TWI325247B - Asymmetric mode of operation in multi-carrier communication systems - Google Patents
Asymmetric mode of operation in multi-carrier communication systems Download PDFInfo
- Publication number
- TWI325247B TWI325247B TW95126549A TW95126549A TWI325247B TW I325247 B TWI325247 B TW I325247B TW 95126549 A TW95126549 A TW 95126549A TW 95126549 A TW95126549 A TW 95126549A TW I325247 B TWI325247 B TW I325247B
- Authority
- TW
- Taiwan
- Prior art keywords
- information
- access terminal
- drc
- carrier
- branch
- Prior art date
Links
Landscapes
- Mobile Radio Communication Systems (AREA)
Description
丄⑵247 九、發明說明: 【發明所屬之技術領域】 本發明大體而言係關於無線通信系統,且特定而言係關 , 於提供非對稱操作模式之多載波通信系統。 【先前技術】 • _ 通信系統可在若干個基地台與存取終端機之間提供通 信。前向鏈路或下行鏈路指自一基地台至一存取終端機之 φ 傳輸。反向鏈路或上行鏈路指自一存取終端機至一基地台 之傳輸《視存取終端機是否為主動的及存取終端機是否處 於軟交遞(soft handoff)而定,每一存取終端機可在給定時 ' 刻於前向及反向鏈路上與一或多個基地台進行通信。 • 無線通信系統廣泛用於提供各種類型通信(例如語音、資 料等)至多個使用者。此等系統可基於分碼多向近接 (DMA) 77時夕向近接(TDMA)、分頻多向近接(FDMa) 或其他多向近接技術。CDMA系統提供某些合意特徵,包 • 括增加之系統容量。CDMA系統可經設計以實施一或多個丄(2) 247 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates generally to wireless communication systems, and in particular to multi-carrier communication systems that provide asymmetric modes of operation. [Prior Art] • The _ communication system can provide communication between several base stations and access terminals. The forward link or downlink refers to the φ transmission from a base station to an access terminal. The reverse link or uplink refers to the transmission from an access terminal to a base station. "Whether the access terminal is active and the access terminal is in soft handoff, each The access terminal can communicate with one or more base stations on the forward and reverse links at a given time. • Wireless communication systems are widely used to provide various types of communication (eg voice, data, etc.) to multiple users. Such systems may be based on code division multi-directional proximity (DMA) 77-times approach (TDMA), frequency division multi-directional proximity (FDMa) or other multi-directional proximity techniques. CDMA systems provide certain desirable features, including increased system capacity. A CDMA system can be designed to implement one or more
標準,諸如 IS-95、cdma2000、IS-856、W-CDMA、TD-SCDMA 及其他標準。 回應於多媒體服務及高速率資料之不斷增長的需要,在 無線通信系統中已提出多載波調變。仍然存在(例如)提供有 效及穩固的多載波通信系統之挑戰。 【發明内容】 本發明揭示-财法m其用於提供在乡載波無線 通信系統中之非對稱操作模式。在一種模式中,一方法可 113125.doc 1325247 對關聯於複數個前向*路載波之一資訊頻道指派一長碼遮 罩(LCM) ’以將來自—基地台或存取網路之資料傳輸至一 存取終端機及在一反向鏈路載波上多工該資訊頻道。該 資訊頻道可包括資料源頻道(DSC)資訊、資料率控制(DRC) 資訊及應答(ACK)資訊中之至少一者,且該多工可為分碼多 工(CDM)。該存取網路可指示該存取終端機是否多工DSC 資訊。在來自存取終端機之反饋行進至相同頻道卡(channel card)且一伺服扇區為多個前向鏈路載波之間之同一頻道卡 的情況下’存取網路可指示存取終端機不用多工DSC資 訊》該方法可進一步在反向鏈路上偏移ACK資訊,以減小 該反向鏈路峰值與平均值之比。在另一模式中,一方法可 在一 Ϊ分支及一Q分支上分碼多工該資訊頻道,並在反向鏈 路載波上傳輸該經分碼多工之資訊頻道。可使用Walsh碼字 覆蓋DRC及ACK資訊,且可進一步在〗分支及Q分支兩者上 將DRC資訊與經由Walsh碼偏移之DRC覆蓋符號相組合。 視硬體而定’可支援該等模式之任何組合。第一模式可 達成15個前向鏈路載波及一個反向鏈路載波,其中丨5個唯 一長碼遮罩指派給一存取終端機。第一與第二模式亦可組 合而達成15個前向鍵路載波及一個反向鏈路載波,其中4 個唯一長碼遮罩指派給一存取終端機。 【實施方式】 本文中所描述之任一實施例並非一定比其他實施例更佳 或更有利。雖然在附圖中呈現本揭示之各種態樣,但該等 附圖並非一定按照比例縮放而繪製或詳盡地繪製。 113125.doc 圖1說明一無線通信系統1〇〇,其包括一系統控制器1〇2、 基地台(BS)104a至UMb,及複數個存取終端機(AT)1〇6a至 1〇6h。系統1〇〇可具有任意數目個控制器、基地台 及存取終端機1〇6。下文中所述之本發明之各種態樣及實施 例可實施於系統100中。 存取終端機丨06可為行動的或靜止的’且可遍及圖丨之通 信系統100而分散。存取終端機1〇6可連接至或實施於一計 算設備中’諸如膝上型個人電腦。或者,存取終端機可為 自足資料設備’諸如個人數位助理(PDA)e存取終端機106 :指各種類型設備’諸如有線電話、無線電話、蜂巢式電 話、膝上型電腦、無線通信個人電腦(PC)卡、PDA、外部 或内部數據機[存取終端機可為經由無線頻道或經由有 線頻道(例如使用光纖或同轴電纜)通信從而對使用者提供 資料連接性之任何設備。存取終端機可具有各種名稱諸 如行動台(MS)、存取單元、用戶單元、行動設備、行動終 端機、行動單it、行動電話、行動物體、遠程台、遠程终 端機、遠程單元、使用者設備、使用者裝備、手持設備等。 系統100提供若干個單元之通信,其中每—單元由一或多 個基地台104服務。基地台104亦可被稱為基地台收發器系 統(BTS)、存取點、存取網路(AN)之一部分、數據機集用場 收發器(MPT),或節點B。存取網路指提供封包交換資科網 路(例如網際網路)與存取終端機1〇6之間之資料連接性的網 路設備。 104至存取終端機 刖向鏈路(FL)或下行鏈路指自基地台 113125.doc 1325247 106之傳輸。反向鏈路(RL)或上行鏈路指自存取終端機106 至基地台104之傳輸。 基地台104可使用選自一組不同資料率之一資料率向存 取終端機106傳輸資料。存取终端機106可量測由基地台104 發送之前導訊號之訊號雜訊干擾比(SINR),並確定一所需 資料率以用於基地台104向存取終端機106傳輸資料。存取 終端機106可向基地台104發送資料請求頻道或資料率控制 (DRC)訊息,以將所需資料率告知基地台104。 系統控制器1〇2(亦被稱為基地台控制器(BSC))可提供基 地台104之協調及控制,並可經由基地台104進一步控制對 存取終端機106之呼叫的路徑選擇。系統控制器102可進一 步經由行動交換中心(MSC)而耦接至公眾交換電話網路 (PSTN),並經由封包資料服務節點(PDSN)而耦接至封包資 料網路。 通信系統100可使用一或多種通信技術,諸如分碼多向近 接(CDMA)、IS-95、如"cdma2000 High Rate Packet Data Air Interface Specification"中詳細說明之亦被稱為高資料率 (HDR)之高速率封包資料(HRPD)、TIA/EIA/IS-856、CDMA lx演進資料最優化(EV-DO)、lxEV-DV、寬頻CDMA (W-CDMA)、全球行動通信系統(UMTS)、分時同步CDMA (TD-SCDMA)、正交頻率部門多工(OFDM)等。下文中所述 之實例提供用於清晰瞭解之細節。本文中所呈現之概念亦 可適用於其他系統,且所呈現之實例並非有意限制本申請 案。Standards such as IS-95, cdma2000, IS-856, W-CDMA, TD-SCDMA, and other standards. In response to the growing demand for multimedia services and high-speed data, multi-carrier modulation has been proposed in wireless communication systems. There is still a challenge, for example, to provide an efficient and robust multi-carrier communication system. SUMMARY OF THE INVENTION The present invention discloses an asymmetric operation mode for providing an asymmetric operation mode in a rural carrier wireless communication system. In one mode, a method may assign a long code mask (LCM) to one of the plurality of forward * way carriers to transmit data from the base station or the access network to 113125.doc 1325247. The information channel is multiplexed to an access terminal and on a reverse link carrier. The information channel may include at least one of data source channel (DSC) information, data rate control (DRC) information, and response (ACK) information, and the multiplex may be code division multiplexing (CDM). The access network can indicate whether the access terminal multiplexes DSC information. In the case where the feedback from the access terminal travels to the same channel card and a servo sector is the same channel card between the plurality of forward link carriers, the access network may indicate the access terminal This method can further offset the ACK information on the reverse link to reduce the ratio of the reverse link peak to the average value. In another mode, a method may multiplex the information channel on a branch and a Q branch, and transmit the coded multiplexed information channel on the reverse link carrier. The DRC and ACK information may be overwritten using the Walsh codeword, and the DRC information may be further combined with the DRC overlay symbols offset by the Walsh code on both the "branch' branch and the Q-branch. Depending on the hardware, any combination of these modes can be supported. The first mode can achieve 15 forward link carriers and one reverse link carrier, wherein 丨5 unique long code masks are assigned to an access terminal. The first and second modes may also be combined to achieve 15 forward key carriers and one reverse link carrier, wherein 4 unique long code masks are assigned to an access terminal. [Embodiment] Any of the embodiments described herein are not necessarily better or more advantageous than the other embodiments. Although the various aspects of the disclosure are presented in the drawings, the drawings are not necessarily 113125.doc FIG. 1 illustrates a wireless communication system including a system controller 1, a base station (BS) 104a to UMb, and a plurality of access terminals (AT) 1〇6a to 1〇6h. . System 1 can have any number of controllers, base stations, and access terminals 1〇6. Various aspects and embodiments of the invention described hereinafter may be implemented in system 100. The access terminal 丨06 can be mobile or stationary and can be dispersed throughout the communication system 100 of the figure. The access terminal 1〇6 can be connected to or implemented in a computing device such as a laptop personal computer. Alternatively, the access terminal can be a self-contained data device such as a personal digital assistant (PDA) e-access terminal 106: refers to various types of devices such as wireline phones, wireless phones, cellular phones, laptops, wireless communication individuals Computer (PC) card, PDA, external or internal data machine [Access terminal can be any device that communicates to a user via a wireless channel or via a cable channel (eg, using fiber optic or coaxial cable) to provide data connectivity to the user. The access terminal can have various names such as a mobile station (MS), an access unit, a subscriber unit, a mobile device, a mobile terminal, an action list it, a mobile phone, a mobile object, a remote station, a remote terminal, a remote unit, use Devices, user equipment, handheld devices, etc. System 100 provides communication for a number of units, each of which is served by one or more base stations 104. Base station 104 may also be referred to as a base station transceiver system (BTS), an access point, an access network (AN), a data set field transceiver (MPT), or a Node B. The access network refers to a network device that provides data connectivity between the packet exchange network (e.g., the Internet) and the access terminal 106. 104 to Access Terminal The forward link (FL) or downlink refers to the transmission from the base station 113125.doc 1325247 106. The reverse link (RL) or uplink refers to the transmission from the access terminal 106 to the base station 104. The base station 104 can transmit data to the access terminal 106 using a data rate selected from one of a set of different data rates. The access terminal 106 can measure the signal to interference interference ratio (SINR) of the previous pilot transmitted by the base station 104 and determine a desired data rate for the base station 104 to transmit data to the access terminal 106. The access terminal 106 can send a data request channel or data rate control (DRC) message to the base station 104 to inform the base station 104 of the required data rate. System controller 1〇2 (also referred to as a base station controller (BSC)) can provide coordination and control of the base station 104 and can further control the path selection of calls to the access terminal 106 via the base station 104. The system controller 102 can be further coupled to the Public Switched Telephone Network (PSTN) via a Mobile Switching Center (MSC) and coupled to the packet data network via a Packet Data Service Node (PDSN). Communication system 100 may also be referred to as high data rate (HDR) using one or more communication technologies, such as code division multi-directional proximity (CDMA), IS-95, such as "cdma2000 High Rate Packet Data Air Interface Specification" High Rate Packet Data (HRPD), TIA/EIA/IS-856, CDMA lx Evolution Data Optimization (EV-DO), lxEV-DV, Wideband CDMA (W-CDMA), Global System for Mobile Communications (UMTS), Time division synchronous CDMA (TD-SCDMA), orthogonal frequency department multiplexing (OFDM), and the like. The examples described below provide details for a clear understanding. The concepts presented herein are also applicable to other systems, and the examples presented are not intended to limit the application.
(S 113125.doc 多載波系統 本文中所描述之"多載波"系統可使用分頻多工,其中每 一''载波"對應於一射頻範圍。舉例而言,一載波可為1.25 百萬赫宽’但亦可使用其他載波尺寸。载波亦可被稱為 CDMA載波、鏈路或CDMA頻道。 對資料流的需求可趨向於前向或反向鏈路之較繁重的使 用。以下描述係關於對多載波無線通信系統中前向鏈路及 反向鍵路指派的去耦❶系統1〇〇可向存取終端機1〇6指派Μ 個前向鏈路(或載波)及Ν個反向鏈路(或載波),其中1^與]^ 可不相等。以下描述說明可減少反向鏈路附加項的附加項 頻道傳輸之機制。 基地台、BSC或MSC可確定經指派用於存取終端機之FL 載波數目。視諸如頻道條件、終端機之可用資料、終端機 功率放大器餘裕空間及應用流之條件而定,基地台、Bsc 或MSC亦可改變經指派用於存取終端機之FL載波數目。 存取終端機106可執行諸如網際網路應用程式、視訊會 議、電衫、遊戲等之應用程式,該等應用程式可使用傳輸 自基地台104之語音、影像檔案、視訊片斷、資料檔案等。 該等應用程式可包括兩種類型: 1 ·可谷忍延遲(Delay-tolerant)、高前向鏈路通量及低反向 鏈路通量;及 2·延遲敏感(Delay-sensitive)、低前向鏈路通量及低反向 鏈路通量。其它類型應用程式亦可存在。 若系統1〇〇使用前向鏈路上之多個載波以達成高通量或 I13125.doc -10. 1325247 使頻譜效率最大化,則存取終端機1()6可避免反向鏈路上所 有相關聯載波上之傳輸,以改良反向鏈路效率。 對於可接受較慢的DRC更新之類型i之應❹式而言,存 取終端機106可: a) 在初級反向鏈路載波上傳輸連續的前導訊號; b) 僅在該初級反向鏈路載波上傳輸資料; c) 在該初級反向鏈路載波上傳輸經分時多工的每一 FL載 波之DRC,其假定較慢的DRC頻道更新為可接受的丨及 d) 視需要傳輸對於每一 FL載波之確認應答(ACK)或否定 應答(NAK)訊息。當傳輸ACK頻道時,存取終端機1〇6 在次級載波上可傳輸閘控前導(處於與初級RL載波上 之别導相同之功率位準),例如ACK傳輸周圍之%時槽 邊緣以用於前導濾波器暖機。 對於可能不可接受較慢的DRC更新之類型丨之應用程式 而言,存取終端機106可: a) 在關聯於經賦能之前向鏈路载波之所有反向鏈路載波 上之傳輸連續的前導訊號; b) 僅在初級反向鏈路載波上傳輸資料;及 c) 視需要傳輸對於每一FL載波之ACK。 對於類型2之應用程式而言,存取終端機1〇6可: a) 初級反向鏈路載波上傳輸連續的前導; b) 僅在該初級反向鏈路載波上傳輸資料; c) 在該初級反向鏈路載波上傳輸經分時多工的每一 fl載 波之DRC ’其假定較慢的DRC頻道更新為可接受的;及 113125.doc d)僅在該初級反向鏈路載波上傳輸ACK。可約束基地台 104以確保不會有超過一個封包在所有前向鏈路載波 間傳輸。基地台104可基於經傳輸之1^封包之時序來確 定ACK關聯》 或者,存取終端機1〇6可執行ACK頻道傳輸之一替代形 式: a) 若需要,例如若系統100支援附加FL載波(在EV_D〇系 統中,可在%時槽内傳輸ACK),則減小ACK頻道傳輸 時間間隔; b) 在單一/z時槽内之N個前向鏈路載波之ACK頻道傳輸; c) ACK頻道傳輸間隔為經賦能之前向鏈路載波之數目的 函數;及 d) 關於RL及FL關聯設置之ACK頻道傳輸可'經由在媒體 存取控制(MAC)層1400(圖14)中之訊號傳輸而實施。 多載波前向訊務頻道mac 可存在兩種載波指派模式:對稱式載波指派及非對稱式 載波指派。 圖2說明具有三個前向鏈路載波2〇〇“2〇〇c(例如,用於 EV-DO資料)及三個相應的反向鏈路载波“η至實之對 稱式載波指派之實例。_式載波指、派可用於:⑷具有對 稱資料率要求之應用程式;及/⑽)具有由增強對肌胤 插作之硬體支援之具有非對稱資料率要求的應用程式。 圖3A及3B說明非對稱式載波指派之實^圖从展示三個 前向鍵路載波雇至雜及—個相應的反向鍵路載波 113l25.doc -12· 1325247 302。圖3B展示三個前向鏈路載波300A至300C及兩個相應 的反向鏈路載波304A及304B。非對稱式載波指派可用於具 有非對稱資料率要求之應用程式,諸如檔案傳送協定(FTP) 下載。非對稱式載波指派可具有(a)減小的反向鏈路附加項 頻道及(b)MAC頻道,其允許前向鏈路訊務(FLT)載波指派與 反向功率控制(RPC)載波指派相分離。(S 113125.doc Multi-Carrier System The "multi-carrier" system described herein can use frequency division multiplexing, where each ''carrier'' corresponds to a radio range. For example, a carrier can be 1.25. The megahertz wide's can also use other carrier sizes. The carrier can also be referred to as a CDMA carrier, link or CDMA channel. The demand for data streams can tend to be more cumbersome to use for the forward or reverse link. The description relates to a decoupling system 1 for forward link and reverse link assignment in a multi-carrier wireless communication system. One of the forward links (or carriers) can be assigned to the access terminal 1〇6 and Reverse link (or carrier), where 1^ and ^^ may not be equal. The following description illustrates a mechanism for reducing the additional channel transmission of the reverse link add-on. The base station, BSC or MSC may determine that it is assigned for The number of FL carriers that access the terminal. Depending on conditions such as channel conditions, available data for the terminal, terminal amplifier power headroom, and application flow conditions, the base station, Bsc, or MSC may also be assigned to access the access terminal. The number of FL carriers in the machine. The terminal 106 can execute applications such as internet applications, video conferencing, electric shirts, games, etc., which can use voice, video files, video clips, data files, etc. transmitted from the base station 104. Applications can include two types: 1 • Delay-tolerant, high forward link throughput, and low reverse link throughput; and 2. Delay-sensitive, low forward Link throughput and low reverse link throughput. Other types of applications may also exist. If the system uses multiple carriers on the forward link to achieve high throughput or I13125.doc -10. 1325247 To maximize efficiency, access terminal 1(6) avoids transmissions on all associated carriers on the reverse link to improve reverse link efficiency. For type 1 that accepts slower DRC updates. In this regard, the access terminal 106 can: a) transmit a continuous preamble on the primary reverse link carrier; b) transmit data only on the primary reverse link carrier; c) on the primary reverse link Each FL load transmitted over time-multiplexed on the carrier The DRC, which assumes slower DRC channel update is acceptable Shu and d) optionally transmit an acknowledgment of each FL carrier acknowledgment (ACK) or negative acknowledgment (NAK) message. When transmitting the ACK channel, the access terminal 1〇6 can transmit the gating preamble on the secondary carrier (on the same power level as the other on the primary RL carrier), for example, the edge of the slot around the ACK transmission is Used for warming up the pre-filter. For applications that may not accept a slower type of DRC update, the access terminal 106 may: a) continuously transmit to all reverse link carriers of the link carrier prior to being associated with the grant. The preamble signal; b) the data is transmitted only on the primary reverse link carrier; and c) the ACK for each FL carrier is transmitted as needed. For Type 2 applications, the Access Terminals 1〇6 can: a) transmit consecutive preambles on the primary reverse link carrier; b) transmit data only on the primary reverse link carrier; c) The DRC of each of the fl carriers transmitting the time division multiplex on the primary reverse link carrier is assumed to be an update of the slower DRC channel to be acceptable; and 113125.doc d) only on the primary reverse link carrier Transfer ACK on. The base station 104 can be constrained to ensure that no more than one packet is transmitted between all forward link carriers. The base station 104 can determine the ACK association based on the timing of the transmitted packets. Alternatively, the access terminal 1 can perform an alternative form of ACK channel transmission: a) if desired, for example, if the system 100 supports additional FL carriers (In the EV_D〇 system, the ACK can be transmitted in the % time slot), the ACK channel transmission time interval is reduced; b) the ACK channel transmission of the N forward link carriers in the single/z time slot; c) The ACK channel transmission interval is a function of the number of enabled forward link carriers; and d) the ACK channel transmission for RL and FL association settings can be 'via in the Medium Access Control (MAC) layer 1400 (FIG. 14) Implemented by signal transmission. There are two carrier assignment modes for the multi-carrier forward traffic channel mac: symmetric carrier assignment and asymmetric carrier assignment. Figure 2 illustrates an example of a symmetrical carrier assignment with three forward link carriers 2 〇〇 "2 〇〇 c (for example, for EV-DO data) and three corresponding reverse link carriers" η to real symmetrical carrier assignments . The _-type carrier finger can be used for: (4) applications with symmetrical data rate requirements; and / (10)) applications with asymmetric data rate requirements that enhance hardware support for tendon insertion. 3A and 3B illustrate the implementation of an asymmetric carrier assignment from the display of three forward link carriers to a corresponding reverse link carrier 113l25.doc -12· 1325247 302. Figure 3B shows three forward link carriers 300A through 300C and two corresponding reverse link carriers 304A and 304B. Asymmetric carrier assignments can be used for applications with asymmetric data rate requirements, such as File Transfer Protocol (FTP) downloads. An asymmetric carrier assignment may have (a) a reduced reverse link add-on channel and (b) a MAC channel that allows forward link traffic (FLT) carrier assignment and reverse power control (RPC) carrier assignment Phase separation.
非對稱前向及反向鏈路指派一多載波DRC 存取終端機106可在單一反向鏈路載波上分時多工多個 前向鏈路載波之DRC頻道傳輸。 圖14說明用於多工圖1之存取終端機106中DCR資訊之分 時多工器1402。 存取終端機106中之MAC層1400(圖14)可基於DRC傳輸 時間而提供DRC與前向鏈路之關聯。前向鏈路載波(對於該 等前向鏈路載波,DRC傳輸係由單一反向鏈路載波予以指 示)之數目可取決於:(i)最大的可接受DRC跨距,其為所有 經指派之前向鏈路載波之DRC之傳輸所要求的時間間隔, 例如DRC跨距=最大值(16個時槽,DRC長度(每載波)χ載波 之數目);及(Π)由諸如lxEV-DORev Α頻道卡之硬體支援之 載波之數目。在一項實施例中,四個FL載波係與可受限於 該等四個FL載波之ACK之發送的單一RL載波相關聯。 在另一實施例中,存取終端機106可使用所有載波之間之 單一 DRC頻道。換言之,存取終端機106向基地台104發送 用於所有經指定之FL載波的單一 DRC,以向該存取終端機 106以經指定的DRC速率傳輸資料。The asymmetric forward and reverse link assignments a multi-carrier DRC access terminal 106 can time-multiplex multiple DRC channel transmissions of the forward link carrier on a single reverse link carrier. Figure 14 illustrates a time division multiplexer 1402 for multiplexing DCR information in the access terminal 106 of Figure 1. The MAC layer 1400 (Fig. 14) in the access terminal 106 can provide the association of the DRC with the forward link based on the DRC transmission time. The number of forward link carriers for which the DRC transmission is indicated by a single reverse link carrier may depend on: (i) the largest acceptable DRC span, which is all assigned The time interval required for the transmission of the DRC to the link carrier, such as DRC span = maximum (16 time slots, DRC length (per carrier) χ carrier number); and (Π) by such as lxEV-DORev Α The number of carriers supported by the channel card hardware. In one embodiment, four FL carriers are associated with a single RL carrier that can be limited by the transmission of ACKs for the four FL carriers. In another embodiment, the access terminal 106 can use a single DRC channel between all carriers. In other words, access terminal 106 transmits a single DRC for all designated FL carriers to base station 104 to transmit data to the access terminal 106 at the designated DRC rate.
113125.doc -13 - 1325247 在另一實施例中,存取終端機106可使用(a)多個載波之間 之單一 DRC頻道(相同的DRC用於全部FL載波中某些FL載 波)與(b)經分時多工之DRC頻道的組合。 圖4A說明DRC反向鏈路傳輸(DRC長度=8個時槽)之實 例,其請求單一前向鏈路載波之資料傳輸速率以供使用。 圖4B至圖4F說明多載波、即經分時多工之DRC之實例。具 體而言,圖4B展示在單一反向鏈路載波上傳輸之用於兩個 前向鏈路載波之兩個DRC(每一 DRC長度=4個時槽;DRC跨 距=8個時槽)之實例。圖4C展示在單一反向鏈路載波上傳輸 之用於四個前向鏈路載波之四個DRC(每一 DRC長度=2個 時槽;DRC跨距=8個時槽)之實例。 圖4D說明在單一反向鏈路載波上傳輸之用於兩個前向鏈 路載波之兩個交錯DRC(每一 DRC長度=4個時槽;DRC跨距 =8個時槽)之實例。交錯DRC頻道傳輸可提供對於給定DRC 長度之附加時間分集。圖4E展示在單一反向鏈路載波上傳 輸之用於四個前向鏈路載波之四個交錯DRC(每一 DRC長 度=4個時槽;DRC跨距=16個時槽)之實例。圖4F展示在單 一反向鏈路載波上傳輸之用於四個前向鏈路載波之四個交 錯DRC(每一 DRC長度=2個時槽;DRC跨距=8個時槽)之實 例0113125.doc -13 - 1325247 In another embodiment, access terminal 106 can use (a) a single DRC channel between multiple carriers (the same DRC is used for some of the FL carriers of all FL carriers) with ( b) A combination of time-division multiplexed DRC channels. Figure 4A illustrates an example of a DRC reverse link transmission (DRC length = 8 time slots) requesting a data transmission rate for a single forward link carrier for use. 4B through 4F illustrate examples of multi-carrier, ie, time-division multiplexed DRC. In particular, Figure 4B shows two DRCs for two forward link carriers transmitted on a single reverse link carrier (each DRC length = 4 time slots; DRC span = 8 time slots) An example. Figure 4C shows an example of four DRCs for four forward link carriers (each DRC length = 2 time slots; DRC span = 8 time slots) transmitted on a single reverse link carrier. Figure 4D illustrates an example of two interleaved DRCs for each two forward link carriers (each DRC length = 4 time slots; DRC span = 8 time slots) transmitted on a single reverse link carrier. Interleaved DRC channel transmissions can provide additional time diversity for a given DRC length. Figure 4E shows an example of four interleaved DRCs for each four forward link carriers (each DRC length = 4 time slots; DRC span = 16 time slots) transmitted on a single reverse link carrier. Figure 4F shows an example of four interleaved DRCs for four forward link carriers (each DRC length = 2 time slots; DRC span = 8 time slots) transmitted on a single reverse link carrier.
非對稱前向及反向鏈路指派一多載波ACK 在一項實施例或多載波通信操作模式中,當前向鏈路頻 道之數目大於反向鏈路頻道之數目時,與複數個前向鏈路 頻道相關聯之DSC、DRC及ACK頻道可多工至單一反向鏈 < S ) 113125.doc -14- 1325247 路載波上。在此實施例或模式中,可使用長碼遮罩(L(:M) 以便於此多工。根據此實施例或模式,AN可指示AT是否將 多工DSC。在來自AT之反饋行進至相同頻道卡且一伺服扇 區為多個前向鏈路載波之間之同一頻道卡的情況下,八1^可 指示AT不用多工DSC。詳言之,可使用一唯一長碼遮罩來 傳輸用於次級前向鏈路載波之DRC及ACK頻道。參看圖5, 其展示可使用分離長碼遮罩在一初級反向鏈路上傳輸用於Asymmetric forward and reverse links assign a multi-carrier ACK. In an embodiment or multi-carrier communication mode of operation, when the number of current link channels is greater than the number of reverse link channels, and a plurality of forward chains The DSC, DRC, and ACK channels associated with the channel can be multiplexed to a single reverse chain <S) 113125.doc -14 - 1325247 on the carrier. In this embodiment or mode, a long code mask (L(:M) may be used for this multiplex. According to this embodiment or mode, the AN may indicate whether the AT will multiplex the DSC. The feedback from the AT proceeds to In the case of the same channel card and a servo sector being the same channel card between multiple forward link carriers, the AT can indicate that the AT does not use the multiplexed DSC. In detail, a unique long code mask can be used. Transmitting the DRC and ACK channels for the secondary forward link carrier. Referring to Figure 5, it is shown that a separate long code mask can be used for transmission on a primary reverse link for
附加前向鏈路載波之DRC及ACK頻道之模組的方塊圖。因 此,可藉由使用偏移ACK頻道來減小反向鏈路峰值與平均 值之比。A block diagram of a module that attaches the DRC and ACK channels of the forward link carrier. Therefore, the ratio of the reverse link peak to the average can be reduced by using the offset ACK channel.
參看圖6,其說明在使用(例如)一個以上長碼遮罩之非對 稱操作模式中的峰值與平均值之比的減小。詳言之,在每 - AT上可與每-載波相反而傳輸峨頻道。因為反向鍵路 峰值與平均值之比之減小可受用於次級前向鏈路載波之 ACK頻道傳輸不利地影響(例如,多個ACK頻道在功率-時間 槽圖上可變為重疊)’所以可使用Dsc頻道來傳輸用於次級 前向鍵路載波之ACK頻道傳輸之半時槽,進而如圖6所示使 ACK頻道傳輸偏移。因此,對於經指派之前向鏈路載波之 某-片斷,可減小多狀AT之前向料解誠解碼時間。 反向鏈路峰值與平均值之比之減小在圖7a至圖^中進 -步說明。更特定而言’如下文中參看圖7E所解釋,存取 終端機H)6可在單-反向鏈路載波上分❹工多個前 路載波之ACK頻道傳輸。圖14說明用於多工^之 機106中ACK資訊的分時多工器14〇4。 '嘴 113125.doc _ 15· 1325247 每載波ACK頻道傳輸可自1時槽減小至1/4時槽(每一 ack 傳輸持續%時槽)(代替在EV-DO Rev. A中使用之1/2時槽), 其可取決於ACK頻道經傳輸以用於之FL載波之數目。存取 終端機1〇6處之MAC層14〇〇(圖14)可基於ACK傳輸時間而 提供ACK與前向鏈路之關聯。 圖7A及圖7B展示自存取終端機1〇6向基地台1〇4發送之 兩個前向鏈路載波(載波i及2)之兩個DRC頻道傳輸請求,以 φ 便以兩種不同速率(例如U3.6及307.2 kbps)傳輸FL資料的 實例。圖7A及圖7B可展示由基地台1〇4解碼之DRC,但圖 7A及圖7B並不指示如圖4B至圖补所示之在單一反向鏈路 載波上分時多工DRC之方法。 在圖7C及圖7D中,基地台1〇4回應於DRC而在兩個前向 鏈路載波上以兩種不同速率(例如153 6及3〇7 2 kbps)傳輸 . 前向訊務頻道(FTC)子封包。 基地台1〇4可將一原始資料封包之資料位元重複及處理 Φ 為複數個相應”子封包”’以向存取終端機106傳輸。若存取 終端機106經受高訊雜比訊號,則第一子封包可含有用於存 取終端機1崎碼及推導原始資料封包之充足資訊。若存^ 終端機106經受衰落(fading)或低訊雜比訊號,則存取終端 機106可具有僅自第一子封包正確解碼及推導原始資料封 包之相對較低的機率。 若存取終端機1〇6未成功解碼第一子封包,則存取终端機 向基地台104發送NAK。隨後基地台ι〇4發送第二子封 包。存取終端機1G6可組合源自第-及第二子封包之資訊以 113125.doc -16· 1325247 嘗试解碼原始資料封包。由於存取終端機⑽接收較多子封 =並、,且β自母—所接收子封包推導之資訊因此解碼及推 導原始資料封包之機率增大。 在圖7C中’基地台1G4在載波1之時槽1中向存取終端機 _發送原始資料封包之第—子封包。同時在⑽中,基地Referring to Figure 6, a reduction in the ratio of peak to average in a non-symmetric mode of operation using, for example, more than one long code mask is illustrated. In particular, the channel can be transmitted on the per-AT opposite to each carrier. Because the reduction in the ratio of the reverse link peak to the average value can be adversely affected by the ACK channel transmission for the secondary forward link carrier (eg, multiple ACK channels can become overlapping on the power-time slot map) 'So the Dsc channel can be used to transmit the half-time slot for the ACK channel transmission of the secondary forward-keyway carrier, thereby shifting the ACK channel transmission as shown in FIG. Therefore, for a certain fragment of the assigned forward link carrier, the multi-bit AT can be reduced before the decoding time. The reduction in the ratio of the peak of the reverse link to the average is illustrated in Figure 7a to Figure 2. More specifically, as explained below with reference to Figure 7E, the access terminal H) 6 can divide the ACK channel transmission of multiple forward carriers on the single-reverse link carrier. Figure 14 illustrates a time-sharing multiplexer 14〇4 for ACK information in the multiplexer 106. 'Mouth 113125.doc _ 15· 1325247 ACK channel transmission per carrier can be reduced from 1 time slot to 1/4 time slot (each ack transmission lasts % time slot) (instead of 1 used in EV-DO Rev. A) /2 time slot), which may depend on the number of FL carriers that the ACK channel is transmitted for. The MAC layer 14 〇〇 (Fig. 14) at the access terminal 1 可 6 can provide an association of the ACK with the forward link based on the ACK transmission time. 7A and 7B show two DRC channel transmission requests of two forward link carriers (carriers i and 2) transmitted from the access terminal 1〇6 to the base station 1〇4, in two different ways. An instance of the FL data is transmitted at a rate (eg, U3.6 and 307.2 kbps). 7A and 7B may illustrate a DRC decoded by a base station 1-4, but FIGS. 7A and 7B do not indicate a method for time division multiplexed DRC on a single reverse link carrier as illustrated in FIG. 4B to FIG. . In Figures 7C and 7D, the base station 1.4 transmits to the two forward link carriers at two different rates (e.g., 153 6 and 3 〇 7 2 kbps) in response to the DRC. The forward traffic channel ( FTC) sub-package. The base station 1 4 can repeat and process the data bits of a raw data packet into a plurality of corresponding "sub-packets" for transmission to the access terminal 106. If the access terminal 106 is subjected to a high signal-to-noise signal, the first sub-packet may contain sufficient information for accessing the terminal 1 and deriving the original data packet. If the terminal 106 is subjected to a fading or low signal to interference signal, the access terminal 106 can have a relatively low probability of correctly decoding and deriving the original data packet only from the first sub-packet. If the access terminal 1〇6 does not successfully decode the first sub-packet, the access terminal transmits a NAK to the base station 104. The base station ι〇4 then sends the second sub-package. The access terminal 1G6 can combine the information originating from the first and second sub-packets to attempt to decode the original data packet at 113125.doc -16· 1325247. Since the access terminal (10) receives more sub-blocks = and, and β derives information from the parent-received sub-packets, the probability of decoding and deriving the original data packets is increased. In Fig. 7C, the base station 1G4 transmits the first sub-packet of the original data packet to the access terminal _ in the slot 1 of the carrier 1. At the same time in (10), the base
σ 104在載波2之時槽向存取終端機1〇6發送另一原始資 料封包之第一子封包。 存取終端機106嘗試分別自所接收之在載波上之第 一子封包解碼兩個原始資料封包。在圖7£中,存取終端機 106不能正確解碼所接收之在載波i上之第一資料封包;在 ACK頻道上向基地台104發送一 NAK;不能正確解碼所接收 之在載波1上之第二子封包;在ACK頻道上向基地台ι〇4發 送一 NAK ;不能正確解碼所接收之在載波1上之第三子封 包,在ACK頻道上向基地台1 〇4發送一 NAK ;正破解碼所接 收之在載波1上之第四子封包;及在ACK頻道上向基地台 104發送一 ACK。 同樣在圖7E中,存取終端機106不能正確解碼所接收之在 載波2上之第一及第二子封包,並向基地台1〇4發送NAK。 存取終端機106在載波2之時槽3上接收及處理第三子封包 之後(例如使用循環冗餘檢查(CRC)或其它錯誤偵測技術) 正確解碼原始第二封包。存取終端機106向基地台1〇4發送 應答(ACK)訊號以使其不發送用於载波2上第二原始封包之 第四子封包。 隨後基地台104可在載波2之時槽l(n + 12)中發送下一封 113125.doc -17- 1325247 包之第一子封包。在圖7E中,存取終端機106在單一 ACK/NAK RL頻道上發送用於兩個FL載波之ACK及 NAK(每一 FL載波具有1/4時槽的1/2時槽ACK/NAK頻道傳 輸)。 在多載波ACK之另一實施例中,存取終端機106可使用單 一 RL ACK頻道,其中RL ACK基於封包接收之時序而與FL 相關聯(亦稱為基於傳輸時間之ACK頻道關聯)。此可用於網 際網路協定上的語音(VoIP)型訊務。基於傳輸時間之ACK 頻道關聯可在FL排程器上添加一約束,以限制每次在單一 FL載波上至給定存取終端機106之傳輸。σ 104 transmits the first sub-packet of another original data packet to the access terminal 1〇6 at the time slot of carrier 2. Access terminal 106 attempts to decode two original data packets from the first sub-packet received on the carrier, respectively. In FIG. 7, the access terminal 106 cannot correctly decode the received first data packet on the carrier i; send a NAK to the base station 104 on the ACK channel; the received signal on the carrier 1 cannot be correctly decoded. a second sub-packet; transmitting a NAK to the base station ι 4 on the ACK channel; the third sub-packet received on the carrier 1 cannot be correctly decoded, and a NAK is sent to the base station 1 〇4 on the ACK channel; Breaking the fourth sub-packet received on carrier 1; and transmitting an ACK to base station 104 on the ACK channel. Also in Figure 7E, the access terminal 106 is unable to correctly decode the received first and second sub-packets on the carrier 2 and transmits the NAK to the base station 1〇4. The access terminal 106 correctly decodes the original second packet after receiving and processing the third sub-packet on slot 3 of carrier 2 (e.g., using a cyclic redundancy check (CRC) or other error detection technique). Access terminal 106 transmits an acknowledgement (ACK) signal to base station 1〇4 so that it does not transmit a fourth sub-packet for the second original packet on carrier 2. The base station 104 can then transmit the first sub-packet of the next 113125.doc -17- 1325247 packet in slot 1 (n + 12) of carrier 2. In Figure 7E, access terminal 106 transmits ACK and NAK for two FL carriers on a single ACK/NAK RL channel (1/2 time slot ACK/NAK channel with 1/4 time slot per FL carrier) transmission). In another embodiment of multi-carrier ACK, access terminal 106 can use a single RL ACK channel, where RL ACK is associated with FL based on the timing of packet reception (also referred to as ACK channel association based on transmission time). This can be used for Voice over Internet Protocol (VoIP) services. The ACK channel association based on transmission time may add a constraint on the FL scheduler to limit the transmission to a given access terminal 106 on a single FL carrier each time.
增強的多載波ACK 在多載波之非對稱操作模式之另一實施例中,圖8及圖9 說明多載波ACK及覆蓋傳輸之過程及結構。根據此模式, 每一長碼遮罩可存在用於4個前向鏈路載波之4個ACK頻 道,(例如)以在I分支及Q分支上使用分碼多工(CDM)傳輸在 單一反向鏈路載波上傳輸ACK。可使用不同的Walsh覆蓋 (例如)以使I分支與Q分支正交。詳言之,圖8展示用於準備 多載波ACK傳輸之過程及結構。第一及第二ACK訊號映射 區塊800及802分別映射或編碼ACK頻道載波1及2(每時槽1 位元)。隨後符號重複區塊804及806每一半時槽重複複數個 符號。繼重複之後,該等符號在Walsh覆蓋區塊808及810處 分別由Walsh程式碼/覆蓋及 <進行頻道化,從而每一半 時槽產生32個二進制符號。隨後在ACK頻道增益(Channel Gain)區塊812及814處對半時槽之每一者施加增益。在816 < s) 113125.doc •18· 處,-且α半時槽之增益’且隨後乘法器818施加赐A覆蓋/程 式碼%f以指示用於I相之ACK頻道。 類似於圖8,圖9說明用於ACK頻道載波3及4之多載波 ACK及覆蓋傳輸之過程及結構1三及第四似訊號映射 區塊900及902分別映射或編碼ACK頻道載波3及4(每時槽1 位元)。[^後符號重複區塊9〇4及9〇6每一半時槽重複複數個 符號。繼重複之後,該等符號在琛“虬覆蓋區塊9〇8及91〇處 分別由Walsh程式碼/覆蓋吖及吣進行頻道化,從而每一半 時槽產生32個二進制符號。隨後在ACK頻道增益區塊912及 914處對半時槽之每一者施加增益。在916處組合半時槽之 増益,且隨後乘法器918施加Walsh覆蓋/程式碼%丨2以指示用 於Q相之ACK頻道。 在多載波之非對稱操作模式之又一實施例中,圖丨〇說明 用以準備用於傳輸之增強的多載波Drc頻道之過程及結 構。在此模式中,每一長碼遮罩可存在4個〇尺(^頻道(每一 别向鍵路載波一個),(例如)以在J分支及Q分支上使用分碼 多工傳輸在單一反向鏈路載波上傳輸DRC率。對於使用相 同碼字Walsh覆蓋之DRC傳輸而言,一個前向載波之DRC覆 蓋值可相對於另一前向載波之DRC覆蓋值而偏移,使得該 等DRC覆蓋係清楚的。舉例而言,若載波# 1使用drc覆蓋= 0x1 ’則載波# 3可使用相對於Οχι而偏移之DRC覆蓋值。 更特定而言’參看圖10,第一及第二雙正交編碼器1〇〇〇 及1002分別編碼載波1及2之每一者之drc頻道(例如,每一 主動時槽一個4位元符號),且每一主動時槽產生8個二進制 113125.doc •19· 1325247 符號。碼字Walsh之每一者覆蓋分別處於覆蓋區塊1004及 1006中之%2及町,隨後每一主動時槽產生丨6個二進制符 號。隨後第一及第二訊號點映射區塊1008及1〇1〇分別將〇s 及Is映射至每一主動時槽之+ 1及_丨。在drc頻道增益區塊 1012及1014處向時槽之每一者施加増益之後,隨後乘法器 1020及1022將增益1〇 12及1〇 14之輸出與分別用於載波1及 載波2之DRC覆蓋符號(例如每一主動時槽一個3位元符號) 分別組合。 在多載波之非對稱操作模式之另一實施例中,用於載波i 及2之DRC覆蓋符號分別由Walsh覆蓋區塊(β (z.= 0,1,…7))1016及1018進行頻道化。隨後在1〇24處將乘法器 1020與1022之輸出相加,隨後在1〇26處施加Walsh覆蓋碼 進行相乘’以指示用於Q相之DRC頻道。 類似於圖10’圖11說明用以準備用於載波3及4之傳輸之 增強的多載波DRC頻道之過程及結構。第三及第四雙正交 編碼器1100及1102分別編碼載波3及4之每一者之DRC頻道 (例如每一主動時槽一個4位元符號),且每一主動時槽產生8 個二進制符號。碼字Walsh之每一者覆蓋分別處於碼字覆蓋 區塊1104及1106中之吣及旳,隨後每一主動時槽產生16個 二進制符號。隨後第一及第二訊號點映射區塊11〇8及111〇 为別將Os及Is映射至每一主動時槽之+1及·ι。在drc頻道增 益Q塊1112及1114處對時槽之每一者施加增益之後,隨後 乘法器1120及1122將增益1Π2及1114之輸出與分別用於載 波3及載波4之DRC覆盍符號(例如每·一主動時槽一個3位元 < S ) 113125.doc -20- 1325247 符號)分別組合。 在夕載波之非對稱操作模式之另一實施例中’用於載波3 及4之DRC覆蓋符號分別在覆蓋區塊1116及1118處由Walsh 覆蓋區塊(%8(ζ· = 〇,1,.··7))進行頻道化。隨後在丨丨24處將乘 法器1120與1122之輸出相加,隨後在1126處施加|31虬覆蓋 碼%進行相乘’以指示用於j相之Drc頻道。 應瞭解,在上述多載波之非對稱操作模式的實施例之任 一者中’可在I分支及Q分支上使用分碼多工傳輸在單一反 向鍵路載波上傳輸用於多達四(4)個前向鏈路載波之ack及 DRC頻道。在前向鏈路與反向鏈路頻道數目相等之情況 下’刖述機制亦可允許AT (例如)在某些反向鏈路頻率上自 主關閉前導及訊務頻道’在該等反向鍵路頻率上AT選擇不 進行傳輸(例如,當AT缺少傳輸功率餘裕空間時)。此外, 對於使用相同碼字Walsh覆蓋之DRC傳輸而言,一個前向載 波之DRC覆蓋值可相對於另一前向鍵路載波之drc覆蓋值 而偏移。以另一方式陳述,根據本發明之此態樣,可使用 Walsh 碼 W(16,8)之 I/Q 相(同相⑴,正交(Q))及 W(16,8)之 I/Q 相來傳輸用於最前4個載波之ACK及DRC頻道。若需要用於 附加FL載波之附加DRC頻道傳輸’則存取終端機1 〇6可使用 W(16,8)之相之每一者上的%時槽DRC。因此,存取終端機 106可用單一RL載波支援用於多達4個FL載波之DRC。 參看圖12’其展示多載波系統中前向鏈路與反向鏈路頻 率之間的對應關係。訊務頻道指派(TCA)可規定此關係。以 實例說明,反向鏈路頻率"X"經指定以載運用於所有前向鏈 113125.doc -21 · 1325247 路頻率之DSC、DRC及ACK頻道。 在本發明之一個態樣中’對於每一反向鏈路頻率,可使 用長碼遮罩之四(4)個最高有效位元(MSB)來產生複數個 (例如多達四個)附加長碼遮罩。詳言之,由可在Tca中規定 之4位元識別符(例如 <長媽遮罩指數(2位元)、反饋^心覆 蓋(1位元)、IQ識別符(1位元)>)可識別發送反饋(ACK/DRC) 之頻道。 在另一態樣中,AT可將用於反向訊務頻道之長碼遮罩(例 如MIrtcmac及MQrtcmac)設置如下。舉例而言,與每一長碼 遮罩指數相關聯之42位元碼遮罩MIRTCMAC可如下表Ϊ所示 來規定:Enhanced Multi-Carrier ACK In another embodiment of a multi-carrier asymmetric mode of operation, Figures 8 and 9 illustrate the process and structure of multi-carrier ACK and overlay transmission. According to this mode, each long code mask can have 4 ACK channels for 4 forward link carriers, for example, to use code division multiplexing (CDM) transmission on the I branch and the Q branch in a single inverse The ACK is transmitted on the link carrier. Different Walsh covers can be used (for example) to make the I branch orthogonal to the Q branch. In particular, Figure 8 shows the process and structure for preparing a multi-carrier ACK transmission. The first and second ACK signal mapping blocks 800 and 802 map or encode ACK channel carriers 1 and 2, respectively (1 bit per time slot). Subsequent symbol repeat blocks 804 and 806 repeat a plurality of symbols for each half time slot. Following the repetition, the symbols are channelized by Walsh code/overlay and < respectively at Walsh coverage blocks 808 and 810, resulting in 32 binary symbols per half-time slot. A gain is then applied to each of the half-time slots at ACK Channel Gain blocks 812 and 814. At 816 < s) 113125.doc • 18·, and the gain of the α half-time slot' and then the multiplier 818 applies the A-cover/program code %f to indicate the ACK channel for the I phase. Similar to FIG. 8, FIG. 9 illustrates the process and structure of multi-carrier ACK and overlay transmission for ACK channel carriers 3 and 4, and the first and fourth analog signal mapping blocks 900 and 902 respectively map or encode ACK channel carriers 3 and 4, respectively. (1 bit per slot). [^ After the symbol repeating blocks 9〇4 and 9〇6, each half-time slot repeats a plurality of symbols. Following the repetition, the symbols are channelized by Walsh code/cover 吖 and 分别 at 〇"虬 coverage blocks 9〇8 and 91〇, respectively, resulting in 32 binary symbols for each half-time slot. Then on the ACK channel A gain is applied to each of the half-time slots at gain blocks 912 and 914. The benefits of the half-time slots are combined at 916, and then the multiplier 918 applies Walsh coverage/code %丨2 to indicate the ACK for the Q phase. In another embodiment of the multi-carrier asymmetric mode of operation, the figure illustrates the process and structure for preparing the enhanced multi-carrier Drc channel for transmission. In this mode, each long code mask There may be 4 feet (^ channels (one for each of the key carriers), for example to transmit DRC rates on a single reverse link carrier using coded multiplex transmission on the J and Q branches. For a DRC transmission using the same codeword Walsh coverage, the DRC coverage value of one forward carrier may be offset with respect to the DRC coverage value of another forward carrier, such that the DRC coverage is clear. For example, if Carrier # 1 uses drc coverage = 0x1 ' then carrier # 3 The DRC coverage value offset relative to Οχι can be used. More specifically, 'see FIG. 10, the first and second bi-orthogonal encoders 1 and 1002 respectively encode the drc of each of carriers 1 and 2, respectively. Channel (for example, a 4-bit symbol for each active time slot), and each active time slot produces 8 binary 113125.doc • 19· 1325247 symbols. Each of the code words Walsh is covered in coverage block 1004 and %2 of the 1006 and the town, then each active time slot generates 二进制6 binary symbols. Then the first and second signal point mapping blocks 1008 and 1〇1 map 〇s and Is to each active time respectively + 1 and _ 槽 of the slot. After the benefits are applied to each of the time slots at the drc channel gain blocks 1012 and 1014, the multipliers 1020 and 1022 then use the outputs of the gains 1 〇 12 and 1 〇 14 respectively. The DRC coverage symbols of carrier 1 and carrier 2 (e.g., one 3-bit symbol per active time slot) are separately combined. In another embodiment of the asymmetric mode of operation of multiple carriers, the DRC coverage symbols for carriers i and 2 are used. Was covered by Walsh coverage blocks (β (z.= 0,1,...7)) 1016 and 1018 respectively. Then, the outputs of the multipliers 1020 and 1022 are added at 1 〇 24, and then a Walsh cover code is applied at 1 〇 26 for multiplication ' to indicate the DRC channel for the Q phase. Similar to FIG. 10' 11 illustrates a process and structure for preparing an enhanced multi-carrier DRC channel for transmission of carriers 3 and 4. The third and fourth dual orthogonal encoders 1100 and 1102 respectively encode DRCs for each of carriers 3 and 4. The channel (for example, a 4-bit symbol for each active time slot), and each active time slot produces 8 binary symbols. Each of the codewords Walsh covers 吣 and 分别 in codeword coverage blocks 1104 and 1106, respectively, and then each active time slot produces 16 binary symbols. Then, the first and second signal point mapping blocks 11 〇 8 and 111 〇 do not map Os and Is to +1 and · ι of each active time slot. After applying gain to each of the time slots at drc channel gain Q blocks 1112 and 1114, then multipliers 1120 and 1122 then combine the outputs of gains 1Π2 and 1114 with DRC overlay symbols for carrier 3 and carrier 4, respectively (eg Each of the active time slots is a combination of a 3-bit <S) 113125.doc -20- 1325247 symbol). In another embodiment of the asymmetric mode of operation of the evening carrier, the 'DRC coverage symbols for carriers 3 and 4 are covered by Walsh at coverage blocks 1116 and 1118, respectively (%8 (ζ· = 〇, 1, .··7)) Channelization. The outputs of multipliers 1120 and 1122 are then summed at 丨丨24, and then |31 虬 cover code % is applied at 1126 for multiplication' to indicate the Drc channel for the j-phase. It will be appreciated that in any of the above embodiments of the asymmetric mode of operation of multiple carriers, 'transfers over the I-branch and Q-branch using a code division multiplexing transmission on a single reverse-keyway carrier for up to four (" 4) ack and DRC channels of a forward link carrier. In the case where the number of forward link and reverse link channels are equal, the 'description mechanism may also allow the AT to autonomously turn off the preamble and traffic channel on certain reverse link frequencies', in the reverse key. The AT selection on the path frequency is not transmitted (for example, when the AT lacks the transmission power margin). In addition, for DRC transmissions that use the same codeword Walsh coverage, the DRC coverage value of one forward carrier can be offset relative to the drc coverage value of the other forward bond carrier. Stated another way, according to this aspect of the invention, the I/Q phase (in-phase (1), quadrature (Q)) and W (16, 8) I/Q of the Walsh code W (16, 8) can be used. The ACK and DRC channels for the first 4 carriers are transmitted in phase. If additional DRC channel transmissions are required for the additional FL carrier, then the access terminal 1 〇6 can use the % time slot DRC on each of the W (16, 8) phases. Thus, access terminal 106 can support DRC for up to four FL carriers with a single RL carrier. Referring to Figure 12', there is shown the correspondence between the forward link and reverse link frequencies in a multi-carrier system. The Traffic Channel Assignment (TCA) can specify this relationship. By way of example, the reverse link frequency "X" is designated to carry the DSC, DRC, and ACK channels for all forward chain 113125.doc -21 · 1325247 frequencies. In one aspect of the invention 'for each reverse link frequency, four (4) most significant bits (MSBs) of the long code mask can be used to generate a plurality (eg, up to four) of additional lengths. Code mask. In detail, the 4-bit identifier that can be specified in Tca (for example, <Long Ma Mask Index (2 bits), Feedback ^Heart Coverage (1 bit), IQ Identifier (1 bit)> ;) Channels that can send feedback (ACK/DRC). In another aspect, the AT can set the long code masks (e.g., MIrtcmac and MQrtcmac) for the reverse traffic channel as follows. For example, the 42-bit code mask MIRTCMAC associated with each long code mask index can be specified as shown in the following table:
位元 3( ro r 3、i > no ^ ϊ Γ> -ς > ro r» r no γ· > no r» MlfiTOWC V 1 1 1 1 1 1 1 1 罝換碼[AU AN可在一 AT可進行傳輸之頻道之每一者上向該AT指派 一或多個長碼遮罩。(例如)可由作為路由更新協定(R〇ute Update Proto col)之公用資料之長碼遮罩指數的值來識別頻 道之每一者之長碼遮罩。 在表I中,置換碼(ATILCM)可界定如下: ATILCm = (A31, A3〇, A29, ..., A〇) 置換碼(ATIlcm)=(A。,A31,A22, A13, A4, A26, A17, A8, A3。, A21, a12, a3, a25> a16, a7, a29, a2〇, a,,, a2, a24j a15, a6, A28,A19,A10,Ai,A23,Al4,A5,A27,Ai8,A9) 0 42位元碼遮罩MQRTCMAC可自碼遮罩MIrtcmac推導如下: < s > 113125.doc -22- 1325247 MQRTCMAC[k] = MIRTcMAC[k-l],其中 k = 1,…,41 MQrtcmac[〇] = MIrtcmac[〇]㊉ MIrtcmac[1]㊉ MIrtcmac[2] ㊉ MIrTcmac[4]㊉ MIrtcmac[5]㊉ MIrtcmac[6] Θ MIrtcmac[9]㊉ MIrtcmac[15]㊉ MIrtcmac[16]㊉ MIrtcmac[17]㊉ MIrtcmac[18]㊉ MIrtcmac[20]㊉ MIRTCMAc[21] Θ MIrTcmac[24] ㊉ MIrtcmac[25]㊉ MIrtcmac[26]㊉ MIrtcmac[30]㊉ MIRTCMAc[32]㊉ MIrtcmac[34] ㊉ MIrtcmac[41] 其中㊉指代互斥或運异’且MQrtcmac[z·]及MIrtcmac[z·]分別 表示MQrtcmac及MIRTcmac之第i最低有效位元。 前向鍵路軟組合(Soft-combining)模式 存取終端機106可使用具有前向鏈路軟組合模式(越過多 個FL載波而接收之軟組合資料)之多載波DRC。在此模式 中,基地台1〇4不必在個別前向鏈路上同時傳輸封包,即, 設計將用非同步傳輸支援越過載波之軟交遞(soft handoff)。存取終端機106可基於相同基地台104的在多個FL 載波上之給定時槽中至存取終端機106之傳輸來指示DRC 指數。 在一項實施例中,系統或網路100可使用一般屬性更新協 定(GAUP)指示至給定終端機106之所有封包傳輸將為持續 一段時間的多載波傳輸。存取終端機106可基於經組合之 SINR預測而傳輸DRC,直至另外收到指令為止。MAC層 1400(圖14)可提供訊號映射。 113125.doc -23- 丄 網路可具有某些彈性以在該相同時間間隔内使用一個栽 波或載波之組合向存取終端機1〇6提供服務。此可使用每一 載波之個別DRC以及基於經組合之SINr預測之DRC »網路 可組態存取終端機106以使其在DRC報告之該等兩個模式 之者中運行° (例如)當存取終端機1〇6經受對於VoIP流或 所有類型流之不良頻道條件時,可使用前向鏈路軟組合模 式0Bit 3 ( ro r 3, i > no ^ ϊ Γ > - ς > ro r» r no γ· > no r» MlfiTOWC V 1 1 1 1 1 1 1 1 罝 escape code [AU AN can be One or more long code masks are assigned to the AT on each of the channels over which the AT can transmit. For example, a long code mask index that can be used as a public data material of a routing update protocol (R〇ute Update Proto col) The value of the long code mask to identify each of the channels. In Table I, the replacement code (ATILCM) can be defined as follows: ATILCm = (A31, A3〇, A29, ..., A〇) Replacement code (ATIlcm )=(A., A31, A22, A13, A4, A26, A17, A8, A3., A21, a12, a3, a25> a16, a7, a29, a2〇, a,,, a2, a24j a15, a6 , A28, A19, A10, Ai, A23, Al4, A5, A27, Ai8, A9) 0 42-bit code mask MQRTCMAC can be derived from the code mask MIrtcmac as follows: < s > 113125.doc -22- 1325247 MQRTCMAC[k] = MIRTcMAC[kl], where k = 1,...,41 MQrtcmac[〇] = MIrtcmac[〇] 十 MIrtcmac[1]十 MIrtcmac[2] 十 MIrTcmac[4]十 MIrtcmac[5]十 MIrtcmac[ 6] Θ MIrtcmac [9] ten MIrtcmac [15] ten MIrtcmac [16] ten MIrtcmac [17] ten MIrtcmac [18] Ten MIrtcmac [20] ten MIRTCMAc [21] Θ MIrTcmac [24] ten MIrtcmac [25] ten MIrtcmac [26] ten MIrtcmac [30] ten MIRTCMAc [32] ten MIrtcmac [34] ten MIrtcmac [41] where ten refers to each other斥 运 运 且 and MQrtcmac[z·] and MIrtcmac[z·] respectively represent the i-th least significant bit of MQrtcmac and MIRTcmac. The forward-key soft-combining mode access terminal 106 can be used with Multi-carrier DRC in forward link soft combining mode (soft combining data received over multiple FL carriers). In this mode, base station 1〇4 does not have to transmit packets simultaneously on individual forward links, ie, the design will Support for soft handoff across carriers with asynchronous transmission. The access terminal 106 can indicate the DRC index based on the transmission of the same base station 104 to the access terminal 106 in a given timing slot on the plurality of FL carriers. In one embodiment, the system or network 100 may use the General Attribute Update Protocol (GAUP) to indicate that all packet transmissions to a given terminal 106 will be multi-carrier transmissions for a period of time. Access terminal 106 can transmit the DRC based on the combined SINR prediction until an additional command is received. The MAC layer 1400 (Fig. 14) provides signal mapping. 113125.doc -23- 网路 The network may have some flexibility to provide access to the access terminal 1〇6 using a combination of carriers or carriers during the same time interval. This may use an individual DRC for each carrier and a DRC »network configurable access terminal 106 based on the combined SINr prediction to operate in the two modes of the DRC report (eg, when) The forward link soft combining mode can be used when the access terminal 1 6 is subjected to bad channel conditions for a VoIP stream or all types of streams.
圖13 A說明可在圖!之基地台1〇4處實施的前向鏈路傳輸 鏈、結構或過程之實例。在圖13A中展示之功能及組件可由 軟體、硬體或軟體與硬體之組合來實施。可向圖13A添加除 圖13A所示之功能之外或替代如圖UA所示之功能的其他 功能。Figure 13 A illustrates the figure available! An example of a forward link transmission chain, structure or process implemented at base station 1〇4. The functions and components shown in Figure 13A can be implemented by software, hardware, or a combination of software and hardware. Other functions in addition to or in lieu of the functions shown in Fig. UA may be added to Fig. 13A.
在區塊1302中,編碼器使用一或多個編碼機制對資料位 元編碼’以提供經編碼之資料碼片。每一編碼機制可包括 一或多種類型編碼,諸如循環冗餘檢查(CRC)、捲積編碼、 渦輪編碼(Turbo coding)、區塊編碼、其他類型編碼,或完 全無編碼。其它編碼機制可包括自動重複請求、混合 式ARQ,及遞增冗餘重複技術。不同類型的資料可使用不 同編碼機制予以編碼。 在區塊1304中,交錯器使經編碼之資料位元交錯以抗衰 落。在區塊1306中,調變器調變經編碼、交錯之資料,以 產生經調變之資料。調變技術之實例包括二元相移鍵控 (BPSK)及正交相移鍵控(qpsk)。 在區塊1308中,轉發器(repeater)可重複經調變資料之序 113125.doc -24· 列’或符號穿孔單元可穿孔符號之位元。在區塊1310中, 擴展器(例如’乘法器)可使用Walsh覆蓋(即,Walsh程式碼) 來擴展經調變之資料’以形成資料碼片。 在區塊1312中,多工器可分時多工具有前導碼片及MAC 碼片之資料碼片以形成碼片流。在區塊13 14中,偽隨機雜 訊(PN)擴展器可用一或多個pn碼(例如短碼、長碼)來擴展 碼片流。隨後,前向鏈路經調變之訊號(經傳輸之碼片)在無 線通信鏈路上經由天線而傳輸至一或多個存取終端機1〇6。 圖13B說明可在圖1之存取終端機1〇6處實施之前向鏈路 接收鏈、過程或結構之實例。圖丨3B中展示之功能及組件可 由軟體、硬體或軟體及硬體之組合來實施。可向圖〗3b添加 除圖13B所示之功能之外或替代如圖13B所示之功能的其 他功能。 一或多個天線1320A至1320B接收來自一或多個基地台 104的前向鏈路經調變之訊號。多個天線132〇人至132〇b可 提供防止諸如衰落之不利路徑效應之空間分集。將每一經 接收之訊號提供至個別天線接收器濾波區塊丨322,其調節 (例如’遽波、放大、降頻轉換)並數位化經接收之訊號,以 產生該經接收之訊號的資料樣本。 級聯適應線性等化器(Cascaded adaptive linear equaliZer)1324接收資料樣本並產生經等化之片至區塊 1325。區塊1325可使用在區塊1314中使用之一或多個pn碼 解擴展樣本。區塊1326可移除前導時間滯後並插入空白。 在區塊1328中’解擴展器可解Walsh,意即以用於擴展在基 113125.doc -25- 地台處之區塊1310中之資料的相同擴展序列來解擴展或移 除源自經接收之資料樣本的Walsh碼》 在區塊1330中,解調變器解調變所有經接收之訊號之資 料樣本以提供經恢復之符號。對於cdma2000而言,解調變 嘗試藉由以下所述來恢復資料傳輸:(1)頻道化經解擴展之 樣本以將經接收之資料及前導隔離或頻道化至其各自的碼 頻道上’及(2)使用經恢復之前導來連貫地解調變經頻道化 之資料以提供經解調變之資料。解調變區塊1330可實施耗 式接收器(rake receiver)以處理多訊號情況。 區塊1334可接收經穿孔之符號的位置,並將符號轉換為 連續位元。區塊1332在經穿孔之位元出現時可將對數似然 比(LLR)歸零。區塊1336可施加頻道解交錯。 在區塊1338中,頻道解碼器解碼經解調變之資料以恢復 由基地台104傳輸之經解碼之資料位元。 本文中所揭示之術語"資訊頻道"可指DRC頻道、ACK頻 道’或含有頻道狀態資訊之其他頻道。 應瞭解’本文中所述之實施例提供多載波通信系統之非 對稱操作模式的某些實施例。存在其他實施例及實施。可 在多載波通信系統中之AN、AT及其他元件中實施各種所揭 示之實施例。 熟習此項技術者將瞭解,可使用各種不同的技術及技藝 之任一種來表示資訊及訊號。舉例而言,遍及以上描述所 引用之資料、指令、命令、資訊、訊號、位元、符號及片 可由電壓、電流、電磁波、磁場或磁性粒子、光場或光粒 113125.doc -26 - 子或其任意組合來表示。 熟習此項技術者將進一步瞭解,與本文揭示之實施例相 關聯之各種說明性邏輯區塊、模組、電路及演算法步驟可 實施為電子硬體、電腦軟體或兩者之組合。為清楚地說明 硬體與軟體之此種可互換性,以上已根據其功能性大體描 述各種說明性組件、區塊、模組、電路及步驟。此功能性 是否實施為硬體或軟體取決於特定應用以及施加至整個系 統之設計約束。熟習此項技術者可以各種方式實施所述功 能性以用於每一特定應用,但此實施決定不應被理解為導 致偏離本發明之範疇。 與本文中所揭示之實施例相關聯而描述之各種說明性邏 輯區塊、模組及電路可使用以下所述而實施或執行:通用 處理器、數位訊號處理器(DSP)、特殊應用積體電路 (ASIC)、場可程式化閘陣列(FPGA)或其他可程式化邏輯設 備、離散閘或電晶體邏輯、離散硬體組件,或經設計以執 行本文所述功能的前述之任意組合。通用處理器可為微處 理器,但替代地,處理器可為任意的習知處理器、控制器、 微控制器或狀態機。處理器亦可被實施為計算設備之組 合’例如DSP與微處理器之組合、複數個微處理、與DSP 核相結合之一或多個微處理器,或任意其他此種配置。 與本文中所揭示之實施例相關聯而描述之方法或演算法 之步驟可直接具體化於硬體中、由處理器執行之軟體模組 中或兩者之組合中。軟體模組可駐留於RAM記憶體、快閃 記憶體、ROM記憶體、EPROM記憶體、EEPROM記憶體、 ll3125.doc •27· I存器、硬碟、可移磁碟、CD_譲或任意其他形式 存媒體中。儲存媒體耦接至處 " 便慝理15可自儲存媒 體頃取資訊以及向儲存媒體寫入資訊。在替代情形 存媒體可整合於處理器。處理器及健存媒體可駐留於ASIC 中。ASIC可駐留於使用者終端機中。在替代情形中,處理 器及儲存媒體可駐留而作為使用者終端機中之離散組件。 為參考及協助定位某些章節而將標題包括於本文中。該 等標題並非意欲限制其下所描述概念之料,且二 在整個說明書之其他章節中亦可具有適用性。 心 提供所揭示實施例之先前描述以使任何熟習此項技術者 可實現或使用本發明。對於熟習此項技術者而言,對該等 實施例之各種修改將為顯而易見的,且在不背離本發明之 精神或㈣的m,本Μ所敎卜制理可應用於 其他實施例。因此’不希望本發明受限於本文中所揭示之 實施例,^教其符合於與本文巾㈣^原理及新顆 特徵相一致之最廣範疇。 【圖式簡單說明】 圖1說明具有基地台及存取終端機之—無線通信系統。 圖2說明對稱的前向鏈路與反向鏈路載波指派之一實例。 圖3A及圖3B說明非對稱式載波指派之實例。 圖4A說明單u向鏈路載波之資料率控制⑺rc)反向鍵 路傳輸之一實例。 圖4B至圖4F說明多載波、即經分時多工之drc之實例。 圖5說明使用分離長碼遮罩在一初級反向鏈路(RL)上傳 113125.doc •28· 1325247 輸用於附加前向鏈路(FL)載波之DRC及ACK頻道之模組的 方塊圖》 圖ό說明在操作及使用長碼遮罩之非對稱模式中的峰值 與平均值之比的減小。 圖7Α及圖7Β說明向基地台發送兩個前向鏈路載波之兩 個DRC頻道傳輸請求以便以兩種不同速率傳輸資料的存取 終端機之實例。 圖7C及圖7D說明在兩個前向鏈路載波上以兩種不同速 率傳輸前向訊務頻道子封包之基地台。 圖7Ε說明在單一反向鏈路頻道上發送用於兩個前向鍵路 載波之應答(ACK)及否定應答(ΝΑΚ)之存取終端機。 圖8及圖9說明多載波ACK傳輸之非對稱模式之過程及結 構。 圖10及圖11說明多載波DRC傳輸之非對稱模式之過程及 結構。 圖12說明多載波系統中前向鏈路與反向鏈路頻率之間的 對應關係。 圖13Α說明可在圖1之基地台處實施之前向鏈路傳輸鏈、 結構或過程之實例。 圖13B說明可在圖1之存取終端機處實施之前向鏈路接收 鍵、過程或結構之實例。 圖14說明圖1之存取終端機之某些組件。 【主要元件符號說明】 100 無線通信系統In block 1302, the encoder encodes the data bits using one or more encoding mechanisms to provide encoded data chips. Each coding mechanism may include one or more types of coding, such as cyclic redundancy check (CRC), convolutional coding, turbo coding, block coding, other types of coding, or no coding at all. Other coding mechanisms may include automatic repeat request, hybrid ARQ, and incremental redundancy repetition techniques. Different types of data can be encoded using different coding mechanisms. In block 1304, the interleaver interleaves the encoded data bits to resist fading. In block 1306, the modulator modulates the encoded, interleaved data to produce modulated data. Examples of modulation techniques include binary phase shift keying (BPSK) and quadrature phase shift keying (qpsk). In block 1308, the repeater may repeat the order of the modulated data 113125.doc -24· column' or the symbol puncturing unit punctable symbol. In block 1310, an extender (e.g., a 'multiplier) may use Walsh coverage (i.e., Walsh code) to extend the modulated data' to form a data chip. In block 1312, the multiplexer can time-sequence the multi-tool with the preamble chip and the data chip of the MAC chip to form a chip stream. In block 13 14 , the pseudo-random noise (PN) expander may spread the chip stream with one or more pn codes (e.g., short code, long code). Subsequently, the forward link modulated signal (transmitted chip) is transmitted over the wireless communication link via the antenna to one or more access terminals 1〇6. Figure 13B illustrates an example of a forward link receive chain, process or structure that may be implemented at access terminal 1 〇 6 of Figure 1. The functions and components shown in Figure 3B can be implemented by software, hardware or a combination of software and hardware. Other functions in addition to or in place of the functions shown in Fig. 13B may be added to Fig. 3b. One or more antennas 1320A through 1320B receive forward link modulated signals from one or more base stations 104. Multiple antennas 132 to 132 〇b provide spatial diversity that prevents unfavorable path effects such as fading. Each received signal is provided to an individual antenna receiver filter block 322 that adjusts (eg, 'chopping, amplifying, downconverting, and digitizing the received signal to generate a data sample of the received signal . A Cascaded adaptive linear equaliZer 1324 receives the data samples and produces an equalized slice to block 1325. Block 1325 can use the one or more pn codes to despread the samples in block 1314. Block 1326 can remove the lead time lag and insert a blank. In block 1328, the 'de-spreader can solve Walsh, meaning to despread or remove the origin from the same spreading sequence used to extend the data in block 1310 at the base 113125.doc -25- Walsh Code of Received Data Samples In block 1330, the demodulator demodulates the data samples of all received signals to provide recovered symbols. For cdma2000, demodulation attempts to recover data transmission by: (1) channelizing the despread samples to isolate or channel the received data and preambles onto their respective code channels' and (2) Using the recovered preamble to consistently demodulate the channelized data to provide demodulated data. Demodulation block 1330 can implement a rake receiver to handle multiple signal conditions. Block 1334 can receive the position of the punctured symbol and convert the symbol to a contiguous bit. Block 1332 may zero the log likelihood ratio (LLR) when the punctured bit occurs. Block 1336 can apply channel deinterlacing. In block 1338, the channel decoder decodes the demodulated data to recover the decoded data bits transmitted by base station 104. The term "information channel" as disclosed herein may refer to a DRC channel, an ACK channel, or other channel containing channel state information. It will be appreciated that the embodiments described herein provide certain embodiments of the asymmetric mode of operation of a multi-carrier communication system. There are other embodiments and implementations. The various disclosed embodiments can be implemented in AN, AT, and other components in a multi-carrier communication system. Those skilled in the art will appreciate that information and signals can be represented using any of a variety of different technologies and techniques. For example, the materials, instructions, commands, information, signals, bits, symbols, and slices referred to in the above description may be voltage, current, electromagnetic wave, magnetic field or magnetic particle, light field or light particle 113125.doc -26 - Or any combination thereof. It will be further appreciated by those skilled in the art that the various illustrative logical blocks, modules, circuits, and algorithm steps associated with the embodiments disclosed herein can be implemented as an electronic hardware, a computer software, or a combination of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether this functionality is implemented as hardware or software depends on the particular application and the design constraints imposed on the overall system. The person skilled in the art can implement the described functionality in various ways for each particular application, but this implementation decision should not be construed as causing a departure from the scope of the invention. The various illustrative logical blocks, modules, and circuits described in association with the embodiments disclosed herein can be implemented or executed using the general-purpose processor, digital signal processor (DSP), special application complex. An electrical circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination of the foregoing designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. The processor can also be implemented as a combination of computing devices' such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. The steps of a method or algorithm described in association with the embodiments disclosed herein may be embodied in a hardware, in a software module executed by a processor, or in a combination of both. The software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, ll3125.doc • 27·I, hard disk, removable disk, CD_譲 or any Other forms of storage media. The storage medium is coupled to the location " and the processing 15 can retrieve information from the storage medium and write information to the storage medium. In an alternative scenario, the media can be integrated into the processor. The processor and the health media can reside in the ASIC. The ASIC can reside in the user terminal. In the alternative, the processor and storage medium may reside as discrete components in the user terminal. Headings are included in this article for reference and assistance in locating certain sections. These headings are not intended to limit the material described below, and may be applicable in other sections of the specification. The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to the embodiments will be apparent to those skilled in the art, and the invention may be applied to other embodiments without departing from the spirit of the invention or (d). Therefore, it is not intended that the present invention be limited to the embodiments disclosed herein, and that it is in the broadest scope consistent with the principles of the present invention and the novel features. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 illustrates a wireless communication system having a base station and an access terminal. Figure 2 illustrates an example of symmetric forward link and reverse link carrier assignment. 3A and 3B illustrate an example of asymmetric carrier assignment. Figure 4A illustrates an example of data rate control (7) rc) reverse link transmission for a single u-way link carrier. 4B through 4F illustrate examples of multi-carrier, ie, time-multiplexed drc. Figure 5 illustrates a block diagram of a module for transmitting DRC and ACK channels for additional forward link (FL) carriers using a separate long code mask on a primary reverse link (RL) upload 113125.doc • 28· 1325247 Figure ό illustrates the reduction in the ratio of peak to average in the asymmetric mode of operation and long code masking. Figure 7A and Figure 7B illustrate an example of an access terminal that transmits two DRC channel transmission requests for two forward link carriers to a base station to transmit data at two different rates. Figures 7C and 7D illustrate a base station transmitting forward traffic channel sub-packets at two different rates on two forward link carriers. Figure 7A illustrates an access terminal that transmits an acknowledgment (ACK) and a negative acknowledgment (ΝΑΚ) for two forward link carriers on a single reverse link channel. 8 and 9 illustrate the process and structure of the asymmetric mode of multicarrier ACK transmission. 10 and 11 illustrate the process and structure of an asymmetric mode of multi-carrier DRC transmission. Figure 12 illustrates the correspondence between the forward link and reverse link frequencies in a multi-carrier system. Figure 13 illustrates an example of a forward link transmission chain, structure or process that may be implemented at the base station of Figure 1. Figure 13B illustrates an example of a receive key, process or structure that can be forwarded to the link at the access terminal of Figure 1. Figure 14 illustrates certain components of the access terminal of Figure 1. [Main component symbol description] 100 wireless communication system
< S U3125.doc •29· 1325247 102 系統控制器 104a、104b 基地台 106、106a、106b、 106c ' 106d、 106e、 106f、 106g 200A、200B、 202A、202B、 300A、300B、< S U3125.doc • 29· 1325247 102 system controller 104a, 104b base station 106, 106a, 106b, 106c '106d, 106e, 106f, 106g 200A, 200B, 202A, 202B, 300A, 300B,
302 304A、304B 800 802 804 806 808302 304A, 304B 800 802 804 806 808
812 814 818 900 902 904 906 113125.doc 存取終端機 200C前向鏈路載波 202C反向鏈路載波 300C前向鏈路載波 反向鏈路載波 反向鍵路載波 ACK訊號映射區塊 ACK訊號映射區塊 符號重複區塊 符號重複區塊 Walsh覆蓋區塊 Walsh覆蓋區塊 ACK頻道增益區塊 ACK頻道增益區塊 乘法器 ACK訊號映射區塊 ACK訊號映射區塊 符號重複區塊 符號重複區塊 Walsh覆蓋區塊 -30- 908 1325247 910 Walsh覆蓋區塊 912 ACK頻道增益區塊 914 ACK頻道增益區塊 918 乘法器 1000 雙正交編碼器 1002 雙正交編碼器 1004 覆蓋區塊 1006 覆蓋區塊 1008 訊號點映射區塊 1010 訊號點映射區塊 1012 DRC頻道增益區塊 1014 DRC頻道增益區塊 1016 Walsh覆蓋區塊 1018 Walsh覆蓋區塊 1020 乘法器 1022 乘法器 1100 雙正交編碼器 1102 雙正交編碼器 1104 碼字覆蓋區塊 1106 碼字覆蓋區塊 1108 訊號點映射區塊 1110 訊號點映射區塊 1112 DRC頻道增益區塊 1114 DRC頻道增益區塊 113125.doc -31 - 1325247812 814 818 900 902 904 906 113125.doc Access terminal 200C forward link carrier 202C reverse link carrier 300C forward link carrier reverse link carrier reverse link carrier ACK signal mapping block ACK signal mapping Block symbol repeat block symbol repeat block Walsh cover block Walsh cover block ACK channel gain block ACK channel gain block multiplier ACK signal map block ACK signal map block symbol repeat block symbol repeat block Walsh cover Block -30- 908 1325247 910 Walsh Cover Block 912 ACK Channel Gain Block 914 ACK Channel Gain Block 918 Multiplier 1000 Bi-orthogonal Encoder 1002 Bi-orthogonal Encoder 1004 Cover Block 1006 Cover Block 1008 Signal Point Mapping block 1010 signal point mapping block 1012 DRC channel gain block 1014 DRC channel gain block 1016 Walsh coverage block 1018 Walsh coverage block 1020 multiplier 1022 multiplier 1100 bi-orthogonal encoder 1102 bi-orthogonal encoder 1104 Codeword coverage block 1106 codeword coverage block 1108 signal point mapping block 1110 signal point mapping block 1112 DRC channel gain Block 1114 DRC channel gain blocks 113125.doc -31 - 1325247
1116 覆蓋區塊 1118 覆蓋區塊 1120 乘法器 1122 乘法器 1302 區塊 1304 區塊 1306 區塊 1308 區塊 1310 區塊 13 12 區塊 1314 區塊 1320A、1320B 天線 1324 級聯適應線性等化器 1325 區塊 1326 區塊 1328 區塊 1330 解調變區塊 1332 區塊 1334 區塊 1336 區塊 1338 區塊 1400 MAC層 1402 分時多工器 1404 分時多工器 113125.doc •32-1116 Coverage Block 1118 Coverage Block 1120 Multiplier 1122 Multiplier 1302 Block 1304 Block 1306 Block 1308 Block 1310 Block 13 12 Block 1314 Block 1320A, 1320B Antenna 1324 Cascade Adapted to Linear Equalizer 1325 Area Block 1326 Block 1328 Block 1330 Demodulation Transform Block 1332 Block 1334 Block 1336 Block 1338 Block 1400 MAC Layer 1402 Time Division Multiplexer 1404 Time Division Multiplexer 113125.doc • 32-
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US70120605P | 2005-07-20 | 2005-07-20 | |
US70994405P | 2005-08-18 | 2005-08-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200723742A TW200723742A (en) | 2007-06-16 |
TWI325247B true TWI325247B (en) | 2010-05-21 |
Family
ID=41149327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW95126549A TWI325247B (en) | 2005-07-20 | 2006-07-20 | Asymmetric mode of operation in multi-carrier communication systems |
Country Status (3)
Country | Link |
---|---|
BR (1) | BRPI0613557A2 (en) |
RU (1) | RU2378764C2 (en) |
TW (1) | TWI325247B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9161348B2 (en) * | 2010-03-22 | 2015-10-13 | Samsung Electronics Co., Ltd | Multiplexing control and data information from a user equipment in a physical data channel |
CN106455076B (en) * | 2010-04-30 | 2022-01-25 | 索尼公司 | Radio resource control device and method, base station and terminal device and method thereof |
CN101958778B (en) * | 2010-09-28 | 2015-11-25 | 中兴通讯股份有限公司 | The mapping method of correct/error response message and terminal |
EP3029873B1 (en) * | 2010-11-03 | 2019-05-01 | Samsung Electronics Co., Ltd. | Method and apparatus for coding of harq-ack transmission in tdd systems with downlink carrier aggregation |
-
2006
- 2006-07-19 BR BRPI0613557-9A patent/BRPI0613557A2/en not_active Application Discontinuation
- 2006-07-19 RU RU2008106438/09A patent/RU2378764C2/en active
- 2006-07-20 TW TW95126549A patent/TWI325247B/en active
Also Published As
Publication number | Publication date |
---|---|
TW200723742A (en) | 2007-06-16 |
RU2008106438A (en) | 2009-08-27 |
RU2378764C2 (en) | 2010-01-10 |
BRPI0613557A2 (en) | 2011-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4927839B2 (en) | Asymmetric mode of operation in multi-carrier communication systems | |
JP4773507B2 (en) | Separating forward and reverse link assignments for multi-carrier wireless communication systems | |
TWI405430B (en) | Multiplexing on the reverse link feedbacks for multiple forward link frequencies | |
TWI373940B (en) | Method and apparatus for low-overhead packet data transmission and control of reception mode | |
US7227851B1 (en) | Transport channel multiplexing system and method | |
EP1463217A1 (en) | A method of scheduling grant transmission in a wireless communication system | |
JP2006518161A (en) | Code division multiplexing commands on code division multiplexing channels | |
US20070211660A1 (en) | apparatus and method for hybrid automatic repeat request | |
US7089030B2 (en) | De-boosting in a communications environment | |
TWI325247B (en) | Asymmetric mode of operation in multi-carrier communication systems | |
KR20080020143A (en) | Apparatus and method for transmitting/receiving data channel in an orthogonal frequency division multiple system | |
Yallapragada et al. | New enhancements in 3G technologies | |
JP4420027B2 (en) | Decoding method of channelization code set information in spread spectrum receiver | |
Assaad et al. | High-Speed Downlink Packet Access |