fig. 22] is a flow chart showing the operation of the space capacity calculation processing. [Fig. 23] is a flow chart showing an action of processing a data reply error larger than the space capacity. 20 [Fig. 24] A flow chart showing the operation of the threshold value correction processing. Fig. 25 is a flow chart showing the operation of the write processing in the embodiment 2. [Fig. 26] is a flow chart showing the operation of the write processing in the embodiment 3. 9 1376695 Application No. 97101636 101.6.27 Correction Replacement [FIG. 27] A flow chart showing the operation of the write processing in the embodiment 4. [Fig. 28] shows the bit maps stored in the 2-value type memory unit, the 4-value type memory unit, and the 8-value type memory unit. 5 [Fig. 29] shows a graph showing the margins of the 2-value type memory unit and the 4-value type memory unit. [Fig. 30] is a graphical representation showing the relationship between the distribution of memory cells and the threshold value of a 2-value type memory cell.

【第31圖】係顯示4值型記憶單元的記憶單元分佈與 10 門檻值關係之圖示。 C實施方式3 較佳實施例之詳細說明 參考以下圖示,說明本發明之實施型態例。 實施型態1 15 首先,參考圖示,說明本實施型態之資訊處理裝置。[Fig. 31] is a graphical representation showing the relationship between the memory cell distribution of a 4-value type memory cell and the 10-threshold value. C. Embodiment 3 Detailed Description of Preferred Embodiments An embodiment of the present invention will be described with reference to the following drawings. Embodiment 1 15 First, an information processing apparatus of this embodiment will be described with reference to the drawings.

第1圖係顯示本實施型態之資訊處理裝置之圖示;第2圖係 顯示本實施型態中資訊處理裝置的硬體構造之圖示。 如第1圖所示,本實施型態之資訊處理裝置1,係載置 有NAND快閃記憶體10作為輔助記憶裝置之個人電腦。 20 又,如第2圖所示,資訊處理裝置1包含有:主記憶裝置之 記憶體14及中央演算裝置之CPU13。又,資訊處理裝置1包 含有:晶片組11(北橋晶片),可在CPU13與記憶體14間高速 進行資訊通信及控制;及BIOS19,可儲存用以控制周邊機 器最低標準的輸入及輸出之程式群。 10 1376695 第97101636號申請案1〇1_6_27修正替換 又,除上述外,資訊處理裝置1,亦包含有:晶片組12(南 橋晶片),係相較於CPU13與記憶體14,進行低速的周邊機 器間資訊通信及控制;聲頻板17,用以控制音源輸出; USB/PCI介面18,用以進行USB對應機器或PCI匯流排對應 5機器的連接;LAN介面16,可進行與網路板的連接,以與 外部通信;及NAND快閃記憶體1 〇。又,NAND快閃記憶體 10包含有:非揮發性NAND快閃陣列1〇1;及用以控制nand 快閃記憶體之控制IC20。另,資訊處理裝置}不限於個人電 腦,亦可例如為行動電話及PDA等需要記憶裝置之機器。 10 接著,說明本實施型態之NAND快閃記憶體。第3圖係 顯示本實施型態之NAND快閃記憶體構造之方塊圖。 NAND快閃記憶體1〇,包含有:Nand快閃陣列1〇丨(複 數記憶單元、半導體記憶裝置)、χ_解碼器1〇2、γ•解碼器 103、感測放大器/比較器回路104、位址暫存器/計數器1〇5、 15指令暫存器106、輸人輸出緩衝器1〇7、控制1(:2〇(控制裝 置、門植值決定部、檢出部、門檻值轉換部、門檀值修正 部、寫入部)。 nand㈣陣卿丨是由複數記憶單元所構成之非揮 發性記憶體。又,X·解碼器⑽’係、用以進行構成_〇快 20間陣列101且以2次元配列之複數記憶單元行方向的選擇。 又,γ·解碼II103,係用以進行複數記憶單元列方向的選 擇。又,感測放大器/比較器回路104,係依據預定門捏值, 將業已輸入之電壓轉換成數位資訊。又,位址暫存器/計數 器105,係在存取於NAND快閃陣列1〇1時指定位址。又, 11 1376695 第97101636號申請案101.6.27修正替換 指令暫存器106,係用以維持已接收之指令。又,輸入輸出 緩衝器107,係用以暫時記憶與作為主機之資訊處理裝置! 的資料以及位址輸入輸出過程中的資料之記憶領域。又, 控制IC20係用以控制NAND快閃記憶體1 〇。 5 又,指令暫存器106及控制IC20,係自主機接收指令鎖 定效能信號、位址鎖定效能信號、晶片啟動信號、讀取效 能信號、寫入效能信號、防寫保護信號,以作為輸出輸入 用控制信號’再將該等信號的組合作為指令。又,控制 IC20 ’係用以輸出就緒、忙碌及錯誤信號。 10 接著,說明控制第4圖係顯示控制ic構造之方塊圖。 控制IC20,包含有:主機介面單元2〇1、控制暫存器 202、緩衝器203、ECC單元204、NAND介面單元205、微處 理器 206、ROM207及RAM208。 又,主機介面單元2(H ’係用以進行主機與指令的發送 15及接收者。又’控制暫存器202,係用以維持各種參數之領 域。又,NAND介面單元205,係用以進行NAND快閃陣列 101與指令發送及接收者。又,緩衝器203,係用以暫時維 持藉由NAND介面單元205自NAND快閃陣列1〇1讀出之指 令、與藉由主機介面單元自主機接收之指令之領域。又, 2〇 ECC單元204 ’係用以在寫入資料時生成ECC,並在資料讀 出時依據ECC,檢測出資料的錯誤並修正者。 又’微處理器206係用以控制控制IC20整體者。又, ROM207係記憶有微處理器206用以進行處理之韌體者。 又’ RAM208為微處理器206所使用之記憶體。 12 1376695 第97101636號申請案101.6.27修正替^ . 5 • 接著,說明構成NAND快閃陣列之複數記憶單元與感 測放大器/比較器回路。第5圖係顯示構成N A N D快閃陣列之 複數記憶單元之回路圖。又,第6圖及第7圖係顯示感測放 大器/比較器回路之回路圖。 如第5圖所示,NAND快閃陣列101,係藉由位元線與 訊源線對控制閘極施加正電壓,再藉由電子蓄存於浮置閘 極進行資料的寫入。又,由於位元線與訊源線是以複數記 憶單元單位連接,因而NAND快閃陣列101是以由複數記憶 單元所構成之記憶單元群組單位寫入資料。 10 * 又,如第6圖所示,連接於記憶單元之感測放大器/比 較器回路104,係由比較輸入已設定門權值(Ref-1〜Ref-3)之 電壓,再輸出結果之感測放大器104a〜104c;與比較感測放 大器104a〜104c之輸出結果,再轉換成數位資料之比較器回 路104d所構成。又,比較器回路104d,可藉由以控制IC20 15 發送之MLC信號切換2值或4值;如第30圖所示,在未接收 • MLC信號時,電壓低於Ref-2則輸出“1”,電壓高於Ref-2則 輸出“0”,但理想的電壓,是高於Ref-3之電壓、或者低於 Ref-Ι的低電壓,在2值的情形下,施加上述之外的電壓時, 比較器回路係以Ref-2作為門檻值輸出資料,但會視為記憶 • 20 單元劣化,並對控制IC20回覆錯誤》 又,如第31圖所示,在比較器回路l〇4d業已接收MLC 信號的情形下,電壓低於Ref-Ι則輸出“11” ;電壓高於Ref-1 且低於Ref-2,則輸出“10” ;電壓高於Ref-2且低於Ref-3, 則輸出“0Γ ;電壓高於Ref-3,則輸出“〇〇”。 13 1376695 ___— "" 第97101636號申請案101.6.27修正替換 又’如第7圖所示,在感測放大器/比較器回路104僅接 收MLC信號的情形下,亦可做成在感測放大器l〇4a及感測 放大器104c輸出比較結果之構造。 接著,說明儲存於NAND快閃陣列之資料構造。第8圖 5 係顯示儲存於NAND快閃陣列之資料的構造之圖示。 如第8圖所示,NAND快閃記憶體10中所讀寫之資料, 是以扇型單位儲存於資料領域中,並儲存有在冗長領域内 分別與扇型對應之冗長資料之備用。又,以由扇型A〜D與 分別對應前述扇型之備用A’〜D’所構成之區段單位刪除資 10料。又’各扇型備用寫入有:用以顯示所對應的屬型編號 之資料LSN(邏輯扇區號);用以進行有效性檢驗的資料之 DV(資料有效性);用以顯示因記憶單元劣化造成無法記錄 資料為不良區段狀況之BBI(壞塊訊息表);扇型錯誤校正符 號之ECC(資料攔位用之錯誤校正碼);備用錯誤校正符號之 15 ECCS(備用襴位用之錯誤校正碼);用以顯示以4值保存資料 之旗標之MLC旗標(多層記憶單元旗標);用以在扇型顯示 寫入資料次數之WF(寫入頻率);及用以顯示自感測放大器/ 比較器回路104回覆錯誤之扇型之EJ。 另’ MLC旗標設定為γ*Ν,且γ顯示以4值保存扇型、 20 Ν顯示以2值保存扇型。又,m設定為〇或】,〇顯示關於門檻 值在扇型沒有問題;1顯示關於門播值在扇型有問題,且初 期狀態為0 ^ 接著’說明健存於NAND快閃陣列之設定表。第9圖顯 不設定表之圖示。 14 1376695 第97101636號申請案101.6.27修正替換 NAND快閃陣列1〇1儲存有如第9圖所示之設定表。設 定表係對應地儲存有依據NAND快閃陣列101檔案系統之 屬性資訊及寫入模式。該寫入模式,係設定成以2值保存之 SLC(單層式記憶單元)或以4值保存之MLC(多層式記憶單 元)。又,藉由該設定表’僅適用於資料屬性為歸檔的狀況, 且該資料是以4值儲存於NAND快閃陣列1〇1。Fig. 1 is a view showing an information processing apparatus of the present embodiment; and Fig. 2 is a view showing a hardware structure of the information processing apparatus in the present embodiment. As shown in Fig. 1, the information processing device 1 of the present embodiment is a personal computer in which a NAND flash memory 10 is mounted as an auxiliary memory device. Further, as shown in Fig. 2, the information processing device 1 includes a memory 14 of the main memory device and a CPU 13 of the central calculation device. Further, the information processing device 1 includes a chip set 11 (Northbridge) capable of high-speed information communication and control between the CPU 13 and the memory 14, and a BIOS 19 for storing programs for controlling the minimum standard input and output of peripheral devices. group. 10 1376695 Application No. 97101636 1〇1_6_27 Correction and replacement In addition to the above, the information processing apparatus 1 also includes a wafer set 12 (South Bridge wafer), which is a low-speed peripheral machine compared to the CPU 13 and the memory 14. Information communication and control; audio board 17 for controlling audio output; USB/PCI interface 18 for connecting USB devices or PCI bus to 5 machines; LAN interface 16 for connection to network boards To communicate with the outside; and NAND flash memory 1 〇. Further, the NAND flash memory 10 includes: a non-volatile NAND flash array 1〇1; and a control IC 20 for controlling the nand flash memory. Further, the information processing device is not limited to a personal computer, and may be, for example, a mobile phone or a PDA that requires a memory device. 10 Next, the NAND flash memory of this embodiment will be described. Fig. 3 is a block diagram showing the construction of the NAND flash memory of this embodiment. The NAND flash memory includes: Nand flash array 1 (complex memory unit, semiconductor memory device), χ_decoder 1 〇 2, γ•decoder 103, sense amplifier/comparator circuit 104 , address register/counter 1〇5, 15 instruction register 106, input output buffer 1〇7, control 1 (: 2〇 (control device, gate value determination unit, detection unit, threshold value) The conversion unit, the door value correction unit, and the writing unit. nand (four) array is a non-volatile memory composed of a plurality of memory units. Further, the X·decoder (10) is used to construct the _ 〇 20 20 The selection of the direction of the plurality of memory cells in the inter-array 101 and the two-dimensional arrangement. Further, the γ-decoding II 103 is used to select the direction of the column of the plurality of memory cells. Further, the sense amplifier/comparator circuit 104 is based on the predetermined The gate pinch value converts the input voltage into digital information. In addition, the address register/counter 105 specifies the address when accessing the NAND flash array 1〇1. Further, 11 1376695 Application No. 97101636 Case 101.6.27 amends the replacement instruction register 106 to maintain In addition, the input/output buffer 107 is used for temporarily memorizing the data in the data processing device as the host and the data in the address input and output process. In addition, the control IC 20 is used to control the NAND fast. Flash memory 1 〇 5 In addition, the instruction register 106 and the control IC 20 receive the command lock performance signal, the address lock performance signal, the chip enable signal, the read performance signal, the write performance signal, and the write protection from the host. The signal is used as the output input control signal 'and the combination of these signals is used as the command. Further, the control IC 20' is used to output the ready, busy, and error signals. 10 Next, the control of the fourth figure shows the control ic structure. The control IC 20 includes a host interface unit 2, a control register 202, a buffer 203, an ECC unit 204, a NAND interface unit 205, a microprocessor 206, a ROM 207, and a RAM 208. Further, the host interface unit 2 (H ' is used to send the host and command 15 and the receiver. Also 'control register 202 is used to maintain various parameters. Also, NAND interface 205 is used to perform NAND flash array 101 and command sending and receiving. Further, buffer 203 is used to temporarily maintain the command and borrowed from NAND flash array 1〇1 by NAND interface unit 205. The field of instructions received by the host interface unit from the host. In addition, the 2〇ECC unit 204' is used to generate ECC when the data is written, and detects the error of the data and corrects it according to the ECC when the data is read. The microprocessor 206 is used to control the control IC 20. As a whole, the ROM 207 is a firmware that stores the microprocessor 206 for processing. Further, the RAM 208 is a memory used by the microprocessor 206. 12 1376695 Application No. 97101636 101.6.27 Amendment 5. 5 Next, the complex memory cells and sense amplifier/comparator circuits that make up the NAND flash array will be described. Figure 5 is a circuit diagram showing a plurality of memory cells constituting a N A N D flash array. Further, Fig. 6 and Fig. 7 show circuit diagrams of the sense amplifier/comparator circuit. As shown in Fig. 5, the NAND flash array 101 applies a positive voltage to the control gate by the bit line and the source line, and then stores the data by electronic storage on the floating gate. Further, since the bit line and the source line are connected in units of a plurality of memory cells, the NAND flash array 101 writes data in units of memory cells composed of a plurality of memory cells. 10 * Also, as shown in Fig. 6, the sense amplifier/comparator circuit 104 connected to the memory unit is configured to compare the voltages of the input gate weights (Ref-1 to Ref-3), and output the result. The sense amplifiers 104a to 104c are configured by a comparator circuit 104d that compares the output results of the sense amplifiers 104a to 104c and converts them into digital data. Moreover, the comparator circuit 104d can switch between the value of 2 or 4 by the MLC signal sent by the control IC 20 15; as shown in FIG. 30, when the MLC signal is not received, the output is "1" when the voltage is lower than Ref-2. "When the voltage is higher than Ref-2, it outputs "0", but the ideal voltage is higher than the voltage of Ref-3 or lower than Ref-Ι. In the case of 2 values, the above is applied. At voltage, the comparator circuit uses Ref-2 as the threshold value to output the data, but it is regarded as memory • 20 unit degradation, and the control IC20 returns an error. Again, as shown in Figure 31, in the comparator loop l〇4d In the case where the MLC signal has been received, the voltage is lower than Ref-Ι and the output is "11"; if the voltage is higher than Ref-1 and lower than Ref-2, the output is "10"; the voltage is higher than Ref-2 and lower than Ref- 3, the output "0 Γ; the voltage is higher than Ref-3, then the output "〇〇". 13 1376695 ___- "" Application No. 97101636 101.6.27 correction replacement and 'as shown in Figure 7, in the sense When the amplifier/comparator circuit 104 receives only the MLC signal, it can also be made to be input in the sense amplifier 104a and the sense amplifier 104c. Next, the structure of the data stored in the NAND flash array will be described. Fig. 8 is a diagram showing the structure of the data stored in the NAND flash array. As shown in Fig. 8, the NAND flash memory The information read and written in 10 is stored in the data field in the form of a fan unit, and stores the redundant data corresponding to the fan type in the lengthy field. Further, the fan type A to D respectively correspond to the foregoing. The sector unit formed by the spare A'~D' of the fan type deletes the 10 materials. In addition, the 'single type spare writes are: LSN (logical sector number) for displaying the corresponding type number; DV (data validity) of the data for validity check; BBI (bad block message table) for displaying the unrecordable data due to deterioration of the memory unit; ECC of the sector error correction symbol (data block) Used error correction code); alternate error correction symbol 15 ECCS (error correction code for alternate clamp); MLC flag (multi-layer memory unit flag) used to display the flag of data stored in 4 values; Display in the fan type The number of times WF (write frequency); and the EJ used to display the fan type that the error is returned from the sense amplifier/comparator circuit 104. The other 'MLC flag is set to γ*Ν, and the γ display saves the fan type with 4 values. , 20 Ν display saves the fan type with 2 values. Also, m is set to 〇 or 】, 〇 shows that there is no problem with the fan type in the fan type; 1 shows that there is a problem with the fan type in the fan type, and the initial state is 0 ^ 'Describe the setting table of the NAND flash array. Figure 9 shows the illustration of the setting table. 14 1376695 Application No. 97101636 101.6.27 Correction Replacement The NAND flash array 1〇1 stores a setting table as shown in Fig. 9. The setting table correspondingly stores the attribute information and the writing mode according to the NAND flash array 101 file system. This write mode is set to SLC (single layer memory cell) stored in binary value or MLC (multilayer memory cell) stored in 4 values. Further, the setting table ’ is only applicable to the case where the material attribute is archived, and the data is stored in the NAND flash array 1〇1 at a value of four.

另’該設定表是以對應FAT16者作為檔案系統,但亦可 相對於各種檔案系統而預備。又,該設定表亦可儲存於控 制 IC20 的 ROM207。 10 接著,說明本實施型態中NAND快閃記憶體的動作。 控制IC20的微處理器206為了識別資料的屬性資訊,首先, 識別NAND快閃陣列的檔案系統。第丨〇圖係顯示檔案系統 識別處理的動作之流程圖。 首先,微處理器206,讀入分割表5th位元組(S101),並 15 判斷5th位元組是否為01h(S102),該分割表5th位元組是自 NAND快閃陣列101,在NAND介面單元205顯示檔案系統的 種類之資訊。 在5tb位元組不為Olh的情形下(S102,NO),微處理器206 係判斷5th位元組是否為04h(S 103)。 2〇 在5th位元組不為04h的情形下(S103,NO),微處理器206 係判斷5th位元组是否為06h(S 104)。 在5th位元組不為06h的情形下(S104,NO),微處理器206 係判斷5th位元組是否為07h(S 105)。 在5th位元組不為07h的情形下(S105,NO),微處理器206 15 1376695 _ 第97101636號申請案101.6.27修正替換 會判斷5th位元組是否為〇Ch(S 106)。 在5tb位元組不為〇Ch的情形下(S106,NO),微處理器206 即結束處理。 另一方面,在5、立元組為OCh的情形下(S106,YES),微 5 處理器206係自NAND快閃陣列101讀入以FAT為標準之設 定表,來作為判斷檔案屬性資訊之設定表,並儲存於 RAM(Slll)。The other setting table is a file system corresponding to FAT16, but can also be prepared with respect to various file systems. Also, the setting table can be stored in the ROM 207 of the control IC 20. 10 Next, the operation of the NAND flash memory in the present embodiment will be described. In order to identify the attribute information of the data, the microprocessor 206 of the control IC 20 first identifies the file system of the NAND flash array. The second diagram shows a flow chart of the actions of the file system recognition process. First, the microprocessor 206 reads the 5th byte of the partition table (S101), and 15 determines whether the 5th byte is 01h (S102), and the partition table 5th byte is from the NAND flash array 101, in the NAND The interface unit 205 displays information on the type of the file system. In the case where the 5tb byte is not Olh (S102, NO), the microprocessor 206 determines whether the 5th byte is 04h (S103). 2〇 In the case where the 5th byte is not 04h (S103, NO), the microprocessor 206 determines whether the 5th byte is 06h (S104). In the case where the 5th byte is not 06h (S104, NO), the microprocessor 206 determines whether the 5th byte is 07h (S105). In the case where the 5th byte is not 07h (S105, NO), the microprocessor 206 15 1376695 _ 97101636 application 101.6.27 correction replacement determines whether the 5th byte is 〇Ch (S 106). In the case where the 5tb byte is not 〇Ch (S106, NO), the microprocessor 206 ends the processing. On the other hand, in the case where the triad is OCh (S106, YES), the micro 5 processor 206 reads the FAT-based setting table from the NAND flash array 101 as the judgment attribute information. Set the table and store it in RAM (S111).

又,在步驟S105的判斷中,5<!*位元組為07h的情形下 (S105,YES),微處理器206係自NAND快閃陣列101讀入以 10 NTFS為標準之設定表,來作為判斷檔案屬性資訊之設定 表,並儲存於RAM(SllO)。 又,在步驟S104的判斷中,5化位元組為〇6h的情形下 (S104,YES),微處理器206係自NAND快閃陣列1〇1讀入以 FAT16(32MB〜2GB)為標準之設定表,來作為判斷檔案屬性 15 資訊之設定表,並儲存於RAM(S109)。Further, in the case of the determination in step S105, when the 5 <!* byte is 07h (S105, YES), the microprocessor 206 reads the setting table of 10 NTFS from the NAND flash array 101. As a setting table for judging the attribute information of the file, it is stored in the RAM (S110). Further, in the case of the determination in step S104, in the case where the 5-bit byte is 〇6h (S104, YES), the microprocessor 206 reads from the NAND flash array 1〇1 with FAT16 (32 MB to 2 GB) as a standard. The setting table is used as a setting table for judging the file attribute 15 information, and is stored in the RAM (S109).

又’在步驟S103的判斷中,5111位元組為〇4h的情形下 (S103,YES),微處理器206係自NAND快閃陣列1〇1讀入以 FAT16(〜32MB)為標準之設定表’來作為判斷檔案屬性資訊 之設定表’並儲存於RAM(S108)。 20 又,在步驟S102的判斷中,5(|1位元組為〇卟的情形下 (S102,YES),微處理器206係自NAND快閃陣列⑺!讀入以 FAT12為標準之設定表,來作為判斷樓案屬性資訊之設定 表’並儲存於RAM(S107)。 藉由上述動作,微處理器206,係可識別naND快閃陣 16 1376695 第97101636號申請案101.6.27修正替換 列101的檔案系統,且可將對應該檔案系統之設定表設定為 RAM。又,上述的檔案系統為其中一例,亦可視儲存於 NAND快閃記憶體10之OS及環境,預先設定對應控制IC20 之檔案系統。又,本實施型態中,NAND快閃陣列1〇1的檔 5 案系統,係設定為FAT16(32MB〜2GB)。Further, in the case of the determination in step S103, when the 5111 byte is 〇4h (S103, YES), the microprocessor 206 reads the setting of FAT16 (~32MB) from the NAND flash array 1〇1. The table 'is used as a setting table for judging file attribute information' and is stored in the RAM (S108). Further, in the judgment of step S102, 5 (|1 byte is 〇卟 (S102, YES), and the microprocessor 206 is NAND flash array (7)! The FAT12 is set as the standard setting table. , as a setting table for judging the property information of the building, and stored in the RAM (S107). By the above action, the microprocessor 206 can recognize the naND flash array 16 1376695 Application No. 97101636 101.6.27 Correction replacement column The file system of 101, and the setting table corresponding to the file system can be set to RAM. In addition, the above file system is one example, and the corresponding control IC 20 can be preset according to the OS and environment stored in the NAND flash memory 10. File system. In this embodiment, the file system of the NAND flash array 1〇1 is set to FAT16 (32MB~2GB).

藉由上述動作,在自主機發送用以指示資料寫入之寫 入指令至預先設定好適當檔案系統之NAND快閃記憶體1〇 的情形下,微處理器206係執行以下所說明之寫入處理。第 11圖顯不寫入處理的動作之流程圖。 10 首先,微處理器206,係透過主機介面單元201自主機 接收寫入指令(S201),再參考扇型編號之LSN(S202),並判 斷LSN是否為顯示根目錄領域之編號(S203)。 在LSN為顯示根目錄領域編號的情形下(S203,YES),微 處理器206係執行後述之屬性資訊識別處理(S204,門檻值決 15 定步驟)’並判斷在設定表中屬性資訊設定為4值之屬性, 即,判斷是否為歸檔(S205,門檻值決定步驟)。 在屬性資訊為歸檔的情形下(S205,YES),微處理器206 係透過NAND介面單元205,使業已儲存於輸入輸出緩衝器 107内之資料以4值保存於NAND快閃陣列101 (S206,寫入步 2〇 驟再將業已寫入NAND快閃陣列101且為資料的扇型冗長 資料之備用MLC旗標設定為Y(S207),並使業已儲存於輸入 輪出緩衝器107之目錄資料保存於NAND快閃陣列 l〇1(S2〇8)。 又,在步驟S205的判斷中,屬性資訊不為歸檔的情形 17 1376695 ____ 第97101636號申請案101.6.27修正替換 下(S205,NO),微處理器206係透過NAND介面單元205 ’使 業已儲存於輸入輸出緩衝器内之資料以2值保存於 NAND快閃陣列10US211,寫入步驟),再將業已寫入NAND 快閃陣列101之資料MLC旗標設定為N(S212),並使業已儲 5 存於輸入輸出緩衝器107之目錄資料保存於NAND快閃陣 列101(S208)。With the above operation, in the case where the write command for instructing the data write is sent from the host to the NAND flash memory 1A of the appropriate file system, the microprocessor 206 performs the write described below. deal with. Figure 11 shows a flow chart of the actions that are not written into the process. First, the microprocessor 206 receives a write command from the host through the host interface unit 201 (S201), and then refers to the LSN of the sector number (S202), and determines whether the LSN is the number of the display root directory field (S203). When the LSN is the display root directory number (S203, YES), the microprocessor 206 executes attribute information recognition processing (S204, threshold value step) described later, and judges that the attribute information in the setting table is set to The attribute of 4 values, that is, whether or not it is an archive (S205, threshold value decision step). In the case where the attribute information is archived (S205, YES), the microprocessor 206 transmits the data already stored in the input/output buffer 107 to the NAND flash array 101 by the NAND interface unit 205 (S206, The write step 2 further sets the spare MLC flag of the fan-type redundant data that has been written to the NAND flash array 101 to the data to be Y (S207), and stores the directory data already stored in the input wheel-out buffer 107. It is saved in the NAND flash array l〇1 (S2〇8). In addition, in the judgment of step S205, the attribute information is not archived. 17 1376695 ____ 97101636 application 101.6.27 correction replacement (S205, NO) The microprocessor 206 saves the data already stored in the input/output buffer to the NAND flash array 10US211 through the NAND interface unit 205', writes the data to the NAND flash array 101, and writes the data to the NAND flash array 101. The data MLC flag is set to N (S212), and the directory data stored in the input/output buffer 107 is stored in the NAND flash array 101 (S208).

又,在步驟S203的判斷中,LSN不為用以顯示目錄資 料領域之編號的情形下(S203,NO) ’微處理器206,係參考 儲存於輸入輸出緩衝器107之資料中12<!1位元組的5th位元 10 (S209),並判斷12、立元組的5th位元是否為1(S210)。 在121|1位元組的5tb位元為1的情形下(S21〇,YES),微處 理器206係執行後述之屬性資訊識別處理(S204)。 另一方面,在12山位元組的51|1位元不為1的情形下 (S210,NO) ’微處理器206係透過NAND介面單元205,使業Further, in the determination of step S203, the LSN is not in the case of displaying the number of the directory material field (S203, NO) 'The microprocessor 206 refers to the data stored in the input/output buffer 107 12<!1 The 5th bit of the byte is 10 (S209), and it is judged whether or not the 5th bit of the triad is 1 (S210). In the case where the 5tb bit of the 121|1 byte is 1 (S21, YES), the microprocessor 206 executes attribute information identifying processing (S204) which will be described later. On the other hand, in the case where the 51|1 bit of the 12th mountain block is not 1 (S210, NO), the microprocessor 206 is transmitted through the NAND interface unit 205.

15已儲存於輸入輸出緩衝器内之資料以2值保存於NAND15 data stored in the input and output buffers is stored in NAND at 2 values.

快閃陣列101(S211,寫入步驟)’再將業已寫入NAND快閃陣 列101之資料MLC旗標設定為n(S212),並使業已儲存於輸 入輸出緩衝器107之目錄資料保存於Nand快閃陣列 101(S208)。 20 接著,說明第11圖步驟S2〇4處理過程之屬性資訊識別 處理》第12圖係顯示屬性資訊識別處理的動作之流程圖。 另,第12圖中,控制IC視為業已接收寫入之指令、且資料 是儲存於輸入輸出緩衝器者。 首先,微處理器2〇6,係參考儲存於輸出輸入緩衝器ι〇7 18 1376695 第97101636號申請案101.6.27修正替換 之目錄資料的12tb位元組(S3〇1),並判斷12tb位元組的丨“位 元是否為1(S302)。 在1 “位元不為1的情形下(S302,NO),微處理器206係判 斷121|>位元組的2nd位元是否為丨(S3〇3) β 5 在元不為1的情形下(S303,NO),微處理器206係判 斷12th位元組的3rd位元是否為“5304)。 在3^*位元不為1的情形下(S304,NO),微處理器206係判 斷12、立元組的4th位元是否為HS305)。 在4^位元不為1的情形下(S305,NO),微處理器206係判 10斷12、立元組的5th位元是否為“^06)。 在5^位元不為1的情形下(S3〇6,n〇),微處理器206係判 斷12、立元組的6th位元是否為丨⑺川?)。 在6^位元不為1的情形下(S3〇7,n〇),微處理器206即結 束屬性資訊識別處理。 15 另一方面,在6th位元為1的情形下(S307,YES),微處理 器206係將屬性資訊視為歸檔(S313)。 又,在步驟S306的判斷中,5th位元為1的情形下 (S306,YES)’微處理器206係將屬性資訊視為直接(S312)。 又,在步驟S305的判斷中,4th位元為1的情形下 20 (S305,YES),微處理器206係將屬性資訊視為標卷(S311)。 又,在步驟S304的判斷中,3fd位元為1的情形下 (S304,YES),微處理器206係將屬性資訊視為隱藏(S310)。 又,在步驟S303的判斷中,2nd位元為1的情形下 (S303,YES),微處理器206係將屬性資訊視為系統(S309)。 19 1376695 第97101636號申請案101.6.27修正替換 又’在步驟S302的判斷中,位元為1的情形下 (S302,YES) ’微處理器2〇6係將屬性資訊視為僅可讀取 (S308)。 如上所述,藉由依據預先設定之屬性資訊,以2值或4 5值進行貧料的保存,即可以2值保存例如系統資料等要求高 k賴性之資料,同時可以4值保存例如使用者資料等不需要 求鬲信賴性之資料,故可同時實現高信賴性與大容量。又, 亦可視其資料的重要度,切換以2值、4值、8值等分階段的 保存方法。 10 接著’說明讀出以2值或4值保存於NAND快閃陣列之 資料_ 2值、4值的切換處理。第13圖係顯示切換處理的動 作之流程圖。 首先’主機介面單元2〇1自主機接收讀出指令(S4〇i), 則微處理器206會透過NAND介面單元205讀出,且參考儲 15存於以讀出指令所指定之NAND快閃陣列之資料MLC旗標 (S402),來判斷MLC旗標值是否為y(S4〇3)。 在MLC旗標值為Y的情形下(S4〇3,YES),微處理器206 係透過NAND介面單元205,將MLC信號發送至感測放大器 /比較器回路104(S404)。 20 另一方面’在MLC旗標值不為Y的情形下(S403,NO), 微處理器206即結束處理。 如上所述,微處理器206係參考資料MLC旗標判斷資料 的保存方法,且如第6圖及第7圖之說明,在4值的情形下, 藉由將MLC信號發送至感測放大器/比較器回路1 〇4來切換 20 1376695 ___ 第97101636號申請案101.6.27修正替換 2值與4值。又,所讀出之資料係透過輸入輸出緩衝器107發 送至主機。 接著,利用第14圖〜第19圖,說明將以2值寫入之資料 • 轉換成4值之轉換處理。第14圖顯示投入電源時進行轉換處 . 5 理其處理的動作之流程圖。 首先,對資訊處理裝置1投入電源,重新設定控制 IC20(S501),重新設定之控制1C的微處理器206,係生成邏 輯、物理測繪表(S502),並執行後述之轉換處理(S503)。 ® 第15圖係顯示停機時間時進行轉換處理其處理的動作 10 之流程圖。 首先,微處理器206係讀入狀態暫存器(S601) ’並判斷 顯示狀態暫存器是否為停機狀態之值RDY(S602)。 狀態暫存器為RDY的情形下(S602,YES),微處理器206 • 係執行後述之轉換處理(S603)。 15 另一方面,狀態暫存器不為RDY的情形下(S602,NO), φ 微處理器206即結束處理。另,本實施型態中,狀態暫存器 的值,可自資訊處理裝置1中CPU的狀態暫存器取得,亦可 自微處理器206的狀態暫存器取得。 • 第16圖係顯示在預定時間無指令時進行轉換處理其處 . 20 理的動作之流程圖。 首先,微處理器206係讀入狀態暫存器(S7〇1),並判斷 狀態暫存器是否為RDY(S702)。 在狀態暫存器為RDY的情形下(S7〇2,YES),微處理器 206係啟動計時器且待機預定時間(S7〇3),並判斷狀態暫存 21 1376695 第97101636號申請案101.6.27修正 器是否為RDY(S704)。 在狀態暫存器為RDY的情形下(S704,YES),微處理器 206係執行轉換處理(S7〇5)。 另一方面,狀態暫存器不為RDY的情形下(S704,NO), 5 微處理器206即結束處理。 又’在步驟S702的判斷中,狀態暫存器不為RDY的情 形下(S702,NO),微處理器206即結束處理。The flash array 101 (S211, writing step) 'sets the data MLC flag that has been written to the NAND flash array 101 to n (S212), and saves the directory data already stored in the input/output buffer 107 in Nand. Flash array 101 (S208). 20 Next, the attribute information recognition processing of the processing of the step S2〇4 in the eleventh embodiment will be described. Fig. 12 is a flowchart showing the operation of the attribute information recognizing processing. In addition, in Fig. 12, the control IC is regarded as an instruction that has received a write and the data is stored in the input/output buffer. First, the microprocessor 2〇6 refers to the 12tb byte (S3〇1) which is stored in the output input buffer ι〇7 18 1376695, No. 97101636, application 101.6.27, and replaces the directory data of the replacement, and judges the 12tb bit. Whether or not the bit of the tuple is 1 (S302). In the case where 1 "bit is not 1 (S302, NO), the microprocessor 206 determines whether the 2nd bit of the 121|> byte is丨(S3〇3) β 5 In the case where the element is not 1 (S303, NO), the microprocessor 206 determines whether the 3rd bit of the 12th byte is "5304". The 3^* bit is not In the case of 1 (S304, NO), the microprocessor 206 determines whether or not the 4th bit of the triad is HS305). In the case where the 4^ bit is not 1 (S305, NO), the microprocessor The 206 system judges 10 breaks and 12, and whether the 5th bit of the triad is "^06". In the case where the 5^ bit is not 1 (S3〇6, n〇), the microprocessor 206 judges whether the 6th bit of the triad is 丨(7)川? ). In the case where the 6^ bit is not 1 (S3〇7, n〇), the microprocessor 206 ends the attribute information recognition processing. On the other hand, in the case where the 6th bit is 1 (S307, YES), the microprocessor 206 regards the attribute information as an archive (S313). Further, in the case of the determination in step S306, when the 5th bit is 1 (S306, YES), the microprocessor 206 regards the attribute information as direct (S312). Further, in the determination of step S305, in the case where the 4th bit is 1 (S305, YES), the microprocessor 206 regards the attribute information as the standard volume (S311). Further, in the case where the 3fd bit is 1 in the judgment of step S304 (S304, YES), the microprocessor 206 regards the attribute information as hidden (S310). Further, in the case of the determination in step S303, when the 2nd bit is 1 (S303, YES), the microprocessor 206 regards the attribute information as the system (S309). 19 1376695 Application No. 97101636 101.6.27 Correction and replacement 'In the case of the judgment of step S302, in the case where the bit is 1 (S302, YES) 'The microprocessor 2〇6 regards the attribute information as only readable. (S308). As described above, by storing the poor material at a value of 2 or 4 based on the attribute information set in advance, it is possible to store, for example, a data requiring high-value data such as system data, and can save the value of 4 values, for example, using The data of the person does not require the information of the reliability, so that high reliability and large capacity can be achieved at the same time. In addition, depending on the importance of the data, the method of saving in stages of 2, 4, and 8 values can be switched. 10 Next, the switching process of reading the data _ 2 value and the 4 value stored in the NAND flash array by 2 or 4 values will be described. Fig. 13 is a flow chart showing the operation of the switching process. First, the host interface unit 2〇1 receives the read command from the host (S4〇i), the microprocessor 206 reads through the NAND interface unit 205, and the reference memory 15 is stored in the NAND flash specified by the read command. The data of the array MLC flag (S402) is used to determine whether the MLC flag value is y (S4 〇 3). In the case where the MLC flag value is Y (S4〇3, YES), the microprocessor 206 transmits the MLC signal to the sense amplifier/comparator circuit 104 through the NAND interface unit 205 (S404). On the other hand, in the case where the MLC flag value is not Y (S403, NO), the microprocessor 206 ends the processing. As described above, the microprocessor 206 is a method of saving the reference MLC flag determination data, and as described in FIGS. 6 and 7, in the case of a 4-value, by transmitting the MLC signal to the sense amplifier / Comparator loop 1 〇 4 to switch 20 1376695 ___ Application No. 97101636 101.6.27 correction replaces 2 and 4 values. Further, the read data is transmitted to the host through the input/output buffer 107. Next, with reference to Fig. 14 to Fig. 19, a description will be given of a conversion process in which data to be written in two values is converted into four values. Figure 14 shows the flow chart when the conversion is performed when the power is turned on. First, the information processing device 1 is powered on, the control IC 20 is reset (S501), and the microprocessor 206 of the control 1C is reset to generate a logical and physical mapping table (S502), and a conversion process (S503) to be described later is executed. ® Figure 15 is a flow chart showing the actions 10 of the conversion process during the downtime. First, the microprocessor 206 reads the status register (S601)' and judges whether or not the display status register is the value of the shutdown status RDY (S602). When the status register is RDY (S602, YES), the microprocessor 206 performs a conversion process (S603) which will be described later. On the other hand, in the case where the status register is not RDY (S602, NO), the φ microprocessor 206 ends the processing. In the present embodiment, the value of the status register can be obtained from the status register of the CPU in the information processing device 1, or can be obtained from the status register of the microprocessor 206. • Fig. 16 shows a flow chart of the actions performed when the conversion is not performed at the predetermined time. First, the microprocessor 206 reads the status register (S7〇1) and determines whether the status register is RDY (S702). In the case where the state register is RDY (S7〇2, YES), the microprocessor 206 starts the timer and stands by for a predetermined time (S7〇3), and judges the state temporary storage 21 1376695, application No. 97101636, 101.6. 27 Whether the corrector is RDY (S704). In the case where the status register is RDY (S704, YES), the microprocessor 206 performs conversion processing (S7〇5). On the other hand, in the case where the status register is not RDY (S704, NO), the microprocessor 206 ends the processing. Further, in the judgment of step S702, in a case where the state register is not RDY (S702, NO), the microprocessor 206 ends the processing.

如第14圖〜第15圖所示,微處理器206是以預定條件為 觸發來執行轉換處理。第17圖為顯示第14圖中步驟S503、 10 第15圖中步驟S603、第16圖中步驟S705等過程中轉換處理 的動作之流程圖。 首先,微處理器206係自NAND快閃陣列101的根目錄 領域讀入32位元組(S801),並判斷所讀入之32位元組的Ist 位元組是否為〇〇h或E5h(S802)。 在1“位元組為00h或E5h的情形下(S802,YES) ’微處理 器206係判斷所讀入之32位元組是否為根目錄領域的最尾 端(S803)。 32位元組為根目錄領域最尾端的情形下(S803,YES) ’ 微處理器206即結束處理。 另一方面,所讀入之32位元組不為根目錄領域最尾端 的情形下(S803,NO),微處理器206是以現行指標補足32位 元組者作為讀取指標(S807),再從根目錄領域讀入32位元組 (S801)〇 又,在步驟S802的判斷中,在Ist位元組不為00h4E5h 22 第97101636號申請案101.6.27修正替換 的情形下(S802,NO) ’微處理器206係執行後述之改寫處理 (S804),並判斷12,4元組的5th位元是否為i(S805)。 在121|1位元組的5th位元為1的情形下(S805,YES),微處 理器206係執行後述之子目錄檢視處理(S806),並判斷所讀 入之32位元組是否為根目錄領域的最尾端(S8〇3)。 另一方面,在12化位元組的51|1位元不為1的情形下 (S805,NO),微處理器206係判斷所讀入之32位元組是否為 根目錄領域的最尾端(S803)。 接著’說明上述轉換處理中改寫處理的動作。第18圖 係顯示改寫處理的動作之流程圖。另,以下所說明之處理 相當於第17圖中的步驟S804,且視為業已自根目錄領域讀 入32位元組者。 首先,微處理器206係自261|1位元組至27tb位元組參考叢 集位址N(S901) ’再讀入叢集位址N所指定之資料的MLC旗 標(S902),並判斷MLC旗標是否為Y(S903)。 在MLC旗標為Y的情形下(S903,YES),微處理器206係 判斷叢集位址N顯示最後的叢集是否為FFF8h以上、FFFFh 以下(S904)。 在叢集位址N為FFF8h以上、FFFFh以下的情形下 (S904,YES) ’微處理器206係自叢集位址N讀入資料的下一 個叢集位址N(S908),再讀入MLC旗標(S902)。 另一方面’在叢集位址N不為FFF8h以上、FFFFh以下 的情形下(S904,NO),微處理器206即結束處理。 又’在步驟S903的判斷中,MLC不為Y的情形下 1376695 第97101636號申請案101.6.27修正替換 (S903,NO),微處理器206係透過NAND介面單元205,自快 閃陣列於感測放大器/比較器回路1〇4讀出資料,再將所讀 出的資料儲存於輸入輸出緩衝器107,且以4值於NAND快 閃陣列101寫入資料(S906),再將MLC旗標設定為 5 Y(S907),並判斷叢集位址N顯示最後的叢集是否為FFF8h 以上、FFFFh以下(S904)。As shown in Figs. 14 to 15, the microprocessor 206 performs conversion processing with a predetermined condition as a trigger. Fig. 17 is a flow chart showing the operation of the conversion processing in the process of step S603, step 15 of Fig. 15, step S705, and the like in Fig. 14 in Fig. 14. First, the microprocessor 206 reads a 32-bit tuple from the root directory field of the NAND flash array 101 (S801), and judges whether the Ist byte of the read 32-bit tuple is 〇〇h or E5h ( S802). In the case where 1 "byte is 00h or E5h (S802, YES), the microprocessor 206 determines whether the 32-bit read is the end of the root directory field (S803). 32-bit tuple In the case of the end of the root directory field (S803, YES), the microprocessor 206 ends the processing. On the other hand, the 32-bit byte read is not the end of the root directory field (S803, NO). The microprocessor 206 supplements the 32-bit tuple with the current index as a reading index (S807), and then reads the 32-bit tuple from the root directory field (S801). In the judgment of step S802, the Ist bit is determined. In the case where the tuple is not 00h4E5h 22 No. 97101636, the application is corrected in the case of 101.6.27 (S802, NO) 'The microprocessor 206 executes the rewriting process described later (S804), and judges the 5th bit of the 12, 4-tuple. If it is i (S805). When the 5th bit of the 121|1 byte is 1 (S805, YES), the microprocessor 206 executes subdirectory view processing (S806) which will be described later, and judges that the read is performed. Whether the 32-bit tuple is the end of the root directory field (S8〇3). On the other hand, the case where the 51|1 bit of the 12-bit byte is not 1 Next (S805, NO), the microprocessor 206 determines whether the 32-bit block read is the end of the root directory field (S803). Next, the operation of the rewriting process in the above conversion processing will be described. A flowchart showing the operation of the rewriting process. The processing described below corresponds to the step S804 in Fig. 17, and is considered to have been read into the 32-bit tuple from the root directory field. First, the microprocessor 206 is self-contained. 261|1 byte to 27tb byte reference cluster address N (S901) 'Re-read the MLC flag of the data specified by the cluster address N (S902), and determine whether the MLC flag is Y (S903) When the MLC flag is Y (S903, YES), the microprocessor 206 determines whether the cluster address N indicates whether the last cluster is FFF8h or more and FFFFh or less (S904). The cluster address N is FFF8h or more. In the case of FFFFh or less (S904, YES), the microprocessor 206 reads the next cluster address N of the material from the cluster address N (S908), and reads the MLC flag (S902). When the cluster address N is not FFF8h or more and FFFFh or less (S904, NO), the microprocessor 206 ends. In the judgment of step S903, in the case where the MLC is not Y, 1376695, the application No. 97101636, the modification of the 101.6.27 is replaced (S903, NO), and the microprocessor 206 is transmitted through the NAND interface unit 205 from the flash array. The sense amplifier/comparator circuit 1〇4 reads the data, stores the read data in the input/output buffer 107, and writes the data to the NAND flash array 101 with a value of 4 (S906), and then the MLC flag. The flag is set to 5 Y (S907), and it is judged whether the cluster address N indicates whether the last cluster is FFF8h or more and FFFFh or less (S904).

接著,說明上述轉換處理中子目錄檢視處理的動作。 第19圖係顯示子目錄檢視處理的動作之流程圖。另,以下 說明相當於第17圖中的步驟S806,並視為業已自根目錄領 10 域或第19圖的子目錄領域讀入32位元組者。 首先,微處理器206係自261|1位元組〜27th位元組參考叢 集位址N(S1001),並自叢集位址N所指定的子目錄領域讀入 32位元組(S1002),並判斷Ist位元組是否為〇〇h或 E5h(S1003)〇 15 在1“位元組為〇〇h或E5h的情形下(S1003,YES),微處理Next, the operation of the subdirectory view processing in the above conversion processing will be described. Fig. 19 is a flow chart showing the operation of the subdirectory view processing. In addition, the following description corresponds to the step S806 in Fig. 17, and it is considered that the 32-bit group has been read from the sub-directory field of the root directory 10 field or the 19th picture. First, the microprocessor 206 refers to the cluster address N (S1001) from the 261|1 byte to the 27th byte, and reads the 32-bit tuple from the sub-directory field specified by the cluster address N (S1002). And determine whether the Ist byte is 〇〇h or E5h(S1003)〇15 in the case of 1" byte is 〇〇h or E5h (S1003, YES), microprocessing

器206係判斷叢集位址N是否為FFF8h以上、FFFFh以下 (S1004)。 在叢集位址N為FFF8h以上、FFFFh以下的情形下 (S1004,YES),微處理器206即結束處理。 20 另一方面,叢集位址N不為FFF8h以上、FFFFh以下的 情形下(S1004,NO),微處理器206係自叢集位址N讀入子目 錄的下一個叢集位址N(S1007),再自子目錄領域讀入32位 元組(S1002)。 又,在步驟S1003的判斷中,Ist位元組不為00h或E5h 24 1376695 第97101636號申請案101.6.27修正替換 的情形下(S1003,NO) ’微處理器206係執行上述之改寫處理 (S1005),並判斷12、立元組的5th位元是否為1(S1006)。 在12、立元組的5th位元為1情形下(S1 〇〇6,YES),微處理 器206係自26th位元組元組讀入下一個子目錄的叢 5 集位址 N(S1001)。 另一方面,在12th位元組的5th位元不為1情形下 (S1006,NO),微處理器206係判斷叢集位址N是否為FFF8h 以上、FFFFh以下(S1004)。 藉由上述處理,NAND快閃記憶體1〇可將以2值寫入之 10資料以4值重新寫入。另,雖已說明將以2值寫入之資料以4 值重新寫入的狀況,但亦可將以4值寫入之資料以2值重新 寫入。 接著’說明將本實施例之NAND快閃記憶體的使用量 發送至主機的處理。第20圖係顯示分別發送2值與多值使用 15 量之處理的動作之流程圖。 首先,微處理器206,係透過主機介面單元2〇1自主機 接收讀出指令(S1101),且分別將計算lsn之變數SN、計算 以2值保存之扇型之變數s、計算以4值保存之扇型之變數M 設定為0(S1102),再透過NAND介面單元2〇5讀入LSNSN的 20 MLC旗標(S1103),並判斷MLC旗標是否為y(sh〇4)。 在MLC旗標不為γ的情形下(sn〇4,NO),微處理器20ό 係判斷MLC旗標是否為n(S1105)。 在MLC旗標不為N的情形下(sii〇5,N〇),微處理器200 係對變數SN加算1 (S1106),並判斷變數值是否大於 25 1376695 第97101636號申請案101.6.27修正替換 NAND快閃陣列1〇1的扇型最大值(S1107)。 在變數SN的值大於NAND快閃陣列101的扇型最大值 的情形下(S1107,YES),微處理器206係透過主機介面單元 201,將變數Μ的值發送至主機(S1108),再透過主機介面單 5 元201,將變數S的值發送至主機(S1109)。 另一方面,在變數SN的值小於NAND快閃陣列101的扇 型最大值的情形下(S1107,NO),微處理器206係再度透過 NAND介面單元205,讀入LSNSN的MLC旗標(S1103)。 又,在步驟S1105的判斷中,MLC旗標為N的情形下 10 (S1105,YES),微處理器206係對變數S加算l(Sllll),並對 變數SN加算1(SU06) » 又’在步驟S1104的判斷中,MLC旗標為Y的情形下 (Sll〇4,YES),微處理器206係對變數Μ加算1(S1110),並對 變數SN加算1(S1106)。 15 如上所述,藉由分別發送以2值寫入之扇型與以4值寫 入之扇型的數,主機即可依據變數Μ、變數S及扇型資訊 量,分別算出NAND快閃記憶體1〇中2值及4值的使用量。 又,本實施型態之NAND快閃記憶體1〇,可將2值的使用量 轉換成多值的使用量’再發送至主機。第21圖係顯示將2值 20的使用量轉換成多值的使用量’並發送至主機之處理的動 作之流程圖。另,由於步驟S1101〜步驟S1111與第20圖為相 同處理,故省略其說明,並說明步驟S1112〜步驟S1114。 在步驟S1107的判斷中,變數SN的值大於NAND快閃陣 列101的扇型數的情形下(S1107,YES),微處理器206係將變 26 1376695 第97101636號申請案101.6.27修正替g 數S的值加至2倍(SlU2),且對變數μ的值加算變數§的值 (S1113),再透過主機介面單元2〇卜將變數]^的值發送至主 機(S1114)。 如上所述’藉由將以2值保存資料之扇型數加至2倍, 5並加算至以4值保存資料之扇型數,即可算出4值的使用 量。又’藉由用2除以4值保存資料之扇型數,並加算至以2 值保存貢料之扇型數,即可算出2值的使用量。 接著,忒明空間容量算出處理《第22圖係顯示空間容 量算出處理的動作之流程圖。 10 首先,微處理器20ό,係透過主機介面單元2〇1自主機 接收讀出指令(S1201),且分別將計算LSN之變數SN、計算 資料有效性為有效之扇型之變數V、及用以顯示空間容量之 變數E設定為0(S1202),再透過NAND介面單元205讀入 LSNSN的資料有效性(S12〇3),並判斷資料有效性是否為有 15 效(S1204)。 φ 在資料有效性不為有效的情形下(S1204,NO),微處理 器206係對變數SN加算1(S1205),並判斷變數SN的值是否大 於NAND快閃陣列1 〇 1的扇型總數(s丨丨06)。 • 在變數SN為大於NAND快閃陣列101的扇型最大值的The device 206 determines whether or not the cluster address N is FFF8h or more and FFFFh or less (S1004). When the cluster address N is FFF8h or more and FFFFh or less (S1004, YES), the microprocessor 206 ends the processing. On the other hand, when the cluster address N is not FFF8h or more and FFFFh or less (S1004, NO), the microprocessor 206 reads the next cluster address N of the subdirectory from the cluster address N (S1007), The 32-bit tuple is read from the subdirectory field (S1002). Further, in the determination of step S1003, the Ist byte is not 00h or E5h 24 1376695. In the case of the modification of the application No. 97101636, 101.6.27 (S1003, NO), the microprocessor 206 performs the above-described rewriting process ( S1005), and judges whether 12 or 5th bit of the triad is 1 (S1006). In the case where the 5th bit of the triad is 1 (S1 〇〇6, YES), the microprocessor 206 reads the cluster 5 address N of the next subdirectory from the 26th byte tuple (S1001). ). On the other hand, when the 5th bit of the 12th byte is not 1 (S1006, NO), the microprocessor 206 determines whether or not the cluster address N is FFF8h or more and FFFFh or less (S1004). By the above processing, the NAND flash memory 1 can rewrite the data written with 2 values by 4 values. Further, although the case where the data written in the binary value is rewritten with the 4 value has been described, the data written in the 4 value can be rewritten with the 2 value. Next, the processing of transmitting the usage amount of the NAND flash memory of the present embodiment to the host will be described. Fig. 20 is a flow chart showing the actions of the process of transmitting 2 values and multi-values using 15 quantities, respectively. First, the microprocessor 206 receives the read command from the host through the host interface unit 2〇1 (S1101), and calculates the variable SN of the lsn, calculates the variable s of the fan type saved by the value of 2, and calculates the value of 4 The fan type variable M of the save is set to 0 (S1102), and the 20 MLC flag of the LSNSN (S1103) is read through the NAND interface unit 2〇5, and it is judged whether the MLC flag is y (sh〇4). In the case where the MLC flag is not γ (sn 〇 4, NO), the microprocessor 20 determines whether the MLC flag is n (S1105). In the case where the MLC flag is not N (sii 〇 5, N 〇), the microprocessor 200 adds 1 to the variable SN (S1106), and determines whether the variable value is greater than 25 1376695. No. 97101636, application 101.6.27 Replace the fan maximum value of the NAND flash array 1〇1 (S1107). In the case where the value of the variable SN is larger than the maximum value of the fan type of the NAND flash array 101 (S1107, YES), the microprocessor 206 transmits the value of the variable Μ to the host through the host interface unit 201 (S1108), and then transmits The host interface is 5 yuan 201, and the value of the variable S is sent to the host (S1109). On the other hand, in the case where the value of the variable SN is smaller than the maximum value of the fan type of the NAND flash array 101 (S1107, NO), the microprocessor 206 re-reads the MLC flag of the LSNSN through the NAND interface unit 205 (S1103). ). Further, in the judgment of step S1105, in the case where the MLC flag is N (S1105, YES), the microprocessor 206 adds 1 to the variable S (S1111), and adds 1 to the variable SN (SU06) » again' In the judgment of step S1104, in the case where the MLC flag is Y (S11〇4, YES), the microprocessor 206 adds 1 to the variable ( (S1110), and adds 1 to the variable SN (S1106). 15 As described above, by transmitting the fan type written in two values and the fan type written in four values, the host can calculate the NAND flash memory separately based on the variable Μ, variable S, and fan type information amount. The amount of 2 and 4 values used in the body 1〇. Further, in the NAND flash memory of the present embodiment, the amount of use of two values can be converted into a multi-value usage amount and transmitted to the host. Fig. 21 is a flow chart showing the operation of converting the usage amount of 2 to 20 into a multi-value usage amount and transmitting it to the host. Since steps S1101 to S1111 are the same as those in Fig. 20, the description thereof will be omitted, and steps S1112 to S1114 will be described. In the judgment of step S1107, in the case where the value of the variable SN is larger than the number of sectors of the NAND flash array 101 (S1107, YES), the microprocessor 206 is modified to apply for the modification of the application of 101.627 of the application No. 97101636. The value of the number S is doubled (S1U2), and the value of the variable μ is added to the value of the variable § (S1113), and the value of the variable _^ is transmitted to the host through the host interface unit 2 (S1114). As described above, the amount of use of the four values can be calculated by adding the number of sectors of the data stored in the two values to two times, and adding 5 to the number of sectors in which the data is stored at four values. In addition, by dividing the number of sectors of the data by dividing by 2 by 4 values and adding it to the number of sectors of the tribute stored at 2 values, the amount of use of the 2 values can be calculated. Next, Fig. 22 is a flowchart showing the operation of the display space capacity calculation processing. 10 First, the microprocessor 20 receives the read command from the host through the host interface unit 2〇1 (S1201), and calculates the variable SN of the LSN, the variable V of the calculated data validity, and the variable V of the fan type. The variable E of the display space capacity is set to 0 (S1202), and the data validity of the LSNSN is read through the NAND interface unit 205 (S12〇3), and it is judged whether or not the data validity is 15 (S1204). φ In the case where the data validity is not valid (S1204, NO), the microprocessor 206 adds 1 to the variable SN (S1205), and determines whether the value of the variable SN is greater than the total number of sectors of the NAND flash array 1 〇1. (s丨丨06). • The variable SN is greater than the maximum value of the fan type of the NAND flash array 101.

- 20情形下(S1206,YES),可自扇型最大值減去V的值以作為E 的值(S1207),且以2除E的值(S1208),再將E的值發送至主 機(S1209)。 另一方面,在變數SN的值小於NAND快閃陣列1〇1的扇 型最大值的情形下(S1206,NO),微處理器206,係再度透過 27 1376695 第97101636號申請案101.6.27修正替換 NAND介面單元205讀入LSNSN的資料有效性(S1203) 〇 又’在步驟S1204中,資料有效性為有效的情形下 (S1204,YES) ’微處理器206係對V的值加算i(si21〇),且對 SN的值加算1(S1205)。 5 藉由上述動作,NAND快閃記憶體1〇,可算出以2值寫 入NAND快閃陣列1〇1時的空間容量。藉由利用以該2值寫 入時的空間容量,可在以2值寫入資料時寫入大於空間容量 之資訊量資料的情形下,對主機發送錯誤。第23圖係顯示 對大於空間谷$的資料’回覆錯誤處理的動作之流程圖。 10 首先,微處理器,係透過主機介面單元2〇1自主機 接收寫入指令(S1301)’並檢視空間容量(S13〇2),再對變數 E代入二間谷置(S1303) ’並判斷以主機發送之資料是否大 於E的值(S1304)。 在主機所發送之資料小於E的值的情形不 15 (S1304,NO) ’微處理器206係透過NAND介面單元2〇5,對 NAND快閃陣列1〇1寫入資料(S1305)。 另一方面’在主機所發送之資料大於E的值的情形下 (S1304,YES),微處理器206,係透過主機介面單元2〇1對主 機發送錯誤(S1306)。 20 藉由以上動作,本實施型態之NAND快閃記憶體1〇, 可依據寫入之資料屬性貧訊,切換以2值或以4值的寫入。 接著’說明門檻值修正處理。該門檻值修正處理,可 例如對設定為2值的某些屬性設定為4值,且在有關以前寫 入之資料與現在設定產生不同的情形下,係依據業已寫入 28 1376695 第97101636號申請案101.6.27修正替換 之資料的屬性、MLC旗標與現在的設定表,將以2值寫入之 資料以4值重新寫入。第24圖,係顯示門檻值修正處理的動 作之流程圖。 首先,微處理器206,係透過主機介面單元2〇1自主機 5 接收修正指令(S1701)’且參考寫入NAND快閃陣列1〇1之資 料(S1702) ’並判斷資料是否為目錄資料(S1703)。In the case of -20 (S1206, YES), the value of V can be subtracted from the maximum value of the fan type as the value of E (S1207), and the value of E is divided by 2 (S1208), and the value of E is sent to the host ( S1209). On the other hand, in the case where the value of the variable SN is smaller than the maximum value of the fan type of the NAND flash array 1〇1 (S1206, NO), the microprocessor 206 is again corrected by the application of 101.6.27 of the application No. 97101636. Replace the NAND interface unit 205 to read the data validity of the LSNSN (S1203) 〇 'In the case where the data validity is valid in step S1204 (S1204, YES) 'The microprocessor 206 adds the value of V to the si (si21) 〇), and the value of SN is incremented by 1 (S1205). 5 By the above operation, the NAND flash memory 1〇 can calculate the space capacity when writing to the NAND flash array 1〇1 with 2 values. By using the space capacity at the time of writing with the two values, it is possible to transmit an error to the host when writing information amount data larger than the space capacity when writing data at a value of two. Fig. 23 is a flow chart showing the action of replying error processing for data larger than the space valley $. 10 First, the microprocessor receives the write command (S1301) from the host through the host interface unit 2〇1 and reviews the space capacity (S13〇2), and then substitutes the variable E into the two valleys (S1303) and judges Whether the data sent by the host is greater than the value of E (S1304). In the case where the data transmitted by the host is smaller than the value of E, 15 (S1304, NO), the microprocessor 206 writes data to the NAND flash array 1〇1 through the NAND interface unit 2〇5 (S1305). On the other hand, in the case where the data transmitted by the host is larger than the value of E (S1304, YES), the microprocessor 206 transmits an error to the host through the host interface unit 2〇1 (S1306). 20 By the above actions, the NAND flash memory of the present embodiment can be switched to a value of 2 or 4 depending on the data attribute of the write. Next, the threshold value correction processing will be described. The threshold value correction processing may, for example, set a certain value set to a value of 2 to a value of 4, and in the case where the previously written data is different from the current setting, the application is based on the application No. 97 1376695 No. 97101636 Case 101.6.27 corrects the attributes of the replaced data, the MLC flag and the current setting table, and rewrites the data written with the binary value by 4 values. Fig. 24 is a flow chart showing the operation of the threshold value correction processing. First, the microprocessor 206 receives the correction command (S1701) from the host 5 through the host interface unit 2〇1 and refers to the data written in the NAND flash array 1〇1 (S1702)' and determines whether the data is catalog information ( S1703).

在資料為目錄資料的情形下(S1703,YES),微處理器 206’係參考資料的屬性資訊(S1704),並判斷在屬性為現在 設定中是欲以4值寫入之屬性,即,判斷是否為歸檔(s 17〇5, 10 門檻值轉換步驟)。 在屬性不為歸檔的情形下(S1705,NO),微處理器2〇6, 係將目錄資料寫入NAND快閃陣列101 (S1706)。 另一方面,在屬性為歸稽的情形下(S1705,YES),微處 理器206,係參考資料的MLC旗標(S1708,門檻值轉換步 15 驟),並判斷MLC旗標是否設定為Y(S1709,門檻值轉換步 驟)。 在MLC旗標非設定為Y的情形下(S1709,NO),微處理器 206,係將業已寫入NAND快閃陣列101之資料儲存於輸入 輸出緩衝器107(S1710),並以4值將業已儲存之資料寫入 20 NAND快閃陣列l〇l(S1711,門檻值轉換步驟),再將所寫入 之資料的MLC旗標設定為Y(S 1712) ’並將目錄資料寫入 NAND快閃陣列 1 〇 1 (S1706)。 另一方面,在MLC旗標設定為Y的情形下 (S1709,YES)’微處理器206係將目錄資料寫入NAND快閃陣 29 1376695 第 97101636 號申請案 101.6.27 修正替換 列101(S1706)。 又,在步驟S1703的判斷中,資料不為目錄資料的情形 下,微處理器206,係將資料以2值寫入NAND快閃陣列 101(S1707)。 5 如上所述,藉由比較屬性與MLC旗標,例如,對於設 定成以2值寫入之屬性資訊變更為設定以4值寫入的情形 下,資料是以現在的設定為準的值保存於NAND快閃陣列 101。另,第24圖中,業已說明將2值資料以4值重新寫入的 情形,但在同樣欲以2值寫入卻以4值寫入的情形下,則是 10讀入以4值寫入之資料,且以2值保存於NAND快閃陣列 1(Π。 實施型態2 實施型態1之NAND快閃記憶體,係依據屬性資訊切換 2值與4值,但本實施型態之NAND快閃記憶體,係依據 15 NAND快閃陣列的空間容量切換2值與4值。另,本實施型 態之NAND快閃記憶體的構造,係與實施型態丨2NAND快 閃記憶體相同,僅動作不同。以下,說明與實施型態1之 NAND快閃記憶體不同的動作。第25圖係顯示實施型態2中 寫入處理的動作之流程圖。另,本實施型態中,NAND快 2〇閃記憶體的容量,是在以2值為32MB、2值的空間容量為 16MB以下的情形下,將寫入記憶單元之值切換成4值。 首先,微處理器206,係透過主機介面單元2〇1自主機 接收寫入指令(S剛),再執行第22圖所示之空間容量算出 處理(S1402) ’並判斷空間容量是否大於16MB(sl4〇3,門播 30 第97101636號申請案UU.6.27修正替換 值決定步驟)。 在空間容量大於16MB的情形下(S1403,YES),微處理 器206,係將儲存於輸入輸出緩衝器1〇7内的資料,以2值寫 入NAND快閃陣列l〇l(S1404,寫入步驟),並將寫入NAND 快閃陣列101且為資料的扇型冗長資料之備用MLC旗標設 定為N(S1405)。 另一方面’在空間容量小於16MB的情形下 (S1403,NO),微處理器206,係將儲存於輸入輸出緩衝器1〇7 内的資料以4值寫入NAND快閃陣列i〇i(si4〇6,寫入步 驟),並將寫入NAND快閃陣列1〇1且為資料的扇型冗長資料 之備用MLC旗標設定為Y(S1407)。 藉由以上動作’本實施型態之NAND快閃記憶體10, 可依據空間容量切換2值與4值,在空間容量大於一定量的 情形下,可以高信賴性的2值寫入資料;在空間容量小於一 定量的情形下,可以大容量保存資料的4值寫入資料,同時 實現信賴性與大容量。 實施型態3 實施型態2之NAND快閃記憶體,係依據空間容量切換 2值與4值,但本實施型態之NAND快閃記憶體,可依據 NAND快閃陣列的記憶單元中的寫入次數切換2值與4值。 另,本實施型態之NAND快閃記憶體的構造,係與實施型 態1及實施型態2之NAND快閃記憶體相同,僅動作不同。 以下,與說明實施型態2之NAND快閃記憶體不同的動作。 第26圖係顯示實施型態3中寫入處理的動作之流程圖。另, 丄376695 第97101636號申請案101.6.27修正替換 本實施型態中’在說明上,NAND快閃記憶體的寫入次數 的極限為4000次;若寫入次數低於2〇〇〇次,則以4值寫入, 在寫入次數高於2000次的情形下,則將寫入記憶單元之值 切換為2值。 5 首先’微處理器206,係透過主機介面單元201自主機 接收寫入指令(S1501),再參考如第8圖所示用以顯示寫入次 數資訊之WF(S1502),並判斷寫入次數是否低於2〇〇〇次 (S1503,門檻值決定步驟)。In the case where the data is the directory material (S1703, YES), the microprocessor 206' is the attribute information of the reference material (S1704), and judges that the attribute is the attribute to be written with the value of 4 in the current setting, that is, the judgment Whether it is archived (s 17〇5, 10 threshold conversion steps). In the case where the attribute is not archived (S1705, NO), the microprocessor 2〇6 writes the directory material to the NAND flash array 101 (S1706). On the other hand, in the case where the attribute is categorized (S1705, YES), the microprocessor 206 is the MLC flag of the reference material (S1708, threshold value conversion step 15), and judges whether the MLC flag is set to Y. (S1709, Threshold value conversion step). In the case where the MLC flag is not set to Y (S1709, NO), the microprocessor 206 stores the data that has been written into the NAND flash array 101 in the input/output buffer 107 (S1710), and will be 4 values. The stored data is written into the 20 NAND flash array l〇l (S1711, threshold value conversion step), and then the MLC flag of the written data is set to Y (S 1712) 'and the directory data is written to NAND fast Flash array 1 〇1 (S1706). On the other hand, in the case where the MLC flag is set to Y (S1709, YES), the microprocessor 206 writes the directory data to the NAND flash array 29 1376695. Application No. 97101636 101.6.27 Correction Replacement Column 101 (S1706) ). Further, in the case of the judgment of the step S1703, in the case where the material is not the directory material, the microprocessor 206 writes the data to the NAND flash array 101 with a value of 2 (S1707). 5 As described above, by comparing the attribute with the MLC flag, for example, in the case where the attribute information set to be written in 2 values is changed to the setting and written in 4 values, the data is stored in the value based on the current setting. In the NAND flash array 101. In addition, in Fig. 24, the case of rewriting the binary data by 4 values has been described, but in the case where the writing is also required to be written with 2 values but written with 4 values, it is 10 readings and writing with 4 values. Enter the data and store it in NAND flash array 1 with a value of 2 (Π. Implementation type 2 NAND flash memory of implementation type 1, switching between 2 and 4 values according to attribute information, but this embodiment NAND flash memory is switched between 2 and 4 according to the spatial capacity of the 15 NAND flash array. In addition, the NAND flash memory of this embodiment is constructed in the same manner as the implementation of the 丨2NAND flash memory. The operation differs from the NAND flash memory of the first embodiment. Fig. 25 is a flowchart showing the operation of the write processing in the embodiment 2. In the present embodiment, The capacity of the NAND flash memory is switched to a value of 4 when the binary value is 32 MB and the binary space capacity is 16 MB or less. First, the microprocessor 206 is Receiving a write command (S just) from the host through the host interface unit 2〇1, and then performing the space capacity shown in FIG. Calculate the processing (S1402) 'and determine whether the space capacity is greater than 16 MB (sl4 〇 3, the door broadcast 30 No. 97101636 application UU.6.27 correction replacement value decision step). In the case where the space capacity is greater than 16 MB (S1403, YES), The microprocessor 206 writes the data stored in the input/output buffer 1〇7 into the NAND flash array 101 by a value of 2 (S1404, writing step), and writes the NAND flash array 101 and The alternate MLC flag for the fan-length data of the data is set to N (S1405). On the other hand, in the case where the space capacity is less than 16 MB (S1403, NO), the microprocessor 206 is stored in the input/output buffer. The data in 1〇7 is written to the NAND flash array i〇i (si4〇6, writing step) with 4 values, and will be written to the NAND flash array 1〇1 and is the spare MLC of the sector type redundant data of the data. The flag is set to Y (S1407). By the above operation, the NAND flash memory 10 of the present embodiment can switch between the value of 2 and the value of 4 according to the space capacity, and can be highly trusted in the case where the space capacity is larger than a certain amount. Sexual 2 values are written to the data; in the case where the space capacity is less than a certain amount, the capacity can be large The data stored in the 4 values of the data is written, and the reliability and the large capacity are realized at the same time. Embodiment 3 The NAND flash memory of the implementation type 2 switches between the value 2 and the 4 value according to the space capacity, but the NAND of this embodiment mode The flash memory can switch between the value of 2 and 4 according to the number of writes in the memory unit of the NAND flash array. In addition, the structure of the NAND flash memory of the present embodiment is related to the implementation type 1 and the implementation type. The NAND flash memory of state 2 is the same, and only the action is different. Hereinafter, an operation different from the NAND flash memory of the second embodiment will be described. Fig. 26 is a flow chart showing the operation of the write processing in the embodiment 3. In addition, 丄 376695 No. 97101636, the application of the 101.6.27 correction replaces the present embodiment. In the description, the limit of the number of writes of the NAND flash memory is 4000 times; if the number of writes is less than 2 times , it is written with 4 values. When the number of writes is higher than 2000 times, the value of the write memory unit is switched to 2 values. 5 First, the microprocessor 206 receives a write command from the host through the host interface unit 201 (S1501), and then refers to the WF (S1502) for displaying the write count information as shown in FIG. 8, and determines the number of writes. Whether it is less than 2 times (S1503, threshold value decision step).

在寫入次數低於2000次的情形下(S1503,YES),微處理 10器206’係將儲存於輸入輸出緩衝器107内之資料以4值寫入 NAND快閃陣列101(S1504,寫入步驟),再將寫入NAND快閃 陣列101且為資料的扇型冗長資料之備用MLC旗標設定為 Y(S1505),並對MF加算 1(S1506)。 另一方面’在寫入次數超過2000次的情形下 15 (S1503,NO),微處理器206,係將儲存於輸入輸出緩衝器107In the case where the number of writes is less than 2000 (S1503, YES), the microprocessor 10' writes the data stored in the input/output buffer 107 to the NAND flash array 101 with a value of 4 (S1504, write Step), the standby MLC flag written into the NAND flash array 101 and for the sector type redundant data of the data is set to Y (S1505), and 1 is added to the MF (S1506). On the other hand, in the case where the number of writes exceeds 2000 times 15 (S1503, NO), the microprocessor 206 is stored in the input/output buffer 107.

内之資料以2值寫入NAND快閃陣列i〇i(s 1507,寫入步 驟)’再將寫入NAND快閃陣列101且為資料的扇型冗長資料 之備用MLC旗標設定為Y(S1508) ’並對MF加算1(S1506)。 藉由以上動作,本實施型態之NAND快閃記憶體10, 20 可依據寫入次數切換2值與4值,對寫入次數少之記憶單元 以4值寫入,對寫入次數多的記憶單元,即,對持續劣化之 記憶單元藉由以高信賴性之2值寫入,故可同時實現信賴性 與大容量。 實施型態4 32 1376695 第97101636號申請案101.6.27修正替換 實施型態3之NAND快閃記憶體,係依據寫入次數切換 2值與4值;但本實施型態之NAND快閃記憶體,係依據 NAND快閃陣列記憶單元的錯誤狀況切換2值與4值。另, 本實施型態之NAND快閃記憶體的構造,係與實施型態1、 5 實施型態2及實施型態3之NAND快閃記憶體相同,僅動作The data in the data is written to the NAND flash array i〇i (s 1507, write step) with a value of 2, and the standby MLC flag of the fan-type redundant data written to the NAND flash array 101 is set to Y ( S1508) 'Add 1 to the MF (S1506). With the above actions, the NAND flash memory 10, 20 of the present embodiment can switch between the value of 2 and 4 according to the number of writes, and the memory unit with a small number of writes is written with 4 values, and the number of writes is large. The memory unit, that is, the memory unit that continues to deteriorate is written with a high reliability value of 2, so that reliability and large capacity can be simultaneously achieved. Embodiment 4 32 1376695 Application No. 97101636 101.6.27 Correction NAND flash memory of the alternative embodiment 3, switching between 2 and 4 values according to the number of writes; but the NAND flash memory of this embodiment According to the error condition of the NAND flash array memory unit, the values of 2 and 4 are switched. In addition, the structure of the NAND flash memory of this embodiment is the same as that of the NAND flash memory of the implementation type 1, the fifth embodiment 2, and the implementation type 3.

不同。以下,說明與實施型態3之NAND快閃記憶體不同的 動作。第27圖係顯示實施型態4中寫入處理的動作之流程 圖。另,本實施型態中的錯誤,係指在上述資料的讀出過 程中,以感測放大器/比較器回路回覆之錯誤;接收該錯誤 之微處理器206,係將業已接收錯誤之扇型冗長資料之備用 EI設定為1。 首先,微處理器206,係透過主機介面單元201自主機 接寫入收指令(S1601),再參考如第8圖所示用以顯示錯誤狀 況資訊之EI(S1602),並判斷EI是否為0(S1603,門檻值決定 15 步驟)。 在EI為0的情形下(S1603,YES),微處理器206,係將儲 存於輸入輸出緩衝器107内之資料以4值寫入NAND快閃陣 列101(S1604,寫入步驟),再將寫入NAND快閃陣列101且為 資料的扇型冗長資料之備用MLC旗標設定為Y(S1605)。 2〇 另一方面,在EI不為〇的情形下(S1603,NO),微處理器 206,係將儲存於輸入輸出緩衝器1〇7内之資料以2值寫入 NAND快閃陣列1 〇 1 (S1606,寫入步驟),再將寫入NAND快閃 陣列101且為資料的扇型冗長資料之備用MLC旗標設定為 N(S1507)。 33 1376695 . . . . __ 第97101636號申請案101.6.27修正替換 藉由以上的動作,本實施型態之NAND快閃記憶體 10,對沒有錯誤之記憶單元以4值寫入資料,對有錯誤之記 憶單元,即,對持續劣化之記憶單元藉由以2值寫入資料, 故可同時實現信賴性與大容量。 5 另,上述之實施型態1、實施型態2、實施型態3及實施 型態4中,係以控制IC20的微處理器206執行上述處理,但 亦可以具有資訊處理裝置1之CPU執行該等處理。此時,作 為處理結果之各種參數,可暫時儲存於控制j;C2〇的控制暫 存器202。又’ 2值與4值的切換僅為一例,亦可例如為2值 10 與8值等。 產業上可利用性 如上述說明’藉由適用於本發明,即可依據管理資訊 以2值或4值保存資料。 【圖式簡單說明】 15 【第1圖】係顯示實施型態1中資訊處理裝置之圖示。 【第2圖】係顯示實施型態1中資訊處理裝置的硬體 構造之圖示。 【第3圖】係顯示實施型態1中NAND快閃記憶體構 造之方塊圖。 20 【第4圖】係顯示控制1C構造之方塊圖。 【第5圖】係顯示構成NAND快閃陣列之複數記憶單 元之回路圖。 【第6圖】係顯示感測放大器/比較器回路之回路圖。 【第7圖】係顯示感測放大器/比較器回路之回路圖。 34 1376695 _ 第97101636號申請案101.6.27修正替換 - 5 • 【第8圖】係顯示儲存於NAND快閃陣列之資料構造 圖。 【第9圖】係顯示設定表之圖示。 【第10圖】係顯示檔案系統識別處理的動作之流程 圖。 【第11圖】係顯示實施型態1中寫入處理的動作之流 程圖。 【第12圖】係顯示屬性資訊識別處理的動作之流程 圖。 10 【第13圖】係顯示切換處理的動作之流程圖。 【第14圖】係顯示投入電源時進行轉換處理其處理的 動作之流程圖。 【第15圖】係顯示停機時進行轉換處理其處理的動作 之流程圖。 15 • 【第16圖】係顯示在預定時間無指令時進行轉換處理 其處理的動作之流程圖。 【第17圖】係顯示轉換處理的動作之流程圖。 【第18圖】係顯示改寫處理的動作之流程圖。 【第19圖】係顯示子目錄檢視處理的動作之流程圖。 . 20 【第20圖】係顯示分別發送2值與多值使用量之處理 的動作之流程圖。 【第21圖】係顯示將2值使用量轉換成多值使用量,並 送信至主機之處理的動作之流程圖。 【第22圖】係顯示空間容量算出處理的動作之流程 35 1376695 第97101636號申請案101.6.27修正替換 圖。 【第23圖】係顯示對大於空間容量的資料回覆錯誤之 處理的動作之流程圖。 【第24圖】係顯示門檻值修正處理的動作之流程圖。 5 【第25圖】係顯示實施型態2中寫入處理的動作之流 程圖。 【第26圖】係顯示實施型態3中寫入處理的動作之流 程圖。different. Hereinafter, an operation different from that of the NAND flash memory of the third embodiment will be described. Fig. 27 is a flow chart showing the operation of the write processing in the embodiment 4. In addition, the error in this embodiment refers to an error in the sense amplifier/comparator loop during the reading of the above data; the microprocessor 206 receiving the error is a fan type that has received the error. The alternate EI for lengthy data is set to 1. First, the microprocessor 206 writes a command from the host through the host interface unit 201 (S1601), and then refers to the EI for displaying the error status information as shown in FIG. 8 (S1602), and determines whether the EI is 0. (S1603, the threshold value determines 15 steps). In the case where EI is 0 (S1603, YES), the microprocessor 206 writes the data stored in the input/output buffer 107 to the NAND flash array 101 by 4 values (S1604, writing step), and then The alternate MLC flag written to the NAND flash array 101 and the sector-type redundant data for the data is set to Y (S1605). 2. On the other hand, in the case where EI is not defective (S1603, NO), the microprocessor 206 writes the data stored in the input/output buffer 1〇7 to the NAND flash array 1 with a value of 2 〇 1 (S1606, write step), and the standby MLC flag written to the NAND flash array 101 and the fan-shaped redundant data of the data is set to N (S1507). 33 1376695 . . . __ Application No. 97101636 101.6.27 Correction Replacement With the above actions, the NAND flash memory 10 of this embodiment mode writes data by 4 values for a memory unit without errors. The erroneous memory unit, that is, the memory unit that continues to deteriorate is capable of writing data at a value of 2, so that reliability and large capacity can be simultaneously achieved. 5, in the above-described implementation 1, implementation 2, implementation 3, and implementation 4, the microprocessor 206 of the control IC 20 performs the above processing, but may also have the CPU of the information processing apparatus 1 These treatments. At this time, various parameters as a result of the processing can be temporarily stored in the control register 202 of the control j; C2〇. Further, the switching between the two values and the four values is only an example, and may be, for example, two values of 10 and 8 values. Industrial Applicability As described above, by applying to the present invention, data can be stored at a value of 2 or 4 depending on management information. [Simple description of the drawing] 15 [Fig. 1] shows an illustration of the information processing apparatus in the first embodiment. Fig. 2 is a view showing the hardware structure of the information processing device in the first embodiment. [Fig. 3] is a block diagram showing the configuration of the NAND flash memory in the embodiment 1. 20 [Fig. 4] is a block diagram showing the structure of the control 1C. [Fig. 5] shows a circuit diagram of a plurality of memory cells constituting a NAND flash array. [Fig. 6] shows the circuit diagram of the sense amplifier/comparator circuit. [Fig. 7] shows the circuit diagram of the sense amplifier/comparator circuit. 34 1376695 _ Application No. 97101636 101.6.27 Correction Replacement - 5 • [Fig. 8] shows the data structure diagram stored in the NAND flash array. [Fig. 9] is a diagram showing the setting table. [Fig. 10] is a flow chart showing the action of the file system recognition processing. Fig. 11 is a flow chart showing the operation of the write processing in the embodiment 1. [Fig. 12] is a flow chart showing the action of the attribute information recognition processing. 10 [Fig. 13] is a flowchart showing the operation of the switching process. [Fig. 14] is a flow chart showing the operation of performing the conversion processing when the power is turned on. [Fig. 15] is a flow chart showing the operation of performing the conversion processing at the time of the shutdown. 15 • [Fig. 16] is a flowchart showing the operation of the conversion processing when there is no instruction at the predetermined time. [Fig. 17] is a flowchart showing the operation of the conversion processing. [Fig. 18] A flow chart showing the operation of the rewriting process. [Fig. 19] A flow chart showing the operation of the subdirectory view processing. 20 [Fig. 20] is a flowchart showing the operation of separately transmitting 2-valued and multi-valued usage. [Fig. 21] is a flow chart showing the operation of converting the 2-value usage amount into the multi-value usage amount and transmitting it to the host. [Fig. 22] Flow chart showing the operation of the space capacity calculation processing 35 1376695 Application No. 97101636 101.6.27 Correction replacement diagram. [Fig. 23] is a flow chart showing an action of processing a data reply error larger than the space capacity. [Fig. 24] A flow chart showing the operation of the threshold value correction processing. 5 [Fig. 25] is a flow chart showing the operation of the write processing in the embodiment 2. [Fig. 26] is a flow chart showing the operation of the write processing in the embodiment 3.

【第27圖】係顯示實施型態4中寫入處理的動作之流 10 程圖。 【第28圖】係顯示儲存於2值型記憶單元、4值型記憶 單元及8值型記憶單元之位元圖示。 【第29圖】係顯示2值型記憶單元與4值型記憶單元的 邊限之圖示。 15 【第30圖】係顯示2值型記憶單元的記憶單元分佈與[Fig. 27] shows a flow chart of the operation of the write processing in the embodiment 4. [Fig. 28] shows the bit maps stored in the 2-value type memory unit, the 4-value type memory unit, and the 8-value type memory unit. [Fig. 29] is a diagram showing the margins of the 2-value type memory unit and the 4-value type memory unit. 15 [Fig. 30] shows the distribution of memory cells of a 2-value memory unit.

門檻值關係之圖示。 【第31圖】係顯示4值型記憶單元的記憶單元分佈與 門檻值關係之圖示。 【主要元件符號說明】 1.. .資訊處理裝置 16…LAN介面 10.. .NAND快閃記憶體 17...聲頻板 11、12...晶片組 18...USB/PCI 介面An illustration of the relationship between thresholds. [Fig. 31] is a graphical representation showing the relationship between the distribution of memory cells and the threshold value of a 4-value type memory cell. [Description of main component symbols] 1.. Information processing device 16...LAN interface 10.. NAND flash memory 17...audio board 11,12...chipset 18...USB/PCI interface

13.. .CPU 19...BIOS13.. .CPU 19...BIOS

14.. .記憶體 20...控制1C 36 137669514.. Memory 20...Control 1C 36 1376695

第97101636號申請案101.6.27修正替換 101…快閃陣列 206...微處理器 102· "X解碼器 207...ROM 103···Υ解碼器 208...RAM 104…感測放大器/比較器回路 DV...資料有效性 104a〜l〇4c...感測放大器 BBI...壞塊訊息 104d·..比較器回路 ECC…資料欄位用之錯誤校正碼 105…位址暫存器/計數器 ECCS · _ ·備用搁位用之錯誤校 106…指令暫存器 正碼 107…輪入輪出緩衝器 EI...錯誤資訊 201···主機介面單元 LSN...邏輯扇區號 202…控制暫存器 MLC…多層記憶單元旗標 203...緩衝器 RSV…反轉區域 204...ECC 單元 205…NAND介面單元 WF...寫入頻率 37Application No. 97101636 101.6.27 Correction Replacement 101...Flash Array 206...Microprocessor 102·&X;X Decoder 207...ROM 103···ΥDecoder 208...RAM 104...Sensing Amplifier/comparator loop DV...data validity 104a~l〇4c...sense amplifier BBI...bad block message 104d·..comparator loop ECC...data field error correction code 105...bit Address register/counter ECCS · _ · Error for standby spare 106... Instruction register positive code 107... Round-in buffer EI... Error information 201···Host interface unit LSN... Logic sector number 202... Control register MLC... Multi-layer memory unit flag 203... Buffer RSV... Inversion area 204... ECC unit 205... NAND interface unit WF... Write frequency 37

Claims (1)

1376695 _ 第97101636號申請案101.6.27修正替換 十、申請專利範圍: 1. 一種半導體記憶裝置,包含有: 複數記憶單元,係可記憶資料者; 門檻值決定部,係依據用以管理資料之資訊之預定 5 管理資訊,將分別寫入前述複數記憶單元之值決定為2 值或多值,並依據業已決定之分別寫入前述複數記憶單 元之值決定門檻值者;及 寫入部,係依據前述門檻值決定部所決定之門檻 值,將前述資料寫入前述複數記憶單元者。 10 2.如申請專利範圍第1項之半導體記憶裝置,更包含有檢 出部,該檢出部檢測出屬性資訊,作為前述預定管理資 訊,且該屬性資訊係顯示附加於前述資料之該資料屬性 的資訊;又,前述門檻值決定部依據前述檢出部檢測出 之資料的屬性資訊,將分別寫入前述複數記憶單元之值 15 決定為2值或多值。 3. 如申請專利範圍第2項之半導體記憶裝置,更包含有門 檻值轉換部,在前述複數記憶單元中記憶有前述資料之 記憶單元門檻值與依據該資料之屬性資訊由現在的前 述門檻值決定部所決定之門檻值不一致的情形下,該門 20 檻值轉換部讀出業已寫入前述複數記憶單元之資料,並 根據依據該資料之屬性資訊由前述門檻值決定部所決 定之門檻值,將前述資料再度寫入前述複數記憶單元。 4. 如申請專利範圍第1項之半導體記憶裝置,其中前述門 檻值決定部依據顯示藉由前述寫入部將前述資料分別 38 13766951376695 _ No. 97101636 Application 101.6.27 Amendment 10, the scope of application for patents: 1. A semiconductor memory device, comprising: a plurality of memory units, which are memorable data; a threshold value determining unit, which is based on management data The information management 5 records the information to be written into the above-mentioned complex memory unit to determine a value of 2 or more, and determines the threshold according to the determined value of the complex memory unit; and the writing unit The data is written in the complex memory unit based on the threshold value determined by the threshold value determining unit. The semiconductor memory device of claim 1, further comprising a detecting unit that detects the attribute information as the predetermined management information, and the attribute information displays the data attached to the data. Further, the threshold value determining unit determines, based on the attribute information of the data detected by the detecting unit, the value 15 respectively written in the complex memory unit to be a binary value or a multi-value. 3. The semiconductor memory device of claim 2, further comprising a threshold value conversion unit, wherein the memory unit threshold value of the foregoing data is stored in the plurality of memory units and the attribute information according to the data is from the current threshold value When the threshold value determined by the determining unit is inconsistent, the gate 20 threshold conversion unit reads the data that has been written into the complex memory unit, and the threshold value determined by the threshold value determining unit is based on the attribute information according to the data. The above data is rewritten into the aforementioned complex memory unit. 4. The semiconductor memory device of claim 1, wherein the threshold value determining unit separately displays the data by the writing unit according to the display 38 1376695 10 15 第97101636號申請案101.6.27修正替換10 15 Application No. 97101636 101.6.27 Correction Replacement 20 寫入前述複數記憶單元之次數的資訊,作為前述預定管 理資訊,並將分別寫入前述複數記憶單元之值決定為2 值或多值。 5. 如申請專利範圍第1項之半導體記憶裝置,其中前述門 檻值決定部依據顯示前述複數記憶單元空間容量之資 訊,作為前述預定管理資訊,並將分別寫入前述複數記 憶單元之值決定為2值或多值。 6. 如申請專利範圍第1項之半導體記憶裝置,更包含有門 檻值修正部,該門檻值修正部在前述複數記憶單元中記 憶有前述資料之記憶單元門檻值與以前述門檻值決定 部所決定之門檻值為不同門檻值的情形下,將寫入該記 憶單元之值決定為2值,並依據2值決定門檻值;又,前 述寫入部在將資料再度寫入該記憶單元時,依據以門檻 值修正部決定之門檻值,將前述資料寫入前述複數記憶 早7G。 7. —種控制裝置,係用以控制藉由可記憶資料之複數記憶 單元所構成之半導體記憶裝置者,且包含有: 門檻值決定部,係依據用以管理資料之資訊之預定 管理資訊,將分別寫入前述複數記憶單元之值決定為2 值或多值,並依據業已決定之分別寫入前述複數記憶單 元之值決定門檻值者;及 寫入部,係依據前述門檻值決定部所決定之門檻 值,將前述資料寫入前述複數記憶單元者。 8. 如申請專利範圍第7項之控制裝置,更包含有檢出部, 39 1376695 _ 第97101636號申請案101.6.27修正替換 該檢出部檢測出屬性資訊,作為前述預定管理資訊,且 該屬性資訊係顯示附加於前述資料之該資料屬性的資 訊;又,前述門檻值決定部依據前述檢出部檢測出之資 料的屬性資訊,將分別寫入前述複數記憶單元之值決定 5 為2值或多值。20 The information on the number of times of writing the plurality of memory cells is used as the predetermined management information, and the values respectively written in the complex memory cells are determined to be two or more values. 5. The semiconductor memory device of claim 1, wherein the threshold value determining unit determines the value of the complex memory unit as the predetermined management information based on the information indicating the spatial capacity of the plurality of memory units. 2 or more values. 6. The semiconductor memory device of claim 1, further comprising a threshold value correcting unit, wherein the threshold value correcting unit stores the memory cell threshold value of the data in the complex memory unit and the threshold value determining unit When the threshold value of the decision is different threshold value, the value written in the memory unit is determined to be a value of 2, and the threshold value is determined according to the value of 2; in addition, when the writing unit writes the data to the memory unit again, The aforementioned data is written into the aforementioned complex memory 7G in advance based on the threshold value determined by the threshold value correction unit. 7. A control device for controlling a semiconductor memory device comprising a plurality of memory cells capable of memorizing data, and comprising: a threshold value determining portion, based on predetermined management information for managing information of the data, The values respectively written into the plurality of memory cells are determined to be two or more values, and the threshold value is determined according to the values of the complex memory cells that have been determined to be determined; and the writing portion is determined by the threshold value determining unit. The threshold of the decision is made by writing the aforementioned information into the aforementioned complex memory unit. 8. The control device of claim 7 of the patent scope further includes a detection unit, 39 1376695 _ 97101636 application 101.6.27 correction replaces the detection unit to detect attribute information as the predetermined management information, and the The attribute information is information indicating the attribute of the data attached to the foregoing data; and the threshold value determining unit determines the value of the complex memory unit to be 2 according to the attribute information of the data detected by the detecting unit. Or multiple values. 9. 如申請專利範圍第8項之控制裝置,更包含有門檻值轉 換部,在前述複數記憶單元中記憶有前述資料之記憶單 元門檻值與依據該資料之屬性資訊由現在的前述門檻 值決定部所決定之門檻值不一致的情形下,該門檻值轉 10 換部讀出業已寫入前述複數記憶單元之資料,並根據依 據該資料之屬性資訊由前述門檻值決定部所決定之門 檻值,將前述資料再度寫入前述複數記憶單元。 10. 如申請專利範圍第7項之控制裝置,其中前述門檻值決 定部依據顯示藉由前述寫入部將前述資料分別寫入前 15 述複數記憶單元之次數的資訊,作為前述預定管理資9. The control device of claim 8 further includes a threshold value conversion unit, wherein the memory unit threshold value in which the data is stored in the plurality of memory units and the attribute information based on the data are determined by the current threshold value In the case where the threshold value determined by the department is inconsistent, the threshold value is changed to read the data of the plurality of memory units, and the threshold value determined by the threshold value determining unit is based on the attribute information of the data. The foregoing data is again written into the aforementioned complex memory unit. 10. The control device of claim 7, wherein the threshold value determining unit is configured as the predetermined management resource according to the information indicating the number of times the data is written into the first plurality of memory units by the writing unit. 訊,並將分別寫入前述複數記憶單元之值決定為2值或 多值。 11. 如申請專利範圍第7項之控制裝置,其中前述門檻值決 定部依據顯示前述複數記憶單元空間容量之資訊,作為 20 前述預定管理資訊,並將分別寫入前述複數記憶單元之 值決定為2值或多值。 12. 如申請專利範圍第7項之控制裝置,更包含有門檻值修 正部,該門檻值修正部在前述複數記憶單元中記憶有前 述資料之記憶單元門檻值與以前述門檻值決定部所決 40 1376695 第97101636號申請案101.6.27修正替換 定之門檻值為不同門檻值的情形下,將寫入該記憶單元 之值決定為2值,並依據2值決定門檻值;又,前述寫入 部在將資料再度寫入該記憶單元時,依據以門檻值修正 部決定之門檻值,將前述資料寫入前述複數記憶單元。 13. —種控制方法,係用以控制藉由可記憶資料之複數記憶 單元所構成之半導體記憶裝置者,且執行以下步驟: 10 門檻值決定步驟,係依據用以管理資料之資訊之預 定管理資訊,將分別寫入前述複數記憶單元之值決定為 2值或多值,並依據業已決定之分別寫入前述複數記憶 單元之值決定門檻值:及 寫入步驟,係依據以前述門檻值決定步驟所決定之 門檻值,將前述資料寫入前述複數記憶單元者。 15 14. 如申請專利範圍第13項之控制方法,更執行檢出步驟, 該檢出步驟係檢測出屬性資訊,作為前述預定管理資 訊,且該屬性資訊係顯示附加於前述資料之該資料屬性 的資訊;又,前述門檻值決定步驟係依據以前述檢出步 驟檢測出之資料的屬性資訊,將分別寫入前述複數記憶 單元之值決定為2值或多值。 20 15. 如申請專利範圍第14項之控制方法,更執行門檻值轉換 步驟,該門檻值轉換步驟係在前述複數記憶單元中記憶 有前述資料之記憶單元門檻值與依據該資料的屬性資 料由現在的前述門檻值決定步驟所決定之門檻值不一 致的情形下,讀出業已寫入前述複數記憶單元之資料, 並根據依據該資料之屬性資訊由前述門檻值決定步驟 41 1376695 第97101636號申請案101.6.27修正替換 所決定之門檻值,將前述資料再度寫入前述複數記憶單 元。 16. 如申請專利範圍第13項之控制方法,其中前述門檻值決 定步驟係依據顯示藉由前述寫入步驟將前述資料分別 5 寫入前述複數記憶單元之次數的資訊,作為前述預定管 理資訊,並將分別寫入前述複數記憶單元之值決定為2 值或多值。The value of the complex memory unit is determined to be 2 or more values. 11. The control device of claim 7, wherein the threshold value determining unit determines, according to the information indicating the spatial capacity of the plurality of memory units, the predetermined management information as 20, and writes the values respectively written into the plurality of memory units to 2 or more values. 12. The control device of claim 7, further comprising a threshold value correcting unit that stores the threshold value of the memory unit of the data in the plurality of memory units and the threshold value determined by the threshold value determining unit 40 1376695 Application No. 97101636 101.6.27 Correction When the threshold value is changed to a different threshold value, the value written to the memory unit is determined to be a value of 2, and the threshold value is determined according to the value of 2; When the data is written again to the memory unit, the data is written in the complex memory unit in accordance with the threshold determined by the threshold value correcting unit. 13. A control method for controlling a semiconductor memory device comprising a plurality of memory cells readable by data, and performing the following steps: 10 threshold threshold determining step, based on predetermined management of information for managing data The information is determined by writing the value of the complex memory unit to a value of 2 or more, and determining the threshold according to the determined value of the complex memory unit: and the writing step is determined according to the threshold value. The threshold value determined by the step is written into the foregoing complex memory unit. 15 14. If the control method of claim 13 is applied, the detecting step is further performed, and the detecting step detects the attribute information as the predetermined management information, and the attribute information displays the data attribute attached to the data. Further, the threshold value determining step determines the value of the complex memory unit to be 2 or more values based on the attribute information of the data detected by the detecting step. 20 15. If the control method of claim 14 is applied, the threshold value conversion step is further performed, wherein the threshold value conversion step is a memory unit threshold value in which the foregoing data is stored in the complex memory unit and an attribute data according to the data is In the case where the threshold value determined by the threshold value determining step is inconsistent, the data that has been written into the foregoing plurality of memory cells is read, and the threshold value is determined according to the attribute information according to the data. Step 41 1376695 Application No. 97101636 101.6.27 Correct the threshold value determined by the replacement, and write the above data to the above complex memory unit again. 16. The control method of claim 13, wherein the threshold value determining step is based on the information indicating the number of times the foregoing data is written into the plurality of memory units by the writing step, as the predetermined management information. The values written in the foregoing complex memory cells are determined to be 2 or more values. 17. 如申請專利範圍第13項之控制方法,其中前述門檻值決 定步驟係依據顯示前述複數記憶單元空間容量之資 10 訊,作為前述預定管理資訊,並將分別寫入前述複數記 憶單元之值決定為2值或多值。 18. 如申請專利範圍第13項之控制方法,更執行門檻值修正 步驟,該門檻值修正步驟係在前述複數記憶單元中記憶 有前述資料之記憶單元門檻值與以前述門檻值決定步 15 驟所決定之門檻值為不同門檻值的情形下,將寫入該記17. The control method of claim 13, wherein the threshold value determining step is based on the information 10 showing the spatial capacity of the plurality of memory units as the predetermined management information, and is respectively written into the value of the plurality of memory units. Decide to 2 or more values. 18. If the control method of claim 13 is applied, the threshold value correction step is further performed, wherein the threshold value correction step is a memory cell threshold value in which the foregoing data is stored in the plurality of memory units and a step 15 is determined by the threshold value. When the threshold value determined is different threshold value, the record will be written 憶單元之值決定為2值,並依據2值決定門檻值;又,前 述寫入步驟係在將資料再度寫入該記憶單元時,依據以 門檻值修正步驟所決定之門檻值,將前述資料寫入前述 複數記憶單元。 42 1376695 第97101636號申請案 2012. 6. 27修正替換 第20圖The value of the unit is determined to be a value of 2, and the threshold value is determined according to the value of 2; in addition, the writing step is to write the data to the memory unit again, according to the threshold value determined by the threshold value correction step, and the foregoing data is Write the aforementioned complex memory unit. 42 1376695 Application No. 97101636 2012. 6. 27 Correction and replacement Figure 20 1376695 第97101636號申請案101.6.27修正替換 七、指定代表圊: (一) 本案指定代表圖為:第(3 )圖 (二) 本代表圖之元件符號簡單說明: 10.. .NAND快閃記憶體 20.. .控制 1C 101.. .快閃陣列 102.. .X解碼器 103.. .Y解碼器 104.. .感測放大器/比較器回路1376695 Application No. 97101636 101.6.27 Amendment Replacement 7. Designated representative: (1) The representative representative of the case is: (3) Figure (2) The symbolic symbol of the representative figure is simple: 10.. NAND flash Memory 20.. Control 1C 101.. Flash Array 102..X Decoder 103..Y Decoder 104.. Sense Amplifier/Comparator Circuit 105.. .位址暫存器/計數器 106…指令暫存器 107.. .輸入輸出緩衝器 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式:105.. . Address Register/Counter 106... Instruction Register 107.. Input/Output Buffer 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW97101636A 2008-01-16 2008-01-16 Semiconductor memory device, control device and control method TW200933636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97101636A TW200933636A (en) 2008-01-16 2008-01-16 Semiconductor memory device, control device and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97101636A TW200933636A (en) 2008-01-16 2008-01-16 Semiconductor memory device, control device and control method

Publications (2)

Publication Number Publication Date
TW200933636A TW200933636A (en) 2009-08-01
TWI376695B true TWI376695B (en) 2012-11-11

Family

ID=44866028

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97101636A TW200933636A (en) 2008-01-16 2008-01-16 Semiconductor memory device, control device and control method

Country Status (1)

Country Link
TW (1) TW200933636A (en)

Also Published As

Publication number Publication date
TW200933636A (en) 2009-08-01

Similar Documents

Publication Publication Date Title
JP5223869B2 (en) Semiconductor memory device, control device, and control method
US7111142B2 (en) System for quickly transferring data
CN107402837B (en) Nonvolatile memory device and reading method thereof
KR102298661B1 (en) Storage device and initializing method thereof
US8934301B2 (en) Memory controller for multi-level memory device and error correcting method
US7672162B2 (en) Non-volatile memory device, memory system, and LSB read method
US8289771B2 (en) Data reading method and control circuit and memory controller using the same
US20200065187A1 (en) Data access method, memory control circuit unit and memory storage device
CN101256842A (en) Ecc controller for use in flash memory device and memory system including the same
US11222698B2 (en) Microcontroller, memory system having the same, and method for operating the same
US20080215952A1 (en) Hybrid flash memory device, memory system, and method controlling errors
CN109753463B (en) Controller and operation method thereof, and storage system and operation method thereof
TW201742067A (en) Decoding method, memory storage device and memory control circuit unit
TW201830404A (en) Decoding method, memory storage device and memory control circuit unit
TW201140587A (en) Data storage device and data writing method for a flash memory
US20100262892A1 (en) Data access method for flash meory and storage system and controller thereof
TWI634556B (en) Decoding method, memory storage device and memory control circuit unit
CN107436820B (en) Decoding method, memory storage device and memory control circuit unit
CN111580741A (en) Data writing method, memory control circuit unit and memory storage device
TWI376695B (en)
CN109783001B (en) Data encoding method, data decoding method, and storage controller
CN109697134B (en) Decoding method, memory storage device and memory control circuit unit
CN113724774B (en) Decoding method, memory storage device and memory control circuit unit
CN110874282B (en) Data access method, memory control circuit unit and memory storage device
CN111831210B (en) Memory management method, memory control circuit unit and memory storage device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees