TWI375426B - Multi-carrier incremental redundancy for packet-based wireless communications - Google Patents

Multi-carrier incremental redundancy for packet-based wireless communications Download PDF

Info

Publication number
TWI375426B
TWI375426B TW94134429A TW94134429A TWI375426B TW I375426 B TWI375426 B TW I375426B TW 94134429 A TW94134429 A TW 94134429A TW 94134429 A TW94134429 A TW 94134429A TW I375426 B TWI375426 B TW I375426B
Authority
TW
Taiwan
Prior art keywords
version
transmitted
carrier
redundancy
information
Prior art date
Application number
TW94134429A
Other languages
Chinese (zh)
Other versions
TW200637213A (en
Inventor
Lorenzo Casaccia
Durga Prasad Malladi
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW200637213A publication Critical patent/TW200637213A/en
Application granted granted Critical
Publication of TWI375426B publication Critical patent/TWI375426B/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Description

1375426 九、發明說明: 【發明所屬之技術領域】 本發明大體上係關於無線通信領域,且更特定言之,係 關於無線通信系統中的錯誤恢復領域。 【先前技術】 在過去的二十年中,蜂巢式電話已曰益普及。同時,無 線技術中之大量進步已使蜂巢式電話具有更多之特徵、更 佳之接收、更高之頻寬以及增加之系統容量。現今的數位 及以封包為基礎之無線系統與最初的數位無線系統相比先 進得多,且將來更有前景。最初普及的數位無線系統中包 括GSM(全球行動通訊系統)。20世紀90年代初.,GSM作為 第二代(2G)無線系統而引入整個歐洲,且現今在全球超過 100個國家中運作。近年來,GSM開發者引入了建立於GSM 語音服務上的大量增強及改良,從而向該系統添加了各種 資料及語音能力。藉由此等改良,GSM已逐步發展成一種 能夠提供大量增強型數位行動語音及資料電話服務(例 如,網際網路存取、多媒體及視訊)的系統。 GSM增強包括GPRS、EDGE及GERAN。20世紀90年代中 期首次引入的GPRS(通用封包無線電服務)係基於GSM的以 TDMA無線封包為基礎之網路架構。GPRS基於GSM無線電 介面(air interface,意即,終端機與基地台之間的介面), 並且基於時槽(timeslot)及TDMA(劃時多向近接)訊框的 GSM無線電介面結構。GPRS向使用者提供增加的頻寬,並 且視需求情況而定在語音與資料之間可動態配置之盡可能 105485.doc 1375426 多的槽中向操作者提供對頻寬之更為有效的使用。此允許 GPRS鏈路使用每個GSM訊框可獲得的槽中之一至八個,速 度高達每一時槽22_8 kb/s。此外,可彼此獨立地配置GPRS 上行鏈路及下行鏈路之時槽數目。GPRS採用四種不同編碼 方案(CS1至CS4),其中每一者均為使用高斯最小移位鍵控 (GMSK)調變的調相編碼方案。GPRS支持X.25,即風行於 歐洲的低速封包傳輸協定。GPRS之建構係朝向建構EDGE 系統(GSM演進式資料增強技術)之一步。EDGE係對GPRS 的增強,其使用與現有GSM系統(例如GSM900、GSM 1800 及GSM1900)相同的頻譜配置。EDGE之特徵為九種編碼方 案,其中有四種採用GMSK調變,有五種採用八相移位鍵控 (8PSK)調變。四種EDGE GMSK編碼方案(MCS1至MCS4)類 似於四種GPRS編碼方案(意即,CS1至CS4)。其它五種EDGE 編碼方案(MCS5至MCS9)使用8PSK調變,為載波相位中的 每個變化產生一個三位元字組。8PSK調變之使用大約使 GPRS峰值資料速率增至三倍。GSM之另一增強, GERAN(GSM Edge無線電存取網路)支持EDGE網路作為與 3G GSM演進式核心網路(CN)相容的替代無線電存取網 路。GERAN架構允許CN連接至A、Gb及Iu介面。建構GERAN 係用以傳遞以封包為基礎之即時無線服務,包括語音、多 媒體、視訊及網際網路存取。 儘管已改良了編碼方案且增強了特徵,但是歸因於不良 接收條件,無線系統中不時地發生錯誤。為了自接收錯誤 中恢復,EDGE及與其相關的增強及服務提供一種遞增冗餘 105485.doc 1375426 錯誤恢復方案。當歸因於㈣到錯誤而使傳輸失敗時,行 動接收H將自動重複請求(ARQ)發送回基地台。回應於該1375426 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates generally to the field of wireless communications and, more particularly, to the field of error recovery in wireless communication systems. [Prior Art] In the past two decades, cellular phones have been popularized. At the same time, significant advances in wireless technology have enabled cellular phones to have more features, better reception, higher bandwidth, and increased system capacity. Today's digital and packet-based wireless systems are much more advanced than the original digital wireless systems and will be more promising in the future. The first popular digital wireless systems included GSM (Global System for Mobile Communications). In the early 1990s, GSM was introduced throughout Europe as a second generation (2G) wireless system and now operates in more than 100 countries around the world. In recent years, GSM developers have introduced a number of enhancements and improvements built on GSM voice services to add a variety of data and voice capabilities to the system. With this improvement, GSM has evolved into a system that provides a large number of enhanced digital voice and data telephony services (eg, Internet access, multimedia and video). GSM enhancements include GPRS, EDGE and GERAN. The GPRS (Common Packet Radio Service), first introduced in the mid-1990s, is based on GSM-based TDMA wireless packet-based network architecture. GPRS is based on the GSM radio interface (i.e., the interface between the terminal and the base station) and is based on the GSM radio interface structure of the time slots and TDMA (Time Division Multi-Direction) frames. GPRS provides users with increased bandwidth and can be dynamically configured between voice and data as needed. 105485.doc More than 1375426 slots provide operators with more efficient use of bandwidth. This allows the GPRS link to use one to eight slots available per GSM frame at speeds up to 22_8 kb/s per slot. In addition, the number of time slots for the GPRS uplink and downlink can be configured independently of each other. GPRS uses four different coding schemes (CS1 to CS4), each of which is a phase-modulated coding scheme using Gaussian Minimum Shift Keying (GMSK) modulation. GPRS supports X.25, a low-speed packet transmission protocol popular in Europe. The construction of GPRS is one step towards the construction of the EDGE system (GSM Evolutionary Data Enhancement Technology). EDGE is an enhancement to GPRS that uses the same spectrum configuration as existing GSM systems such as GSM900, GSM 1800 and GSM1900. EDGE is characterized by nine encoding schemes, four of which use GMSK modulation and five of which use eight-phase shift keying (8PSK) modulation. The four EDGE GMSK coding schemes (MCS1 to MCS4) are similar to the four GPRS coding schemes (ie, CS1 to CS4). The other five EDGE encoding schemes (MCS5 to MCS9) use 8PSK modulation to produce a three-bit block for each change in the carrier phase. The use of 8PSK modulation approximately triples the GPRS peak data rate. Another enhancement to GSM, GERAN (GSM Edge Radio Access Network) supports the EDGE network as an alternative radio access network compatible with the 3G GSM Evolutionary Core Network (CN). The GERAN architecture allows the CN to connect to the A, Gb, and Iu interfaces. GERAN is built to deliver packet-based instant wireless services, including voice, multimedia, video and internet access. Although the coding scheme has been improved and features have been enhanced, errors have occurred from time to time in the wireless system due to poor reception conditions. In order to recover from reception errors, EDGE and its associated enhancements and services provide an incremental redundancy 105485.doc 1375426 error recovery scheme. When the transmission fails due to (4) an error, the action reception H sends an automatic repeat request (ARQ) back to the base station. Respond to the

ARQ基地台使用不同編碼方案傳輸該失敗傳輸。藉由將 初始訊息與使用不同編碼方案重新傳輸的訊息之第二版本 組合來執行錯錢復。此種習知錯誤恢復系統增加了恢復 失敗訊息的可能性,但是其因將ARQ以用以重新傳輸經不 同編碼的另-版本之請求發回訊息源而導致延遲。 【發明内容】 在實知例中,提供一種用以在多載波無線通信中提供 用於錯誤恢復之冗餘的方法。該方法包含:以第-編碼方 案編碼待傳輸之資訊的初始版本;及以第二編碼方案編碼 該待傳輸之資訊的冗餘版本。該方法進一步包含:傳輸該 經第一編碼方案編碼之資訊的初始版本,該初始版本是在 f-載波上傳輸的;及傳輸經第二編碼方案編碼之資訊的 几餘版本,該冗餘版本中 β 认从 不甲至ν有一部分是在第二載波上傳 ㈣。回應於該資訊之初始版本的傳輸,在與該初始版本 相同的傳輸時限内傳輸該冗餘版本。 姓在另—實施例中,提供-種用以在多載波無線通信中提 !:用:錯誤恢復之冗餘的通信設備。該設備包含一編碼 ::用於以第一編碼方案編碼待傳輸之資訊的初始版 設傷進j 寺傳輸之資訊的冗餘版本。該 編二Μ’其用於:傳輸經第-編碼方案 版本’該初始版本是在第-載波上傳輸 傳輸經第二編媽方案編褐之資訊的冗餘版本,該冗 J05485.doc 餘版本中至少有一部八9 , 刀疋在第二載波上傳輸的。回廉於該 資訊之初始版本的傳輸 〜於。亥 内傳輸該⑽版本。…^始版本相_傳輸時限 在另-實施例中’提供—種用以在 :用於錯誤恢復之冗餘的裝置,該裝置包含 =瑪方案編碼待傳輸之資訊的初始版本之構件;及用= 裝置進一步包含:用=之貝訊的冗餘版本之構件。該 初始版本之:,=輸第一編碼方案編…訊的 尽之構件^始版本是在第—载波上傳輸的 用於傳輸經第二編碼方幸編 該冗餘版材至少有—:?=冗餘版本之構件, 在 有4刀疋在第二載波上傳輸的。回岸 於該資訊之初始版本的傳輸,在與該初始版本相同的傳;: 時限内傳輪該冗餘版本。 間的傳輸 在另-實施例中,提供—種電腦可讀媒體,其實施一種 用於在多載波無線通信中進行錯誤恢復之方法。該方法包 含:以第-編碼方案編碼待傳輸之資訊的初始版本;及以 第二編碼方案編碼該待傳輸之資訊的冗餘版本。該方法進. ,步包合.傳輸經第—編碼方案編碼之資訊的初始版本, 該初始版本是在第一載波上傳輸的;及傳輸經第二編碼方 案編碼之資訊的冗餘版本,該冗餘版本中至少有一部分是 在第二載波上傳輪的m該資訊之初始版本的傳輪, 在與該初始版本相同的傳輸時限時輸該冗餘版本。 【實施方式】 圖1A描繪—典型無線網路架構,其支持根據各種實施例 105485.doc 1J/5426 的行動台及用戶端設備。圖1A為一方塊圖,其說明典型無 線為路110之組件及其與例示性實施例之元件之間的相互 關係。在網路13〇之下游’無線系統通常具有三大類組件: 核h凋路控制器(SGSN 1〇2)、基地台⑽C/BTS刚)及無線 行動單元120。儘管圖中的網路控制器標示為飼服GPRS支 持節點(SGSN)H)2,但是在有些實施實例中,其可呈其它形 L或稱為其匕名稱,例如,行動交換中心(Μ%)。通常, φ SGSN為處理封包-交換連接之核心網路實體,而MSC為處 理電路·交換連接之核心網路實體1似地,該圖描繪了基 地台控制器/基地收發器(BSC/BTS)1〇4,其有時可呈其它形 態或可稱為其它名稱,例如基地台系統(BSS)。行動單元120 具有諸多不同名稱,例如,蜂巢式電話、行動台、無線手 機(wireless handset)、袖珍鈐(p〇cket心⑴等。本發明之範 禱覆蓋此等其它術語,例如,Msc '謂及其類似物。 所不之無線網路僅為例示性,且可包括允許與行動無線 § 設備通信的任何系統,例如在彼此間無線(〇ver_the_air)通信 及/或在經由無線網路110連接之組件間無線通信的行動單 兀120。此等行動單元12〇包括但不侷限於一或多個蜂巢式 電話112、PDA(個人數位助理)1Μ、尋呼機116、導航設備 118、無線連接之電腦128、音樂或視訊内容下載單元a〗、 無線遊戲設備m、盤存單元(inventory unit)126或其它類似 類型的無線設備。蜂巢式或其它無線電信服務可藉由經由 固定網路π 〇之資料鏈路或其它網路鏈路之載波網路通 信,其中該固定網路130可為PSTN(公眾交換電話網路)、 105485.doc 1375426 ISDN(整體服務數位網路)、網際網路、LAN(區域網路)、 WAN(廣域網路)或其它此類網路。可使用訊號傳輸系統 7(SS7)協定執行SGSN 102與固定網路130之間的訊號傳 輸。SS7協定係用於ISDN中之幹線訊號傳輸,且廣泛用於 當前的公眾網絡。 無線網路110控制發送至SGSN 102之訊息或其它資訊,該 等資訊通常作為資料封包發送。各個SGSN 102通常連接至 一或多個BSC/BTS 104。SGSN 102以類似於地面通信線網 路(例如,PSTN或ISDN)之標準交換節點之方式在無線網路 110中發揮作用。SGSN 102包括(例如)處理器106中用以管 理及控制行動單元120之邏輯。處理器106或其它邏輯管理 且控制諸如在與SGSN 102相關的BSC/BTS 104基地台處暫 存之行動單元120之呼叫路由、暫存、驗證、位置更新、移 交及/或編碼方案。另一塊典型無線網路為運作及維修中心 (OMC),其可被看作處理器106或其它邏輯之部分。OMC組 織無線網路之運作及設置。 以類似於網路130之方式,藉由一經組態以用於資料傳送 及/或語音資訊之網路將SGSN 102連接至若干BSC/BTS 104。以此方式,在無線網路110内,至各種SGSN 102及 BSC/BTS 104之通信及來自各種SGSN 102及BSC/BTS 104 之通信通常使用地面通信線網路、網際網路及/或公眾交換 電話網路(PSTN)。基地台子系統(包括BSC/BTS 104)控制與 行動單元120之無線電鏈路。在基地台子系統内,BSC/BTS 104具有一或多個傳輸器及接收器,以向行動單元120發送 105485.doc -10- 1375426 資訊且自其接收資訊。BSC/BTS 1〇4藉由無線(〇ta)方法向 諸如蜂巢式電話112之彳τ動單元12()無線播送資料訊息或其 它資訊。BSC/BTS 104經由此介面與行動單元12〇通信了 Um,,面亦無為無線電介面或無線電鍵路㈣〇1响。圓m 描繪BSC/BTS 104及無線行動裝置12〇之細節。每一基地二 說㈣ΠΜ均包括—編碼辑碼請,其讀輪㈣ 之協定或編碼方案來編碼/解碼資訊。基地台獄卿叫 亦包括-處理器101,其能夠執行或控制無線通信中所涉及 之常用程式及處理;且亦可姆如能> 且兀J蜓組態以包括—記憶體1〇3,其 用於儲存待用以執行無線通信之各種協定、常用程式、處 理或軟體。例如’記憶體1G3可儲存_或多個用以與各種行 動單元12G龍之频策略。傳輸策略包括涉㈣發送之冗 、本之數m用以傳輸與初始版本相關之冗餘版本之時 序及待用於無線通信之傳輸及接收之任何編碼方案或協定 的資訊。此資訊亦可儲存於8咖1〇2之記憶體1〇8中,並且 視需要傳至基地台BSC/BTS 1〇4。如在圖⑺所示的蜂巢式 電話112之細節中可見的行動單元⑶之實施例可經組態1 包括-處理器107、記憶體109及編碼器/解碼器⑴,其執行 類似於BSC/BTS 104之相應部分之功能。行動單元12〇亦可 具有-天線U3、接收器區115及普通熟習此項技術者所知 的用以無線接收資訊之其它電子設備’其可能需要監控及 接收同時發送的或重疊於多載波無線系統中之不同 的傳輸。 / 無線網路110包括至少一本地位置暫存器(HL幻及大量訪 105485.doc -11 · 1375426 客位置暫存器(VLR)(未圖示),其提供用於呼叫路由及漫遊 之資訊。通常集中於無線網路110内之HLR含有在無線網路 110中暫存的各個行動單元120之管理資訊、連同行動單元 120之當前位置。儘管在邏輯上每個網路僅有一個HLR,但 是HLR可被建構成分佈式資料庫。無線網路110之各個 SGSN 102具有一儲存於SGSN/MSC 102之記憶體108中的與 其相關之訪客位置暫存器(VLR)。該VLR儲存選自集中式 HLR之管理資訊,以用於呼叫控制及為當前處於SGSN/MSC 1 02控制之下的各個行動單元120提供用戶服務。無線網路 110中通常存在其他兩種用於驗證及安全的暫存器:設備識 別碼暫存器(EIR)及驗證中心(AuC)。EIR為與網路相關的所 有有效行動單元120之資料庫。行動單元120在EIR中藉由其 唯一國際行動設備識別碼(IMEI)而得以識別。AuC含有儲存 於各個行動單元120中的密鑰之複本,用於經由無線電通道 進行驗證及加密。應注意,SGSN/MSC 102本身不含關於特 定行動單元120之資訊。行動單元120之資訊通常儲存在 HLR及 VLR 中。 行勢單元120通常配備有一用戶識別模組(SIM),其為一 種用以識別行動單元120之智慧卡,從而使行動單元120能 夠在該終端機上撥打及接收電話並且接收其它訂購服務_。 儲存於SIM卡上的無線單元120之IMEI唯一地識別該特定 行動單元120。SIM卡上亦儲存有國際行動用戶識別碼 (IMSI),其用以識別該系統之用戶、連同來自AuC暫存器的 .用於驗證之密鑰之複本,及其它關於安全、識別及通信協 105485.doc -12- 1375426 定之資訊。各個行動單元12〇上儲存有(或者下载)—或 軟體應用程式’例如遊戲、新聞、庫存監控程式及類:程 式。行動單元120包括可組態成—或多個處理電路 (processlngcircuit)之形態的邏輯,該等處理電路執行常駐 組態邏輯、微處理器、數位訊號處理器(DSP)、微控制器或 硬體、軟體及/或含有處理器及邏輯之細體的其它類似组 合’其經組態以至少執行本文所述之運作。 各個行動.單元U0與BSC/BTS 1〇4之間的無線通信可基於 若干不同技術中之任-♦,諸如⑶隐(㈣多向近接)、 TDMA、FDMA(劃頻多向近接)、〇FDM(正交劃頻多工)及任 何使用編碼技術(諸如GSM或者用於通信或資料網路中之 其它類似無線協定)之混合的系統,只要該系統或協定提供 同時多通道(simultaneous multi-channe卜例如,多載波)通 佗。可將載波看作特定時間點上的特定頻率(或頻帶)。通道 之概念包括載波,但亦可廣義地理解為包括空間相異性(例 如,不同通信鏈路)或接收器可同時接收的其它類似類型之 通信路徑。資料通信通常發生在行動單元120、BSc/BTS 1〇4 與SGSN 102之間。SGSN 102可連接至多個諸如載波網路、 PSTN、網際網路、虛擬私人網路及類似網路之資料網路, 從而允許用戶端設備存取更寬之通信網路。如前所述,除 了語音傳輸之外’亦可經由SMS或此項技術中已知的其它 OTA方法將資料傳輸至用戶端設備。 圖2A描繪了配置入時槽及訊框之結構的資訊之 RLC/MAC區塊。GSM在本文中用作例示性系統,以解釋 105485.doc 1375426 RLC/MAC概念及訊框結構。亦可將本發明之實施例併入其 它無線系統。GSM使用此種方案配置其可用無線電頻譜: 該方案將TDMA(劃時多向近接)及FDMA(劃頻多向近接)之 態樣組合。GSM使用FDMA概念,以200 kHz間隔劃分其可 用頻寬載波頻率。通常,每一基地台均分配有若干此等載 波頻率。劃時(一種TDMA概念)係在GSM中藉由將各個載波 頻率分成時槽205而達成,如圖2A所示。GSM時槽持續15/26 ms(0.577 ms)。術語"時槽"及"叢發週期"可替交使用。每一 持續4.615 ms的GSM TDMA訊框207中均具有8個0.577 ms 之時槽205。可將GSM實體通道看作是每個TDMA訊框207 一個時槽205。例如,實體通道可由圖2A所示之各個TDMA 訊框,,x"至"x+3,,序列(207)中之時槽"〇"(2〇5)組成。在該鏈路 持續期間或至少直至分配新的通道為止,通道上的無線鍵 路可一直佔據一系列TDMA訊框207中每者内之相同時槽 205 (例如,時槽0)。通道可為為一呼叫而配置至特定行動台 之專用通道’或可為處於基於需要的(onan as-needed basis) 閒置模式之大量行動台所使用的共同通道。 在GSM系統中’可根據所執行之功能以不同方式設置訊 框方案。此種通道之一為全速率G SM訊務通道(TCH)。TCH 載運語音及資料訊務,且可被分組成由26個訊框組成的多 訊框。意即,各個TCH多訊框包括26個TDMA訊框。(多訊 框可界定為含有除26個訊框之外之不同數量的訊框;例 如,52個訊樞的多訊框。)各個26-訊框多訊框為120 ms長 (120 ms/26=4.615 ms=—個訊框)。因此’一個多訊框(120 ms) 105485.doc • 14- 1375426 除以26個訊框、除以每訊框八個叢發週期等於一個個叢發 週期(時槽),約為0.577 ms。GSM多訊框中之26個訊框中包 括24個訊務訊框,一個專用於慢關聯控制通道(SACCH)之 訊框,及另一在此時保持未界定立未使用之訊框。為了在 行動台傳輸時與其接收時之間提供一些時間,用三個叢發 週期將上行鏈路TCH與下行鏈路TCH隔開。除了全速率 TCH(TCH/F),亦存在半速率TCH(TCH/H)。亦存在八速率 TCH,有時稱為獨立專用控制通道(SDCCH) ’其主要用於 傳輸位置更新資訊。與使用全速率TCH之通信相比’半速 率TCH之使用有效地使系統容量加倍,因為對於全速率 TCH/F而言,TCH/H語音編碼是以7 kbp而非13 kbp而執行。 圖2A展示一 RLC/MAC 201區塊,其映射至一無線電區塊 2 03且隨後映射至屬於GSM多訊框之四個連續TDMA訊框 207的四個時槽205。GPRS/EDGE之層2傳輸協定為 RLC/MAC。RLC(無線電鏈路控制)為無線電介面之子層’ 其提供可靠性;而MAC(媒體存取控制)為資料鏈路層之兩 個子層中的下層,且處理對共用媒體之存取。RLC/MAC提 供GPRS無線通信所必須的控制及協作。在GPRS中,一個 RLC/MAC 201區塊是作為一個無線電區塊203之部分而傳 輸。無線電區塊203是經由在GPRS時槽多訊框(例如,前述 24時槽多訊框或可能為52時槽多訊框)上傳輸的四個連續 GPRS時槽205發送。含無線電區塊之該等四個時槽205中每 一者之間的内部時槽距離為8個時槽,或一個TDMA訊框207 之長度。四個時槽205之内容僅為RLC/MAC 201區塊自身四 105485.doc -15 - 1375426The ARQ base station transmits the failed transmission using a different coding scheme. The error is rectified by combining the initial message with a second version of the message retransmitted using a different encoding scheme. Such a conventional error recovery system increases the likelihood of recovering a failure message, but it is delayed by sending the ARQ back to the message source with a request to retransmit the otherwise encoded version. SUMMARY OF THE INVENTION In a known example, a method for providing redundancy for error recovery in multi-carrier wireless communication is provided. The method includes encoding an initial version of the information to be transmitted with a first encoding scheme, and encoding a redundant version of the information to be transmitted with a second encoding scheme. The method further includes transmitting an initial version of the information encoded by the first coding scheme, the initial version being transmitted on the f-carrier; and transmitting a plurality of versions of the information encoded by the second coding scheme, the redundancy version Part of the beta acknowledgment to ν is uploaded on the second carrier (4). In response to the transmission of the initial version of the information, the redundancy version is transmitted within the same transmission time period as the initial version. The surname is in another embodiment, providing a communication device for use in multi-carrier wireless communication with: error recovery. The device includes a coded :: redundant version of the information used to encode the information to be transmitted in the first coding scheme to infect the information transmitted by the j temple. The second edition 'is used to: transmit the version of the first encoding scheme'. The initial version is a redundant version of the information transmitted on the first carrier and transmitted by the second programming scheme. The redundant version of J05485.doc There is at least one eight-eighth, and the knife is transmitted on the second carrier. Returning to the transmission of the initial version of the information ~ Yu. The (10) version is transmitted in Hainan. ...the initial version phase_transmission time limit is provided in another embodiment - for: a device for redundancy for error recovery, the device comprising: a component of the initial version of the information to be transmitted by the gamma scheme; The = device further comprises: a component of the redundancy version of the beta. The initial version of the:====================================================================================== = redundant version of the component, transmitted on the second carrier with 4 knives. The transmission back to the initial version of the information is transmitted in the same transmission as the initial version; the redundancy version is transmitted within the time limit. Inter-transmission In another embodiment, a computer readable medium is provided that implements a method for error recovery in multi-carrier wireless communication. The method comprises: encoding an initial version of the information to be transmitted in a first coding scheme; and encoding a redundant version of the information to be transmitted in a second coding scheme. The method further comprises: transmitting an initial version of the information encoded by the first coding scheme, the initial version being transmitted on the first carrier; and transmitting a redundancy version of the information encoded by the second coding scheme, At least a portion of the redundancy version is the transmission of the initial version of the information in the second carrier uploading wheel, and the redundancy version is transmitted at the same transmission time limit as the initial version. [Embodiment] FIG. 1A depicts a typical wireless network architecture that supports a mobile station and a client device in accordance with various embodiments 105485.doc 1J/5426. 1A is a block diagram illustrating the relationship between a typical wireless component of the circuit 110 and its components and the illustrative embodiments. Downstream of the network 13 wireless systems typically have three broad categories of components: a core h controller (SGSN 1〇2), a base station (10) C/BTS just), and a wireless mobile unit 120. Although the network controller in the figure is labeled as a Feeding GPRS Support Node (SGSN) H) 2, in some embodiments it may be in other shapes or referred to as its name, for example, a mobile switching center (Μ%) ). Typically, φ SGSN is the core network entity that handles the packet-switched connection, and the MSC is the core network entity of the processing circuit/switched connection. This figure depicts the base station controller/base transceiver (BSC/BTS). 1〇4, which may sometimes be in other forms or may be referred to as other names, such as a base station system (BSS). The mobile unit 120 has many different names, for example, a cellular phone, a mobile station, a wireless handset, a pocket (1), etc. The scope of the present invention covers such other terms as, for example, Msc ' And the like. The wireless network is merely exemplary and may include any system that allows communication with mobile wireless § devices, such as wireless (〇ver_the_air) communication with each other and/or connected via wireless network 110. A mobile unit 120 for wireless communication between components. These mobile units 12, including but not limited to one or more cellular telephones 112, PDAs (personal digital assistants), paging machines 116, navigation devices 118, wirelessly connected computers 128, music or video content download unit a, wireless game device m, inventory unit 126 or other similar type of wireless device. Honeycomb or other wireless telecommunication service can be through the fixed network π 〇 data link Carrier network communication of a road or other network link, wherein the fixed network 130 can be a PSTN (Public Switched Telephone Network), 105485.doc 1375426 ISDN (full Physical service digital network), Internet, LAN (local area network), WAN (Wide Area Network) or other such network. Between the SGSN 102 and the fixed network 130 can be implemented using the Signal Transmission System 7 (SS7) protocol. Signal transmission. The SS7 protocol is used for trunk signal transmission in ISDN and is widely used in current public networks. Wireless network 110 controls messages or other information sent to SGSN 102, which is typically sent as a data packet. The SGSN 102 is typically coupled to one or more BSC/BTSs 104. The SGSN 102 functions in the wireless network 110 in a manner similar to a standard switching node of a terrestrial communication line network (e.g., PSTN or ISDN). The SGSN 102 includes ( For example, logic in processor 106 for managing and controlling mobile unit 120. Processor 106 or other logic manages and controls call routing, such as mobile unit 120 temporarily stored at a BSC/BTS 104 base station associated with SGSN 102, A staging, verification, location update, handover, and/or coding scheme. Another typical wireless network is the Operations and Service Center (OMC), which can be viewed as part of the processor 106 or other logic. The MC organizes the operation and setup of the wireless network. In a manner similar to the network 130, the SGSN 102 is connected to a number of BSC/BTSs 104 by a network configured for data transfer and/or voice information. In the wireless network 110, communications to various SGSNs 102 and BSC/BTSs 104 and communications from various SGSNs 102 and BSC/BTSs 104 typically use terrestrial communication line networks, the Internet, and/or the public switched telephone network. Road (PSTN). The base station subsystem (including the BSC/BTS 104) controls the radio link with the mobile unit 120. Within the base station subsystem, the BSC/BTS 104 has one or more transmitters and receivers to transmit 105485.doc -10- 1375426 information to and receive information from the mobile unit 120. The BSC/BTS 1.4 transmits wireless data messages or other information to the 动τ moving unit 12 (such as the cellular telephone 112) by a wireless (〇ta) method. The BSC/BTS 104 communicates with the mobile unit 12 via the interface, and the surface is also not audible for the radio interface or the radio key (4). The circle m depicts the details of the BSC/BTS 104 and the wireless mobile device 12A. Each base 2 says (4) that the code includes the code, and the protocol or coding scheme of the read wheel (4) encodes/decodes the information. The base platform squad also includes a processor 101 capable of executing or controlling common programs and processes involved in wireless communication; and can also be configured to include - memory 1 〇 3 It is used to store various protocols, common programs, processes, or software to be used to perform wireless communications. For example, 'memory 1G3 can store _ or multiple frequency strategies for use with various mobile units 12G. The transmission strategy includes information on (4) the redundancy of the transmission, the number m used to transmit the redundancy version associated with the initial version, and any coding scheme or agreement to be used for transmission and reception of the wireless communication. This information can also be stored in the memory 1〇8 of 8 coffee 1〇2 and transferred to the base station BSC/BTS 1〇4 as needed. An embodiment of the mobile unit (3) as seen in the details of the cellular telephone 112 shown in Figure (7) can be configured to include - processor 107, memory 109 and encoder/decoder (1), which performs similar to BSC/ The function of the corresponding part of the BTS 104. The mobile unit 12A may also have an antenna U3, a receiver area 115, and other electronic devices known to those skilled in the art for wirelessly receiving information. It may need to be monitored and received simultaneously or overlaid with multi-carrier wireless. Different transmissions in the system. / Wireless network 110 includes at least one local location register (HL Magic and Mass Access 105485.doc -11 · 1375426 Guest Location Register (VLR) (not shown), which provides information for call routing and roaming The HLR, which is typically centralized within the wireless network 110, contains management information for the various mobile units 120 that are temporarily stored in the wireless network 110, along with the current location of the mobile unit 120. Although logically there is only one HLR per network, However, the HLR can be constructed as a distributed repository. Each SGSN 102 of the wireless network 110 has a visitor location register (VLR) associated with it stored in the memory 108 of the SGSN/MSC 102. The VLR storage is selected from the group consisting of Management information of the centralized HLR for call control and user service for each mobile unit 120 currently under the control of the SGSN/MSC 102. There are usually two other types of verification and security in the wireless network 110. Memory: Device Identification Register (EIR) and Authentication Center (AuC). EIR is a database of all active mobile units 120 associated with the network. Mobile unit 120 in its EIR with its unique International Mobile Equipment Identity It is identified by IMEI. The AuC contains a copy of the keys stored in the various mobile units 120 for authentication and encryption via the radio channel. It should be noted that the SGSN/MSC 102 itself does not contain information about the particular mobile unit 120. The information of unit 120 is typically stored in the HLR and VLR. The mobile unit 120 is typically equipped with a subscriber identity module (SIM), which is a smart card for identifying the mobile unit 120, thereby enabling the mobile unit 120 to be at the terminal. Making and receiving calls and receiving other subscription services. The IMEI of the wireless unit 120 stored on the SIM card uniquely identifies the particular mobile unit 120. The SIM card also stores an International Mobile Subscriber Identity (IMSI), which is used to Identify the user of the system, along with a copy of the key used for verification from the AuC scratchpad, and other information about the Security, Identification and Communications Association 105485.doc -12- 1375426. Each action unit 12 is stored with (or download) - or software applications - such as games, news, inventory monitors, and classes: programs. Action unit 120 includes configurable - or Logic in the form of a plurality of processing circuits that execute resident configuration logic, microprocessors, digital signal processors (DSPs), microcontrollers or hardware, software, and/or processors and logic Other similar combinations of details are configured to perform at least the operations described herein. Individual operations. Wireless communication between unit U0 and BSC/BTS 1〇4 may be based on any of a number of different technologies, such as (3) Hidden ((4) multi-directional proximity), TDMA, FDMA (frequency-multidirectional proximity), 〇FDM (orthogonal frequency multiplex) and any use of coding techniques (such as GSM or other similar in communication or data networks) A system of hybrids of wireless protocols, as long as the system or protocol provides simultaneous multi-channe (eg, multi-carrier) communication. A carrier can be considered as a specific frequency (or frequency band) at a particular point in time. The concept of a channel includes a carrier, but can also be broadly understood to include spatial dissimilarity (e. g., different communication links) or other similar types of communication paths that the receiver can receive simultaneously. Data communication typically occurs between mobile unit 120, BSc/BTS 1〇4 and SGSN 102. The SGSN 102 can be connected to multiple data networks such as carrier networks, PSTNs, the Internet, virtual private networks, and the like to allow the client devices to access a wider communication network. As previously mentioned, in addition to voice transmission, data may also be transmitted to the customer premises equipment via SMS or other OTA methods known in the art. Figure 2A depicts an RLC/MAC block that configures information about the structure of the time slot and frame. GSM is used herein as an illustrative system to explain the 105485.doc 1375426 RLC/MAC concept and frame structure. Embodiments of the invention may also be incorporated into other wireless systems. GSM uses this scheme to configure its available radio spectrum: This scheme combines TDMA (Time-Division Multi-Direction) and FDMA (Frequency-Division Proximity). GSM uses the FDMA concept to divide its available bandwidth carrier frequency at 200 kHz intervals. Typically, each base station is assigned a number of such carrier frequencies. The timing (a TDMA concept) is achieved in GSM by dividing the individual carrier frequencies into time slots 205, as shown in Figure 2A. The GSM time slot lasts 15/26 ms (0.577 ms). The terms "time slot" and "clustering cycle" can be used interchangeably. Each of the GSM TDMA frames 207 that lasts 4.615 ms has eight time slots 205 of 0.577 ms. The GSM physical channel can be thought of as a time slot 205 for each TDMA frame 207. For example, the physical channel may consist of the individual TDMA frames shown in Figure 2A, x" to "x+3,, and the time slot "〇" (2〇5) in the sequence (207). The wireless link on the channel may occupy the same time slot 205 (e.g., time slot 0) in each of a series of TDMA frames 207 for the duration of the link or at least until a new channel is assigned. The channel can be a dedicated channel configured for a call to a particular mobile station' or can be a common channel used by a large number of mobile stations on an onan-needed basis idle mode. In the GSM system, the frame scheme can be set differently depending on the functions performed. One such channel is a full rate G SM traffic channel (TCH). The TCH carries voice and data traffic and can be grouped into a multi-frame consisting of 26 frames. That is, each TCH multiframe includes 26 TDMA frames. (Multi-frame can be defined as containing a different number of frames than 26 frames; for example, 52 multi-frames of the pivot.) Each 26-frame multiframe is 120 ms long (120 ms/ 26=4.615 ms=—frame). Therefore, a multi-frame (120 ms) 105485.doc • 14- 1375426 divided by 26 frames, divided by eight burst periods per frame equal to one burst period (time slot), which is about 0.577 ms. The 26 frames in the GSM message box include 24 message frames, one frame dedicated to the Slow Associated Control Channel (SACCH), and another frame that remains undefined at this time. In order to provide some time between the mobile station transmission and its reception, the uplink TCH is separated from the downlink TCH by three burst periods. In addition to the full rate TCH (TCH/F), there is also a half rate TCH (TCH/H). There is also an eight rate TCH, sometimes referred to as a Standalone Dedicated Control Channel (SDCCH), which is primarily used to transmit location update information. The use of a half rate TCH effectively doubles the system capacity compared to communication using a full rate TCH because for full rate TCH/F, TCH/H speech coding is performed at 7 kbp instead of 13 kbp. 2A shows an RLC/MAC 201 block that maps to a radio block 203 and then maps to four time slots 205 of four consecutive TDMA frames 207 belonging to the GSM multiframe. The Layer 2 transport protocol for GPRS/EDGE is RLC/MAC. RLC (Radio Link Control) is a sublayer of the radio interface that provides reliability; while MAC (Media Access Control) is the lower of the two sublayers of the data link layer and handles access to the shared medium. RLC/MAC provides the control and collaboration necessary for GPRS wireless communications. In GPRS, an RLC/MAC 201 block is transmitted as part of a radio block 203. The radio block 203 is transmitted via four consecutive GPRS time slots 205 transmitted over a GPRS time slot frame (e.g., the aforementioned 24 hour slot frame or possibly a 52 hour slot frame). The internal time slot distance between each of the four time slots 205 containing the radio block is 8 time slots, or the length of a TDMA frame 207. The contents of the four time slots 205 are only the RLC/MAC 201 block itself. Four 105485.doc -15 - 1375426

個部分之序列。由於GPRS不提供任何用於錯誤恢復之遞增 冗餘,因此’在四個時槽205之間不存在遞增冗餘關係,且 其不含任何無線電區塊資料203之冗餘資訊。然而,在edGE 中提供遞增几餘方案,其中在相同載波上於不同時間點發 送冗餘版本。 圖2B說明一例示性遞增冗餘方案。在rlc/MAC協定内之 EDGE中,可在層2處採用遞增冗餘。若在發送至行動台的 RLC/MAC區塊中未偵測到錯誤,則將該RLC/MAC區塊傳遞 至下一層以進行處理。例如,若在圖2]8<第一傳輸211(以 MCS-6編碼之RLC/MAC區塊)中未偵測到錯誤,則其已傳遞 至下一層而無需重新傳輸,而重新傳輸區塊213及215未被 發送。在當前EDGE建構中,對於其中偵測到錯誤的否定應 答之RLC/MAC區塊,行動裝置向基地台發回自動重複請求 (ARQ)。回應於該ARQ,基地台使用不同Mcs(調變及編碼 方案)重新傳輸該RLC/MAC區塊。該(該等)重新傳輸區塊通 常與第-區塊重組’從而增強冗餘且增加恢復無錯誤 RLC/MAC區塊之機會。此情況描繪於圖2B*,假設在第一 傳輸區塊211中偵測到錯誤,從而導致將arq發回基地台。 回應於該ARQ,在重新傳輸區塊213及215中再次發送相同 資訊,此次以MCS-3編碼。由於與第一傳輸(mcs6)相比, 重新傳輸(MCS-3)使用了不同調變及編碼方案,故而採用了 兩個^新傳輸區塊而非—個重新傳輸區塊來傳送該資料。 在匕貫例中’重新傳輪使用第—重新傳輸部分2丨3及第二重 新傳輸部分215來傳送該資料。 105485.doc 16 1375426 本發明之大多數實施例使用不同於初始版本的編碼方案 (例如’不同的MCS)來編碼冗餘版本。此提供遞增冗餘,而 非僅藉由發送以相同方案編碼之冗餘版本來提供冗餘。然 而,若有可能因與特定載波相關的接收條件而產生錯誤, 則本發明之一些實施例可使用相同M c s來編碼冗餘版本。 EDGE之習知實施例並不使用與初始傳輸相同之來重 新傳輸否定應答之RLC/MAC區塊,原因在於,由於edge 之習知實施例使用與初始版本相同的載波發送冗餘版本’ 故而由無線電介面之主要不利條件所導致之錯誤極可能產 生含有錯誤的相似結果。 S為冗餘版本採用不同MCS時’編碼方案之選擇存在一 些限制。MCS編碼方案以族系(例如,a、B或C族)進行分類。 若為冗餘版本使用不同MCS,則其應選自與第一傳輸中所 用之MCS相同的"族系"。例如,圖2B描繪一正使用兩個 MCS-3區塊213及215重新傳輸的否定應答之Mes_6 RLC/MAC區塊211。由於MCS-6及MCS-3兩者皆屬於A族,. 所以此是合適的。此外,當使用較低MCs時,與第一傳輸 相比’重新傳輸RLC/MAC區塊可能需要更多的無線電區 塊’因為相同資訊將以較低編碼率重新傳輸。此描繪於圖 2B中,其展示正以MCS-6在一無線電區塊中發送之第一傳 輸211需要兩個無線電區塊213及215,此歸因於正以Mcs_3 執行之重新傳輸。 如圖2B中所示,第一 MCS_6傳輸211與第—Mcs_3傳輸 213之間的時間間隔大於兩個河(:5_3傳輸213與215之間的 105485.doc _ 時間間隔。在於相同載波上發送冗餘版本的EDGE之一習知 遞增冗餘實施例中,傳輸冗餘版本之前的此時關隔是歸 因於EDGE中之否夂應答程序;例如正發回基地台之 ARQ。EDGE中之否定應答程序是基於RLe,因此相對耗 夺在S知EDGE遞增几餘實施例中,在第—傳輸2工i失敗 之^需要在開始重新傳輸之前將應答訊號(未圖示)發回發 送器。此時間間隔之持續時間取決於實施例,且基於 RLC/MAC設定mRQ未必必需,因此本發明之實施例 '侷限於此方g。相反,冗餘版本是作為預定方案(例 如,回應於所傳輸、編碼或以其他方式處理之初始版本)之 -部分傳輸而非回應於ARQ而發送。在一些實施例中,可 根據預定傳輸策略在與初始版本相同的傳輸時限内發送冗 餘版本,但是並非必須在相同時間。& 了對初始及冗餘版 本之傳輸進行計時,本文中將傳輸時限界^為在初始版本 開始傳輸之後直至下一初始版本開始的任何時間,假設下 =版本未因接收錯誤而延遲。在其它實施例中,可將 傳輸時限界定為-預定值,其小於在接收錯誤之後將綱 =接㈣傳輸器所花費的時間。傳輸策略定義為用於待 ^之几餘版本之數量的預定計劃,用於發送與初始版本 ^之^餘版本㈣序及㈣於初始版本及—或多個冗餘 送冗方案°儘管有些實施例在發送初始版本之後發 =:是在與初始版本相同的傳輸時限内,其它 6H 該初始版本同時的冗餘版本,如結合圖3-4及 6所論迹。 105485.doc •18· 1375426 圖3描繪一經由根據本發明之多載波傳輸系統而傳輪之 無線電區塊303。此圖為本發明之典型實施例,其包括用於 GERAN或其它基於多載波架構及基於〇fdm(正交劃頻多 工)之引入之無線系統的增強型遞增冗餘錯誤恢復。存在大 里可用於本發明之多載波無線傳輸系統,其中包括各種格 式的多載波CDMA、展頻通信系統或〇FDM。可使用其它此 等通信系統,只要其以同時多通道之使用為特徵;例如, 多載波系統,如多載波GPRS(MC_GpRS)。本發明允許開拓 此等多通道(例如,多載波)架構以實現傳輸結構中之改良, 例如,以改良MC-GPRS傳輪結構。圖3描繪了一實施例,其 展示映射至一無線電區塊3〇3且隨後映射至四個時槽 305-311之1^(:/]^八(:區塊301,該等四個時槽3〇5_311屬於四 個並行載波中之四個並行TDMA訊框。行動終端機在其等待 傳輸RLC/MAC區塊時能夠藉由監控所有四個載波而接收 無線電區塊303。 在EDGE系統中,以不同頻率(跳頻系統)發送各個無線電 區塊,但是習知EDGE實施例中之終端機在任何特定時間點 僅被要求監控一種頻率。 根據本發明,可經由多載波傳輸系統無線傳輸無線電區 塊,以減小傳輸時間’因為無線電區塊可在單—持續時間 (例如,緊杜、間隔之單一時槽組或鄰接時槽)内傳輸。因此’ 使用本發明之實施例的用於特定量之資料的傳輸時間顯著 快於圖2A所描述之習知GPRS傳輸結構之傳輸時間。將圖3 所示之實施例與圖2A所示之實施例進行比較,多載波系統 105485.doc 1375426 之無線電區塊可如圖3所示在若干載波上並行傳輸◊相 反,習知系統將無線電區塊分佈在三個TDMA訊框之持續時 間上(實際上為三個TDMA訊框加上一個時槽,或25個時 槽)’如圖2 A中所示。此外,使用本發明之實施例可使多載 波系統中之峰值傳輸速率增至四倍,,因為,與圖2A之 傳輸結構中使用單—載波相,本實例中並行使用了四個 載波。 無線電區塊之多載波傳輸之實施實對於上層為透明,只 要本發明之實施例不影響SNDCp(子網路依賴性聚合協 定)、LLC(邏輯鏈路控制)及RLC(無線電鏈路控制)傳輸參數 (例如,視窗等)。然而,MAC(媒體存取控制)可受到使用多 載波傳輸的實施例之影響,GSM無線電介面之時槽及時序 結構無需修改。因此,與簡單多載波選項相比,多載波冗 餘改良實施例可能更易於引入,在簡單多載波選項中於四 個並行載波上並行發送四個rLC/mac流,此等流中之每一 者仍根據GPRS協定(例如,GPRS R99)在GSM中傳輸。每個 GPRS R99使用四個並行rlc/mac流使RLC協定更為複 雜,因為該等四個流可在接收器側導致視窗尺寸及序列數 量空間之不可預測行為。 可藉由傳輸相同資訊區塊之不同冗餘版本來建構根據至 少一些實施例的遞增冗餘方案。藉由組合不同版本,接收 器可改良錯誤恢復之可能性以進行正確接收。各種冗餘版 本可在調變、編碼或穿插(pUncturing)方案方面不同。然而, 通常自相同族系之編碼方案中選擇冗餘版本及初始傳輸, 105485.doc -20· 1375426 或初始版本。作為說明,將MCS編碼方案以族系分類(例 如,A族(MCS.3,MCS#MCS_9) ; 2 及MCS-7);及C族(MCS_1AMCS_4))。初始版本及冗餘版本 應屬於相同MCS"族系"。例如,若將初始傳輸編碼為 MCS_7(—種_扁瑪方案),則冗餘版本亦屬於B族,例如, MCS-2 或 MCS-5。 圖钟田繪-多載波系統,其建構至少根據本發明一些實施 例之冗餘方案。如圖所示,多載波架構允許在各個載波上 採用不同技術進行不同冗餘版本之傳輸。此允許使用不同 載波(例如’不同頻率)同時發送各個冗餘版本。或者,在一 些實施例中,可在幾乎相同的時間(但是並非必須同時邊送 各個几餘版本1如,可在㈣傳輸時限内(㈣ :本開始傳輸後直至下一初始版本開始的任 : 各個冗餘版本。在—些實施實_彳如,贿系統中之—Γ 貫施例)中,傳輸時限可等於訊框之持續時間。 7區塊彻是二三個不同冗餘版本彻'他及407編 °04所不’二個不同冗餘版本403-407中之每_者在 其各自載波409-413上並行卩音而. 在 儘管版本购13中之每m大;傳輸。 者在圓中均標記為”冗餘版本”, 者:二:可將其中之—看作是”初始版本",而將其它兩 數、“始版本之冗餘版本。其它實施例可編碼任何 =㈣料(或至少在相同傳輸時限内)發送之不同冗餘 本,例如,兩個冗餘版本'三個、四個等等。 、 無線傳輸中歸因於衰滅少扭 衷減之錯誤傾向於與用於特定組境況 105485.docThe sequence of parts. Since GPRS does not provide any incremental redundancy for error recovery, there is no incremental redundancy between the four time slots 205 and it does not contain redundant information for any radio block data 203. However, incremental schemes are provided in edGE where redundant versions are transmitted at different points in time on the same carrier. Figure 2B illustrates an exemplary incremental redundancy scheme. In EDGE within the rlc/MAC protocol, incremental redundancy can be employed at layer 2. If no error is detected in the RLC/MAC block sent to the mobile station, the RLC/MAC block is passed to the next layer for processing. For example, if no error is detected in Figure 2] 8 < First Transmission 211 (RLC/MAC Block Coded by MCS-6), it is passed to the next layer without retransmission, and the block is retransmitted. 213 and 215 were not sent. In the current EDGE construction, the mobile device sends an automatic repeat request (ARQ) to the base station for the RLC/MAC block in which the negative acknowledgment is detected. In response to the ARQ, the base station retransmits the RLC/MAC block using different Mcs (modulation and coding schemes). The (these) retransmission blocks are typically reassembled with the first block' to enhance redundancy and increase the chances of recovering the error free RLC/MAC block. This situation is depicted in Figure 2B*, assuming an error is detected in the first transport block 211, causing arq to be sent back to the base station. In response to the ARQ, the same information is again transmitted in retransmission blocks 213 and 215, this time encoded in MCS-3. Since the retransmission (MCS-3) uses different modulation and coding schemes compared to the first transmission (mcs6), two new transmission blocks are used instead of one retransmission block to transmit the data. In the conventional example, the retransmission section uses the -retransmission section 2丨3 and the second retransmission section 215 to transmit the material. 105485.doc 16 1375426 Most embodiments of the present invention encode a redundancy version using a different coding scheme than the original version (e.g., 'different MCS'). This provides incremental redundancy, rather than providing redundancy by simply transmitting a redundancy version encoded in the same scheme. However, some embodiments of the present invention may encode the redundancy version using the same Mcs if it is possible to generate an error due to reception conditions associated with a particular carrier. The conventional embodiment of EDGE does not use the same RLC/MAC block as the initial transmission to retransmit the negative acknowledgement because the conventional embodiment of edge uses the same carrier transmit redundancy version as the initial version. Errors caused by the main disadvantages of the radio interface are highly likely to produce similar results with errors. There are some limitations to the choice of the coding scheme when S uses different MCS for the redundancy version. The MCS coding scheme is classified by family (eg, group a, B, or C). If a different MCS is used for the redundancy version, it should be selected from the same "family" as the MCS used in the first transmission. For example, Figure 2B depicts a Mes_6 RLC/MAC block 211 of a negative acknowledgement being retransmitted using two MCS-3 blocks 213 and 215. Since both MCS-6 and MCS-3 belong to Group A, this is suitable. Furthermore, when lower MCs are used, 'retransmission of RLC/MAC blocks may require more radio blocks than the first transmission' because the same information will be retransmitted at a lower coding rate. This is depicted in Figure 2B, which shows that the first transmission 211 being transmitted in a radio block with MCS-6 requires two radio blocks 213 and 215 due to the retransmission being performed with Mcs_3. As shown in FIG. 2B, the time interval between the first MCS_6 transmission 211 and the first-Mcs_3 transmission 213 is greater than the two rivers (: 105 485.doc _ time interval between the 5-3 transmissions 213 and 215. The transmission is redundant on the same carrier. In one of the remaining versions of EDGE, in the incremental incremental embodiment, the interval before the transmission of the redundancy version is due to the acknowledgment procedure in EDGE; for example, the ARQ being sent back to the base station. Negation in EDGE The answering procedure is based on RLe, so the relative consumption is increased in the number of instances in which the EDGE is incremented. In the case of the first transmission, the response signal (not shown) needs to be sent back to the transmitter before the retransmission is started. The duration of this time interval depends on the embodiment, and mRQ is not necessarily set based on RLC/MAC, so embodiments of the present invention are limited to this side g. Instead, the redundancy version is used as a predetermined scheme (eg, in response to the transmission) - Partial transmission, encoded or otherwise processed, is transmitted instead of in response to ARQ. In some embodiments, the redundancy version may be transmitted within the same transmission time limit as the initial version according to a predetermined transmission strategy. , but it is not necessary to time the transmission of the initial and redundant versions. In this paper, the transmission time limit ^ is any time after the initial version starts transmission until the next initial version starts, assuming the next = version Not delayed due to reception errors. In other embodiments, the transmission time limit may be defined as a predetermined value that is less than the time taken to receive the (four) transmitter after receiving the error. The transmission policy is defined as being used for A number of versions of the predetermined plan for sending the version with the initial version (4) and (4) for the initial version and - or multiple redundant redundancy schemes. Although some embodiments send after the initial version =: It is the same redundancy version of the initial version of the other 6H within the same transmission time limit as the initial version, as discussed in conjunction with Figures 3-4 and 6. 105485.doc • 18· 1375426 Figure 3 depicts one via the present invention The carrier transmission system transmits the radio block 303. This figure is an exemplary embodiment of the present invention, which is used for GERAN or other multi-carrier based architecture and based on 〇fdm (orthogonal frequency multiplication) Enhanced incremental redundancy error recovery for wireless systems introduced by the present invention. There are multiple carrier wireless transmission systems that can be used in the present invention, including multi-carrier CDMA, spread spectrum communication systems, or 〇FDM in various formats. Others can be used. A communication system, as long as it is characterized by simultaneous multi-channel use; for example, a multi-carrier system, such as multi-carrier GPRS (MC_GpRS). The present invention allows for the development of such multi-channel (e.g., multi-carrier) architectures to implement transmission structures. Improvements, for example, to improve the MC-GPRS transmission structure. Figure 3 depicts an embodiment showing a mapping to a radio block 3〇3 and then to one of the four time slots 305-311 (:/] ^ eight (: block 301, the four time slots 3 〇 5_311 belong to four parallel TDMA frames of four parallel carriers. The mobile terminal can receive the radio block 303 by monitoring all four carriers while it is waiting to transmit the RLC/MAC block. In an EDGE system, individual radio blocks are transmitted at different frequencies (frequency hopping systems), but the terminals in the conventional EDGE embodiment are only required to monitor one frequency at any particular point in time. According to the present invention, radio blocks can be wirelessly transmitted via a multi-carrier transmission system to reduce transmission time 'because the radio blocks can be in a single-duration (eg, a tight time interval, a single time slot group or an adjacent time slot) transmission. Thus, the transmission time for a particular amount of data using embodiments of the present invention is significantly faster than the transmission time of the conventional GPRS transmission structure depicted in Figure 2A. Comparing the embodiment shown in FIG. 3 with the embodiment shown in FIG. 2A, the radio block of the multi-carrier system 105485.doc 1375426 can be transmitted in parallel on several carriers as shown in FIG. 3, instead, the conventional system will be radio. The blocks are distributed over the duration of the three TDMA frames (actually three TDMA frames plus one time slot, or 25 time slots) as shown in Figure 2A. Moreover, the use of embodiments of the present invention can increase the peak transmission rate in a multi-carrier system by a factor of four because four carriers are used in parallel in this example using a single-carrier phase in the transmission structure of Figure 2A. The implementation of multi-carrier transmission of the radio block is transparent to the upper layer as long as the embodiment of the present invention does not affect SNDC (sub-network dependent aggregation protocol), LLC (logical link control) and RLC (radio link control) transmission. Parameters (for example, windows, etc.). However, MAC (Media Access Control) can be affected by embodiments that use multi-carrier transmission, and the time slot and timing structure of the GSM radio interface need not be modified. Thus, a multi-carrier redundancy improvement embodiment may be easier to introduce than a simple multi-carrier option in which four rLC/mac streams are transmitted in parallel on four parallel carriers, each of these streams The device is still transmitting in GSM according to the GPRS protocol (eg GPRS R99). Each GPRS R99 uses four parallel rlc/mac streams to make the RLC protocol more complex, since these four streams can cause unpredictable behavior of the window size and sequence number space on the receiver side. An incremental redundancy scheme according to at least some embodiments can be constructed by transmitting different redundancy versions of the same information block. By combining different versions, the receiver can improve the possibility of error recovery for proper reception. Various redundant versions can differ in modulation, coding or pUncturing schemes. However, the redundancy version and the initial transmission are usually selected from the coding scheme of the same family, 105485.doc -20· 1375426 or the initial version. By way of illustration, the MCS coding scheme is classified by family (e.g., Group A (MCS.3, MCS #MCS_9); 2 and MCS-7); and Group C (MCS_1AMCS_4)). The initial version and the redundancy version should belong to the same MCS"family". For example, if the initial transmission is encoded as MCS_7 (the _ zebra scheme), the redundancy version also belongs to the B family, for example, MCS-2 or MCS-5. Fig. Zhongtian-Multicarrier system constructed at least in accordance with a redundancy scheme of some embodiments of the present invention. As shown, the multi-carrier architecture allows different technologies to be used for different redundancy versions on each carrier. This allows for the simultaneous transmission of individual redundancy versions using different carriers (e. g. 'different frequencies). Or, in some embodiments, at almost the same time (but not necessarily at the same time, each of the several versions 1 may be sent within the (4) transmission time limit ((4): after the start of the transmission until the beginning of the next initial version: Each redundancy version. In some implementations, for example, in the bribe system, the transmission time limit can be equal to the duration of the frame. 7 blocks are two or three different redundancy versions. He and 407 ed.04 do not have 'two different redundancy versions 403-407' on each of their respective carriers 409-413 in parallel. In addition to the version purchase 13 in every m large; transmission. Marked as "redundant version" in the circle, two: you can think of it as "initial version", and other two numbers, "redundant version of the original version. Other embodiments can encode any = (iv) different redundant copies of the material (or at least within the same transmission time limit), for example, two redundancy versions 'three, four, etc.', errors in wireless transmission due to less distortion and less distortion Tend to be used with a specific group of circumstances 105485.doc

丄 j/MZO 2特定頻率相關聯。無線鏈路上之衰減傾向於具有頻率選 f…因此在不同載波上發送之不同傳輸可能經歷不同量 衰咸董子在不同载波上同時發送多個冗餘版本之實施例 使用可在圖4之多載波系統中提供頻率分集,而非如圖⑼ 之習知系統僅提供時間分集。在一些情況下,更可能因衰 ^在特定頻率内發生錯誤。根據本發明之替代實施例, :是在已知傾於衰減之頻率上發送初始版本,則在非傾於 衷減之頻率上發送的冗餘版本可以相同於初始版本之編碼 T案來編碼(例如’易受衰減之初始版本=mcs_6,而非易 '咸之几餘版本亦=MCS_6卜此實施例與使用相同族系 中之不同編碼方案對冗餘版本進行編碼的通用經驗法則相 b ;不同几餘版本之編碼相同,因此認為此實施例僅 k供冗餘而非遞增冗餘。 “可:適合操作者之特定需要或甚至適合特定情況的任何 干實施例來建構根據本發明之多載波遞增冗餘方案。例 使用可自行解碼之冗餘版本可實現使用選擇組合、軟 組合或選擇性軟组合中任一者來建構之各種實施例。選擇 組合為使接彳U僅使用所選擇使用之—個冗餘版本的程 序。軟組合為使用統計演算法或其它方法組合所有傳輸/接 收之冗餘版本以用於私租士 於錯误恢復之程序。選擇性軟組合為其 中t几餘版本破組合而其它冗餘版本被吾棄的程序。可 根據預定決策規則爽音^ 貫轭I擇使用哪個(哪些)冗餘版本。此 種規則之一種為選擇第一冗餘版本用於組合(若起初制 到錯誤)且隨後對傳輪> 9之貝訊I進行錯誤檢查。例如,可在錯 105485.doc -22- 1375426 定載波(anchor carrier)上發送第一冗餘版本(意即,待解碼 之第版本)’其中錯定載波為多載波結構之主載波。若仍 $測到錯誤’則將最初兩個冗餘版本與初始版本組合,且 完f另-輪錯誤檢驗。只要繼續_到錯誤,龍需要(且 視疋否可用)添加更多冗餘版本。接收器可組態有用以建構 -或多個選擇组合、軟組合或選擇性軟組合之邏輯,此取 決於影響傳輸/接收之情況及參數;例如載波干擾比 f線電f面待性、雜訊條件、大氣或其它干擾條件、干擾 σ、容許傳輸功率或景彡氅邙舍 '、響訊琥接收(或另一終端處之傳輪 :其它類似情況及參數。該決策可基於所量測之C/I或影塑 料-或多個载波之其它參數。使料擇組合 ^ =τ合之決策可僅受到接收器内之演算法、量ί 接:写之::。在或者’可在傳輸器端控制決策且將其傳至 D ’或可在任何中間點(例如PSTN内之助BTS' SGSN/MSC,或整個通信鏈路之兩個終 進行控制。 J町^、匕肀間點) 圖5描緣了具有可變時頻展開之 少-實施狀遞增冗餘。在印 Μ根據本發明至 糸統之習知實施實你丨φ , 只要選擇不同的MCS編碼方案用 誤而對相同資訊區塊之重新值; 3 ’則歸因於錯 室新傳輸的實降值 續時間與初始傳輸不同。例如’於(MCS别化的持 第一傳輸211之傳輸時間的持續時間短於^2B所示)處之 傳輸脱215(於咖3處)之總和二二重新 同編碼方案進行編瑪的相 f新傳輪含有以不 里之貝訊。本發明之實施例可 105485.doc •23- I3?5426 克服此缺點。因此,在以一MCS,線電區塊5〇i執行第一 傳輸之後,可在長度不大於第一傳輸之持續時間内執行以 兩個MCS-3無線電區塊進行之重新傳輪。 如圖5所示,藉由分別使用兩個獨立的載波(載波n+2及載 波η+υ經由兩個MCS.3重新傳輸(第一重新傳輸部分5〇3及 第-重新傳輸部分505)發送冗餘版本,本發明之實施例可 開拓多載波架構。本發明之實施例並非花費更長的持續時 間來進行冗餘版本之實際傳輸,而是使用多個載波來並行 ==,CS至載波數量/位置之映射可預定或藉由 次异法來確定,或者可指定於一檢查表中。 自圖5顯而易見’兩個重新傳輸區塊5〇3及5〇5 及接收。對於在終端機處已知將在一個载波或者兩心 個以上之載波上進行傳輸的實施例,行動終端機較佳連續 輕控並行載波。例如,行祕端機除了監控初始載= 二還了監控將於其上發送重新傳輸之兩個或兩個 載波。使行㈣端機連續地監控並㈣波使得本發明之實 施例可避免對頻帶外控制通道(如HSDpA^xEv挪 =需要’其指示何時發生傳輸及重新傳輸。然而,在 版本之載波映射.或可將映供冗餘 輸的首μ送u餘版本(或其=::;;所㈣後冗餘傳丄 j/MZO 2 is associated with a specific frequency. The attenuation on the wireless link tends to have a frequency selection f...so different transmissions transmitted on different carriers may experience different amounts of attenuation. The embodiment in which multiple redundant versions are simultaneously transmitted on different carriers can be used in Figure 4. Frequency diversity is provided in the carrier system, rather than the conventional system of Figure (9) providing only time diversity. In some cases, it is more likely that an error occurs within a certain frequency due to fading. According to an alternative embodiment of the invention, the initial version is transmitted on a frequency known to be degraded, and the redundancy version transmitted on the non-deprecated frequency can be encoded the same as the initial version of the coding T case ( For example, the initial version of 'susceptibility to attenuation=mcs_6, rather than the number of versions of the salty version = MCS_6. This embodiment uses a common rule of thumb for encoding redundant versions using different coding schemes in the same family; The encodings of the different versions are the same, so this embodiment is considered to be only k for redundancy rather than incremental redundancy. "Can: Any dry embodiment suitable for the specific needs of the operator or even suitable for a particular situation to construct according to the present invention Carrier incremental redundancy scheme. Various embodiments using a self-decoding redundancy version can be implemented using either a selective combination, a soft combination, or a selective soft combination. The combination is selected such that the interface U is selected only by use. A redundant version of the program is used. Soft combining is a program that combines all transmission/reception redundancy versions using statistical algorithms or other methods for private rent recovery procedures. The selective soft combination is a program in which more than a few versions are broken and other redundant versions are discarded. The redundancy version can be selected according to the predetermined decision rule. One of the rules is The first redundancy version is selected for combination (if an error is initially made) and then an error check is performed on the transmission I > 9. For example, the error carrier may be at 105485.doc -22- 1375426. Sending the first redundancy version (ie, the first version to be decoded) 'where the wrong carrier is the primary carrier of the multi-carrier structure. If still the error is detected, the first two redundancy versions are combined with the initial version. And complete the other round of error checking. As long as you continue to _ to the error, the dragon needs (and depending on whether it is available) to add more redundancy versions. The receiver can be configured to construct - or multiple selection combinations, soft combinations or selections The logic of the soft combination depends on the conditions and parameters affecting transmission/reception; for example, carrier-to-interference ratio f-line-electricity, noise conditions, atmospheric or other interference conditions, interference σ, allowable transmission power or landscape邙舍', ringing The signal is received (or another terminal and other similar conditions and parameters. The decision can be based on the measured C / I or shadow plastic - or other parameters of multiple carriers. Make the choice of combination ^ = τ The decision can only be made by the algorithm in the receiver, the quantity: write::. or 'can control the decision at the transmitter and pass it to D' or can be at any intermediate point (such as PSTN) BTS' SGSN/MSC, or two final control of the entire communication link. J town ^, daytime point) Figure 5 depicts the implementation of variable time-frequency expansion with less - implementation incremental redundancy. According to the conventional method of the present invention, the implementation of the actual 丨φ, as long as the selection of different MCS coding schemes with the wrong value of the same information block; 3 ' attributed to the real-time value of the new transmission of the wrong room Different from the initial transmission. For example, the sum of the transmissions (the duration of the transmission time of the first transmission 211 of the MCS is shorter than ^2B) is the sum of the transmissions and the coding schemes. f The new transmission wheel contains the news. Embodiments of the present invention can overcome this disadvantage by 105485.doc •23-I3?5426. Therefore, after the first transmission is performed with an MCS, the line electrical block 5〇i, the retransmission with the two MCS-3 radio blocks can be performed for a duration not longer than the first transmission. As shown in FIG. 5, by using two independent carriers (carrier n+2 and carrier η+υ, respectively, retransmission via two MCS.3s (first retransmission portion 5〇3 and first-retransmission portion 505) Sending a redundancy version, embodiments of the present invention can exploit a multi-carrier architecture. Embodiments of the present invention do not take longer durations to perform the actual transmission of the redundancy version, but instead use multiple carriers to parallel ==, CS to The mapping of the number of carriers/locations can be predetermined or determined by sub-differentiation, or can be specified in a checklist. It is apparent from Figure 5 that 'two retransmission blocks 5〇3 and 5〇5 and receive. For the terminal In the embodiment where the carrier is known to transmit on one carrier or more than two cores, the mobile terminal preferably continuously and lightly controls the parallel carrier. For example, the line terminal machine monitors the initial load = 2 The two or two carriers that are retransmitted are transmitted thereon. The line (four) end machines continuously monitor and (four) waves such that embodiments of the present invention can avoid out-of-band control channels (eg, HSDpA^xEv move=required' when it occurs Transmission and retransmission However, in the version of the subcarrier mapping. Or may be redundant for the first enantiomer μ u lose more than feed version (or after ;; :: = the mass redundancy (iv)

t *載波、多冗餘實施例,其提供用於錯誤恢復 目的之冗餘。在所示之實例中,將含使用M 訊的初始版本⑹與含相同資訊之其它兩個⑽·3傳輸603 105485.doc •24· 1375426 及605並行發送,其中傳輸603及605係用作初始版本601之 冗餘版本。如普通熟習此項技術者所知,可使用除MCs_3 及MCS-6之外的其它編碼方案。圖中所描繪之實施例可用 以為EDGE或其它類似無線服務或系統提供遞增冗餘。此等 實施例經組態以藉由在不同載波上同時且並行傳輸不同冗 餘版本而開拓多載波架構。在EDGE系統中,藉由維持如 GSM中所用之相同RLC/MAC架構而達成回溯相容性,意 即,並行發送屬於相同"族系”之區塊。在此實施例中,可 經由多载波無線系統中之不同數量的載波來傳輸各個冗餘 版本。例如,如上文所論述,可以一個MCS_9無線電區塊、 兩個MCS-6無線電區塊及四個Mcs_3無線電區塊發送呈不 同冗餘版本形態之相同量的資訊—從而分別需要使用一 個、兩個及四個並行載波eMcs_9、MCS_6&MCS_3來自相 同紅系且具有1-2-4編碼率關係。或者,冗餘版本可自不同 MCS族系編碼’只要使用位元填充來補償個別mcs族系之 不同區塊大小。 根據本發明實施例之接收器可執行選擇組合、軟組合或 硬及軟組合令任何一者。例如,以河(:3_6及?4(:!§_3發送相同 資訊之狀況需要在三個載波上傳輸三個並行無線電區塊: 一個載波用於MCS_6而另外兩個用於兩個Mcs_3無線電區 塊。此處’由於編碼率被二等分,故而需要兩倍的MU」 無線電區塊。只要接收器接收該等傳輸區塊之子集(例如, 若接收所傳輪之三個區塊中之任意兩者),則其可開拓此種 多載波架構。 105485.doc •25· 1375426 本發明之實施例可減少等待時間、增強峰值速率並且改 良覆蓋率。由於接收器可執行在多個載波上並行發送的區 鬼之..且。,因此可以較低C/I來達成相同效能,因為瞬時編 碼率較小。通常,為了充分利用EDGE之性能,需要高c/i 值。 圖7描繪一種設置初始參數以實踐本發明之至少一實施 例的方法。該方法開始於7〇1,且進入7〇3以選擇用於資訊 之初始版本及冗餘版本的調變及編碼方案。例如,待使用 EDGE無線電介面來傳輸之訊息可使用㈣κ調變且可以 霞-6編碼方案來編碼。在此實例中,相應冗餘版本則可 使用GMSK調變進行Mcs_3編碼。然而,本發明並不褐限於 此等實例,而是可使用普通熟習此項技術者所知的編碼方 案八匕、.且σ此外,無需在每次傳輸訊息時選擇調變及 編碼方案。而是可使用預設調變及編碼方案,或可將預定 調變及編碼方案用於特定組之情況。對於選擇編碼方案之 狀況(作為預設方案或用於特定通信),較佳使编碼方案選擇 適合當時條件。例如,若接收條件極佳,則可 ::餘方/(意即,可將佔據最小資源之冗餘方案確定為5 適口^在f一方面,若接收條件不良且錯誤率處於相對較 ::=可選擇較為穩固的冗餘方案,其可能使用相對 更多的資源以作為提供更佳錯誤恢復能力之折衷。例如, -可提供極穩固結果之遞增冗餘計劃為將資訊之初始版本 編碼為MCS-9傳輸,且使第一 成而第-冗^由兩個MCS·6傳輪組 版本由四個⑽·3傳輸組成。除初始訊息(初 105485.doc -26· 1375426 始版本)之外’以不同格式編碼的兩個獨立冗餘版本提供極 佳的錯誤恢復能力。 一旦在方塊703中選定編碼方案,則該方法進入7〇5,其 中確定傳輸策略。本文所用之術語"傳輸策略"包括用於發 送各個傳輸/重新傳輸之相對時序。例如,可首先發送資訊 之初始版本(例如,圖5之501),且隨後同時發送一或多個^ 餘版本(例如’圖5之5G3及5〇5)。在至少—實施例中,發送 第二冗餘版本。此可在發送第—冗餘版本之同時進行(例 如,與503及505相同之時限),或可隨後執行。或者,可同 時發送所有版本(例如,初始版本及所有冗餘版本)(例如, 圓4或圖6)。在本發明之至少―實施例中,可預定傳輸策 略’從而使得接收器瞭解在何時及何處監控第二載波,或 同時監控兩個或兩偏上·,以便接收冗餘版本。預定 傳輸策略可避免對習知系統中所要求之頻帶外訊號傳輸的 需要。 • $塊7〇3中之編碼方案選擇及方塊705中之傳輸策略預定 可彼此影響,且可先後執行或以任何順序來執行。例如, 可在選擇編碼方案(7〇3)之前選擇傳輸策略(Μ5)。可在初始 升麼⑽P-UP)階段或準備時期中執行此等行為’且可設定 為預設條件。隨後視需要可更改編碼方案及傳輸策略之選 擇^更適合當前條件,例如,接收條件、通信訊務格式及 排私收入考慮以及其它各種類似類型的條件,例如取決 於各種類型之内容的時序及品質考慮。例如,語音之傳輸 需要即時錯誤恢復(或極小的錯誤恢復延遲),而内容之傳輸 105485.doc •27- 1375426 可接叉較小延遲,例如網際網路瀏覽或電子郵件應用。 一旦選定編碼方案及傳輸策略,則該方法進入707以選擇 普通熟習此項技術者所知的其它任何通信協定。此等協定 可包括用於供應各種網路設備(例如,圖1A2Sgsn BSC/BTS 104及/或行動單元12〇)之參數,或建立或拆卸通 信鏈路所需之參數。一旦在方塊7〇7中選定通信協定,則該 方法進入709’該方法於此處結束。在7〇9中可儲存在7〇ι至 707中所選之各個參數以備將來使用,且傳送至需要這些參 數的系統之彼等部分。參數可儲存於圖1A所示之sgsn 之記憶體108中,或儲存於系統内之其它位置。 圖8描繪了-種用以實踐本發明至少—實施例以為無線 通信系統提供錯誤恢復之方法。在方塊8〇1中,如結合圖7 所述設定初始參數。一旦設定了初始參數則該方法進入 803’其中確定是否存在待傳輸之資訊。若不存在待傳輸之 資訊,則該方法根據"否”分支自8〇3進入方塊8〇5以等待訊 息’且隨後返回803以再切定是否存在待傳輸之訊息。在 方塊803中,若確定存在待傳輸之資訊,則該方法根據”是” 分支自803進人807以對待傳輸之資訊進行編碼。在一此實 施例中,即使已痛定存在待傳輸之資訊且該方法已進入方 塊8〇7或之後步驟以處理資訊,該系統亦根據方塊805繼.續 監控待傳輸之額外訊息。意即,可在該系統繼續於方塊8〇5 :監控待傳輸之新訊息時,同時進行一些處理待傳輸之訊 息的步驟。在方塊807中,如圖7 * π -_ 如圖7中所不,根據先前於初始 階段所界定之協定對訊息進行編碼。 105485.doc -28· 1375426 在一例示性實施例中,可使用一個MCS-9傳輸來編碼訊 息之初始版本。一旦訊息之初始版本已被編碼,則該方法 進入809以編碼一或多個冗餘版本。例如,假設例示性實施 例將一個MCS-9區塊用於資訊之初始版本,則第_冗餘版 本可由兩個MCS-6傳輸組成,而第二冗餘版本可由四個 MCS-3傳輸組成。應注意,本文所述之大多數實施例涉及 :以處理冗餘版本之動作(方塊__815),其係回應於所獲 φ 彳于及編碼之初始版本,而非回應於接收任何種類之發送冗 餘版本的頻帶外訊號。當系統因於方塊8〇3中獲得待發送之 資訊而對一或多個冗餘版本進行編碼以待傳輸時,冗餘版 本可被看作是回應於初始版本之傳輸而被傳輸。此(例如) 自圖4可顯而易見,其中同時發送所有版本。在其中冗餘版 本並非與初始版本同時發送而是在相同傳輸時限内|意 即,在初始版本傳輸開始之後直至下一初始版本開始的時 間)發送之實施例中,冗餘版本是回應於初始版本之傳輸而 • 發送。在一些實施例(例如,GSM系統中之一些實施例)中, 傳輸時限將等於訊框之持續Μ。—旦冗餘版本已被編 碼’則該方法進入方塊8 11。 在方塊8】丨中,可根據所使用之通信方案或者符合系統之 協定或規格來選擇載波。一旦選定用於初始版本及一或多 If冗餘版本之載波,則該方法進入813,其中同時或以某種 父錯方式傳輸各個版本’例如,根據結合圖36所論述之例 不性實施例。如上所述,冗餘版本之傳輸的執行可為回應 於正傳輸之初始版本,而非回應於接收到任何種類之具有 105485.doc •29- 1375426 資料失敗資訊或發送冗餘版本之指令的頻帶外訊號。該初 始版本及該(該等)冗餘版本通常係自固定基地台(例如,圖 1A之BSC/BTS HH)傳輸至行動單元(例如,12())。因此方 塊謝-813通常發生在固定„_咖中,而方塊叫及圖 9之方塊)通常發生在行動單元中。在—些實施例中, 行動單元可傳輸-初始版本及—或多個冗餘版本。發生於 方塊813中之訊息傳輸可為單-傳輸(例如,SMS訊息)或可 為大量傳輸中之-者(例如,作為正在進行的通話之部分而 傳輸的語音位元)。對於各個初始傳輸及相關冗餘版本,方 塊⑴之傳輸之後可為方塊815,其心對各個傳輸進行解 碼,且若福測到錯誤則將該等傳輸組合。各個實施例可使 用選擇組合、軟組合及/或選擇性軟組合中任何一者,此取 2於正建構之方案及當時接收條件。傳輸-旦被解碼且組 口 乂產生所接收之傳輸的組合版本,則該方法進入方塊 :17。在一替代實施例中,在通信鏈路斷開之前,方塊m ㈣行-次(或根本不執朴在—些實施例中或在特定情況 不執行方塊817,而是該方法直接自方塊815進入8〇5。 更在817中’確定是否存在保證冗餘方案或其態樣之變化或 ^之條件。例如’若現有冗餘方案僅要求一個冗餘版本 二誤率仍處於不可接受之高水平,則該等條件可保證 y 私 、案以傳輸與初始版本相關之兩個或兩個以上的冗 之改變冗餘方案之另一實例可呈現為改變冗餘 〈組合古、主 合,作a、之形態。例如,若現有冗餘方案係使用選擇組 ^但是錯誤率高於預定臨限值,則可將該方案變為軟組 1 〇5485.d〇c 1375426 合’但是錯誤率高於預定臨限值,則可將該方案變為軟组 σ或選擇性軟組合,從而在當時無線電介面條件防止錯誤 恢復時嘗試提供更佳的錯誤恢復。方塊817可涉及改變^ 以避免歸因於衰減之干擾及/或傳輸錯誤,其可能與特定條 件組中之特定頻率相關。由於在不同載波上發送的不同傳 輸可經焚不同量之衰減,因此載波頻率中之變化可改良錯 誤恢復結果。此外,方塊817可包括歸因於新版本之軟體、 下載之修補程式、更新而產生的任何變化,以將對電信規 格之修改或其它類似類型的定期維護併入該系統。一旦完 成817且一旦已建構對冗餘方案之任何變化或更新,該方法 隨即返回805以等待下一待傳輸之訊息。 圖9描繪一用於解碼及組合根據至少一實施例之冗餘版 本的方法之方塊圖。通常,此等行為發生在其中建構有本 發明之實施例的行動單元或其它接收器中。圖9中所描繪之 方塊提供關於可發生於上一圖式之方塊815中的解碼、組合 及錯誤恢復的一些細節。該方法開始於方塊9(Η,其中執行 錯誤檢驗以確定所傳輸之資訊之初始版本是否含有錯誤。 錯誤檢驗可涉及該系統、系統操作者所指定之或於行動單 元本身内所執行之任何種類的常用程式或演算法。例如, 錯誤偵測可涉及諸如總和檢查碼之冗餘檢驗、循環冗餘檢 驗(CRC)、訊框檢驗序列(FCS)或錯誤校正碼(ECC)(例如, 漢明碼(Hamming codes)、瑞得-赛勒曼碼(Reed_s〇1〇m〇n code)、瑞得-米勒碼(Ree£}-Muller code)、二進位戈萊碼 (Binary Golay code) ' 卷積碼(conv〇iutj〇nai.c0(je)、涡輪石馬 105485.doc -31 - 1375426 案。可將普通熟習此項技術者所知此等或其它類似常用程 式用於錯誤恢復方案。可在方物1 +採用不同類型的動作 以確定是否存在錯誤,例如執行通道量測或接收之功率量 測,肯定或否定ACK(應答)、行動單元接收品質之隱式估= 或普通熟習此項技術者所知之對接收中之錯誤的任何盆它 類似例行程式或測試。或者,若已知接收條件低於敎水 準,則可假設所接收之傳輸含有錯誤,從而利用根據本發 # 明實施例而傳輸之冗餘版本,直至已知接收條件經改良之 時刻為止。-旦於方塊901中完成錯誤读測,該方法隨即進 入決策方塊903。若在傳輸中未偵測到錯誤,則該方法根據 ’’否"分支自方塊903進入方塊9〇5,以等待另一傳輸且隨後 返回方塊901。在-些實施例中,可指定預設條件,其中將 一或多個冗餘版本與初始版本組合(”是"分支)而不考慮是 否已㈣到錯誤。在❹丨到錯誤之狀況下,該方法根據"是" 分支自方塊903進入方塊907以確定是否待執行選擇組合。 • 彳將錯誤恢復方法預定為預設選擇組合、選擇性軟組 合、軟組合或此等錯誤恢復常用程式之組合。或者,錯誤 恢復之類型可變化或者可被選擇以最佳地適合該等條件, 其取決於接故條件、當時訊務條件、經濟或其它用於選擇 錯誤恢復類型之類似參數。在任何狀況下,若於方塊9〇7處 將使用選擇級合,則該方法根據,,是,,分支進人方塊909,其 中選擇訊息之冗餘版本以用於錯誤恢復。若在方塊9〇7處確 定不將選擇組合用於錯誤恢復,則該方法自9〇7進入9ιι, 在911中確定是否將使用選擇性軟組合。若在方塊9ιι處確 105485.doc •32· 1375426 在911中確定是否將使用選擇性軟組合。若在方塊9ιι處確 疋選擇性軟組合將用於錯誤恢復,則該方法經由,•是"分支 自911進入913,以選擇且軟組合一或多個冗餘版本,從而 可執行選擇性軟組合錯誤恢復。若選擇性軟組合將不被使 用,則該方法根據”否"分支自方塊9丨丨進入方塊9丨5。若確 定選擇組合(907)及選擇性軟組合(911)將不被使用,則根據 方塊9 1 5可將可用冗餘版本軟組合以用於錯誤恢復。A t* carrier, multiple redundancy embodiment that provides redundancy for error recovery purposes. In the example shown, the initial version (6) containing the M message is transmitted in parallel with the other two (10)·3 transmissions 603 105485.doc • 24· 1375426 and 605 containing the same information, with transmissions 603 and 605 being used as initials. Redundancy version of version 601. Other coding schemes other than MCs_3 and MCS-6 can be used as known to those skilled in the art. The embodiments depicted in the figures can be used to provide incremental redundancy for EDGE or other similar wireless services or systems. These embodiments are configured to exploit a multi-carrier architecture by transmitting different redundant versions simultaneously and in parallel on different carriers. In the EDGE system, backtracking compatibility is achieved by maintaining the same RLC/MAC architecture as used in GSM, meaning that blocks belonging to the same "family" are transmitted in parallel. In this embodiment, Different numbers of carriers in a carrier radio system transmit individual redundancy versions. For example, as discussed above, one MCS_9 radio block, two MCS-6 radio blocks, and four Mcs_3 radio blocks can be transmitted with different redundancy. The same amount of information in the version form—thereby using one, two, and four parallel carriers eMcs_9, MCS_6& MCS_3 from the same red system and having a 1-2-4 encoding rate relationship. Alternatively, the redundancy version can be derived from different MCS. Family code 'as long as bit stuffing is used to compensate for different block sizes of individual mcs families. The receiver according to an embodiment of the invention may perform either a combination of choices, a soft combination or a combination of hard and soft combinations. For example, by river (:3_6 and ?4(:!§_3) The same information is required to transmit three parallel radio blocks on three carriers: one carrier for MCS_6 and two for two Mcs_3 wireless Electrical block. Here, 'because the coding rate is halved, twice the MU" radio block is required. As long as the receiver receives a subset of the transmission blocks (for example, if the three blocks of the transmitted round are received) Any of the two) can exploit such a multi-carrier architecture. 105485.doc • 25· 1375426 Embodiments of the present invention can reduce latency, enhance peak rates, and improve coverage. Since the receiver can be implemented in multiple The area is transmitted in parallel on the carrier. Therefore, the same performance can be achieved with lower C/I because the instantaneous coding rate is smaller. Generally, in order to fully utilize the performance of EDGE, a high c/i value is required. A method of setting initial parameters to practice at least one embodiment of the present invention is depicted. The method begins at 7〇1 and enters 7〇3 to select a modulation and coding scheme for the initial version and the redundancy version of the information. The message to be transmitted using the EDGE radio interface can be encoded using (4) κ modulation and can be encoded by Xia-6 coding scheme. In this example, the corresponding redundancy version can be encoded by McS_3 using GMSK modulation. It is not limited to these examples, but a coding scheme known to those skilled in the art can be used, and σ, in addition, there is no need to select a modulation and coding scheme each time a message is transmitted. Preset the modulation and coding scheme, or use the predetermined modulation and coding scheme for a specific group. For the selection of the coding scheme (as a preset scheme or for a specific communication), it is better to make the coding scheme suitable. Conditions at the time. For example, if the receiving conditions are excellent, then:: remainder / (that is, the redundancy scheme occupying the minimum resource can be determined as 5 palatable ^ on the one hand, if the receiving condition is bad and the error rate is relative The comparison::= can choose a more robust redundancy scheme, which may use relatively more resources as a compromise to provide better error resilience. For example, - an incremental redundancy plan that provides a very robust result is to encode the initial version of the information as an MCS-9 transmission, and to make the first and the second redundancy by the two MCS·6 transmission group versions by four (10) · 3 transmission components. In addition to the initial message (initial version 105485.doc -26· 1375426), two independent redundancy versions encoded in different formats provide excellent error recovery. Once the coding scheme is selected in block 703, the method proceeds to 7〇5, where the transmission strategy is determined. The term "transmission strategy" as used herein includes the relative timing for transmitting individual transmissions/retransmissions. For example, an initial version of the information (e.g., 501 of Figure 5) may be sent first, and then one or more versions (e.g., '5G3 and 5〇5 of Figure 5) may be simultaneously transmitted. In at least the embodiment, the second redundancy version is transmitted. This can be done while the first redundancy version is being transmitted (e. g., the same time period as 503 and 505), or can be subsequently executed. Alternatively, all versions (for example, the initial version and all redundancy versions) can be sent at the same time (for example, Circle 4 or Figure 6). In at least one embodiment of the invention, the transmission policy can be predetermined such that the receiver knows when and where to monitor the second carrier, or simultaneously monitors two or two on-off to receive the redundancy version. The predetermined transmission strategy avoids the need for out-of-band signal transmission as required in conventional systems. • The coding scheme selection in $block 7〇3 and the transmission strategy in block 705 are predetermined to affect each other and may be performed sequentially or in any order. For example, the transmission strategy (Μ5) can be selected before the coding scheme (7〇3) is selected. These behaviors can be performed during the initial (10) P-UP) phase or preparation period and can be set as a preset condition. The selection of the coding scheme and transmission strategy can then be changed as needed. It is more suitable for current conditions, such as reception conditions, communication traffic formats and private income considerations, and various other similar types of conditions, such as timing depending on various types of content and Quality considerations. For example, voice transmission requires immediate error recovery (or minimal error recovery delay), while content transmission 105485.doc • 27-1375426 can be used with small delays, such as Internet browsing or email applications. Once the coding scheme and transmission strategy are selected, the method proceeds to 707 to select any other communication protocol known to those skilled in the art. Such agreements may include parameters for provisioning various network devices (e.g., Figure 1A2 Sgsn BSC/BTS 104 and/or mobile unit 12A), or parameters required to establish or tear down a communication link. Once the communication protocol is selected in block 7-7, the method proceeds to 709' where the method ends. The parameters selected in 7〇ι to 707 can be stored in 7〇9 for future use and transmitted to those parts of the system that require these parameters. The parameters can be stored in the memory 108 of the sgsn shown in Figure 1A or stored elsewhere in the system. Figure 8 depicts a method for practicing at least an embodiment of the present invention to provide error recovery for a wireless communication system. In block 8.1, the initial parameters are set as described in connection with FIG. Once the initial parameters are set, the method proceeds to 803' where it is determined if there is information to be transmitted. If there is no information to be transmitted, the method proceeds to block 8〇5 from 8〇3 to wait for the message according to the "no" branch and then returns to 803 to determine whether there is a message to be transmitted. In block 803, If it is determined that there is information to be transmitted, the method encodes the information to be transmitted according to the "yes" branch from 803. In this embodiment, even if the information to be transmitted has been determined and the method has entered Block 8〇7 or later steps to process the information, and the system continues to monitor the additional messages to be transmitted according to block 805. That is, the system can continue at block 8〇5: monitoring the new message to be transmitted while simultaneously A number of steps are taken to process the message to be transmitted. In block 807, as shown in Figure 7, * _ -_, as in Figure 7, the message is encoded according to the protocol previously defined in the initial phase. 105485.doc -28· 1375426 In an exemplary embodiment, an initial version of the message may be encoded using an MCS-9 transmission. Once the initial version of the message has been encoded, the method proceeds to 809 to encode one or more redundant versions. Assuming an exemplary embodiment uses one MCS-9 block for the initial version of the information, the first redundancy version may consist of two MCS-6 transmissions and the second redundancy version may consist of four MCS-3 transmissions. Note that most of the embodiments described herein relate to the act of processing a redundancy version (block __815), which is in response to the initial version of the obtained φ 及 and encoding, rather than responding to receiving any kind of transmission redundancy. The out-of-band signal of the remaining version. When the system encodes one or more redundancy versions for transmission based on the information to be transmitted in block 8.3, the redundancy version can be regarded as responding to the initial version. This is transmitted, for example, from Figure 4, where all versions are sent simultaneously. In which the redundancy version is not sent simultaneously with the initial version but within the same transmission time limit | that is, after the initial version transmission begins until In the embodiment of the time when the next initial version begins, the redundancy version is transmitted in response to the transmission of the initial version. In some embodiments (eg, some embodiments in the GSM system) The transmission time limit will be equal to the duration of the frame. If the redundancy version has been encoded, then the method proceeds to block 8 11. In block 8 丨, depending on the communication scheme used or the protocol or specification of the system. The carrier is selected. Once the carrier for the initial version and the one or more If redundancy versions is selected, the method proceeds to 813 where the versions are transmitted simultaneously or in some parental error manner 'e.g., according to the example discussed in connection with FIG. Embodiments. As described above, the transmission of the redundancy version may be performed in response to the initial version of the positive transmission, rather than in response to receiving any kind of 105485.doc •29-1375426 data failure information or sending a redundancy version. The out-of-band signal of the instruction. The initial version and the (these) redundancy versions are typically transmitted from a fixed base station (e.g., BSC/BTS HH of Figure 1A) to a mobile unit (e.g., 12()). Thus the square X-813 usually occurs in fixed __ coffee, and the block is called the block of Figure 9. Usually occurs in the mobile unit. In some embodiments, the mobile unit can transmit - the initial version and - or multiple redundancy The remaining version. The message transmission occurring in block 813 can be a single-transport (e.g., SMS message) or can be a large number of transmissions (e.g., voice bits transmitted as part of an ongoing call). Each initial transmission and associated redundancy version, block (1) may be transmitted after block 815, the heart of which decodes each transmission, and if the error is detected, the transmissions are combined. Various embodiments may use selective combination, soft combination And/or any of the selective soft combinations, which take the 2 construction scheme and the current reception conditions. The transmission is decoded and the group interface generates a combined version of the received transmission, then the method enters the block: 17 In an alternate embodiment, block m (four) rows-times (or not at all in some embodiments or in a particular case does not perform block 817 before the communication link is broken, but the method is directly from Block 815 enters 8〇5. Further in 817, 'determines whether there is a condition for guaranteeing a redundancy scheme or a change or a condition thereof. For example, if the existing redundancy scheme requires only one redundancy version 2, the error rate is still unacceptable. At a high level, the conditions may ensure that another instance of two or more redundant redundancy schemes associated with the initial version may be presented as a change redundancy (combination ancient, primary For example, if the existing redundancy scheme uses the selection group ^ but the error rate is higher than the predetermined threshold, the scheme can be changed to soft group 1 〇 5485.d〇c 1375426 'but error If the rate is above a predetermined threshold, the scheme can be changed to a soft group σ or a selective soft combination to attempt to provide better error recovery when the radio interface condition prevents error recovery at that time. Block 817 can involve changing ^ to avoid Due to attenuation and/or transmission errors due to attenuation, it may be related to a particular frequency in a particular set of conditions. Since different transmissions transmitted on different carriers may be attenuated by different amounts of attenuation, the variation in carrier frequency The error recovery results may be improved. In addition, block 817 may include any changes resulting from the new version of the software, downloaded patches, updates, to incorporate modifications to the telecommunications specifications or other similar types of periodic maintenance into the system. Once 817 is completed and any changes or updates to the redundancy scheme have been constructed, the method then returns to 805 to await the next message to be transmitted. Figure 9 depicts a redundancy version for decoding and combining in accordance with at least one embodiment. A block diagram of the method. Typically, such behavior occurs in a mobile unit or other receiver in which embodiments of the present invention are constructed. The blocks depicted in Figure 9 provide information regarding blocks 815 that may occur in the previous figure. Some details of decoding, combining, and error recovery. The method begins at block 9 (where, an error check is performed to determine if the initial version of the transmitted information contains an error. Error checking can involve any kind of common program or algorithm that is specified by the system, by the system operator, or by the action unit itself. For example, error detection may involve redundancy checks such as sum check codes, cyclic redundancy check (CRC), frame check sequence (FCS), or error correction code (ECC) (eg, Hamming codes, Ryder) - Reed_s〇1〇m〇n code, Ree£}-Muller code, Binary Golay code' convolutional code (conv〇iutj〇 Nai.c0(je), Turbo Shima 105485.doc -31 - 1375426. This or other similar programs known to those skilled in the art can be used for error recovery schemes. Different types of actions to determine if there are errors, such as performing channel measurements or received power measurements, positive or negative ACKs (answers), implicit estimates of mobile unit reception quality = or known to those skilled in the art. Any basin that receives an error is similar to the stroke or test. Or, if the reception condition is known to be below the level, it can be assumed that the received transmission contains an error, thereby utilizing the redundancy transmitted according to the embodiment of the present invention. The remaining versions until the known receiving conditions have been improved At the moment, if the error reading is completed in block 901, the method then proceeds to decision block 903. If no error is detected during transmission, the method proceeds to block 9 〇 5 according to the ''No" branch from block 903. Waiting for another transmission and then returning to block 901. In some embodiments, a preset condition may be specified in which one or more redundancy versions are combined with the initial version (" is "branch) regardless of whether (d) to the error. In the case of an error, the method proceeds to "is" branches from block 903 to block 907 to determine if the selection combination is to be executed. • 预定 the error recovery method is predetermined as a preset selection combination, selection a soft combination, a soft combination, or a combination of such error recovery common programs. Alternatively, the type of error recovery may be changed or may be selected to best suit the conditions, depending on the condition of the termination, the condition of the transaction at the time, and the economy. Or other similar parameters used to select the type of error recovery. In any case, if the selection cascading will be used at block 9〇7, then the method is based on, yes,, branching into the person Block 909, wherein a redundant version of the message is selected for error recovery. If it is determined at block 9〇7 that the selection combination is not used for error recovery, then the method enters 9 ι from 9〇7, and determines whether it will be used in 911. Selective soft combination. If it is 105485.doc •32· 1375426 at block 9 ι, determine if selective soft combination will be used in 911. If it is confirmed at block 9 ι, the selective soft combination will be used for error recovery, then the method The "• is" branch enters 913 from 911 to select and softly combine one or more redundancy versions to perform selective soft combination error recovery. If the selective soft combination will not be used, then the method proceeds to block 9丨5 according to the "No" branch. If it is determined that the selection combination (907) and the selective soft combination (911) will not be used, The available redundancy versions can then be soft combined for error recovery according to block 915.

一選疋一種錯誤恢復技術(例如,選擇組合、選擇性軟 組合、軟組合或其它類似錯誤恢復技術),則該方法進入方 塊917且對所選之冗餘版本或所選之冗餘版本之軟組合進 行解碼。一旦前述程序結束,則該方法進入919以執行錯誤 恢復常用程式。方塊919可能需要類似於在方塊9〇ι(或上一 圖式中之方塊815)中之初始版本錯誤檢驗中所執行之行 為,。在-些實施例中,若方塊919之錯誤恢復失敗,則該方 法返回901以進-步處理該資料。此描繪成99與撕之間的 虛線。例如,在第一輪中,可能已根據方塊907選擇(或預 設)了選擇組合。在第二輪中’於方塊9〇7中可將第二冗餘 版本與初始版本及第一冗餘版本組合,或者可在第二輪或 後輪中選擇軟組合(915)或選擇性組合(911)。 提供該等圖式係用以解釋及實現本發明,Μ以說明本 發明之原理。圖式中之方法方塊圖中所示的用以實踐本發 明之行為可以不同於圖式中所示之順序來執行。例如,在 圖8中’載波之選擇(811)可在編碼冗餘版本(_)之前發 生。此外,普通熟習此項技術者應理解,可使用多種不同 105485.doc •33- 1375426 技術及技藝中之任何一者來表示資訊及訊號。例如,可藉 由電壓、電流、電磁波、磁場或磁性粒子、光場或光學粒 子或其任意組合來表示上文描述中各處可能參考之資料、 才曰令、命令、資訊、訊號、位元、符號及瑪片⑽㈣。 普通热習此項技術者亦應瞭解,結合本文所揭示之實施 例所把述之各種說明性邏輯區塊、模組、電路及演算法常 用程式可破建構為電子硬體、電腦軟體、勒體或其組合。 為了清晰說明硬體及軟體之此可交換性,上文通常就各個 «兒月I1生組#、區i鬼、模、组、電路及步驟之功能性來對其進 打描述。此功能性是建構為硬體還是軟體取決於特定應用 及施加於整個系統之設計限制條件。普通熟習此項技術之 從業者將知曉以用於各個特定應用之各種方式來建構所述 之功能性’但是此等建構決策不應理解為導致對本發明範 疇之背離。 結合本文所揭示之實施例而描述的各個說明性邏輯區 鬼模組及電路可藉由經設計以執行本文所述功能之通用 處理器、數位訊號處理器(Dsp) '特殊應用積體電路 (ASIC)、%可程式化閘陣列(FpGA)或其它可程式化邏輯設 備、離散閘或電晶體邏輯、離散硬體組件或其任意組合來 建構或執行。通用處理器可為微處理器,但是該處理器亦 可為任何習知處理器、控制器、微控制器、電腦或狀態機。 處理器亦可被建構為計算設備之組合,例如DSp與微處理 器組合、複數個微處理器、與Dsp核心結合的一或多個微 處理器或任何其它此種組態。 105485.doc •34- 1375426 結合本文所揭示之實施例而描述之方法、常用程式或演 算法之行為可直接實施於硬體中、由處理器執行之軟體模 組中或二者之組合中。軟體模組可存在於RAM記憶體、快 門"己隐體、ROM記憶體、EPR0M記憶體、ΕΕρκ〇Μκ憶體、 暫存器、硬碟、可移除碟、CD-ROM或此項技術中已知之 其它形式的儲存媒體中。例示性儲存媒體以一方式耦接至 處理器,以使得該處理器可自該儲存媒體讀取資訊並將資 訊寫入其中。或者,儲存媒體可整合入處理器。處理器及 儲存媒體可存在於ASIC中。該ASIC可存在於使用者終端機 中或者,處理器及儲存媒體可作為離散組件存在於使用 者終端機中。 尽通熟習此項技術者將易於瞭解對所說明及論述之實施 例之各種修改,且本文所界定之原理可應用於其它實施例 中而不偏離本發明之精神及範疇。因而,本發明並不侷限 於本文所示之實施例,而是符合本文所揭示之原理及新穎 特徵之最廣泛之範疇。 在對本發明各個實施例之描述中,為說明及簡潔起見而 使用了特定術語。然而,本發明並不意欲侷限於如此選擇 之特定術語。吾人希望各個特定術語包括熟習此項技術者 所知之均等術語以及以類似方式運行以實現類似目的之所 有技術均等物。因此,該描述並不意欲限制本發明。吾人 希望本發明於隨附申請專利範圍之範疇内受到廣泛保護。 【圖式簡單說明】 圖1A描繪根據至少一個實施例的支持行動台及用戶端設 105485.doc •35· I375426 備之無線網路架構; 圖1B描繪無線網路中的基地台及無線行動單元之細節; 圖2A描繪配置入時槽及訊框之GSM結構中的資訊之 RLC/MAC區塊; 圖2B說明一例示性遞增冗餘方案.; 圖3描繪經由根據至少一個實施例的多載波傳輸系統傳 輪的無線電區塊; 圖4為^載波系統,其建構根據至少一個實施例的遞增 冗餘方案; 圖續具有可變時頻展開印代以丨叫)之 EDGE中的根據至少一個實施例的遞增冗餘; 圖6描繪根據至少一個實施例的多載波多冗餘,其提供用 於錯誤恢復目的之冗餘; 圖7描繪一設置初始參數以實施至少一個實施例的方法; 圖8撝繪一根據至少一個實施例的提供用於無線通信系 統之錯誤恢復的方法;及 圖9描繪根據至少一個實施例的解碼及組合冗餘版本之 方法之方塊圖。 【主要元件符號說明】 101 處理器 102 核心網路控制器(SGSN) 103 記憶體 104 基地台(BSC/BTS) 105 編碼器/解碼器 I05485.doc -36, 1375426 106 處理器 107 處理器 108 記憶體 109 記憶體 110 無線網路 111 編碼器/解碼器 112 蜂巢式電話' 113 天線 114 個人數位助理(PDA) 115 接收器區 116 尋呼機 118 導航設備 120 無線行動單元 122 音樂或視訊内容下载單元 124 無線遊戲設備 126 盤存單元 128 無線連接之電腦 130 網路 201 RLC/MAC 203 無線電區塊 205 時槽 207 TDMA訊框 211 第一傳輸 213 重新傳輸區塊 105485.doc •37- 1375426 301 303 305 307 309 311 401 403Selecting an error recovery technique (eg, selection combination, selective soft combination, soft combination, or other similar error recovery technique), the method proceeds to block 917 and to the selected redundancy version or selected redundancy version. The soft combination is decoded. Once the aforementioned program ends, the method proceeds to 919 to execute the error recovery common program. Block 919 may require a behavior similar to that performed in the initial version error check in block 9〇 (or block 815 in the previous figure). In some embodiments, if the error recovery of block 919 fails, the method returns 901 to process the data in a further step. This is depicted as a dashed line between 99 and tear. For example, in the first round, the selection combination may have been selected (or preset) according to block 907. In the second round, the second redundancy version may be combined with the initial version and the first redundancy version in block 9〇7, or the soft combination (915) or selective combination may be selected in the second or rear wheel. (911). The drawings are provided to explain and explain the present invention, and to illustrate the principles of the invention. The acts shown in the block diagrams of the drawings for practicing the invention may be performed in a different order than that shown in the drawings. For example, the selection of 'carriers' (811) in Figure 8 can occur before the coded redundancy version (_). In addition, those of ordinary skill in the art will appreciate that information and signals may be represented using any of a variety of different techniques and techniques. For example, the data, the command, the command, the information, the signal, and the bit that may be referred to in the above description may be represented by voltage, current, electromagnetic wave, magnetic field or magnetic particle, light field or optical particle or any combination thereof. , symbols and mats (10) (four). Those skilled in the art should also understand that the various illustrative logic blocks, modules, circuits, and algorithms commonly used in conjunction with the embodiments disclosed herein can be broken into electronic hardware, computer software, and Le. Body or a combination thereof. In order to clearly illustrate the interchangeability of hardware and software, the above is generally described in terms of the functionality of each of the «Isue I1 group, area i ghosts, modules, groups, circuits and steps. Whether this functionality is constructed as hardware or software depends on the particular application and design constraints imposed on the overall system. Those skilled in the art will recognize that the described functionality may be constructed in various ways for the particular application of the present invention. However, such construction decisions are not to be construed as a departure from the scope of the present invention. The various illustrative logic blocks and circuits described in connection with the embodiments disclosed herein may be implemented by a general purpose processor, digital signal processor (Dsp) 'special application integrated circuit designed to perform the functions described herein ( ASIC), % Programmable Gate Array (FpGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof, constructed or executed. A general purpose processor may be a microprocessor, but the processor can be any conventional processor, controller, microcontroller, computer or state machine. The processor can also be constructed as a combination of computing devices, such as a combination of a DSp and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a Dsp core, or any other such configuration. 105485.doc • 34-1375426 The behavior of methods, routines, or algorithms described in connection with the embodiments disclosed herein can be implemented directly in hardware, in a software module executed by a processor, or in a combination of both. The software module can exist in the RAM memory, the shutter, the hidden body, the ROM memory, the EPR memory, the 〇Μρκ〇Μκ memory, the scratchpad, the hard disk, the removable disk, the CD-ROM or the technology. Other forms of storage media are known. The exemplary storage medium is coupled to the processor in a manner such that the processor can read information from the storage medium and write the information therein. Alternatively, the storage medium can be integrated into the processor. The processor and storage medium can reside in the ASIC. The ASIC may reside in the user terminal or the processor and storage medium may reside as discrete components in the user terminal. Various modifications to the described and described embodiments are readily apparent to those skilled in the art, and the principles defined herein may be applied to other embodiments without departing from the spirit and scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein, but rather In describing the various embodiments of the invention, specific terminology is used for the purposes of illustration and description. However, the invention is not intended to be limited to the specific terms so selected. Each of the specific terms is intended to include equivalent terms that are known to those skilled in the art, and all technical equivalents that operate in a similar manner to achieve a similar purpose. Therefore, the description is not intended to limit the invention. We intend that the present invention is widely protected within the scope of the accompanying claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A depicts a wireless network architecture supporting a mobile station and a client device in accordance with at least one embodiment. FIG. 1B depicts a base station and a wireless mobile unit in a wireless network. 2A depicts an RLC/MAC block that configures information in the GSM structure of the time slot and frame; FIG. 2B illustrates an exemplary incremental redundancy scheme. FIG. 3 depicts a multicarrier via in accordance with at least one embodiment. a radio block transmitting a system pass; FIG. 4 is a carrier system constructed in accordance with at least one embodiment of the incremental redundancy scheme; FIG. 4 is a continuation of the EDGE with variable time-frequency unfolding to squeak) according to at least one Incremental redundancy of an embodiment; Figure 6 depicts multi-carrier multiple redundancy, which provides redundancy for error recovery purposes, in accordance with at least one embodiment; Figure 7 depicts a method of setting initial parameters to implement at least one embodiment; 8A method of providing error recovery for a wireless communication system in accordance with at least one embodiment; and FIG. 9 depicts a method of decoding and combining redundant versions in accordance with at least one embodiment. Block diagram of the law. [Main component symbol description] 101 Processor 102 Core Network Controller (SGSN) 103 Memory 104 Base Station (BSC/BTS) 105 Encoder/Decoder I05485.doc -36, 1375426 106 Processor 107 Processor 108 Memory Body 109 Memory 110 Wireless Network 111 Encoder/Decoder 112 Honeycomb Telephone '113 Antenna 114 Personal Digital Assistant (PDA) 115 Receiver Area 116 Pager 118 Navigation Device 120 Wireless Mobile Unit 122 Music or Video Content Download Unit 124 Wireless Gaming device 126 inventory unit 128 wirelessly connected computer 130 network 201 RLC/MAC 203 radio block 205 time slot 207 TDMA frame 211 first transmission 213 retransmission block 105485.doc • 37- 1375426 301 303 305 307 309 311 401 403

405 407 RLC/MAC 區塊 無線電區塊 時槽 時槽 時槽 時槽 資料區塊 冗餘版本 冗餘版本 冗餘版本405 407 RLC/MAC Block Radio Block Time Slot Time Slot Time Slot Time Slot Data Block Redundancy Version Redundancy Version Redundancy Version

409 411 413 501 503 505 601 603 605 載波 載波 載波 無線電區塊 第一重新傳輸部分 第二重新傳輸部分 初始版本 傳輸 傳輸 105485.doc •38-409 411 413 501 503 505 601 603 605 Carrier carrier Carrier Radio block First retransmission part Second retransmission part Initial version Transmission Transmission 105485.doc •38-

Claims (1)

十、申請專利範圍: 的在夕載波無線通信中提供用於錯誤恢復之冗餘 的方法,該方法包含: 、—第4碼方案編碼待傳輪之資訊之一初始版本; 本第二編碼方案編碼該待傳輸之資訊之-冗餘版 傳輸經該第—结(#古安Μ ^ ^ 方案、為碼之該資訊之該初始版本, 該=版本是在-第一載波上傳輸的;及 該冗:::第二編碼方案編碼之該資訊之該冗餘版本, '中=中至少有一部分是在—第二載波上傳輸的; 始版本相同之㈣± ㈣版本的傳輸,在-與該初 ^目Π之傳輸時限㈣輸該冗餘版本。 •本y項1之方法,其中同時傳輪該冗餘版本及該初始版 3.如請求項!之方法,i 統(G S Μ)相容。"信與全球行動通信系 4·如清求項3之方法,直中 &纟電服孜八μ專…線通信與多載波通用封包 •…踝電服務(MC-GPRS)相容。 5 ·如清求項〗之方法,苴中兮埜 荦屬於相门,,、中6亥第-編碼方案及該第二編碼方 茶屬於相同編碼方案族系β 1万 6.如請求項5之方法,苴中哕筮一站 荦组赤夕, 八"第一編碼方案係選自由下列方 案組成之群:MCS-9、MCS-6及MCS+ 1方 7·如凊求項]之方法,其中該 傳輸中傳輸,兮等 、疋在兩個或兩個以上 專兩個或兩個以上傳輸令之-者是在與 W548S.doc 1375426 =初始版本相同之該傳輸時限内於1三載波上傳輸 8 t =項1之方法’其中該冗餘版本為—第-冗餘版本, 該方法進一步包含· 二編碼方案編碼該資訊之-第二冗餘版本;及 二載波上將經該第三編碼方案 該第二冗餘版本無線傳輸至該接收器。馬的^訊之 9·如清求項1之太、土 妒 、、中該接收器為一行動單元,且該初 始版本經由-基地台傳輸至該行動單元。 1〇.:=以在多載波無線通信中提供用於錯誤恢復之冗餘 的裝置,«置包含: 餘 本:::「第一編碼方案編碼待傳輸之資訊之-初始版 二::第二編碼方案編碼該待傳輸之資訊之-冗餘 用於傳輸經該第一編礁方安祕 1方案、4碼之該資訊之該初始版 本的構件,該初始版本係在— 用 第载波上傳輸的;及 太的姐& 茶、為碼之該資訊之該冗餘版 本的構件,該冗餘版本中至 上僖輪的; 至4 —部分是在一第二載波 其中回應於該資訊之該初 , 始版本的傳輸,在一與該初 始版本相同之傳輸時限内傳 】】·如請求項I。之裝置…几仙 版本。 /、 J時傳輪該冗餘版本及該初始 105485.doc 丄j/5426 12. 如請求 系^ 巾_減通信與全球行動通信 糸統(GSM)相容。 13. 如請求項丨2$获番 句“ 中該等無線通信與多載波通用封 ι …、線電服務(MC-GPRS)相容。 方宰^項1G之裝置,其中該第—編碼方案及該第二編喝 案屬於相同編碼方案族系。 :求項14之裝置’其中該第―編碼方案係選自由下列 • 案,,且成之群:MCS-9、MCS_^mcs_3。 16.如請求項丨〇之裝置,Α 、中"亥几餘版本疋在兩個或兩個以 傳輪中傳輸,該等兩個或兩個以上傳輪中之一者是在 17 始版本相同之該傳輪時限於—第三载波上傳輸。 =广之裝置,其中該冗餘版本為-第-冗餘版 本該裝置進一步包含: 用於以一第三編碼方案編碼該資 之構件;及 冗餘版本 瞻用於在-第三载波上將經該第三編碼方案編碼之該資 訊之該第:冗餘版本無線傳輸至該接收器的構件。 Α如請求項Η)之裝置,其中該接收器為—行動單元,且兮 初始版本經由一基地台傳輸至該行動單元。 A 一種心在多載波無線龍中提供心錯 的通信.設備,該設備包含: 餘 一編^ ’用於以—第—編碼方案編碼待傳輸之資訊 訊之一冗餘版本;及 方案、,扁碼该待傳輸之資 I05485.doc 1375426 -傳輸器,用於傳輸經該第'編碼方案編碼之該資訊 之該初始版本’該初始版本是在一第一載波上傳輸的: 且傳輸經該第二編媽方案編碼之該資訊之該冗餘版本 該冗餘版本中至少有-部分是在-第二載波上傳輸的; 其中回應於該資訊之該初始版本的傳輸,在—與該初 始版本相同之傳輸時限内傳輸該冗餘版本。 20. 如請求項19之設備,其中該冗钤肱士 R . Y忒几餘版本及該初始版本係同 時傳輸。 21. 如請求項19之設備’其中料無線通請全 系統(GSM)相容。 A如請求項21之設備,其中該等無線通信與多載波通用封 包無線電服務(MC-GPRS)相容。 A如請求項19之設備’其中該第—編碼方案及該第二編瑪 方案屬於相同編碼方案族系。 %如請求項23之設備,其中該第—編碼方案係選自由下列 方案蚯成之群:MCS-9 ' MCS-6及MCS-3。 仏如請求項19之設備,其中該冗餘版本是在兩個或兩個以 上傳輪中傳輸的,該等兩個或兩個以上傳輪中之一者是 在與該初始版本相同之該傳輸時限内⑨—第三載波上= 輸。 26.:請求項19之設備,其中該冗餘版本為一第一冗餘版 ,且其中編碼器以一第三編碼方案編碼該資訊之一第 二冗餘版本’且該傳輸器是在第三载波上傳輸經該第三 編碼方案編碼之該資訊之該第二冗餘版本。 105485.doc 1375426 27· —種電腦可讀媒辦 甘+ 、體-、在夕載坡無線通信中實施一用於 錯誤恢復之方法,該方法包含: 、、第編碼方案編碼待傳輪之資訊之一初始版本; 、第一、為碼方案編碼該待傳輸之資訊之一冗餘版 本;X. Patent application scope: A method for providing redundancy for error recovery in a wireless carrier communication, the method comprising: - an initial version of the information of the fourth code scheme encoding the to-be-transmitted wheel; the second coding scheme The redundancy version encoding the information to be transmitted is transmitted via the first node (#古安Μ^^ scheme, the initial version of the information of the code, the version is transmitted on the first carrier; and The redundancy::: the redundancy version of the information encoded by the second coding scheme, at least part of 'zhong= is transmitted on the second carrier; the transmission of the same version (4) ± (four) version, in-and The transmission time limit of the initial destination (4) is the redundancy version. • The method of the y item 1, wherein the redundancy version and the initial version are simultaneously transmitted. 3. The method of the request item, i system (GS Μ) Compatible. " Letter and Global Mobile Communication Department 4·Methods such as Clearing Item 3, Straight & 纟 孜 孜 μ μ μ 线 线 线 线 线 线 线 线 线 线 线 线 线 线 线 线 线 线 线 线 线 线 线 线 线 线 线 线 线Compatible. 5 · As for the method of clearing the item, the 兮中兮野荦 belongs to the phase door,,, middle The 6-Hai-coding scheme and the second-encoded tea belong to the same coding scheme family β 16,000. As in the method of claim 5, the 苴中哕筮一站荦组赤夕,八"The first coding scheme The method of grouping the following schemes: MCS-9, MCS-6, and MCS+1 party 7·such as the request item], wherein the transmission is transmitted, 兮, etc., in two or more two or two The two or more transmission orders are the method of transmitting 8 t = item 1 on the 1 three carrier within the same transmission time as W548S.doc 1375426 = the initial version, where the redundancy version is the - redundancy version The method further includes: a second encoding version encoding the second redundancy version of the information; and transmitting, by the second carrier, the second redundancy version to the receiver via the third encoding scheme. • If the receiver is a mobile unit, the initial version is transmitted to the mobile unit via the base station. 1〇.:= is provided for use in multi-carrier wireless communication. Redundant device for error recovery, «Include: Coherent::: "First Code The code encodes the information to be transmitted - the initial version 2: the second coding scheme encodes the information to be transmitted - the redundancy is used to transmit the initial information of the first reef side security 1 scheme, 4 codes The version of the component, the initial version is transmitted on the first carrier; and the sister & tea, the redundant version of the information for the code, the redundancy version of the upper wheel; to 4 - part of the transmission of the initial version in response to the information in a second carrier, in the same transmission time period as the initial version]]. The device... a few cents version. /, J time pass the redundancy version and the initial 105485.doc 丄j/5426 12. If requested, the system is compatible with Global Mobile Communications (GSM). 13. If the request item 丨2$ is obtained in the phrase “the wireless communication is compatible with the multi-carrier universal device ..., the line-based service (MC-GPRS). The device of the 1G device, where the first coding scheme And the second series of drinking cases belongs to the same coding scheme family.: The device of claim 14 wherein the first coding scheme is selected from the following cases, and is grouped into: MCS-9, MCS_^mcs_3. For example, if the device is requested, the versions of Α, 中"Hai are transmitted in two or two by the transfer wheel, and one of the two or two uploading wheels is the same at the beginning of the 17th version. The transmission time is limited to the transmission on the third carrier. The device is widely distributed, wherein the redundancy version is a --redundancy version. The apparatus further comprises: means for encoding the resource with a third coding scheme; The redundancy version is used to wirelessly transmit the first:redundant version of the information encoded by the third encoding scheme to the component of the receiver on the third carrier. For example, the device of the request item, wherein the The receiver is a mobile unit, and the initial version is transmitted to the action via a base station A device that provides a heart-wrong communication in a multi-carrier wireless dragon, the device comprising: a code for encoding a redundant version of the information to be transmitted in a -first coding scheme; and a scheme , the flat code to be transmitted I05485.doc 1375426 - a transmitter for transmitting the initial version of the information encoded by the 'encoding scheme'. The initial version is transmitted on a first carrier: and transmitted The redundancy version of the information encoded by the second programming scheme has at least a portion of the redundancy version transmitted on the second carrier; wherein the transmission of the initial version in response to the information is in- The redundancy version is transmitted within the same transmission time limit as the initial version. 20. The device of claim 19, wherein the redundant version of the R. Y. and the initial version are simultaneously transmitted. 21. The device is compatible with the whole system (GSM). A device as claimed in claim 21, wherein the wireless communication is compatible with the Multi-Carrier General Packet Radio Service (MC-GPRS). Equipment The first coding scheme and the second coding scheme belong to the same coding scheme family. % The device of claim 23, wherein the first coding scheme is selected from the group consisting of: MCS-9 'MCS-6 And MCS-3, such as the device of claim 19, wherein the redundancy version is transmitted in two or two by an uploading wheel, and one of the two or two of the uploading wheels is The initial version is the same within the transmission time limit 9 - the third carrier = input. 26. The device of claim 19, wherein the redundancy version is a first redundancy version, and wherein the encoder is encoded by a third coding scheme A second redundancy version of the information 'and the transmitter transmits the second redundancy version of the information encoded by the third coding scheme on the third carrier. 105485.doc 1375426 27·- A computer-readable medium, Gan+, body-, implements a method for error recovery in the wireless communication of the evening carrier, the method includes:, the coding scheme encodes the information to be transmitted An initial version; first, encoding a redundant version of the information to be transmitted for the code scheme; 扇碼方案編碼之該資訊之該初始版本, 該初始版本係在—第一載波上傳輸的;及 傳輸經該第二編礁t安M s 該冗餘版本中至少有’ 之該資訊之該冗餘版本, ”回應”眘 分是在一第二載波上傳輸的; 始版本相同的傳輪時限内傳輸該冗餘版本。與心刀 105485.docThe initial version of the information encoded by the fan code scheme, the initial version being transmitted on the first carrier; and transmitting the information via the second version of the redundancy version of the second version of the redundancy version In the redundancy version, the "response" is carefully transmitted on a second carrier; the redundancy version is transmitted within the same transmission time period as the original version. And heart knife 105485.doc
TW94134429A 2004-10-01 2005-09-30 Multi-carrier incremental redundancy for packet-based wireless communications TWI375426B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US61525404P 2004-10-01 2004-10-01

Publications (2)

Publication Number Publication Date
TW200637213A TW200637213A (en) 2006-10-16
TWI375426B true TWI375426B (en) 2012-10-21

Family

ID=48093269

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94134429A TWI375426B (en) 2004-10-01 2005-09-30 Multi-carrier incremental redundancy for packet-based wireless communications

Country Status (1)

Country Link
TW (1) TWI375426B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI562576B (en) * 2013-01-24 2016-12-11 China Academy Of Telecomm Tech

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI562576B (en) * 2013-01-24 2016-12-11 China Academy Of Telecomm Tech

Also Published As

Publication number Publication date
TW200637213A (en) 2006-10-16

Similar Documents

Publication Publication Date Title
EP1810421B1 (en) Multi-carrier incremental redundancy for packet-based wireless communications
RU2381635C2 (en) Division of allocation of direct and return communication line in wireless communication systems with several carriers
RU2407146C2 (en) Message encoding and re-display
JP4573342B2 (en) Method and system for decoding a header on a wireless channel
TWI279102B (en) Methods and apparatuses for transmitting and receiving segmented broadcast messages in wireless communication systems
JP2020513179A (en) HARQ handling for nodes with variable processing time
EP3528578B1 (en) Data processing method, base station, and terminal
ES2383995T3 (en) Apparatus and method for selecting a coding scheme
US11743088B2 (en) Method and device in base station for unlicensed spectrum
CN111133817B (en) Communication method and device
JP2013232917A (en) Method and apparatus for harq encoding with low memory requirement
US7957263B2 (en) Method and apparatus for acknowledging reverse link transmissions in a communications system
WO2018127161A1 (en) Method and device for use in user device and base station for channel encoding
TWI375426B (en) Multi-carrier incremental redundancy for packet-based wireless communications
TWI325247B (en) Asymmetric mode of operation in multi-carrier communication systems
WO2024007224A1 (en) Feedback-based adaptive transmission method
JP2011217072A (en) Radio communication equipment
AU2004216648A1 (en) ARQ control in an HSDPA communications system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees