TWI374266B - - Google Patents

Download PDF

Info

Publication number
TWI374266B
TWI374266B TW096117275A TW96117275A TWI374266B TW I374266 B TWI374266 B TW I374266B TW 096117275 A TW096117275 A TW 096117275A TW 96117275 A TW96117275 A TW 96117275A TW I374266 B TWI374266 B TW I374266B
Authority
TW
Taiwan
Prior art keywords
forming
group
wafer
dimensional structure
bio
Prior art date
Application number
TW096117275A
Other languages
Chinese (zh)
Other versions
TW200844440A (en
Inventor
Yang Yui Whei Chen
Jui Chuang Wu
Yen Kuang Li
Yun Chu Chen
Original Assignee
Univ Chung Yuan Christian
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Chung Yuan Christian filed Critical Univ Chung Yuan Christian
Priority to TW096117275A priority Critical patent/TW200844440A/en
Publication of TW200844440A publication Critical patent/TW200844440A/en
Application granted granted Critical
Publication of TWI374266B publication Critical patent/TWI374266B/zh

Links

Description

^/4266 九、發明說明: 【發明所屬之技術領域】 本發明係’生物晶片,特別是關於__種具有三維立體結構 之生物晶片及其形成方法。 【先前技術】 生物晶片檢驗技術為近幾年來重要的生物技術之…它運用 分子生物學、基因資訊、分析化學等原理進行設計,以矽晶片、 玻璃或高分子絲材’配合職電自統、或其他誠加工技術, 7製作之雨舰元件,有如半導體晶#—般祕速進行繁複運 算;生物⑼具有快速、精確、低成本之生物分析檢驗能力·且突 破以往傳統檢測技術的極限,於單一晶片上可同時檢出多種病原。</ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; [Prior Art] Biochip inspection technology is an important biotechnology in recent years... It uses molecular biology, genetic information, analytical chemistry and other principles to design, to match wafer, glass or polymer wire Or other processing techniques, 7 produced rain ship components, such as semiconductor crystal #--------------------------------------------------------------------------- Multiple pathogens can be detected simultaneously on a single wafer.

目月’J發展令之生物晶片可大略分成··基因晶片⑽e物〇rDNA P) ”程式日日片(Processjjjgchip 或 Lab_on_a_chip)兩類。基因 晶片是所有不同種類之生物晶片中發展最快的一種。指的是在數 平方公分之φ積上具梭千或數相核酸探針,㈣—次測驗, 即可提供大量基因相細#訊,亦獻解_ (驗歷吵) 基因晶月。 微陣列型(]VTicroarray)基因晶片是在晶片基質上整齊的固 定、排列大量生物探針[去氧核醣核酸(DNa)],透過dna_DNA 雜父反應或是蛋白_健性結合,用簡行樣品分析或檢驗。 1374266 依照微陣列晶片檢測的標的物分類,則又可以分為DNA晶片與蛋 ’ 白質晶片二大類,DNA晶片是以核苷酸分子當探針(Probe),用 - 以檢測相對應的核酸片段,而DNA晶片依照點置在晶片上的探針 ·· 長短,分為互補去氧核醣核酸(cDNA)晶片與寡核酸晶片 ·· (QllgGnudec)tide chiP)。cDNA晶片最常被用於大量基因表達方面 的研究,券核苷酸晶片除了可以做基因表達的分析外,更重要是 &quot;X以攸事病原之診斷及基因分型(Gen〇^yp jjjg)。The biochip of the JJ development can be roughly divided into two types: the gene chip (10) e-material rDNA P) "Processjjjgchip or Lab_on_a_chip". The gene chip is the fastest growing of all kinds of different types of biochips. Refers to the number of square centimeters of the φ product with a shuttle or a number of nucleic acid probes, (four) - a test, you can provide a large number of gene phase fine # message, also provide _ (test noisy) gene crystal moon. The microarray type (]VTicroarray) gene wafer is a neatly fixed, arrayed biological probe [deoxyribonucleic acid (DNa)] on the wafer substrate, through dna_DNA hetero-parent reaction or protein-health binding, using a simple sample Analysis or inspection. 1374266 According to the classification of target objects detected by microarray wafers, it can be divided into DNA wafers and egg white matter wafers. DNA wafers are labeled with nucleotides as probes. The corresponding nucleic acid fragment, and the DNA wafer is divided into a complementary deoxyribonucleic acid (cDNA) wafer and an oligonucleic acid wafer (QllgGnudec) tide chiP according to the length of the probe placed on the wafer. The cDNA wafer is most often use Study of a large number of gene expression, the nucleotide chip coupons in addition to gene expression analysis can be done, and more importantly, &quot; X Yau to diagnose things and genotyping of pathogens (Gen〇 ^ yp jjjg).

• DNA晶》是她着著在紐上,姻騎與絲核聽核 酸(DNA)互補雜交的特性,來檢測特殊的DNA片段。它可以 用來檢測疾病、縮短新藥開發時程等等,是一種功能強大的DNA • 分析工具。例如:藉由可以發光的螢光體(也就是所謂的螢光阻 - 斷分子)當作探針(註:一般的DNA晶片探針是單股的DNA), 與制DNA反應,反應前後探針的螢光會發生變化,利用營光 的變化,就可以偵測出特殊的DNA片段。 生物晶片的用途很廣,分別可以應用在以下領域(丨)基因表現 的藍圖(Gene expression proflling) (2)毒理學上的分析(T〇xic〇bgy Analysis )(3)基因的定序(Gene Sequendn幻⑷單一核醣核酸的多 形性的拎定(SNP Identificati〇n)(5)法醫學上的應卿orensics)⑹免 疫反應分析(Immunoassays) (7)蛋白質晶片(Protein chip) (8)生物武 器的偵測(Combat Biowarfare ⑼藥物的篩選(Drug screening) (1〇) 電話硬體上的應用(hard drives and microprocessoi^) 〇 然而’舰生物晶#的概度低且;^侧,因此需使用昂 1^74266 貴的偵測儀器與特殊影像技術 。有鑑於此,仍有必要發展新的生 物晶片製造方法’以符合偵測容易與高敏感度的需求。 4b 【發明内容】 雰於上述之發明背景中,為了克服傳統技術的缺點,本發明 提供一種新的具有三維立體結辑之生物晶片及其形成方法。 # 二維立體結構中孔洞材料是一種具有奈米級孔洞的網狀聚合 物’例如··氣凝膠材料。孔隙度可高達95%,其因孔隙度高連帶 產生了許多特性:比表面積高、低密度、低熱傳導係數、低音傳 - 速度、低介電常數…等,因此應用範圍非常廣大,可用於隔熱材、 ; 觸媒、吸附劑、電極、電子’偵測器等方面。 本發明之一目的在於藉由溶膠_凝膠技術於平版基材上 合成具有三維立體結構之生物晶片。 藝 本發明之另一目的在於使平面基材之表面轉變成立體三 維立體結構中孔洞材料多孔結構,利用其巨大之内部比表面 積以捕捉標定之DNA、蛋白質、胜肽·、醣類分子及細胞等。 如此一來,本發明所提供具有三維立體結構之生物晶片具有敏 感度商及偵測容易的特色,可以簡化偵測儀器,例如:僅 需架設數據型照像機(CCD),不需使用特殊影像技術。據 此本發明此付合經濟上的效益與產業上的利用性。 根據以上所述之目的,本發日·卜種具有三維立體結構之 1374266 生物晶片,其結構包含-基材與—形成於基材表面上之 結構中制_層,其t,三維續結射孔 絲^ =後r_定之讓、_、雌、嶋子及H y發明亦揭不了—種具有三維立體結構中孔洞材料層的生 物晶片形成方法’其包含-摻讀程一齡程序、一靜置 程序、-乾燥程序、-加工程序、—改f程序與—塗佈程序。 •【實施方式】 本發明在此所探討的方向為—種具有三維立體結構之生物晶 •片及其戦綠。為了驗底地瞭解本發明,將在下列的描述中 :提麟盡的步駭其喊。顯醜,本發明的施行並未限定於該 領域之技藝者所熟習的特殊細節。另一方面,眾所周知的組成或 步驟並未描述於細節中,以避免造成本發明不必要之限制。本發 明的較佳實施例會詳細描述如下,然而除了這些詳細描述之外, •本發明還可贿泛地施行在其他的實關巾,且本發_範圍不 受限定.,其以之後的專利範圍為準。 本發明之一實施例揭露一種具有三維立體結構之生物晶片的 .形成方法,首先,提供一氣凝膠前驅溶液,其包含一離子熔液(兼 •具模板與溶劑之功能)、一催化水解與/或縮合反應試劑以及至少 一種烷氧基單體(alkoxide)與/或芳香氧基單體,其中,催 化水解與/或縮舍反應試劑包含下列族群中之一者或其任意組 合.醇類、酸性化合物與驗性化合物。此外,上述之烧氧基單體 1374266 與/或芳香氧基單體中的中心元素包含下列族群中之一者⑴、他、 K、Rb、CS、Be、Mg、Ca、Sr、Ba、B、Te、CrCuErFe、• DNA Crystal is a feature of her complementary DNA hybridization in the New Zealand, which is complementary to the nuclear nucleus (DNA). It can be used to detect diseases, shorten the development time of new drugs, etc. It is a powerful DNA analysis tool. For example, by using a luminescence-emitting phosphor (also known as a fluorescent-blocking molecule) as a probe (note: a general DNA wafer probe is a single-stranded DNA), reacting with DNA, and before and after the reaction The fluorescence of the needle changes, and the use of changes in the camp light can detect specific DNA fragments. Biochips are widely used, and can be applied to the following fields (Gene expression proflling) (2) Toxic analysis (T〇xic〇bgy Analysis) (3) Gene sequencing ( Gene Sequendn (4) SNP Identificati〇n (5) Forensic medicine orensics) (6) Immunological assay (Immunoassays) (7) Protein chip (8) Detection of biological weapons (Combat Biowarfare (9) drug screening (Drug screening) (1〇) on the phone hardware application (hard drives and microprocessoi^) 〇 However, 'ship biocrystal#' low profile and; ^ side, therefore It is necessary to use ang 1^74266 expensive detection equipment and special imaging technology. In view of this, it is still necessary to develop a new biochip manufacturing method to meet the needs of easy detection and high sensitivity. 4b [Invention content] In the above background of the invention, in order to overcome the shortcomings of the conventional technology, the present invention provides a novel bio-film having a three-dimensional stereoscopic combination and a method of forming the same. # The two-dimensional structure is a hole material having a nano-scale hole Reticulated polymer 'for example, aerogel material. Porosity can be as high as 95%. It has many characteristics due to high porosity: high specific surface area, low density, low thermal conductivity, low-speed transmission, low dielectric Constants, etc., so the application range is very large, and can be used for heat insulating materials, catalysts, adsorbents, electrodes, electronic 'detectors, etc. One of the objects of the present invention is to use a sol-gel technique on a lithographic substrate. A biochip having a three-dimensional structure is synthesized thereon. Another object of the present invention is to transform the surface of a planar substrate into a porous structure of a porous material in a bulk three-dimensional structure, and utilize its large internal specific surface area to capture the calibrated DNA and protein. In this way, the biochip having the three-dimensional structure provided by the present invention has the characteristics of sensitivity quotient and easy detection, and can simplify the detection instrument, for example, only need to set up data. The type of camera (CCD) does not require the use of special imaging technology. According to the present invention, the economic benefits and industrial applicability of the invention are based on the above. For the purpose of the present invention, the 1374266 biochip having a three-dimensional structure has a structure comprising a substrate and a structure formed on the surface of the substrate, wherein the t, three-dimensional continuous perforation wire ^ = After r_定定, _, 雌, 嶋子, and y inventions are also not disclosed - a method for forming a bio-wafer having a layer of a hole material in a three-dimensional structure, which includes - a program of mixing one-year-old, a program of standing, - Drying procedure, - processing procedure, - changing program and coating procedure. • [Embodiment] The present invention is directed to a biocrystal chip having a three-dimensional structure and its green color. In order to understand the present invention in a thorough manner, in the following description: It is apparent that the practice of the invention is not limited to the specific details familiar to those skilled in the art. On the other hand, well-known components or steps are not described in detail to avoid unnecessarily limiting the invention. The preferred embodiments of the present invention will be described in detail below, but in addition to these detailed descriptions, the present invention may also be applied to other actual closures bribely, and the scope of the present invention is not limited. The scope shall prevail. An embodiment of the present invention discloses a method for forming a bio-wafer having a three-dimensional structure. First, an aerogel precursor solution is provided, which comprises an ionic melt (with the function of a template and a solvent), a catalytic hydrolysis and And a condensation reaction reagent and at least one alkoxide monomer and/or an aromatic oxy monomer, wherein the catalytic hydrolysis and/or reductive reagent comprises one of the following groups or any combination thereof. , acidic compounds and test compounds. Further, the above-mentioned alkoxy monomer 1374266 and/or a central element in the aromatic oxy monomer includes one of the following groups (1), he, K, Rb, CS, Be, Mg, Ca, Sr, Ba, B. , Te, CrCuErFe,

Ta、V、Zn、Zr、A1、Si、Ge、s_b。其次,對氣凝膠前驅溶 •液進行-均勻混合程序,以便於至少一種燒氧基單體與/或芳香氧 基單體水解與聚合’直職轉前驅溶液_—特絲度,且特 定黏度大於或等於150 Cps。接著,靜置氣凝膠前驅溶液以便於 •至少-種烧氧基單體與/或芳香氧基單體持續水解與聚合,藉此形 成一氣凝耀· 於氣凝膠形成後’藉由—溶麟氣轉進行—萃取 代氣凝膠⑽t所含之離子熔液n進行— 氣凝膠孔隙中所含之溶劑。然後,進行一加工程和加工程序係 研磨氣凝軸-氣凝膠粉末,其錄範_為咖至祝伽。。 =程^成後,進行,程序,藉由混合—改_與氣凝 =末’以導人至少―狀官能基於氣凝膠粉末之内表面以及外 表面。於本發明中,氣凝膠粉末内部具有許多孔洞,所有孔洞内 •壁所組合形朗表面稱為「内表面」;相對地,氣 顆粒間之孔隙觸職的表面稱為「外表面」,兩者 膠的總表面積,由於氣郷的絲度高,因此,也 面體積。本侧誠_輕藉域轉超 =:rr凝膠粉末之内外表面,藉此製= ^ 曰日片。最後,進行一塗佈程序,其目的係用以旧―并 2氣凝7核基材上之敎糾,航形成財三维= 、口之物晶片,其中,基材材質包含下列族群中之”’· 可·尽日日 片、玻璃或高分子材料。 上=佈峨知下轉,首先,恤f 劑中,以形成-改質液。接著,塗布改質液於基 5區域。最後’進行,料(_),其目的係用‘ 7料液中之溶劑,並且增加改氣凝膠粉末與基材之附著 2軸具有三維颂結構之线W。上述輯 fe圍為80至12〇。〇 氣凝膠前驅溶液中可包含酸性化合物或驗性化合物以催化烧 Ϊ基單體與/或芳香氧基單體進行水解、聚合反應。此外,氣凝夥 則驅溶液的職方法包含:錢,齡錄基單體辦或芳香氧基 早體與離子驗並形成—第—混合物。其次,加人—酸性化合物 至第:混合财並形成-第二混合物4後,加人—鹼性化合物 至第一混合财’以提高絲基單體與/或芳香氧基單體水解、聚 合反應程度。 上述氣凝膠之常見成分包含下列族群中之一者或其任意組 合·· Si02、Ti〇2、ν2〇5與A1A,藉由一溶劑對氣凝朦進行一萃取 程序以取代氣_孔射所含之離子熔液。上述溶_較佳選擇 為低沸點溶劑(其沸點小於或等於2〇〇〇c;),包含下列族群中之一 者:腈類(nitrile)、醇類、酮類與水。乾燥後進行—研磨程序以 形成-氣凝膠粉本。氣凝膠粉末的平均孔徑範園約為2細至5〇 咖,比表面積大於或等於l〇〇m2/g,孔隙度範圍為5〇%至99〇/〇。 接著將氣凝膠粉末進行一改質程序,改質程序所使用之改質 1374266 劑具有至少一特定基團’特定基團包含下列族群中之一者:胺基、 羥基、羧酸基與環氧基。常用改質劑包含: N-[3-(trimethoxysilyl)propyl]-l,2-ethanediamine (DAMO) 、 3-Glycidoxypropyl-trimethoxysilane (GLYMO) 、Ta, V, Zn, Zr, A1, Si, Ge, s_b. Secondly, the aerogel precursor solution is subjected to a uniform mixing procedure to facilitate hydrolysis and polymerization of at least one activating oxygen monomer and/or aromatic oxy monomer, and the specificity of the precursor solution is specific. Viscosity is greater than or equal to 150 Cps. Next, the aerogel precursor solution is allowed to stand so that at least one of the alkoxy monomers and/or the aryloxy monomers are continuously hydrolyzed and polymerized, thereby forming a gas condensing. The lining gas is transferred to extract the ionic melt n contained in the aerogel (10) t to carry out the solvent contained in the pores of the aerogel. Then, an addition engineering and processing procedure is carried out to grind the gas condensing shaft-aerogel powder, and the recording number is from coffee to gamma. . After the process is completed, the procedure is carried out by mixing-changing_and gas-condensing=end' to guide at least the "functional" based on the inner surface and the outer surface of the aerogel powder. In the present invention, the aerogel powder has a plurality of pores inside, and the inner surface of all the pores and the wall is called the "inner surface"; relatively, the surface of the pore between the gas particles is called the "outer surface". The total surface area of the two gels is also high in volume due to the high silkiness of the gas. The side of the _ _ light borrowing domain to super =: rr gel powder inside and outside the surface, thereby making = ^ 曰 片 film. Finally, a coating process is carried out, the purpose of which is to use the old-and-two gas-condensing 7-nuclear substrate on the substrate, and to form a three-dimensional image of the material, wherein the substrate material contains the following groups. '·································································································· The material (_) is used for the purpose of using the solvent in the '7 stock solution, and adding a line W having a three-dimensional 颂 structure to the two axes of the modified gas gel powder and the substrate. The above-mentioned series is 80 to 12 inches. The helium gel precursor solution may contain an acidic compound or an organic compound to catalyze the hydrolysis and polymerization of the sulphur-based monomer and/or the aryloxy monomer. In addition, the gas condensing solution for the solution includes: Money, age recording base monomer or aromatic oxy-early body and ion test and form - the first mixture. Secondly, add human - acidic compound to the first: mixed wealth and formed - second mixture 4, add people - alkaline Compound to the first mixture to improve the hydrolysis of silk-based monomers and / or aromatic oxy monomers The degree of polymerization. The common component of the above aerogel comprises one of the following groups or any combination thereof. SiO2, Ti〇2, ν2〇5 and A1A are replaced by a solvent to extract a gas condensate. The ionic melt contained in the gas _ hole shot. The above solution _ is preferably selected as a low boiling point solvent (having a boiling point of less than or equal to 2 〇〇〇c;), and includes one of the following groups: nitrile, alcohol Classes, ketones and water. After drying, the grinding process is carried out to form aerogel powder. The average pore diameter of the aerogel powder is about 2 to 5 ,, and the specific surface area is greater than or equal to l〇〇m2/ g, the porosity ranges from 5〇% to 99〇/〇. The aerogel powder is then subjected to a modification procedure, and the modified 1374266 agent used in the modification procedure has at least one specific group 'the specific group contains the following groups One of them: an amine group, a hydroxyl group, a carboxylic acid group and an epoxy group. Commonly used modifiers include: N-[3-(trimethoxysilyl)propyl]-l,2-ethanediamine (DAMO), 3-Glycidoxypropyl-trimethoxysilane ( GLYMO),

3 -Aminopropyltriethoxy silane (APTS) 、 N-(2-Aminoethyl)3-aminopropyltriethoxysilane (TMsen)等。改質 後氣凝膠粉末進行一塗佈程序,將改質後之氣凝膠粉末塗佈於一 基材上之特定區域’藉此形成具有三維立體結構之生物晶片。 於本實施例之一較佳範例中,於上述塗佈程序完成後’可以 進行一轉換程序’首先提供一轉換子(converter),其包含一第一 基團與至少一第二基團。然後,連結氣凝膠粉末内外表面的特定 官能基與轉換子的第一基團,以形成表面具有第二基團之生物晶 片。舉例來說,當改質劑為 N-[3-(trimethoxysilyl)propyl]-l,2-ethanediamine (DAMO)時,可以使 用戍一盤做為轉換夺’以形成表面具有酸·基的中孔洞層。上述之 轉換子包含下列碜群中之一者:抗原、單株抗體(monoclonal antibodies)、一級抗體、多株抗體(p〇iyCi〇nai ^tibodies)、核酸 (nucleic acids)[包含單體態(monomeric )與募聚態 (oligomeric )]、蛋白質(pr〇teins )、酵素(enzymes )、脂類(lipid )、 多聽類(polysaccharides)、聽類(sugars)、胜肽(peptides)、多胜 肽(polypeptides)、藥物(drugs)、病毒、微生物與生質配體 (bioligands ) ° 12 1374266 於本實施狀另-較佳制巾,於上賴換程序完成後,可 '以進行”序’首先,提供一阻斷劑,其具有-第三基團。 '然後’連結錢膠粉柄外表面未反應的特定官能基與阻斷劑的 ·· 第三基® ’以確定生物晶片上無殘留未反應的特定官能基。 ·· 於本實施例之又一較佳範例中,於上述阻斷程序完成後,可 以進行-專-性配對程序,首先,提供一配對子,其包含一第四 基團與-第五基團。然後,專—性鍵結生物晶.片上之第二基團與 響配對子的第四基團,以形成表面含有第五基團之生物晶片。其中, 上述之配對子包含下_群巾之_者:抗原、單株抗歡麵〇d〇nai antibodies)級抗體、多株抗體(polyclonal antibodies)、核酸 C nucleic acids )[包含單體態(monomeric )與寡聚態 ' (〇lig〇meric )]、蛋白質(Proteins )、酵素(enzymes )、脂類(lipid )、 多醣類(polysaccharides)、醣類(SUgars)、胜肽(peptMes)、多胜 肽(polypeptides)、藥物(drugs)、病毒、微生物與生質配體 ·( bioligands )。 ,於本實施例之再-較佳範例中,於上述專一性配對程序完成 後’可以進行-標定程序’首先,提供一標定載體,其包含至少 -第六基團與-第七基團,其中,第七基團係與—標定物鍵結。 ,後’連結配對子之第五基團與標定載體之第六基團,以形成標 疋處理之生物晶片。上球之標定物係為下列之一或其組合·縣、 Θ光冷光酵素、放射線物質。此外,上述之標定載體包含下 列族群中之者.單株抗體(monoclonal antibodies)、一級抗體、 13 1374266 二級抗體、標定後一級抗體、多株抗體(Polyclonal如他心^)、 核酸(nucleic acids)[包含單體態(monomeric )與寡聚態 (oligomeric )]、蛋白質(proteins )、酵素(enzymes )、脂類(lipid )、 多 _類(polysaccharides)、醋類(sugars)、胜肽(peptides)、多胜 肽(polypeptides)、藥物(drugs)、病毒、微生物與生質配體 (bioligands) 〇3 - Aminopropyltriethoxy silane (APTS), N-(2-Aminoethyl) 3-aminopropyltriethoxysilane (TMsen), and the like. After the modification, the aerogel powder is subjected to a coating process, and the modified aerogel powder is applied to a specific region on a substrate to thereby form a bio-wafer having a three-dimensional structure. In a preferred embodiment of the present embodiment, a conversion process can be performed after completion of the coating process. First, a converter is provided which includes a first group and at least a second group. Then, a specific functional group on the inner and outer surfaces of the aerogel powder and a first group of the converter are bonded to form a biochip having a second group on the surface. For example, when the modifier is N-[3-(trimethoxysilyl)propyl]-l,2-ethanediamine (DAMO), a disk can be used as a conversion to form a mesopores with acid groups on the surface. Floor. The above-described transformant comprises one of the following groups: an antigen, a monoclonal antibody, a primary antibody, a multi-drug antibody (p〇iyCi〇nai ^tibodies), a nucleic acid (nucleic acids) [including a monomeric state ( Monomeric) and oligomeric], pr〇teins, enzymes, lipids, polysaccharides, sugars, peptides, and more Polypeptides, drugs, viruses, microorganisms and bioligands ° 12 1374266 In this embodiment, another method is preferred. After the completion of the procedure, the process can be carried out. First, a blocking agent is provided which has a -third group. 'Then' then links the specific functional groups on the outer surface of the gum powder handle with the blocker's third base®' to determine no on the biochip. Residual unreacted specific functional groups. In another preferred embodiment of the present embodiment, after the blocking process is completed, a -specific matching procedure can be performed. First, a pairing is provided, which includes a Four groups and - fifth group. Then, special The second group on the sheet and the fourth group on the pair to form a biochip having a fifth group on the surface, wherein the pair includes the group of the next group: antigen , monoclonal antibodies, polyclonal antibodies, polyclonal antibodies, nucleic acids, nucleic acids, nucleic acid, nucleic acid, nucleic acid, nucleic acid, nucleic acid, nucleic acid, nucleic acid, nucleic acid, (Proteins), enzymes, lipids, polysaccharides, sugars, ureas, peptides, peptides, viruses, microorganisms Bioligands. In the re-preferred example of the present embodiment, after the completion of the specific pairing procedure, the 'can be performed-calibration procedure' first provides a calibration carrier comprising at least a sixth a group and a -seventh group, wherein the seventh group is bonded to the - calibrator, and the fifth group of the post-ligand is paired with the sixth group of the calibration carrier to form a target-treated organism The calibration of the upper ball is one of the following or Hexian County, Dawning cold light enzyme, radioactive substance. In addition, the above calibration vector contains the following groups: monoclonal antibody, primary antibody, 13 1374266 secondary antibody, labeled primary antibody, multiple antibodies (Polyclonal such as his heart ^), Nucleic acids [including monomeric and oligomeric], proteins, enzymes, lipids, poly- ( Polysaccharides), sugars, peptides, peptides, drugs, viruses, microorganisms, and bioligands

於本實施例中,上述之離子熔液係為常溫離手熔液(Room temperature ionic liquid),其係由一有機鹼與一路易斯酸混合而 成。當使用的路易斯酸為函化金屬酸時也可.以形成常溫離子炼 液,但是此類離子熔液會與水作用而產生氫鹵酸,因此不適合本 發明使用。所以’本發明所使用之路易斯酸不$函化金屬酸,藉 此製備能在种敎之離子熔液。於本實關之-較佳範例中, 上述有機驗中陽離子基團的一般式如下.In the present embodiment, the above ionic melt is a room temperature ionic liquid which is formed by mixing an organic base with a Lewis acid. When the Lewis acid used is a functionalized metal acid, it is also possible to form a normal temperature ion refining liquid, but such an ionic liquid reacts with water to produce a hydrohalic acid, and thus is not suitable for use in the present invention. Therefore, the Lewis acid used in the present invention does not contain a metal acid, thereby preparing an ionic melt which can be used in the seed. In the preferred example of the present invention, the general formula of the cationic group in the above organic test is as follows.

的選擇如下表所示: R1 --^ 2 CH; Η' 5¾ ---JJ ζϊζ~~Η --- ch3ch2c h2ch2 ΗThe choices are as follows: R1 --^ 2 CH; Η' 53⁄4 ---JJ ζϊζ~~Η --- ch3ch2c h2ch2 Η

R3 -- R 4 CH; · H CH3 H ~ 1 -~—-- H ch3 -- H 1374266 (ch3)2ch ch2 H ch3 H CH3CH2C h2ch2 H C2H5 H ch3 H CH3OCH2CH2 H ch3 H cf3ch2 H ch3 c H3 c2h5 H ch3 c H3 CH3CH2CH2 H c6h6ch2 c H3 ch3ch2ch2 H c6h6ch2 c H3 ch3ch2ch2c . h2 H c6h6ch2 c H3 (CH3CH2)(CH3 )CH H c6h6ch2 c H3 CH3CH2CH2C h2ch2 H ch3 H c2h5 C h3 c2h5 H c2h5 c H3 舉例來說,較常見的有機鹼包含下列族群中之一者: l-n-butyl-3-methylimidazolium chloride ( BMIC ) 、 15 1374266 1 -octanyl-3-methylimidazolium bromide ( ΟΜΓΒ ) 、 • 1 -dodecanyl-3-methylimidazolium bromide ( DMIB ) 與 . 1 -hexadecanyl-3-methylimidazolium bromide (HDMEB)。此外,上 -· 述之路易斯酸_的陰離子基團包含下列族群中之一者:BF4·、 .· PF6·、AsF6_、SbF6_、F(HF)n·、CF3S03·、CF3CF2CF2CF2S03-、 (CF3S02)2N-、(CF3S02)3C·、CF3CO〇-與 CF3CF2CF2COCT。當上述 使用之有機鹼種類固定時,可以藉由調整路易斯酸中的陰離子基 鲁 團來控制離子溶液的親疏水性,例如:親水離子溶液bmic_bf4 與疏水離子熔液BMC-CTFSI;)2。 以矽烷氧基單體為例,其水解後形成親水性矽醇(_Si_0H), - 所以’親水的離子熔液較容易與矽醇相互吸引,且能穩定二氧化 - 梦、纟°構的形成’得到較穩定的二氧化%三維立體結;^中孔洞材 料。於本實施例中,上述之離子熔液的重量範圍約為至少一種烷 氧基單體重量的·至70。/。,其較佳範圍約為2〇%至5〇%。當離 • +溶液的添加量大於添加上限時,,溶膠濃度降低且凝膠反應速度 減緩’造成結構不穩定。 於本發明中,三維立體結構之生物晶片的形成方法包含下列 • 方式之—種:直接免疫法、間接免疫法、顧結合免疫法、三明 • 治免疫法等。R3 - R 4 CH; · H CH3 H ~ 1 -~--- H ch3 -- H 1374266 (ch3)2ch ch2 H ch3 H CH3CH2C h2ch2 H C2H5 H ch3 H CH3OCH2CH2 H ch3 H cf3ch2 H ch3 c H3 c2h5 H Ch3 c H3 CH3CH2CH2 H c6h6ch2 c H3 ch3ch2ch2 H c6h6ch2 c H3 ch3ch2ch2c . h2 H c6h6ch2 c H3 (CH3CH2)(CH3 )CH H c6h6ch2 c H3 CH3CH2CH2C h2ch2 H ch3 H c2h5 C h3 c2h5 H c2h5 c H3 For example, more common The organic base comprises one of the following groups: ln-butyl-3-methylimidazolium chloride (BMIC), 15 1374266 1 -octanyl-3-methylimidazolium bromide ( ΟΜΓΒ ) , • 1 -dodecanyl-3-methylimidazolium bromide ( DMIB ) and . 1 -hexadecanyl-3-methylimidazolium bromide (HDMEB). Further, the anionic group of the Lewis acid_ described above includes one of the following groups: BF4·, .· PF6·, AsF6_, SbF6_, F(HF)n·, CF3S03·, CF3CF2CF2CF2S03-, (CF3S02) 2N-, (CF3S02)3C·, CF3CO〇- and CF3CF2CF2COCT. When the type of the organic base used above is fixed, the hydrophilicity of the ionic solution can be controlled by adjusting the anionic group in the Lewis acid, for example, the hydrophilic ion solution bmic_bf4 and the hydrophobic ion melt BMC-CTFSI; Taking a decyloxy monomer as an example, it hydrolyzes to form a hydrophilic sterol (_Si_0H), so that the 'hydrophilic ionic melt is more attractive to sterols and stabilizes the formation of dioxide-dream and 纟. 'Get a more stable two-dimensional three-dimensional junction; ^ hole material. In the present embodiment, the above ionic melt has a weight ranging from about -70 to the weight of at least one alkoxy monomer. /. Preferably, the range is about 2% to 5%. When the amount of addition of the + solution is greater than the upper limit of addition, the concentration of the sol decreases and the rate of gel reaction slows, causing structural instability. In the present invention, the method for forming a three-dimensional structure of a biochip includes the following methods: direct immunization method, indirect immunization method, Gu-binding immunoassay, Sanming treatment immunotherapy, and the like.

Example 、本實_露-具有三駐魏凝膠層之生物⑼的形成 方法’其步驟如第一圖所示: 1374266 (1 2)清洗玻璃片: * 將玻片浸泡在裝有氫氧化鈉水溶液的中,至於超音波洗震器 . 震盪三十分鐘,再換一度水震盪三十分鐘,最後裝丙酮震盪三十 ·· 分鐘,取出置於烘箱烘乾。(2)氣凝膠製作: 將BMIC-BF3與曱酸溶液混合,再與丁£〇5快速混合,靜置等 待水解、热化。樣品熟化後清洗,再以冷凍乾燥,最後粗磨成粉 末使用。 鲁氣凝膠反應式如下:Example, the actual _ dew - the formation method of the organism (9) with the three-gel layer (the steps) as shown in the first figure: 1374266 (1 2) cleaning the glass: * immersing the slide in the sodium hydroxide In the middle of the aqueous solution, as for the ultrasonic shock absorber. Shock for 30 minutes, and then change the water for 30 minutes. Finally, the acetone is shaken for 30 minutes, and taken out and dried in an oven. (2) Aerogel production: BMIC-BF3 is mixed with citric acid solution, and then rapidly mixed with butyl hydrazine 5, and left to stand for hydrolysis and heating. The sample is aged after aging, then lyophilized, and finally coarsely ground into a powder. The Lu gas gel reaction formula is as follows:

OHOH

OHOH

II

4H20 —»&gt; HO— Si —OH + 4ROH4H20 —»&gt; HO— Si — OH + 4ROH

II

OHOH

〇H OH OH〇H OH OH

I I II I I

HO— Si —OH --- HO— Si — 〇— Si —OHHO— Si — OH --- HO— Si — 〇 — Si — OH

I - H20 I II - H20 I I

〇H OH OH〇H OH OH

OHOH

OH n H〇- Si - 〇_OH n H〇- Si - 〇_

PH inPH in

〇— Si —〇H I OH〇— Si —〇H I OH

HO一 Si _ 0— Si 一OH I- I -► Ο O OH η H20 I I I HO一 Si _ 0一 Si —0 一 Si —〇H 0HO - Si _ 0 - Si - OH I - I - ► Ο O OH η H20 I I I HO - Si _ 0 - Si - 0 - Si - 〇 H 0

HO— Si 〜〇HHO— Si ~〇H

OH (4)氣凝膠胺基改質: 持續攪拌一小 將粗磨的氣凝膠與2% DAMO.溶液混合 時’過遽後’清洗—天,置於烘舰乾。 (4)坡璃片表面合成氣凝膠: 17 1 2OH (4) aerogel amine-based upgrading: continuous stirring for a small amount of coarsely ground aerogel mixed with 2% DAMO. solution after 'drying' cleaning - day, placed in the drying oven. (4) Synthetic aerogel on the surface of the slab: 17 1 2

HO — Si — OH 3HO — Si — OH 3

OH 4OH 4

I 1374266 將改質的氣凝膠分散在二度水中,配製成1〇%的分散液, 以磁石持續擾拌。用微量滴管吸取2 的分散液,滴到玻片上 - 已規劃好的位置。 ·· (5)量子點改質: ·- 配製SBB 緩衝液,以 3.09 g boric acid加 19.07 g sodium borate,以NaOH 或HC1 調整 PH=9。 计算藥品需要篁.EDC、PEG、sulfo-NHS需要之克數。秤藥, • 以微量離心管盛裝裝,紀錄實際秤量的克數。再根據實際秤量的 克數計算各藥品所需之缓衝液的量。將需要比例之量子點與緩衝 液混合。先混合PEG與緩衝液,要震盪到PEG確實溶解於緩衝液 • 中。快速混合roc與緩衝液’馬上加入量子點中反應。再混合 sulfo-NHS與緩衝液。最後將sulfo-NHS加入量子點中,並馬上加入 PEG。 置於4 °C冰箱中震盪,反應兩小時。以分子篩過遽反應完之 溶液,過濾完留下之溶液為已經接支的量子點。上述量子點改質 _ 反應如下列scheme所示: 1374266I 1374266 Disperse the modified aerogel in a second degree of water and prepare a dispersion of 1% by weight to continue to disturb the magnet. Pipette 2 of the dispersion with a micropipette and drop onto the slide - the planned position. · (5) Quantum dot modification: ·- Prepare SBB buffer, add 3.07 g boric acid to 19.07 g sodium borate, adjust pH=9 with NaOH or HC1. The number of grams required for ED.EDC, PEG, sulfo-NHS is required to calculate the drug. Scale medicine, • Store in a microcentrifuge tube and record the actual number of grams. The amount of buffer required for each drug is then calculated based on the actual number of grams. Mix the desired quantum dots with the buffer. Mix the PEG and buffer first, and shake until the PEG is dissolved in the buffer. Rapid mixing of the roc with the buffer was immediately added to the quantum dot reaction. Mix sulfo-NHS with buffer. Finally, sulfo-NHS was added to the quantum dots and PEG was added immediately. The mixture was shaken in a refrigerator at 4 ° C for two hours. The solution after completion of the reaction through the molecular sieve is filtered to leave the remaining quantum dots. The above quantum dot modification _ reaction is shown in the following scheme: 1374266

(6)量子點與抗體接枝: 配製PBS緩衝液,用二度水溶解〇.24gKH2P04,再接著加 入 1.44 g Na2HP〇4、0.2 g KC1和 8 g Naa,以NaOH或HC1調整 pH=7.5。配製清洗緩衝液,取580 mL PBS加入20.5 //L Tween 20,均勻混合。 計算所需的抗體與量子點,混合抗體與量子點,些微震盪後 置於4 °C冰箱過夜。量子點與抗體接枝反應scheme如下所示:(6) Grafting of quantum dots with antibodies: A PBS buffer was prepared, and 〇.24 g of KH2P04 was dissolved in dihydrated water, followed by addition of 1.44 g of Na2HP〇4, 0.2 g of KC1 and 8 g of Naa, and pH = 7.5 with NaOH or HC1. Prepare the wash buffer, add 580 mL PBS to 20.5 //L Tween 20, and mix evenly. Calculate the desired antibody and quantum dots, mix the antibody with the quantum dots, and place them in a refrigerator at 4 °C overnight. The quantum dot and antibody graft reaction scheme is as follows:

(7)在晶^植上抗原及抗體: 在玻片上規劃好的位置滴稀釋不同濃度的抗體(Mouse anti 19 1374266 human,IL_6)’細的量為i 置於37t_,反應兩小時, 取出後以少量清洗緩衝液震盪清洗,每次一分鐘,共三次。 進行阻斷反應,將1%的BSA與PBS的溶液鋪滿整個玻片, 將玻片放入裝水的盒子内,置於4。〇;冰箱過夜。取出後以適量清 洗缓衝液震盪清洗,每次一分鐘,共三次。 在同樣的點上滴已稀釋的抗原(Human IL-6),每滴為1 “L, 置於30 °C烘箱’反應-小時,取出後以少量清洗緩衝液震盡清 洗,每次一分鐘,共三次。 在同樣的點上滴已經與量子點接支的抗體(Rabbitantihu_, IL-6) ’每滴為1 ,置於30 °C烘箱,反應一小時,取出後以 ;里清洗緩衝液震盪清洗,每次一分鐘,共三次。最後於正控制 點上滴1 //L純的量子點。 經由上述(1)-(7)步驟所形成之具有氣凝膠層之玻璃片,其表 面呈白色,所形成的區域為樣品帶測區域。 如第二圖所示,為氣凝膠結構之紅外線吸收光譜分析結果。 、,口果顯示在3200〜3700 cm1及1620〜1640 cm-1之處顯示有-〇·Η鍵 結吸收峰存在;在3200〜3700 cm·1處之吸收峰主要為=Si-〇H之 0-H鍵結振動,波數為93〇〜950 cm·1的吸收峰則為^Si-〇H之鍵結 振動。另於波數為1000〜1200 cm·!、78〇〜82〇⑽-丨及·〜46〇 ^ 為3Si-0-S_鍵結伸張振動。 凡具有自灰角動量(spin angular momentum)的原子,也就是原 子序或質量麟奇數者,就會有核磁共振的吸收,常見液態核磁 20 1374266 _)經常制財機騎構之縱,但在_條件上經常 • 舰於D溶劑之選擇。隨著_、核磁共振頻譜儀的進步,使得固 •態樣品可以直接侧,並進-步對化學結構、鍵、纟_聯性及動力 -.學都能有較深層的研究。利用、固態難R能夠分析沿在氣凝膠中 • 的鍵結分佈,藉以了解TE〇S在溶膠-凝觀應中所形成的網狀交聯· 結構中的鍵結情形。經由29Si固態NMR圖謹分析二氧化魏凝膠得 知’當Silica為二取代時’在·99〜_1〇2ppm處有特徵吸收峰出現; Φ 當如似為四取代時,在_107〜-110PPm處上有特徵吸收峰出現。 由第二圖中之29Si固態NMR光譜分析,可發現主要鍵結出現在 -111 ppm左右為Si之四取代(Q4) ’次要鍵結在-1〇2ppn^Si之三取 代(Q3) ’顯示二氧化&gt;5夕氣凝膠可形成Silica網狀交聯及穩定的結構。 • 如第四圖及第五圖所示,藉由SEM觀察氣凝膠表面之微觀型 態’由放大倍率為30k倍的第四圖,可觀測出二氧化矽氣凝膠表 面呈現圓球形態,且再由放大倍率為300k倍的第五圖中觀測,則 • 可發現其圓球;形態是由更多更小的二氧化矽所組成;二氧化石夕一 .次聚集大小约20〜30 nm,由此可證實材料為奈米級之氣凝膠孔 洞材料。· 氮氣吸附/脫附分析儀可量測材料表面的性質,其工作原理 為利用惰性氣體來#測材料表面的孔洞大小、比表面積、扎洞結 構等材料表面物理特性。而吸附的程度與待測樣品及所使用的吸 附氣體的性質有密切的關係,且為壓力(或濃度)與溫度的函數。 通常我們以每克樣品在恆溫下的吸附量對P/IVi乍圖,P〇為實驗溫 度下分析氣體的飽和蒸氣壓’此種曲線稱為吸附等溫曲線 21 1374266 (MS〇_〇n Is〇the_)。由第六圖為二氧化石夕氣凝膠之氮氣吸/附 脫附曲線圖’製備之二氧切氣凝膠其比表面積為8i2m2/g,孔 洞體積為DW/g,平均孔洞大小為94nm。另從第七圖中可 看出成—針狀分布_ ’表示所製備之二氧化魏凝膠其孔洞分 布範圍非常集中。(7) Antigen and antibody on the crystal: Dilute different concentrations of antibody (Mouse anti 19 1374266 human, IL_6) at the planned position on the slide. The fine amount is i at 37t_, the reaction is for two hours, after removal Wash with a small amount of washing buffer, one minute at a time, three times. The blocking reaction was carried out, and a 1% solution of BSA and PBS was spread over the entire slide, and the slide was placed in a water-filled box and placed in 4. Hey; the refrigerator is overnight. After taking out, wash it with an appropriate amount of washing buffer, one minute at a time, three times in total. Dilute the diluted antigen (Human IL-6) at the same point, each drop is 1 "L, placed in an oven at 30 °C for - hour, remove and wash with a small amount of washing buffer, one minute at a time. A total of three times. At the same point, the antibody that has been bound to the quantum dot (Rabbitantihu_, IL-6) '1 per drop, placed in an oven at 30 °C, reacted for one hour, taken out, and washed in the buffer; Shock cleaning, one minute at a time, three times in total. Finally, 1 / L pure quantum dots are dropped on the positive control point. The glass sheet having the aerogel layer formed by the above steps (1)-(7) The surface is white, and the formed area is the sample-measuring area. As shown in the second figure, it is the result of infrared absorption spectrum analysis of the aerogel structure. The fruit is displayed at 3200~3700 cm1 and 1620~1640 cm-1. Where the absorption peak of the -〇·Η bond is present; the absorption peak at 3200~3700 cm·1 is mainly 0-H bonding vibration of =Si-〇H, and the wave number is 93〇~950 cm·1 The absorption peak is the bond vibration of ^Si-〇H. The wave number is 1000~1200 cm·!, 78〇~82〇(10)-丨 and ~46〇^ is 3Si-0-S _ bond stretching vibration. Any atom with spin angular momentum, that is, atomic order or mass arbitrarily, will have NMR absorption, common liquid nuclear magnetic 20 1374266 _) regular money machine ride The vertical, but in the _ conditions often • Ships in the choice of D solvent. With the advancement of _, nuclear magnetic resonance spectrum analyzer, the solid state sample can be directly side, and step-by-step on chemical structure, bond, 纟_联Sex and motivation - learning can have a deeper study. The use of solid, difficult R can analyze the bond distribution along the aerogel, in order to understand the mesh formed by TE〇S in the sol-condensation Cross-linking · Bonding in the structure. Analysis of the dihydrated Weigel by 29Si solid-state NMR image reveals that 'when Silica is disubstituted', there is a characteristic absorption peak at ·99~_1〇2ppm; Φ When it is tetrasubstituted, there is a characteristic absorption peak at _107~-110PPm. From the 29Si solid-state NMR spectrum analysis in the second figure, it can be found that the main bond appears at -111 ppm for Si tetra-substitution (Q4). 'Secondary bond in -1〇2ppn^Si three substitution (Q3) 'Show two Oxidation &gt;5 aerogel can form Silica network cross-linking and stable structure. • As shown in the fourth and fifth figures, the microscopic shape of the aerogel surface is observed by SEM' by a magnification of 30k. In the fourth graph, the surface of the cerium oxide aerogel can be observed to have a spherical shape, and then observed in the fifth graph with a magnification of 300k times, then the sphere can be found; the shape is more and more Small ruthenium dioxide is composed; the size of the oxidized stone is about 20~30 nm, which proves that the material is a nano-aerogel pore material. · Nitrogen adsorption/desorption analyzer measures the surface properties of materials. Its working principle is to use inert gas to measure the surface physical properties of the material such as pore size, specific surface area and hole structure. The degree of adsorption is closely related to the nature of the sample to be tested and the adsorbed gas used, and is a function of pressure (or concentration) and temperature. Usually we take the P/IVi map for the adsorption amount per gram of sample at constant temperature, and P〇 is the saturated vapor pressure of the analyzed gas at the experimental temperature. This curve is called the adsorption isotherm curve 21 1374266 (MS〇_〇n Is 〇the_). From the sixth figure, the nitrogen absorption/desorption desorption curve of the dioxide dioxide aerogel is prepared. The specific surface area is 8i2m2/g, the pore volume is DW/g, and the average pore size is 94nm. . Further, it can be seen from the seventh figure that the needle-like distribution _ ' indicates that the prepared dihydrated Wei gel has a very concentrated pore distribution range.

第八_二氧切驗紅似轉(職條件氮氣下,丁= 3〇〜_ ΐ,升溫速率=1()以㈣。由實線的結果顯示,二氧化 石夕氣凝膠在溫度低於卿。c時,有2.6卿的重量損失,其損 失可能來自二氡化絲面吸_少許讀;#溫度上升到腦 $時’重量約損失6.2 wt%,其損失可絲二氧切之表面上含 有-些未完全水解和縮合的氫氧德。另外,虛線的部分為二氧 化石夕氣凝膠狀不完全的航,如果錢板_,溫度上升達施 C時會開始有模板裂解出來,由此也可鑑定清洗是否完全。 不同大小的奈米級量子點,在UV燈照射下可看出不同的榮 光。第九圖為量子點在UV光照射後以數位相機拍攝之影像,由圖 可知在此使用之量子點的激發光位於綠光範圍。 量子點改質是在親水性的量子點表面改質上胺基,準備用於 與抗體上的羧基反應,作為實驗的標定。由第十圖可看出改質後 的量子點經螢光光譜儀測量,其激發波長漂移到約540nm,是由 改質到量亏點表面.的胺基造成,即顯示改質是為本功的。 在電泳中給予同樣電壓與時間,分子量大的會移動的比分子 量小的物質慢,改質後的量子點較未改質的量子點分子量大,故 22 叫266 可藉由電泳來測定改質是否有成功。在第十一圖中,改質後的量 子點移動的較未改質的量子點慢,故可看出改質是成功的。 在改質過程中因有加人緩衝溶液’故其濃度已不同於改質 前’改質後需再次酿其濃度。將已改質的量子點㈣定波長527 nm進行單點測試,測量其吸收度,再加以計算其濃产。 計算濃度之公式: C = A7Γ 算其濃度: 其中A為吸收度,ε為莫耳吸收係數(M例-!,L為粒子直 面㈣九®中的右管量子點為例,_上面公式,計 A = 0.04 L = 0.512 £ = 77793.9851 帶入公式 0.04/(77793.9851 χ〇.512)==1〇〇χΐ〇,The eighth_dioxotomy red is similar to the rotation (under the condition of nitrogen, D = 3 〇 ~ _ ΐ, heating rate = 1 () to (4). The results from the solid line show that the dioxide is a low temperature Yu Qing.c, there is a weight loss of 2.6 Qing, the loss may come from the second silk surface suction _ a little read; # temperature rise to the brain when the 'weight loss of 6.2 wt%, the loss can be silk dioxide On the surface, there are some hydrogen peroxides that are not completely hydrolyzed and condensed. In addition, the part of the dotted line is incompletely aerogel-like in the form of sulfur dioxide. If the temperature rises, the template will start to crack when the temperature rises. Come out, it can also identify whether the cleaning is complete. Different sizes of nano-scale quantum dots can see different glory under the illumination of UV light. The ninth picture shows the image taken by the digital camera after the UV light is irradiated. It can be seen from the figure that the excitation light of the quantum dot used here is in the green light range. The quantum dot modification is to modify the amine group on the surface of the hydrophilic quantum dot, and is prepared for reaction with the carboxyl group on the antibody as an experimental calibration. It can be seen from the tenth figure that the modified quantum dots are measured by a fluorescence spectrometer. The excitation wavelength drifts to about 540 nm, which is caused by the amine group modified to the surface of the deficient point. That is, the modification is the work. The same voltage and time are given in the electrophoresis, and the molecular weight is large. The material with a small molecular weight is slow, and the modified quantum dot has a larger molecular weight than the unmodified quantum dot. Therefore, 22 can be determined by electrophoresis to determine whether the modification is successful. In the eleventh figure, the modified quantum The point moves slower than the unmodified quantum dot, so it can be seen that the modification is successful. In the process of upgrading, because of the addition of buffer solution, the concentration is different from that before the modification. The concentration of the modified quantum dot (4) is measured at a single point of 527 nm, the absorbance is measured, and the concentration is calculated. The formula for calculating the concentration: C = A7Γ Calculate the concentration: where A is the absorbance, ε is the molar absorption coefficient (M example-!, L is the right-handed quantum dot in the particle facet (4) Nine®, _ above formula, A = 0.04 L = 0.512 £ = 77793.9851 Brought into the formula 0.04/(77793.9851 χ 〇.512)==1〇〇χΐ〇,

求付之濃度為1.00 X 在此製作的為蛋白質晶片,這· 質、蛋白質-小分子之立體_結構的專—性來=蛋白白質質—蛋白 如第十二圖所示,本實驗是應用三明治免疫反應之原理,以 23 1374266 抗體作為生物料,gj定在⑼上,再與相對應的抗原進行專一 性結合。另外,利用與量子點接枝的抗體作為實驗中的標定。若 ' 特定的抗原、抗體沒有結合或者抗體與抗原不是相互對應的,則 ·' 在螢光掃描的影像上不會有螢光呈現。 • 使用的螢光晶片掃描儀GenePix 4000B,是利用同步雙雷射 (dual_laser)掃瞄系統及時產生比例影像(ratio image),比例影 像是用標準的24位元紅、綠、藍色合成影像,崎描系統的内 參 疋值分別為635及532 nm之雷射光。 第十三圖為清洗過的空白玻片,其背景值極低是為深藍色, 以此背景值為標準,比較其他經改質後的玻片之背景值是否良 好為探°寸二維氣凝膠晶片的測試結果,將以直接改質玻片製成 - 的二維晶片作為比較組,故在此先探討改質胺基(2% DAMO) 的二維晶片之背景值。玻片改質的程序為將玻片浸泡在裝有以乙 醇配製的2% DAMO溶液的染色壺中反應四小時,以二度水沖 • 洗,最後放進烘箱烘乾二十分鐘。第十四圖可看出玻片經過胺基 改質後,大部分背景值仍為深藍色,雖然出現細小的淺藍色斑點, 其背景值仍是良好可採用的^ 第十五圖為滴10 wt%氣凝膠分散液之具有三維立體結構之 - 生物晶片之掃瞄影像,圓點部份為滴上的氣凝膠,.影像呈現淺藍 色,仍屬於低背景值的範圍。第十六圖為胺基改質的氣凝膠,略 為上升至藍綠色〆 第十七圖為具有三維立體“構氣凝膠層之玻璃片的外觀照 片’其中,樣品待測區係藉由上述步帮⑴·⑺所形成。其次,正控 24 制點則為環氧基改質之氣凝谬直接接上胺基改質之量子點,反 之’負控制點為未改質之氣凝谬。正控制點之目的在於標準化不 同批次所製造的生物晶片,因為不同批次量子點的品質可能不 ’造成晶片掃瞎亮度也不—致,導致數據無法比較^藉由正控 制點可以鮮次生物以_試絲,使得獲得的結果 更具意義。此外,負控制點之目的量測單獨氣凝膠的背景值,以 便於後續數據處理時可以扣除背景值。 由第十八圖可看出滴上探針抗體(M〇use触伽娜正6) 後,其背景·值仍_為藍騎。第十九看出進行晴反應後, 其背景值仍可轉_色。由第二十圖可看_行崎反應後滴 上抗原(HumanIL6)後,背景值略為下降至淡藍色。第二十一圖 為最後-步標上帶有好關&amp;之_城邮趣—h丽^ IL-6),其結·示全部亮起為橙黃色,表示整個三明治免疫法接 支成功。第二十二圖為二維蛋白質晶片之晶片掃聪圖 十此為將與三維氣凝膠晶片比較之二維蛋白質晶片,以全製程 完成抗體、抗原專一反應後的影像掃描結果。 以晶片掃齡析倾(GenePixPn)6())分珊三減凝膠晶 片”維蛋白質晶片上之絲進行訊號分析,其結果整理於表一 及表二中。 表一為三維氣凝膠晶片分析結果,如下表所示: 樣品位置 — 顯色劑濃度(QD) 強度 顏色 1 一 」 1.44 χίο'6 '--— 26213 橙黃 25 2 1.44 xlO·6 28527 3 ------ 1.44 xlO&quot;6 29041 4 ------- 1.46 xlO'6 ---〜 31609 5 ^---- -— 11125 撥黃 橙黃 橙黃 監 表二為二維蛋白質晶片分析結果,如下表所示: 樣品位置 ^— 濃度(Μ) 強度 ^ 顏色 1 ------- 1.0 —- 52029 白 2 1.0 X 10'1 一 —. 23130 紅 3 -----— . 1.0 X 10'2 〜--- 30067 橙 4 ---— 1.0 X 10*3 22615 綠 5 5.0 X 10'4 16756 藍 由表二得知,在二維蛋白質晶片上當樣品濃度為5.0 X 1〇4 M時,晶片上之訊號強度為16750,是為接近背景值的淡藍色影 像’故以此推測當樣品漠度遍小(1〇_5)時,晶片掃猫器無法债測出 其訊號值。但三維氣凝膠晶片在低濃度L44 X ι〇-6Μ下時,因氣 凝膠立體結構的關係’訊號強度增強至26213〜31609,可見三維 氣凝膠晶片在表面積提高下,同時放大了訊號強度。 顯然地,依照上面實施例中的描述,本發明可能有許多的修正與 差異。因此需要在其附加的權利要求項之範圍内加以理解,除了 26 行。1述外’本發明射以叙地在其他的實施例中施 申請專利翻本佳實施綱已,並_赠定本發明之 效改蠻#Μ:,、匕未輯本發明所揭示之精神T所完成的等 紅飾,均應包含在下述申請專· _。【圖式簡單說明】 形成具有三維立體結構 第一圖係根擄本發明之較佳範例中 之生物晶片之流程圖; 第-®係根縣判之較絲例巾移除離子溶液前後之,三 維立體結構氣凝膠層FTIR光譜; 第—圖係輯本發明之較佳制中,未改質三維立體結構氣 凝勝詹之2%固態核磁共振儀分析結果; 第四圖係根據本發明之較佳範例巾,藉鱗时電子顯微鏡 (SEM)放大料為3_倍觀察三維讀結構氣郷層的表面 型態; 第五圖係根據本發明之較佳範例中,藉由掃瞄式電子顯微鏡 (SEM)放大倍率為200000倍觀察三維立體結構氣凝膠層的表面 型態;’ 第六圖係根據本發明之較佳範例中,三維立體結構氣凝膠層 經QLYMO改質後的氮氣吸附/脫附之量測數據; 第七圖係根據本發明之較佳範例中,三維立體結構氣凝膠層 之氣凝膠粉末之孔洞分布圖; 第八圖係根據本發明之較佳範例中’三維立體結構氣凝膠層 改質前後之熱重分析(TGA)比較數據; 27 據本發明之較絲例巾’量子點在,激發下之 影像; 第十圖係本發明之較佳細中,已改質量子點激發波長 光譜圖; 第十-圖係根據本發明之較佳範例中,未改質和已改質量子 點的電泳圖; 第十二圖係根據本發明之較佳範例中,三明治免疫反應示意 圖, 第十三圖係根據本發明之較佳範例中,空白玻璃片之掃瞎影 像; 第十四圖係根據本發明之較佳範例中,改質胺基之二維晶片 之掃瞄影像; . 第十五圖係根據本發明之較佳範例中,滴1〇喊氣凝膠分散 液之具有三維靖結構之生物晶狀_影像; 第十六圖係根據本發明之較佳範例中,胺基改質具有三維立 體結構之生物晶片之掃瞄影像; 、第十七圖係根據本發明之較佳範例中,具有三維立體結構氣 凝膠層之玻璃片的外觀照片; 第十八圖係根據本發明之較佳範例中,胺基改質具有三維立 體結構之生物晶片再滴上探針抗體之掃關像; 第十九圖係根據本發明之較佳範例.中,胺基改質具有三維立 體結構之生物晶&gt;{㈣崎反驗之掃瞎影像; 第-十圖係根據本發明之較佳範例中,胺基改質具有三維立 28 1374266 體結構並經阻斷反應後之生物晶片滴上抗原後之掃瞄影像; 第二十一圖係根據本發明之較佳範例中,胺基改質具有三維 立體結構之生物晶片滴上量子點顯色抗體後之掃瞄影像;與 第二十二圖係根據本發明之較佳範例中,二維蛋白質晶片之· 晶片掃猫圖。The concentration to be paid is 1.00 X. The protein is produced here. The quality of the protein, the small molecule of the small molecule, the specificity of the structure, the protein white matter, and the protein are shown in Figure 12. This experiment is applied. The principle of sandwich immune response, using 23 1374266 antibody as a biomaterial, gj is set on (9), and then specifically combined with the corresponding antigen. In addition, antibodies grafted with quantum dots were utilized as calibrations in experiments. If 'specific antigens, antibodies do not bind or antibodies and antigens do not correspond to each other, then 'there is no fluorescence on the scanned image. • The GenePix 4000B, a fluorescent wafer scanner used, uses a simultaneous dual laser (dual_laser) scanning system to produce a ratio image in a timely manner. The proportional image is a composite 24-bit red, green, and blue composite image. The internal reference values of the Kawasaki system are 635 and 532 nm laser light, respectively. The thirteenth picture shows the cleaned blank slide. The background value is very dark blue. Based on this background value, compare the background values of other modified slides to see if the background value is good. As a result of testing the gel wafer, a two-dimensional wafer made of a directly modified slide was used as a comparison group, so the background value of the modified amine-based (2% DAMO) two-dimensional wafer was first discussed. The slide modification procedure was performed by soaking the slide in a dyeing pot containing 2% DAMO solution in ethanol for four hours, washing with a second degree of water, and finally drying in an oven for twenty minutes. In the fourteenth figure, it can be seen that most of the background value of the slide is still dark blue after the amino group modification. Although fine light blue spots appear, the background value is still good. The 10 wt% aerogel dispersion has a three-dimensional structure - a scanned image of the biochip, the dot is a drop of aerogel, and the image is light blue, still falling within the range of low background values. The sixteenth picture shows an amine-modified aerogel, which rises slightly to blue-green. The seventeenth figure shows a three-dimensional "photograph of the appearance of a glass sheet of a gas-gel layer", in which the sample to be tested is The above steps are formed by (1)·(7). Secondly, the positive control 24 points are the epoxy-modified gas condensation directly connected to the amine-modified quantum dots, and the negative control point is the unmodified gas condensation. The purpose of the positive control point is to standardize the biochips produced in different batches, because the quality of different batches of quantum dots may not cause the brightness of the wafer broom to be uncorrelated, resulting in data cannot be compared. Fresh sub-organisms use _ test filaments to make the results more meaningful. In addition, the purpose of the negative control points is to measure the background value of the individual aerogels so that the background value can be subtracted from subsequent data processing. It can be seen that after the probe antibody (M〇use touch gamma positive 6) is dropped, the background value is still _ blue ride. The nineteenth shows that after the sunny reaction, the background value can still be converted to _ color. Twenty-figure can be seen after the sputum reaction and the antigen (HumanIL6) is dropped. The value of the scene is slightly reduced to light blue. The twenty-first picture shows the final-step mark with a good mark &amp; _ city post interest - h Li ^ IL-6), its knot · all light up orange , indicating that the whole sandwich immunoassay succeeded. The twenty-second picture shows the wafer scanning of the two-dimensional protein wafer. This is a two-dimensional protein wafer that will be compared with the three-dimensional aerogel wafer to complete the antibody and antigen specificity in the whole process. The results of the image scanning after the reaction were analyzed by signal analysis on the silk of the DNA chip on the wafer (GenePixPn) 6()). The results are summarized in Tables 1 and 2. Table 1 shows the results of the three-dimensional aerogel wafer analysis, as shown in the following table: Sample position - developer concentration (QD) intensity color 1 " 1.44 χίο'6 '--- 26213 orange yellow 25 2 1.44 xlO·6 28527 3 - ----- 1.44 xlO&quot;6 29041 4 ------- 1.46 xlO'6 ---~ 31609 5 ^---- - 11125 Dial yellow orange yellow orange yellow table 2 for 2D protein wafer analysis results , as shown in the following table: Sample position ^ - Concentration (Μ) Strength ^ Color 1 ------- 1.0 --- 52029 White 2 1.0 X 10'1 One —. 23130 Red 3 -----. 1.0 X 10'2 ~--- 30067 Orange 4 ---- 1.0 X 10*3 22615 Green 5 5.0 X 10'4 16756 Blue According to Table 2, the sample concentration on the 2D protein wafer is 5.0 X 1〇4 At M, the signal strength on the chip is 16750, which is a light blue image close to the background value. Therefore, it is speculated that when the sample is indifferent (1〇_5), the chip scanner cannot detect the signal. value. However, when the three-dimensional aerogel wafer is under a low concentration of L44 X 〇〇-6Μ, the signal intensity is enhanced to 26213~31609 due to the stereostructure relationship of the aerogel, and the three-dimensional aerogel wafer can be seen to increase the surface area while amplifying the signal. strength. Obviously, the invention may have many modifications and differences in accordance with the description in the above embodiments. It is therefore to be understood within the scope of the appended claims, in addition to 26 lines. 1External 'The present invention shoots in the other embodiments to apply for a patent to reproduce the best implementation of the program, and _ give the effect of the invention. #Μ:, 匕 辑 not the spirit of the invention disclosed T The finished red ornaments should be included in the following application. BRIEF DESCRIPTION OF THE DRAWINGS A flow chart of forming a biofilm having a three-dimensional structure and a first embodiment of the present invention is in accordance with a preferred embodiment of the present invention; Three-dimensional structure aerogel layer FTIR spectrum; the first figure is in the preferred embodiment of the invention, the unmodified three-dimensional structure gas condensation wins 2% solid state nuclear magnetic resonance analysis results; the fourth figure is according to the invention A preferred example towel, the surface type of the three-dimensional read structure gas layer is observed by a time-lapse electron microscope (SEM) amplification material; the fifth figure is a scan type according to a preferred example of the present invention. The electron microscope (SEM) magnification is 200,000 times to observe the surface morphology of the three-dimensional structure aerogel layer; 'The sixth figure is a modified example of the three-dimensional structure aerogel layer after QLYMO modification according to the preferred embodiment of the present invention. The measurement data of nitrogen adsorption/desorption; the seventh figure is a pore distribution diagram of the aerogel powder of the three-dimensional structure aerogel layer according to the preferred embodiment of the present invention; the eighth figure is preferred according to the present invention. 'Three-dimensional structure Thermogravimetric analysis (TGA) comparison data before and after gel layer modification; 27 according to the invention, the quantum dot is, the image under excitation; the tenth figure is the preferred detail of the invention, the quality has been changed The sub-point excitation wavelength spectrum; the tenth-picture is an electropherogram of the unmodified and modified mass points according to a preferred embodiment of the present invention; and the twelfth figure is a sandwich immunization according to a preferred example of the present invention Figure 13 is a broom image of a blank glass sheet in accordance with a preferred embodiment of the present invention. Figure 14 is a scanning of a modified amine-based two-dimensional wafer in accordance with a preferred embodiment of the present invention. The fifteenth figure is a biocrystalline image having a three-dimensional structure in the preferred embodiment of the present invention, and the sixteenth embodiment is a preferred example according to the present invention. Wherein the amine-based modified scan image of the bio-wafer having a three-dimensional structure; and the seventeenth embodiment is a photograph of the appearance of the glass sheet having the three-dimensional structure aerogel layer according to a preferred embodiment of the present invention; Eight diagrams are preferred in accordance with the present invention In the example, the amino-based modified bio-wafer having a three-dimensional structure is further immersed in a sweep image of the probe antibody; and the nineteenth aspect is a preferred example according to the present invention. The amine-based modified organism having a three-dimensional structure Crystals&gt;{(4) Knockback image of the broom; the tenth figure is a preferred example of the present invention, wherein the amine-based modification has a three-dimensional standing 28 1374266 body structure and the biofilm is blocked by the reaction. The second scan image is a scan image of a biofilm having a three-dimensional structure and a quantum dot chromogenic antibody on the basis of a preferred embodiment of the present invention; BRIEF DESCRIPTION OF THE DRAWINGS In accordance with a preferred embodiment of the present invention, a two-dimensional protein wafer wafer scan is shown.

2929

Claims (1)

13742661374266 十、申請專利範圍: 公告本 .丨.—具有三維立體結構之生物晶片的形成方法,該具有三維立體結 *&quot; 構之生物晶月的形成方法包含: , 提供—氣娜前驅驗,其巾,該氣凝轉驅溶液包含一 離子炼液、-催化水解與/或縮合反應試劑以及至少一種烷氧基 單體(alkoxide)與/或芳香氧基單體㈣。疏),其中,該催化水 • 解與/或縮合反應試劑包含下列族群中之-者或其任意組合··醇 類、酸性化合物與鹼性作合物; 對該氣挺膝前驅溶液進行一均勻混合程序,以便於至少一 : 種該燒氧基單體與/或芳香氧基單體水解與聚合,直到該氣輝 • 前麟液勒卜特定黏度,韻特度大於鱗於150cps ; “靜置該氣凝膠前驅溶液,以便於至少—種鉞氧基_與/ 或芳香氧基單體持續水解與聚合,藉此形成一氣凝膠; • 勒-溶麟魏轉進行—萃取财轉舰氣凝膠孔 隙中所含之離子熔液; 進行-乾雜序財雜氣凝膠孔隙巾所含之溶劑; 進行-加工程序’該加工程序係研磨該氣凝膠成—氣凝穆 粉末; 進行-改質程序.,觀質程序係藉由混合—改_與該氣 凝縣末,以導入至少一特定官能泰於該氣凝朦粉末之内表面 以及外表面;與 進行-塗佈程序,該塗佈程序_明定該改龍氣凝膠 粉末於一基材上之特定區域, 生物晶片。 藉此形成該具有三維立體結構之 1=專1 生物晶片的形 成方法,,、中上述之塗佈程序包含: ::該改質後氣凝谬粉末於一溶劍中,以形成一改質液; 塗布該改質液於該基材上之特定區域;與 m2—崎程序(baking),·鞠烤程序伽以級去除該 “飞—之浴劑’並且增加該改質後氣凝膠粉末與該基材之附 考力’藉此形成該具有三維立體結構之生物晶片。 3·如申請專利_第2項所述具有三維立體結構之生物晶片的形 成方法其令上述之供烤程序溫度範圍為至12叱。 申明專她圍第1項所述具有三維立體結構之生物晶片的形 成方法’其中上述之氣凝膠前驅溶液更包含酸性化合物或驗性 化合物。 5.如申請專利細第丨項所述具有三維立體結構之生物晶片的形 成方法’其中上述之氣凝膠前驅溶液的形成方法包含: 此合該能氧基單體與/絲香氧基單體與該離子熔液並形成 一第一混合物; 加入一酸性化合物至該第一混合物中並形成一第二混合 物;與· 加入一鹼性化合物至該第二混合物中,以形成該前驅溶液。 6·如申請專利細第丨項所述具有三維立體結構之生物晶片的形 成方法’其中上述之烷氧基單體與/或芳香氧基單體的中心元素 31 包含下列族群中之一者:Li、Na、K、Rb、Cs、Be、Mg、Ca、 Sr、Ba、Ti、Te、Cr、Cu、Er、Fe、Ta、V、Zn、Zr、A1、Si、 Ge、Sn 與 Pb。 7’如申凊專利範圍第1項所述具有三維立體結構之生物晶片的形 成方法’其_上述之烷氧基單體與/或芳香氧基單體包含下列族. 群中之一者:tetramethyl orthosilicate (TMOS)、tetraethoxy orthosilicate (TEOS)、bis(triethoxysilyl)ethane (BTSE)、 bis〇iethoxySilyi)benzene (BTSB)與 tetrabutyl titanate (TBOT) 〇 8. 如申請專利範圍第i項所述具有三維立體結構之生物晶片的形 成方法,其中上述之離子熔液係為常溫離子熔液(R〇〇jn temperature ionic liquid)。 9. 如申請專利第i項所述具有三維立構之生物晶片的形 成方法’其中上述之離子炼液其係由—有機鹼與—路易斯酸混 合而成,且該路易斯酸不為鹵化金屬酸。 10. 如申請專利額第9項所述具有三維立縣構之生物晶片的形 成方法,其令上述有機驗中陽離子基團可為炫基或芳香基團, 一般式如下:X. Patent application scope: Announcement. 丨.—The method for forming a bio-wafer having a three-dimensional structure, the method for forming a three-dimensional three-dimensional structure*, comprising: providing a gas precursor test, The aerogel transfer solution comprises an ion refining solution, a catalytic hydrolysis and/or condensation reaction reagent, and at least one alkoxide monomer and/or an aromatic oxygen monomer (IV). The catalytic water solution and/or condensation reaction reagent comprises the following groups or any combination thereof, an alcohol, an acidic compound and a basic composition; and the gas lifter precursor solution is subjected to a solution a uniform mixing procedure to facilitate the hydrolysis and polymerization of at least one of the alkoxy monomers and/or aromatic oxy monomers until the specific viscosity of the gas phoenix precursors is greater than the scale of 150 cps; The aerogel precursor solution is allowed to stand so as to continuously hydrolyze and polymerize at least a methoxy- and/or aryloxy monomer, thereby forming an aerogel; • Le-solvent-transfer-extraction The ionic melt contained in the pores of the aerogel; the solvent contained in the dry-sequence gas-filled gel pore towel; the processing-processing procedure is performed by grinding the aerogel into a gas-solid powder Carrying-modification procedure. The quality of the process is performed by mixing-changing_ with the end of the gasification county to introduce at least one specific function on the inner surface and the outer surface of the aerogel powder; and performing-coating Procedure, the coating procedure _ Mingding the modified aerogel The powder is applied to a specific area on a substrate, a biochip, thereby forming a method for forming a 1=specific 1 bio-wafer having a three-dimensional structure, wherein the coating procedure described above comprises: :: the modified coagulation The 谬 powder is dissolved in a sword to form a modified liquid; the modified liquid is applied to a specific area on the substrate; and the m2-baking, baking process is used to remove the "flying" The bath agent 'and increases the adhesion of the modified aerogel powder to the substrate' thereby forming the bio-wafer having a three-dimensional structure. 3. The method of forming a bio-wafer having a three-dimensional structure as described in claim 2, wherein the above-described baking process temperature ranges from 12 叱. The invention relates to a method for forming a bio-wafer having a three-dimensional structure as described in Item 1 wherein the aerogel precursor solution further comprises an acidic compound or an inspective compound. 5. The method for forming a bio-wafer having a three-dimensional structure as described in the application of the third aspect of the invention, wherein the method for forming the aerogel precursor solution comprises: the oxy-monomer and the /-silicoxy group Forming a first mixture with the ionic melt; adding an acidic compound to the first mixture and forming a second mixture; and adding a basic compound to the second mixture to form the precursor solution. 6. The method of forming a bio-wafer having a three-dimensional structure as described in the application of the patent specification, wherein the central element 31 of the alkoxy monomer and/or the aryloxy monomer described above comprises one of the following groups: Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, Ti, Te, Cr, Cu, Er, Fe, Ta, V, Zn, Zr, A1, Si, Ge, Sn and Pb. 7' The method for forming a bio-wafer having a three-dimensional structure as described in claim 1, wherein the alkoxy monomer and/or the aryloxy monomer comprises the following group: one of the groups: Tetramethyl orthosilicate (TMOS), tetraethoxy orthosilicate (TEOS), bis (triethoxysilyl)ethane (BTSE), bis〇iethoxySilyi) benzene (BTSB) and tetrabutyl titanate (TBOT) 〇 8. 3D as described in claim i The method for forming a biochip of the structure, wherein the ionic melt is a normal temperature ionic liquid. 9. The method for forming a three-dimensionally structured bio-wafer according to claim i, wherein the above-mentioned ion refining liquid is obtained by mixing an organic base with a Lewis acid, and the Lewis acid is not a halogenated metal acid. . 10. The method of forming a biochip having a three-dimensional standing structure according to claim 9 of the invention, wherein the cationic group in the above organic test may be a leuco group or an aromatic group, and the general formula is as follows: g’Rl、R2、R、5^#如下矣气干:R3 R1 R2 ch3 H —&quot; c2h5 H R4 H H 32 1374266 C2H5 H c2h5 H ch3ch2ch2ch2 H ch3 H — (CH3)2CHCH2 H ch3 H CH3CH2CH2CH2 H c2h5 H ch3 H ch3och2ch2 H ch3 H cf3ch2 H — ch3 ch3 C2Hs H — ch3 ch3 ch3ch2ch2 H C6H6CH2 ch3 CH3CH2CH2 H c6h6ch2 ch3 ch3ch2ch2ch2 H C6H6CH2 ch3 (CH3CH2)(CH3)CH H — c6h6ch2 ch3 ch3ch2ch2ch2ch2 H ch3 H C2H5 ch3 c2h5 H c2H5 ch3 — 11. 如申請專利範圍第9項所述具有三維立體結構之生物晶片的形 成方法,其中上述有機鹼包含下列族群中之一者: l-n-butyl-3-methylimidazolium chloride ( BMIC )、 1 -〇ctanyl-3-methylimidazolium bromide ( OMIB )、 1 -dodecanyl-3-methylimidazolinm bromide ( DMIB )與 l-hexadecanyl-3,methylimidazolium bromide (HDMIB)。 12. 如申請專利範圍第9項所述具有三維立體結構之生物晶片的形 成方法,其中上述之路易斯酸中的陰離子基團包含下列族群中 之一者:BF4-、PF6·、AsF6-、SbF6'、F(HF)n-、CF3S〇3·、 cf3cf2cf2cf2so3·、(CF3S〇2)2N,、(cf3so2)3c_、CF3C〇〇·與 cf3cf2cf2coo,。 ' 13. 如申請專利範_ i項所述具有三維立體結構之生物晶片的形 成方法,其中上述之離子熔液的重量範圍約為該至少一種烷氧 33 基單體與/或芳香氧基單體重量的10%至90%。 14·如申請專利範圍第丨項所述具有三維立體結構之生物晶片的形 成方法,其t上述之離子熔液的重量範圍約為該至少一種烷氧 基單體與/或芳香氧基單體重量的50%至7〇%。 I5·如申請專利細第i項所述具有三維立體結構之生物晶片的形 成方法’其中上述之基材材質包含下列族群中之一者:矽晶片、 破璃或高分子材料。 仏如申請專利賴第〗項所述具有三維立體結構之生物晶片的形 、法八中上述之氣减膠的成分包含下列族群中之一者或其 任意組合:Si〇2、Ti02、V205 與 Α!2〇3。 八 17J7請翻細第1項所料有三社贿構之生物晶片的 ^、方法’其中上述之氣凝膠粉末粒徑範圍約為⑺咖至㈤ nm 〇 形 至 18:2專利範圍第1項所述具有三維立體結構之生物晶片的 ,,其中上权氣導粉末的平均孔徑範圍約為2⑽ 的形 ^月專_圍第i項所述具有三維立體 其中上述溶劑沸點小於或等於冒〇 成方I專第1項所述具有三維立體結構之生物晶片的形· = 上述之溶劑種類包舍下列族群中之-者:猜類 (mtnle)、_、_與水等。 1 21.如申請專利範 成方法,其中上述之溶劑、維立體結構之生物晶片的形. 序的溫度軸約為筑至200 34 ο. 22·=申請專利_第1項所·有三社聽構之生物晶片的形 、方法’其中上述之改質程序所使用之改質劑具有至少一特定 基團,該特定基團包含下列族群中之一者: 基與環氧基。 者胺基、絲、竣酸 23·如申請專概圍第i項所述具有三維立縣構之生物晶片的形 成方法於上述塗佈程序疋成後,更包含一轉換程序,該 程序包含: •提供一轉換子(converter) ’其中,該轉換子包含一第一基 團與至少一第二基團;與 土 連結該氣凝膠粉末内外表面的特定官能基與該轉換子的 該第一基團,以形成表面具有該第二基團之該生物晶片。 24. 如申請專利範圍第23項所述具有三維立體結構之生物晶片的 形成方法,其中上述之轉換子包含下列族群中之一者:抗原、 單株抗體(monoclonal antibodies)、一級抗體、多株抗體 (polyclonal antibodies )、核酸(nucleic acids )[包含單體態 (monomeric)與募聚態(oligomeric)]、蛋白質(proteinS)、 酵素(enzymes)、脂類(lipid)、多醣類(p〇iySacchari(ies)、醣 類(sug欲s)、胜肽(p印tides)、多胜肽(p〇iypeptides)、藥物 (drugs)、病毒、微生物與生質配體(bi〇iigands) 0 25. 如申請專利範圍第23項所述具有三維立體結構之生物晶片的 形成方法,於上述轉換程序完成後,更包含一阻斷程序,該阻 斷程序包含: 35 提供-阻_j ’其巾’雜_包含—第三基團;與 連結該該膠粉末㈣表Φ未反躺特定官能基與該随 ,劑的該第三顧’以確定該生物“上無殘留未反應的該特 疋官能基。 26.如申請專補’ 25項料具有三社體結構之生物晶片的 形成方法,社述阻斷程序完成後,更包含—專一性配對程序, 該專一,I1 生配對程序包含:g'Rl, R2, R, 5^# is as follows: R3 R1 R2 ch3 H —&quot; c2h5 H R4 HH 32 1374266 C2H5 H c2h5 H ch3ch2ch2ch2 H ch3 H — (CH3)2CHCH2 H ch3 H CH3CH2CH2CH2 H c2h5 H Ch3 H ch3och2ch2 H ch3 H cf3ch2 H — ch3 ch3 C2Hs H — ch3 ch3 ch3ch2ch2 H C6H6CH2 ch3 CH3CH2CH2 H c6h6ch2 ch3 ch3ch2ch2ch2 H C6H6CH2 ch3 (CH3CH2)(CH3)CH H — c6h6ch2 ch3 ch3ch2ch2ch2ch2 H ch3 H C2H5 ch3 c2h5 H c2H5 ch3 — 11. The method of forming a bio-wafer having a three-dimensional structure according to claim 9, wherein the organic base comprises one of the following groups: ln-butyl-3-methylimidazolium chloride (BMIC), 1 -〇ctanyl -3-methylimidazolium bromide (OMIB), 1 -dodecanyl-3-methylimidazolinm bromide (DMIB) and l-hexadecanyl-3, methylimidazolium bromide (HDMIB). 12. The method of forming a bio-wafer having a three-dimensional structure according to claim 9, wherein the anionic group in the Lewis acid comprises one of the following groups: BF4-, PF6, AsF6-, SbF6 ', F(HF)n-, CF3S〇3·, cf3cf2cf2cf2so3·, (CF3S〇2)2N, (cf3so2)3c_, CF3C〇〇· and cf3cf2cf2coo. 13. The method of forming a bio-wafer having a three-dimensional structure as described in the above-mentioned patent application, wherein the ionic melt has a weight range of about at least one alkoxy 33-based monomer and/or an aromatic oxy group. 10% to 90% of the body weight. 14. The method of forming a bio-wafer having a three-dimensional structure according to the above-mentioned claim, wherein the ionic melt has a weight range of about at least one alkoxy monomer and/or an aryloxy monomer. 50% to 7〇% by weight. I5. The method for forming a bio-wafer having a three-dimensional structure as described in the application of the above-mentioned item, wherein the substrate material comprises one of the following groups: a germanium wafer, a glass or a polymer material. For example, the composition of the bio-wafer having the three-dimensional structure described in the patent application Laid-No., the gas-reducing component of the above-mentioned gas-removing composition includes one of the following groups or any combination thereof: Si〇2, Ti02, V205 and Oh! 2〇3.八17J7Please refine the first item of the biofilm of the Sanshe bribe. The method of the above-mentioned aerogel powder has a particle size range of about (7) coffee to (five) nm 〇 shape to 18:2 patent range item 1 The bio-wafer having a three-dimensional structure, wherein the upper air-guiding powder has an average pore size range of about 2 (10), and the three-dimensional one has a boiling point of less than or equal to the boiling point of the solvent. The shape of the bio-wafer having the three-dimensional structure described in Item 1 of the above-mentioned item 1. The above-mentioned solvent type is included in the following groups: guessing (mtnle), _, _, water, and the like. 1 21. If the patent application method is applied, the temperature axis of the above-mentioned solvent and the dimensional structure of the bio-dimensional structure is about 200 34 ο. 22·= Patent application _ Item 1 The shape of the biochip, the method wherein the modifier used in the above modification procedure has at least one specific group, the specific group comprising one of the following groups: a group and an epoxy group. Amino group, silk, and citric acid 23. The method for forming a biochip having a three-dimensional Lixian structure as described in the above-mentioned application item i after the above-mentioned coating procedure is further included, and further includes a conversion program, the program comprising: Providing a converter 'wherein the converter comprises a first group and at least a second group; a specific functional group linking the inner and outer surfaces of the aerogel powder with the soil and the first of the converter a group to form the biochip having the second group on the surface. 24. The method of forming a bio-wafer having a three-dimensional structure according to claim 23, wherein the transformant comprises one of the following groups: an antigen, a monoclonal antibody, a primary antibody, and a plurality of strains. Polyclonal antibodies, nucleic acids [including monomeric and oligomeric], protein (proteinS), enzymes, lipids, polysaccharides (p〇 iySacchari (ies), sugar (sug s), peptide (p-tides), p〇iypeptides, drugs, viruses, microorganisms and bioligands (bi〇iigands) 0 25 The method for forming a bio-wafer having a three-dimensional structure according to claim 23, further comprising a blocking program after the conversion process is completed, the blocking program comprising: 35 providing - resistance _j 'the towel 'Miscellaneous_comprising-third group; and linking the gum powder (4) to the table Φ without reclining the specific functional group and the third agent of the agent, to determine that the organism has no residue remaining unreacted Functional group. 26. If applied Fill 'material 25 is formed with three groups of biological method for the structure of the wafer, after said blocking process is completed community, further comprising - specific pairing process, the specificity, I1 green pairing procedure comprising: 基圑 提供-配對子’其中’該配對子包含—第四基團與一第五;與 性鍵結該生物晶#上之第工細躺配對子的該第 四基團,以形成表面含有該第五基團之該生物晶片。 27·如申請專利_第26項所述具有三駐體結構之生物晶片的 形成方法,其中上述之配對子包含下列族群中之一者:抗原、 單株抗體(monoclonal antibodies )、一級抗體、多株抗體 (polyclonal antibodies )、核酸(nucieic acids )[包含單體態 φ (m〇n〇meric)與寡聚態(〇iig〇meric)]、蛋白質(卩⑴㈣阳)、 酵素(enzymes)、脂類(iipid)、多醣類(pdysaccharides)、醣 類(sugars)、胜肽(peptides)、多胜肽(p〇iypeptides)、藥物 (drugs)、病毒、微生物與生質配體(bioligands)。 28.如申請專利範圍第26項所述具有三維立體結構之生物晶片的 形成方法,於上述專一性配對程序完成後,更包含標定程序, 該標定程序包含: 提供一標定載體,其中,該標定載體包含至少一第六基團 36 1J/4Z00 年 Λ 曰 ”第七基團’其巾,該第七基目係與—標定物鍵結^ 連結該配對子之第五基團與該標定載體之第六基團,以形 成標定處理之生物晶片。 .29.如申凊專利範圍第28項所述具有三維立體結構之生物晶片的 域方法,上述之標定物係為下狀—或其組合:螢光、填光、 冷光、酵素、放射線物質、量子點、奈米鑽石。 3〇_如申請專利細第28項所述有三維立聽構之生物晶片的形 φ 成方法,其中上述之標定載體包含下列族群中之一者·單株抗 體(m〇n〇d〇nal antibodies)、標定後一級抗體、二級抗體、多株 抗體(polyclonaUntibodies )、核酸(nucleic acids )[包含單體 態(_〇meric)與寡聚態(〇l_ieriC)]、蛋白質(proteins)、 酵素(enzymes)、脂類(lipid)、多酶類(p〇lysaccharides)、醣 類(sugars)、胜肽(peptides)、多胜肽(p〇lyp印仙⑷、藥物 (drugs)、病秦、微生物與生質配體(bi〇Ugands)。 31·如申請專利細第丨項所述具有三維立體結構之生物晶片的形 ♦ 成方法’包含下列方式之一種:直接免疫法、間接免疫法、補 體結合免疫法、三明治免疫法。 32. —種依據申請專利範圍第丨項的形成方法所形成的具有三維 立體結構之陣列式生物晶片,該依據申請專利範圍第丨項的形 成方法所形成的具有三維立體結構之陣列式生物晶片包含: 一基材; 一形成於該基材表面上之三維立體結構層,其中,該三維立 體結構層係藉由氣凝膠粉末組成,該氣凝膠粉末之内外表面具 37 #5¾ id L1% j 至夕特定g能基,該特定官能基包含下列族群中之一者: 胺基、羥基、羧酸基與環氧基。 =申請專利範圍第32項所述依據申請專利範圍第i項的形成方 々所形成的具有三維立體結構之陣列式生物晶片,其中上述之 氣凝勝粉末的比表面積大於或等於1〇〇m2/g。 3《如申請專利範圍第32項所述依據申請專利範圍第i項的形成方 ,所形成的具有三維立體結構之陣列式生物晶片,其中上述之 氣凝膠粉末的平均孔洞直經小於或等於2〇nm。 35.如申请專利範圍第32項所述依據申請專利範圍第i項的形成方 法所形成的具有三維立體結構之陣列式生物晶片,其中上述之 氣凝膠粉末的孔隙度範圍為5〇%至99%。 36·如申請專利範圍第32項所述依據申請專利範圍帛4的形成 方法所形成的具有三維立體結構之陣列式生物晶片,其中上述 之氣凝膠粉末粒徑範圍約為lOnjn至250!^。a base-providing pair 'where the pair includes a fourth group and a fifth group; and a fourth group that is sexually bonded to the partner on the biocrystal # to form a surface containing the The biochip of the fifth group. The method for forming a bio-wafer having a three-residue structure according to claim 26, wherein the pairing unit comprises one of the following groups: an antigen, a monoclonal antibody, a primary antibody, and a plurality of Polyclonal antibodies, nucieic acids [including monomeric states φ (m〇n〇meric) and oligomeric states (〇iig〇meric)], proteins (卩(1)(四)阳), enzymes, lipids Ipid, pdysaccharides, sugars, peptides, p〇iypeptides, drugs, viruses, microorganisms, and bioligands. 28. The method for forming a bio-wafer having a three-dimensional structure according to claim 26, further comprising a calibration procedure after the completion of the specific pairing procedure, the calibration procedure comprising: providing a calibration carrier, wherein the calibration The carrier comprises at least a sixth group 36 1J/4Z00 Λ 曰 "seventh group", the seventh substrate is bonded to the calibrator, and the fifth group of the pair is linked to the calibration vector a sixth group to form a biochip for calibration processing. 29. The domain method of a bio-wafer having a three-dimensional structure as described in claim 28, wherein the calibration system is under--or a combination thereof : Fluorescent, light-filling, luminescent, enzymatic, radioactive materials, quantum dots, nano-diamonds. 3〇_The method of forming a bio-wafer of a three-dimensional stereoscopic structure as described in claim 28, wherein the above The calibration vector comprises one of the following groups: monoclonal antibodies (m〇n〇d〇nal antibodies), post-calibration primary antibodies, secondary antibodies, polyclonal antibodies (polyclonaUntibodies), nucleic acids (nucleic acids) [ Including monomeric states (_〇meric) and oligomeric states (〇l_ieriC)], proteins, enzymes, lipids, p〇lysaccharides, sugars, Peptides, polypeptides (p〇lyp immortal (4), drugs (drugs), diseased Qin, microbes and biochemical ligands (bi〇Ugands). 31·3D as described in the patent application The method for forming a three-dimensional structure of a biochip includes one of the following methods: direct immunoassay, indirect immunization, complement-binding immunoassay, and sandwich immunoassay. 32. Formed according to the method of forming the third paragraph of the patent application scope An array type biochip having a three-dimensional structure, the array type biochip having a three-dimensional structure formed according to the method for forming a third aspect of the patent application comprises: a substrate; a three-dimensional formed on the surface of the substrate a three-dimensional structural layer, wherein the three-dimensional structural layer is composed of an aerogel powder, the inner and outer surfaces of the aerogel powder having 37 #53⁄4 id L1% j to a specific g energy group, the specific functional group One of the following groups: an amine group, a hydroxyl group, a carboxylic acid group, and an epoxy group. = An array type organism having a three-dimensional structure formed according to the forming method of item i of claim 32 of claim 32. The wafer, wherein the specific surface area of the gas condensed powder is greater than or equal to 1 〇〇 m 2 /g. 3 "As described in claim 32, according to the forming party of the scope of claim i, the three-dimensional form is formed. A structured array of biochips wherein the aerogel powder has an average pore diameter of less than or equal to 2 〇 nm. 35. An array type biochip having a three-dimensional structure formed according to the forming method of claim section ii according to claim 32, wherein the aerogel powder has a porosity ranging from 5% to 99%. 36. An array type biochip having a three-dimensional structure formed according to the method for forming a patent scope 帛4 according to claim 32, wherein the aerogel powder has a particle size ranging from about 1 nm to about 150! .
TW096117275A 2007-05-15 2007-05-15 Array type biochip having 3D structure and the manufacturing method thereof TW200844440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096117275A TW200844440A (en) 2007-05-15 2007-05-15 Array type biochip having 3D structure and the manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096117275A TW200844440A (en) 2007-05-15 2007-05-15 Array type biochip having 3D structure and the manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW200844440A TW200844440A (en) 2008-11-16
TWI374266B true TWI374266B (en) 2012-10-11

Family

ID=44822612

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096117275A TW200844440A (en) 2007-05-15 2007-05-15 Array type biochip having 3D structure and the manufacturing method thereof

Country Status (1)

Country Link
TW (1) TW200844440A (en)

Also Published As

Publication number Publication date
TW200844440A (en) 2008-11-16

Similar Documents

Publication Publication Date Title
Massad-Ivanir et al. Engineering nanostructured porous SiO2 surfaces for bacteria detection via “direct cell capture”
US20090123985A1 (en) Method for fabricating aerogels and their application in biocomposites
CN108865110B (en) Silane amination modified long-afterglow nano material and preparation method thereof, Lp-PLA2 detection reagent and preparation method thereof
US20130029428A1 (en) Preparation method of antigen-immobilized immuno- fluorescence slide and immuno-fluoroscence slide prepared thereby
Rother et al. Silicon, silica and its surface patterning/activation with alkoxy-and amino-silanes for nanomedical applications
Satija et al. A dendrimer matrix for performance enhancement of evanescent wave absorption-based fiber-optic biosensors
Li et al. Three-dimensional arrayed amino aerogel biochips for molecular recognition of antigens
CN107840319A (en) A kind of nitrogenous carbon point and its synthetic method and its application in terms of cell marking imaging
Narla et al. Glyco-macroligand microarray with controlled orientation and glycan density
EP1890965A1 (en) Structure, porous body, sensor, process of structure and detecting method for specimen
JP5250569B2 (en) Fluorescent organic nanocrystals for generating biocaptors
TWI374266B (en)
US20120141767A1 (en) Biochip array with a Three-Dimensional structure
KR20110137292A (en) Surface-modified base plate, biochip and process for producing the biochip
Hsieh et al. Construction of the nickel oxide nanocoral structure on microscope slides for total self-assembly-oriented probe immobilization and signal enhancement
CN112198121A (en) Photonic crystal sensing material for SEB (styrene-ethylene-butadiene-styrene) ultrasensitive detection, preparation method thereof and method for detecting SEB ultrasensitively
CN107486270B (en) Preparation method of microarray chip based on ball-brush double-layer nanostructure substrate
US8574498B2 (en) Biochip with a three-dimensional mesoporous layer
CN115932248A (en) Single-molecule immunoassay method based on aggregation-induced emission material
Han et al. Coordination-driven reversible surfaces with site-specifically immobilized nanobody for dynamic cancer cell capture and release
TWI329032B (en) Method for fabricating aerogels and their applications in biocomposites
Wang et al. Preparation of a visual protein chip for detection of IgG against Treponema pallidum
CN105675564B (en) Detect the Fluorescence Increasing micro-array sensors of the platelet-derived long factor
CN109337894A (en) The preparation method of one primary yeast functional microsphere and its application in immunoassay
JP2014062814A (en) Method for manufacturing antigen fixed immunity fluorescent slide and immunity fluorescent slide manufactured by the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees