TWI329032B - Method for fabricating aerogels and their applications in biocomposites - Google Patents

Method for fabricating aerogels and their applications in biocomposites Download PDF

Info

Publication number
TWI329032B
TWI329032B TW095149391A TW95149391A TWI329032B TW I329032 B TWI329032 B TW I329032B TW 095149391 A TW095149391 A TW 095149391A TW 95149391 A TW95149391 A TW 95149391A TW I329032 B TWI329032 B TW I329032B
Authority
TW
Taiwan
Prior art keywords
aerogel
producing
biocomposite
monomer
group
Prior art date
Application number
TW095149391A
Other languages
Chinese (zh)
Other versions
TW200827022A (en
Inventor
Yang Yui Whei Chen
Yen Kuang Li
Ching Yao Yuan
Tzong Yuan Wu
Original Assignee
Univ Chung Yuan Christian
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Chung Yuan Christian filed Critical Univ Chung Yuan Christian
Priority to TW095149391A priority Critical patent/TWI329032B/en
Publication of TW200827022A publication Critical patent/TW200827022A/en
Application granted granted Critical
Publication of TWI329032B publication Critical patent/TWI329032B/en
Priority to US12/948,124 priority patent/US8679808B2/en

Links

Landscapes

  • Silicon Polymers (AREA)
  • Silicon Compounds (AREA)

Description

九、發明說明: 【發明所屬之技術領域】 本發明係關於一種氣凝膠的製造方法,特別是關於一種 使用離子熔液的氣凝膠製造方法及其在生物方面的應用。 【先前技術】 氣凝膠是一種極輕的材料,由於它的密度可以低到0.003 g/cm3 ’因此有凍結煙(Frozen smoke)的別名。氣凝膠也是一種 骨架極為纖細的固體’由於它的孔隙度可以高達99.9%,固體 内充滿了空氣’因而稱之為氣凝膠(Aerogel)。由於氣凝膠的 結構粒子極小,使得它在大部份的情況下,呈現透明的狀態, 氣凝膠具有網狀的結構與極高的比表面積,可以撐起1600倍 於本身重的重量,其唯一缺點是結構非常脆弱。 幾乎所有氣凝膠的應用都與其高於9〇 %孔隙度的網狀結 構相關聯’由於其具有低密度、低熱傳導係數、低音傳速度、 以及低介電常數等特性,使得氣凝膠成為極佳的隔熱、隔音、 、色、’彖材料。從隔熱材、隔音材、隔電材、吸附材、觸媒或觸媒 擔體、過滤材、集塵材、伽⑶至電容料,可使用範圍相當 廣泛’另外亦可_於賤、農藥方面,以做為藥物控制釋 放载體。 1329032 1 1 * , 一般而言,金屬氧化物氣凝膠觸媒大多以金屬烷氧化物 (metalalkoxides)為前驅物’利用溶凝膠⑽如)技術合成濕 凝膠(wetgel)後,藉由超臨界流體萃取、乾燥而製得。然而, . 雜界流_溫度舰力條料非常騎,科雜被包覆之 钱分子的活性或是將被包覆之標_物萃取移除,不利生物 複合材料(或生物包覆材料)之製作。再者,超臨界流體處理 程序較為繁瑣,且操作過程中有爆炸可能,危險性高。有鑑於 • 此’仍有必要發展新的氣凝膠製造方法,以符合產業上的需求。 【發明内容】 繁於上述之發明背景中,為了克服傳統技術的缺點,本 發明提供-種轉的製造方法及其在生物方面的應用。IX. Description of the Invention: [Technical Field] The present invention relates to a method for producing an aerogel, and more particularly to an aerogel manufacturing method using an ionic melt and its biological application. [Prior Art] Aerogel is an extremely light material, and its density can be as low as 0.003 g/cm3, so there is an alias for frozen smoke. Aerogels are also a very fine solid with a skeleton 'because its porosity can be as high as 99.9%, and the solid is filled with air' and is called Aerogel. Due to the extremely small size of the aerogel structure, it is in a transparent state in most cases. The aerogel has a network structure and a very high specific surface area, which can support 1600 times its own weight. The only drawback is that the structure is very fragile. Almost all aerogel applications are associated with their mesh structure above 9〇% porosity. Due to their low density, low thermal conductivity, bass transmission speed, and low dielectric constant, aerogels become Excellent thermal, acoustic, color, and '彖 materials. From heat insulation materials, sound insulation materials, electrical insulation materials, adsorption materials, catalyst or catalyst carriers, filter materials, dust collection materials, gamma (3) to capacitor materials, it can be used in a wide range of applications. As a drug controlled release carrier. 1329032 1 1 * , In general, metal oxide aerogel catalysts mostly use metal alkoxides (metalalkoxides) as precursors to synthesize wet gels (wetgel) using sol-gel (10) technology. It is prepared by extracting and drying a critical fluid. However, the miscellaneous flow _ temperature ship force strip is very riding, the activity of the coated money molecule or the extraction of the coated material is removed, and the biocomposite (or bio-cladding material) is unfavorable. Production. Furthermore, the supercritical fluid processing procedure is cumbersome, and there is an possibility of explosion during operation, which is dangerous. In view of this, it is still necessary to develop new aerogel manufacturing methods to meet the needs of the industry. SUMMARY OF THE INVENTION In the context of the above-described invention, in order to overcome the disadvantages of the conventional art, the present invention provides a method of manufacturing a seed and its biological application.

本發明目的之-在於藉由具林同性質之離子炫液與控 制其添加量調整氣晴的孔敝小與比表_。由於離子^ 具有無揮發性、不可燃、製備簡便以及容易分離細收再利用 等特性’可峰代有機麵麟統超臨界频触,符合環保 的世界潮流。 本發明之另-目的在於提供表面修飾之氣轉的製 法,以應餘械/織複合㈣與线氣_複合材 備,做為吸附、催化、分離、藥物釋放材料之用。據此,本發 7 v 1329032 * . * 明能符合經濟上的效益與產業上的利用性。 根據以上所述之目的,本發明揭示了氣凝膠的製造方 法、表面修狀氣凝膠的製造方法以及生物複合材料的製造方 ' *。以生物複合材料賴造方法為例,首先提供-前驅溶液, ' 純含—親水性離子紐、—慨水解與/或縮合反應試劑、 至少-種生物分子以及至少一種统氧基單體她⑽峨/或芳 鲁 綠基單體咖)。其:欠,對前驅溶液進行一固化程序, 以便於至少-魏餘單難,或㈣氧絲體騎水解反應 與聚合反應,藉此固化並包覆至少一種生物分子以形成一生物 複合材料。然後,藉由一溶劑對複合材料進行一萃取程序以取 代複合材射所含之離子雜。接著,對複合轉進行一乾燥 程序以去除複合材料中所含之鋪以形成上述之生物複合 料。 【實施方式】 本發明在此所探討的方向為一種氣凝膠的製造方法及妻 生物方面的應用。為了能徹底地瞭解本發明,將在下列的指 針提峨_及細。_地,本發輸行細 =於該領域之技藝麵熟_特殊細節。另—方面,眾所周知 、.、且成或步驟縣描述於細料,以職造成本㈣不必要之 限制。本發日_佳實施例會詳細描述如下,然而除了這歧詳 <s 8 1329032 v , * 細描述之外,本發明還可以廣泛地施行在其他的實施例中,且 本發明的範圍不受限定,其以之後的專利範圍為準。 本發明之第一實施例揭露一種氣凝膠的製造方法,首 先’提供一氣凝膠前驅溶液,其包含一離子熔液、一催化水解 與/或縮合反應試劑以及至少一種烷氧基單體(alk〇xide)與/或 芳香氧基單體(aryloxide),其中,離子溶液同時具有模板與溶 劑之功能。上述之烷氧基單體與/或芳香氧基單體中的中心元 素包含下列族群中之一者:Li、Na、K、Rb、Cs、Be、Mg、The object of the present invention is to adjust the pore size and the ratio of the turbidity by adjusting the amount of the ion immersion liquid having the same nature and controlling the amount of the turbid liquid. Because the ion ^ has the characteristics of no volatility, non-flammability, easy preparation, and easy separation and re-use, it can meet the world trend of environmental protection. Another object of the present invention is to provide a surface-modified gas-to-air process for use in the separation of the mechanical/woven composite (4) and the gas-line composite material for adsorption, catalysis, separation, and drug release materials. Accordingly, the present invention can meet the economic benefits and industrial applicability of the 7 v 1329032 *. In accordance with the above objects, the present invention discloses a method for producing an aerogel, a method for producing a surface-modified aerogel, and a method for producing a biocomposite. Taking the biocomposite coating method as an example, firstly provide a precursor solution, 'pure-containing hydrophilic ion, a generous hydrolysis and/or condensation reagent, at least one biomolecule and at least one oxygen monomer (10)峨 / or Fang Lu green based monomer coffee). It is: owing, a curing process is performed on the precursor solution to facilitate at least -, or (4) oxygen filament riding a hydrolysis reaction and polymerization, thereby curing and coating at least one biomolecule to form a biocomposite. The composite is then subjected to an extraction procedure by a solvent to replace the ion impurities contained in the composite. Next, a drying process is performed on the composite transfer to remove the layup contained in the composite to form the above-described biocomposite. [Embodiment] The direction of the present invention as discussed herein is an aerogel manufacturing method and a biological application. In order to thoroughly understand the present invention, the following pointers will be clarified and thin. _ ground, the hair loss line = the skill of the field is familiar _ special details. On the other hand, it is well known that the ., and the steps or the county are described in the fine materials, and the employment is responsible for the unnecessary restrictions. The present invention will be described in detail below, but the present invention can be widely applied to other embodiments in addition to the details of <s 8 1329032 v, * and the scope of the present invention is not Limited, which is subject to the scope of the patents that follow. A first embodiment of the present invention discloses a method for producing an aerogel, which first provides an aerogel precursor solution comprising an ionic melt, a catalytic hydrolysis and/or condensation reaction reagent, and at least one alkoxy monomer ( Alk〇xide) and/or aryloxide, wherein the ionic solution has both a template and a solvent function. The central element in the above alkoxy monomer and/or aromatic oxy monomer comprises one of the following groups: Li, Na, K, Rb, Cs, Be, Mg,

Ca、Sr、Ba、Ti、Te、Cr、Cu、Er、Fe、Ta、V、Zn、Zr、A卜Ca, Sr, Ba, Ti, Te, Cr, Cu, Er, Fe, Ta, V, Zn, Zr, A Bu

Si、Ge、Sn與Pb。常見的烷氧基單體與/或芳香氧基單體包含 下列族群中之一者:tetramethyl 〇rth〇silicate (TM0S)、tetraethyl orthosilicate (TEOS)、tetrabutyl titanate (TBOT)與 vanadium oxytnpropoxide。上述之催化水解與/或縮合反應試劑包含下列 族群中之一者或其任意組合:醇類(碳被小於或等於5)、酸 性化合物與鹼性化合物,藉此催化烷氧基單體與/或芳香氧基 單體水解與聚合。此外,另一種氣凝膠前驅溶液的形成方法包 含:混合烷氧基單體與/或芳香氧基單體以及離子熔液並形成 一第一混合物。其次,加入一酸性化合物至第一混合物中並形 成一第一混合物。最後,加入一驗性化合物至第二混合物中, 以提南烧氧基單體與/或芳香氧基單體水解、聚合反應程度。 然後’對上述之氣凝膠前驅溶液進行一均勾混合程序(例 9 如:強力攪拌或強力震盪),以盡量分散前驅溶液中之各成分, 特別是離子熔液(因為離子熔液具有模板之功能,充分分散模 板可以增加最後獲得氣凝膠的孔洞體積),並使得烷氧基單體 與/或芳香氧基單體充分水解與縮合,上述均勻混合程序持續 進行到氣凝膠前驅溶液達到一特定黏度,且該特定黏度大於或 等於150 cps,較佳者大於或等於2〇〇 cps。於均勻混合程序完 成後,靜置上述之氣凝膠前驅溶液,以便於烷氧基單體與/或 芳香氧基單體持續水解與縮合,藉此形成氣凝膠。 上述之均勻混合程序特別有助於提升最後氣凝膠產品的 孔隙度、機械性質’以二氧化石夕氣凝膠為例,參考第一圖所示, 將最終樣品磨細後利用固態核磁共振光譜(編_ 29〇 ·Si, Ge, Sn, and Pb. Common alkoxy monomers and/or aromatic oxy monomers comprise one of the following groups: tetramethyl 〇rth〇silicate (TM0S), tetraethyl orthosilicate (TEOS), tetrabutyl titanate (TBOT) and vanadium oxytnpropoxide. The above catalytic hydrolysis and/or condensation reaction reagent comprises one of the following groups or any combination thereof: an alcohol (carbon is less than or equal to 5), an acidic compound and a basic compound, thereby catalyzing the alkoxy monomer and / Or hydrolysis and polymerization of aromatic oxy monomers. Further, another method of forming aerogel precursor solution comprises: mixing an alkoxy monomer and/or an aryloxy monomer and an ionic melt to form a first mixture. Next, an acidic compound is added to the first mixture to form a first mixture. Finally, an assay compound is added to the second mixture to effect hydrolysis and polymerization of the south alkoxy monomer and/or the aromatic oxy monomer. Then, perform a uniform mixing procedure on the aerogel precursor solution (Example 9 such as strong agitation or strong shock) to disperse the components of the precursor solution as much as possible, especially the ionic melt (because the ionic melt has a template) The function of fully dispersing the template can increase the pore volume of the final aerogel, and fully hydrolyze and condense the alkoxy monomer and/or the aromatic oxy monomer. The above uniform mixing procedure is continued to the aerogel precursor solution. A specific viscosity is achieved, and the specific viscosity is greater than or equal to 150 cps, preferably greater than or equal to 2 〇〇 cps. After completion of the homomixing process, the aerogel precursor solution is allowed to stand to facilitate continuous hydrolysis and condensation of the alkoxy monomer and/or the aryloxy monomer, thereby forming an aerogel. The uniform mixing procedure described above is particularly helpful in improving the porosity and mechanical properties of the final aerogel product. Taking the dioxide dioxide aerogel as an example, referring to the first figure, the final sample is ground and then subjected to solid state nuclear magnetic resonance. Spectrum (Edition _ 29〇·

Si-NMR)分析,表一為矽化物在__295ί_ΝΜκ中相對 位置與結構,第-圖中可觀察到兩個吸收+,分別在5=_1〇2 及-107〜-i10ppm處,其中,m11〇ppm的吸收峰是主 要吸收峰,其所相制結構為Q4,且強度遠大於㈣的吸 收峰,其職對的結構為Q;。當絲基單體為聰時,依水 解的程度獨,會形成Q2、Q3、Q4的形式,當Q2、Q3位置被 縮合後’則會轉變成《的形式,且Q2、Q3之峰強度相對減 弱’而Q4的峰強度則相對增強,因此Q4的結構越多,表示 siloxane轉完全且罐交連触度越佳,如同第—圖所示。 表一Si-NMR analysis, Table 1 shows the relative position and structure of the telluride in __295ί_ΝΜκ, and two absorptions + can be observed in the first figure, respectively, at 5=_1〇2 and -107~-i10ppm, where m11 The absorption peak of 〇ppm is the main absorption peak, and its phase structure is Q4, and the intensity is much larger than the absorption peak of (4), and its structure is Q; When the silk-based monomer is Cong, the form of Q2, Q3, and Q4 will be formed according to the degree of hydrolysis. When the positions of Q2 and Q3 are condensed, it will be converted into the form, and the peak intensities of Q2 and Q3 are relative. Attenuated 'and the peak intensity of Q4 is relatively enhanced, so the more Q4 structure, indicating that the siloxane turns completely and the canal cross-linking is better, as shown in the figure. Table I

Structure OR HO-Si-OR OR HO-Si-OR OR RO-Si-OR OH OR OR Peak Q2 Q3 Q4 δ (ppm) -91 -101 -109 丄329032 當上述之催化水解與/或縮合反應試劑包含醇類時,上述 之均勻混合程序可包含一加熱程序,其溫度範圍約為室溫至 7〇°C。上述製成氣凝膠之常見成分包含下列族群中之一者或其 任思組合_ Si〇2、Ti〇2、V2O5與Al2〇3,氣凝膠的平均孔徑範 圍約為1 nm至50nm,孔隙度範圍為50%至99%,孔體積(pore volume)範圍大於或等於l.〇cm3/g。此外,比表面積會隨著氣 凝膠種類不同而異,例如:Si〇2氣凝膠的比表面積大於或等於 500 m /g ’ V2〇5氣凝膠的比表面積大於或等於100 m2/g,Ti〇2 與Al2〇3氣凝膠的比表面積大於或等於200 。 此外,於氣凝膠形成後,可以藉由一溶劑進行一萃取程 序以取代氣凝膠孔隙中所含之離子熔液。接著,進行一乾燥程 序以去除氣凝膠孔隙巾所含之溶劑。上述溶_較佳選擇為低 沸點溶劑(其沸點小於或等於2〇〇。〇,包含下列族群中之一 者:腈類(nitrile)、_、_貞與水。上述之萃取程序的操作 溫度範_為紙至2〇(TC。由於本實酬所提供之氣凝膠的 製造方法包含上狀均城結序,因断_縣解較完全 且高網敍聯贼_產品,即使在萃取程序中朗高介面張 11 1329032 力的水做為卒取溶劑’也不會造成氣凝膠的孔洞結構崩解,而 仍然維持高·度與植結構(咐财k)。 :本胃〜例巾’上述之離子㈣係為常溫離子溶液 (R〇〇mt—cli_),其係由-有機驗與-路易斯 ==而成。纽輪她她_也挪成常溫離 子炼液,但是此麵子歸會與水侧而產生氫鹵酸,因此不 齡本發明使用。所以,本發明所使用之路易 化 ,,藉此製備能在树穩定之離子紐。於本實施例之—較佳 把例中,上述有機驗中陽離子基團的—般式如下:Structure OR HO-Si-OR OR HO-Si-OR OR RO-Si-OR OH OR OR Peak Q2 Q3 Q4 δ (ppm) -91 -101 -109 丄329032 When the above-mentioned catalytic hydrolysis and/or condensation reaction reagent contains In the case of alcohols, the homogeneous mixing procedure described above may comprise a heating sequence having a temperature in the range of from about room temperature to about 7 °C. The above-mentioned common components for forming an aerogel include one of the following groups or a combination thereof _Si〇2, Ti〇2, V2O5 and Al2〇3, and the aerogel has an average pore diameter ranging from about 1 nm to 50 nm. The porosity ranges from 50% to 99%, and the pore volume range is greater than or equal to 1.0 cm3/g. In addition, the specific surface area varies with the type of aerogel. For example, the specific surface area of the Si〇2 aerogel is greater than or equal to 500 m / g. The specific surface area of the V2〇5 aerogel is greater than or equal to 100 m2/g. The specific surface area of Ti〇2 and Al2〇3 aerogel is greater than or equal to 200. Further, after the aerogel is formed, an extraction process may be performed by a solvent to replace the ionic melt contained in the pores of the aerogel. Next, a drying process is performed to remove the solvent contained in the aerogel aperture. The above solution is preferably selected as a low boiling point solvent (having a boiling point of less than or equal to 2 Å. 〇, comprising one of the following groups: nitrile, _, _ 贞 and water. Operating temperature of the above extraction procedure Fan _ is paper to 2 〇 (TC. Because the method of manufacturing the aerogel provided by this remuneration includes the upper shape of the city, the _ county solution is more complete and the high net thief _ product, even in the extraction In the program, the high-level interface of Zhang 13 1329032 is used as the solvent for the stroke. It will not cause the pore structure of the aerogel to disintegrate, but still maintain the high degree and the plant structure (咐财k). The above-mentioned ion (four) is a normal temperature ionic solution (R〇〇mt-cli_), which is made up of - organic test and - Louis ==. The new wheel she and her _ also moved into normal temperature ion refining, but this face The hydrogenation acid is produced on the water side and the water side, so that it is used in the present invention. Therefore, the use of the present invention is easy to use, thereby preparing an ion bond which is stable in the tree. In the present embodiment, a preferred example The general formula of the cationic group in the above organic test is as follows:

其中,WU與R4的選擇如下表所示:Among them, the choice of WU and R4 is shown in the following table:

R1 ~R7— r ~~~ CH3 Η ---- ch3 H C2H5 ch3 H C2H5 Η c2h5 H 一 CH3CH2CH2CH2 Η ch3 H (CH3)2CHCH2 Η ch3 H CH3CH2CH2CH2 Η C2H5 H — CH3 Η CH30CH2CH2 — H CH3 Η cf3ch2 H CH3 ch3 c2h5 H CH3 ~αζ~~^ CH3CH2CH2 H ch3 ch3ch2ch2 H C6H6CH2 ch3 CH3CH2CH2CH2 H .」 12 c6h6ch2 ch3 (CH3CH2)(CH3)CH H c6h6ch2 ch3 CH3CH2CH2CH2CH2 H ch3 Γ H c2h5 ch3 C2H5 H C2H5 ch3 1329032 舉例來3兑,較吊見的有機驗陽離子包含下列族群中之一者: l-n-butyl-3 -methylimidazolium ( bmI ) 、 1 -octanyl-3-methylimidazolium ( OMI ) 、 1 -dodecanyl-3 -methylimidazolium ( DMI ) 與 l-hexadecanyl-3-metiiylimidazolium (HDMI)。此外,上述之路 易斯酸中的陰離子基團包含下列族群中之一者:bf4_、pf6_、R1 ~R7- r ~~~ CH3 Η ---- ch3 H C2H5 ch3 H C2H5 Η c2h5 H-CH3CH2CH2CH2 Η ch3 H (CH3)2CHCH2 Η ch3 H CH3CH2CH2CH2 Η C2H5 H — CH3 Η CH30CH2CH2 — H CH3 Η cf3ch2 H CH3 Ch3 c2h5 H CH3 ~αζ~~^ CH3CH2CH2 H ch3 ch3ch2ch2 H C6H6CH2 ch3 CH3CH2CH2CH2 H ." 12 c6h6ch2 ch3 (CH3CH2)(CH3)CH H c6h6ch2 ch3 CH3CH2CH2CH2CH2 H ch3 Γ H c2h5 ch3 C2H5 H C2H5 ch3 1329032 The more common organic cations include one of the following groups: ln-butyl-3 -methylimidazolium ( bmI ) , 1 -octanyl-3-methylimidazolium ( OMI ) , 1 -dodecanyl-3 -methylimidazolium ( DMI ) and l- Hexadecanyl-3-metiiylimidazolium (HDMI). Further, the anionic group in the above Lewis acid contains one of the following groups: bf4_, pf6_,

AsF6、SbF6、F(HF)n、CF3S03、CF3CF2CF2CF2S03 (TFSI)、 (cf3so2)2n、(cf3so2)3c、CF3CO〇 與 CF3CF2CF2COO。當 上述使用之有機鹼種類固定時,可以藉由調整路易斯酸中的陰 離子基團來控制離子熔液的親疏水性,例如:親水離子熔液 BMI-BF4與疏水離子熔液BMI-(TFSI)2。 以石夕院氧絲雜/鮮錄基單體為例,其水解後形成 親水性挪(_Si_〇H) ’麻,親水麟祕_料與石夕醇 相互吸引,且能穩定二氧化矽結構的形成,得到較穩定的二氧 化魏凝膠。由於疏水離子排斥水,㈣也排斥溶膠中之 夕醇及氧化石夕表面的氫氧石夕基,因而較不易相互吸引使得 一氧化销構财穩定,®破親水軒麟所製備的二氧化 夕氣凝膠得到較大的集團粒子半徑及較小孔徑。 (S ) 13 1329032 於本貫施射,上述之離子溶液的重量範圍約為至少一 種炫氧基單體與/或料氧基單體重量的臟至9⑽,其較佳 範圍約為20%至50%。 於本實施财,當上収絲基單雜/絲香氧基單體 的中心τό素種類_時,隨著院氧基單體與域芳香氧基單體 的非烧氧基區域分子量增加,氣凝_比表面積也隨之增大。 舉魏氧基單_鱗錄基單縣例,分取tetrame_ orthosilicate (TMOS) . tetraethyl orthosilicate (TEOS) ^ bi_eAoxysilyl)e_e (廳e (BTSB)做為前驅物’可以發現以BTSE與BTSB輕驅物所製 造之氣凝__©概以TMGS及TEOS所料之氣凝膠 _表面敎,推_因可能是BTSE的乙烯基與btsb的苯 環基團佔據氣凝膠中之網路空間,導致氣凝膠的孔洞數量增 加’比表面積也增加。 本實施例所提供之氣凝賴造綠可以翻於二氧化欽 系列氣凝膠的製備。半導體材料已被研級展了-段時間,尤 其是在光催化反射,將太陽能轉換為化學能_性更值得探 討’例如Ti〇2、ZnS及Sn〇2等半導體材料常被利用為光觸媒, 其中,又以二氧化鈦最常被應用在光催化反應上。 -般而言,觸媒活性隨著其比表面積增加而提升。缺而, 以傳統_•凝縣賴備二氧化鈦所得比表崎及孔洞體積 14AsF6, SbF6, F(HF)n, CF3S03, CF3CF2CF2CF2S03 (TFSI), (cf3so2)2n, (cf3so2)3c, CF3CO〇 and CF3CF2CF2COO. When the type of the organic base used above is fixed, the hydrophilicity of the ionic melt can be controlled by adjusting the anionic group in the Lewis acid, for example, hydrophilic ion melt BMI-BF4 and hydrophobic ion melt BMI-(TFSI)2 . Taking Shixiyuan oxygen-silica/fresh recording monomer as an example, it hydrolyzes to form a hydrophilic (_Si_〇H) ' hemp, and the hydrophilic lining material and the stone alcohol attract each other, and can stabilize the cerium oxide. The formation of the structure gives a relatively stable dihydrated Wei gel. Since the hydrophobic ions repel the water, (4) also repels the oxyhydroxide in the sol and the oxyhydroxide oxime on the surface of the oxidized stone, so that it is less likely to attract each other and make the oxidation of the oxidized pin stable. Aerogels have larger group particle radii and smaller pore sizes. (S) 13 1329032 For the present application, the above ionic solution has a weight ranging from about at least one oxyoxy monomer and/or oxy-based monomer weight to 9 (10), preferably in the range of about 20% to 50%. In the present implementation, when the center of the silk-based mono/silk oxy-monomer is _ ό ό _, as the molecular weight of the non-alkali oxy group of the oxime monomer and the domain aryl oxy monomer increases, The gas condensing _ specific surface area also increases. Take the case of the oxycarbyl group and the BTSB lighter. The tetraethyl orthosilicate (TMOS). tetraethyl orthosilicate (TEOS) ^ bi_eAoxysilyl) e_e (the hall e (BTSB) as the precursor' can be found with the BTSE and BTSB light-driven The aerogel produced by __© is based on the aerogels of TMGS and TEOS _ surface 敎, push _ because it may be that the vinyl and btsb benzene ring groups of BTSE occupy the cyberspace in the aerogel, resulting in The number of holes in the aerogel increases, and the specific surface area also increases. The gas condensate green provided in this embodiment can be turned over to the preparation of the aerobic series of aerogels. The semiconductor materials have been researched for a while - especially In photocatalytic reflection, converting solar energy into chemical energy is more worthy of discussion. For example, semiconductor materials such as Ti〇2, ZnS and Sn〇2 are often used as photocatalysts, and titanium dioxide is most commonly used in photocatalytic reactions. Above - In general, the activity of the catalyst increases with the increase of its specific surface area. The lack of the traditional _• Ningxian Laibei titanium dioxide yield than the surface and pore volume 14

乂、。而,射超臨界二氧化碳之技肺備之二氧化欽氣凝 ^雖然具有較高_表面獻鼓触顯積,但是此種傳 贿臨界她細_瑣,細_高。邮,本實施例 猎轉蒸賴且料點之離子做為溶條代超臨界二氧 ㈣’可以製備具有較大比表面積與較大孔崎積之二氧化欽 :凝膠。另-方面,與二氧化魏凝膠概,純二氧化鈦氣凝 乡的網狀結構較容易收縮,導致其比表面積與活性相對較低, 因此’本實施例藉由離子溶液做為模板及溶劑,以魏氧基單 體” ’或方香氧基單體[例如:她腿咖_〇s收伽Oh,. However, the technique of shooting supercritical carbon dioxide, the sulphur dioxide, has a higher _ surface, and it is a fine _ trivial, fine _ high. In this example, the oxidized and oxidized ion of the material is used as a molten bar to form supercritical dioxygen (4), and a dioxane: gel having a large specific surface area and a large pore volume can be prepared. On the other hand, with the dihydrated Weigel, the network structure of the pure titanium dioxide gas condensate is relatively easy to shrink, resulting in a relatively low specific surface area and activity, so this embodiment uses an ionic solution as a template and a solvent. Taking a methoxyl monomer" or a scented ethoxy monomer [eg: her leg coffee _ 〇 收 伽

(TMOS)&gt;tetraethyl orthosilicate (TEOS)&gt;bis(triethoxysilyl)ethane (BTSE) ^ bis(triethoxysilyl)benzene (BTSB)] /或芳香氧基單體[例如:tetrabmyl &amp;繼&amp; (tb〇t)]共聚合, 製成-氧切·二氧化鈦(SiQ2_Tic&gt;2)兩元氣凝膠,以改善純 二氧化鈦氣郷_點,提高二氧化鈦㈣談膠在觸媒上之 應用’其中’石夕源單體與鈦源單體的莫耳比範圍為1 : 9至5 : 本發月之弟一貫施例揭露一表面修飾之氣凝膠的製造方 法首先提供一氣凝膠前驅溶液,其包含至少一種烷氧基單 體(alkoxide)與/或芳香氧基單體㈣㈣外一催化水解與/或縮 合反應试劑、-離子炫液(具有模板與溶劑之功能)以及具有 -特定基團之燒氧基單體與/或芳香氧基單體,其中,上述之 15 〈S ) 1329032 特定基團包含下列族群中之一者:羧酸基、硫醇基、胺基、二 胺基、院基(例如:甲烧基)、芳香基(例如:苯基)、環氧基 與乱基。上述之催化水解與/或縮合反應試劑包含下列族群中 之一者或其任意組合··醇類(碳數小於或等於5)、酸性化合 物與鹼性化合物,藉此催化烷氧基單體與/或芳香氧基單體以 及具有一特定基團之烷氧基單體與/或芳香氧基單體水解與聚 合。此外,另一種氣凝膠前驅溶液的形成方法包含:混合院氧 基單體與/或芳香氧基單體、離子熔液以及具有一特定基團之 烷氧基單體與/或芳香氧基單體並形成一第一混合物。其次, 加入一酸性化合物至第一混合物中並形成一第二混合物。最 後,加入一鹼性化合物至第二混合物中,以提高烷氧基單體與 /或芳香氧基單體以及具有一特定基團之烧氧基單體與/或芳香 氧基單體水解、聚合反應程度。 然後,對該氣凝膠前驅溶液進行一固化程序,以便於烷 氧基單體與/或芳香氧基單體以及具有一特定基團之烷氧基單 體與/或料氧基單體轉與聚合,藉此職氣郷。上述之 固化程序包含一均勻混合程序與一靜置程序,首先對上述之氣 凝膠前驅溶液進行_均勻混合程序(例如:強力膳或強力震 盪),以盡量分散前驅驗中之各成分,特別是催化水解與域 縮合反應試劑,以使得烷氧基單體與/或芳香氧基單體充分水 解與聚合’上述均勻混合程序持續進行到該氣凝膠_溶液達 16 到—特絲度,且該特定純大於或#於⑼eps,較佳者大 2等於200 cps。於均勻混合程序完成後,靜置上述之氣凝 膠^驅溶液,以便於絲基單難/或料氧基單體持續水解 與聚合,藉此形成氣凝膠。 田上述之催化水解與/或縮合反應試劑包含醇類時,上述 之均勻齡程序包含—加熱程序,其溫度義約為机至15〇 C。上述製成氣凝膠之常見成分包含下列族群中之一者或其任 :5 Si〇2、Ti〇2、V2〇5與八丨2〇3,氣凝膠的平均孔徑範圍 約為1 nm至50 nm ’比表面積大於或等於丨〇〇 m2/g,孔隙度 範圍為50%至99%。 此外,於上述之固化程序完成後,可以藉由一溶劑進行 一萃取程序以取代氣凝膠孔隙中所含之離子熔液。接著,進行 一乾燥程序以去除氣凝膠孔隙中所含之溶劑。上述溶劑的較佳 選擇為低沸點溶劑(其沸點小於或等於2〇(rc),包含下列族 群中之一者:腈類(nitrile)、醇類、酮類與水。上述之萃取程 序的操作溫度範圍約為5CTC至200。(:。 於本實施例中,上述之烷氧基單體與/或芳香氧基單體中 的中心元素的選擇、酸性化合物的選擇、水解反應與脫水聚合 反應之溫度範圍、離子溶液的種類、離子溶液的添加量的選擇 與第一實施例相同。此外,上述具有一特定基團之烷氧基單體 與/或务香氧基單體包含下列.族群中之一者. 1329032 3-Aminopropyltriethoxysilane 、 N-(2-Aminoethyl)3-amino-propyltriethoxysilane (TMsen) ' 2-Cyanoethyltriethoxysilane (CNTS) 、Epoxypropoxypropyltriethoxysilane (EPTS)與 Methyltriethoxysilane (METS)# Phenyltriethoxysilane (PHTS) ° - 為什麼需要對氣凝膠進行表面修飾呢?以二氧化矽氣凝 膠為例’非晶相(amorphous)二氧化矽的表面無論有何種型態的 _ 矽氫氧基團,都稱之為氫氧化(hydroxylation)的表面。此氳氧 化的表面暴露於含水的環射會由於氫鍵導致表面吸附水。由 於純二氧切氣郷具有娜的孔洞性、比表面積、硬度等, 右月b經由表面修飾改變其表面化學或物理特性職夠產生獨 特的應用性。例如:一、分析方面:⑷管柱填充物;⑻金 屬離子吸附及分離。二、催化方面:⑷表面官能基直接催化; (b)表面金屬錯合物催化;(c)複合材料方面。三、生物相 • 關應用(a)生物感測器㈦生物晶片。 田然’本貫施例所提供之氣凝職造方法可讀用於表 7修1之二氧化鈦系列氣凝膠的製備。另-方©,應用本實施 於、&gt; β供表面修飾之氣凝膠製造方法所獲得的氣凝膠可以用 掣-向刀子電解質(composite polymer electrolytes ; CPEs)之 ,,、向刀子/t:t*摻製成兩科技紡織品、生物複合材料等。 例中’上述之具有一特定基團之⑦氧基單體與/ 2方香氧基單體的重量細約為該至少-觀氧基單體與/或 18 1329032 ^'香氧基卓體重量的20 %至50 %。此外,以秒院類為例,每 特定基團係為胺基或二胺基時,修飾後之氣凝膠的比表面積及 孔洞大小隨著胺、二胺基矽烷含量增加而減少。另一方面,將 修飾後之氣凝膠對金屬離子進行吸附測試,發現修飾後之氣凝 膠對Cu(n)與Zn(n)都有吸附能力。 如同第一實施例所述,當烷氧基單體與/或芳香氧基單體 的中心元素種類相同時,隨著烷氧基單體與/或芳香氧基單體 的非烷氧基區域分子量增加,氣凝膠的比表面積也隨之增大。 所以本實施例中選擇之烷氧基單體與/或芳香氧基單體具有複 數個中心7L素,以增大表面修飾之氣凝膠的比表面積,藉此增 進吸附、催化等效果。 墓金屬炫氧化物上之特定基團為炫基(例如:甲燒基) 或芳香基(例如:苯基)時,隨著炫基或芳香基石夕烧含量改變, 修飾後之氣凝膠的比表面積隨之改變。另一方面,將修飾後之 C凝膠泡入水溶液中,發現無法被水淹沒,證明氣凝膠的表面 ^生貝已由親水性轉為疏水性。 當金屬燒氧化物上之特定基團為可與經基反應之官能基 T (例如.環氧基)’隨著特定基團含量改變,修飾後之氣凝 膠孔洞與比表面隨之改變。 在上述本發明之實施例中,本發明藉由具有不同性質之 離子炫液與糊其添加量罐氣郷的簡A小與比表面 19 1329032 積。另一方面’本發明所提供表面修飾之氣凝膠的製造方法, 可以應用於吸附、催化、有機/無機複合材料與生物氣凝膠複 合材料。據此,本發明能符合經濟上的效益與產業上的利用性。 本發明之第三實施例揭露一種生物複合材料的製造方 法’生物複合材料有許多應用領域,例如:固定化酵素、藥物 控制釋放、生物分離技術、感測器等。(TMOS)&gt;tetraethyl orthosilicate (TEOS)&gt;bis(triethoxysilyl)ethane (BTSE) ^bis(triethoxysilyl)benzene (BTSB)] / or aromatic oxy monomer [eg tetrabmyl &amp; followed by &amp; (tb〇t )] Copolymerization, made of -Oxygen-cut titanium dioxide (SiQ2_Tic>2) two-component aerogel to improve the pure titanium dioxide gas 郷 _ point, improve the application of titanium dioxide (four) on the catalyst 'in which 'Shi Xiyuan monomer The molar ratio of the monomer to the titanium source is 1:9 to 5: The method of manufacturing a surface-modified aerogel disclosed by the present invention first provides an aerogel precursor solution containing at least one alkoxylate. Alkaoxide and/or aryloxy monomer (IV) (IV) external catalytic hydrolysis and / or condensation reagent, -ionic liquid (with template and solvent function) and alkoxy groups with -specific groups And/or an aryloxy monomer, wherein the above 15 <S) 1329032 specific group comprises one of the following groups: a carboxylic acid group, a thiol group, an amine group, a diamine group, a hospital base (for example: Methyl group), an aromatic group (for example, phenyl group), an epoxy group, and a chaotic group. The above catalytic hydrolysis and/or condensation reaction reagent comprises one of the following groups or any combination thereof, an alcohol (carbon number less than or equal to 5), an acidic compound and a basic compound, thereby catalyzing the alkoxy monomer and / or an aromatic oxy monomer and an alkoxy monomer and / or an aryloxy monomer having a specific group are hydrolyzed and polymerized. In addition, another method for forming an aerogel precursor solution comprises: mixing a hospital oxymonomer and/or an aryloxy monomer, an ionic melt, and an alkoxy monomer and/or an aryloxy group having a specific group. The monomers form a first mixture. Next, an acidic compound is added to the first mixture and a second mixture is formed. Finally, a basic compound is added to the second mixture to increase the hydrolysis of the alkoxy monomer and/or the aryloxy monomer and the alkoxy monomer and/or the aryloxy monomer having a specific group. The degree of polymerization. Then, a curing process is performed on the aerogel precursor solution to facilitate the conversion of the alkoxy monomer and/or the aryloxy monomer and the alkoxy monomer and/or the oxy group monomer having a specific group. With the aggregation, take the job. The above curing procedure comprises a uniform mixing procedure and a standing procedure, first performing a _ uniform mixing procedure (for example, a strong meal or a strong shock) on the aerogel precursor solution to minimize the components in the precursor test, in particular Is a catalytic hydrolysis and domain condensation reaction reagent, so that the alkoxy monomer and / or aromatic oxygen monomer is fully hydrolyzed and polymerized 'the above uniform mixing procedure is continued until the aerogel_solution reaches 16 to - filament length, And the specific purity is greater than or #(9) eps, preferably greater than 2 is equal to 200 cps. After the completion of the homomixing process, the above-mentioned gas gelling solution is allowed to stand so as to continuously hydrolyze and polymerize the silk-based single-difficulty/oxyl monomer, thereby forming an aerogel. When the above-mentioned catalytic hydrolysis and/or condensation reaction reagent contains alcohol, the above-mentioned uniform age program includes a heating procedure, and the temperature is about 15 〇 C. The above-mentioned common components for aerogel formation include one of the following groups or any of them: 5 Si〇2, Ti〇2, V2〇5, and gossip 2〇3, and the aerogel has an average pore diameter ranging from about 1 nm. The specific surface area to 50 nm ' is greater than or equal to 丨〇〇m2/g, and the porosity ranges from 50% to 99%. Further, after completion of the above curing process, an extraction process may be performed by a solvent to replace the ionic melt contained in the pores of the aerogel. Next, a drying process is performed to remove the solvent contained in the pores of the aerogel. The above solvent is preferably selected from low boiling solvents having a boiling point of less than or equal to 2 Torr, including one of the following groups: nitriles, alcohols, ketones and water. Operation of the above extraction procedure The temperature ranges from about 5 CTC to 200. (: In the present embodiment, the selection of the central element in the above alkoxy monomer and/or aromatic oxy monomer, the selection of the acidic compound, the hydrolysis reaction and the dehydration polymerization reaction The temperature range, the kind of the ionic solution, and the addition amount of the ionic solution are selected in the same manner as in the first embodiment. Further, the above alkoxy monomer and/or scented oxymonomer having a specific group include the following group. One of them. 1329032 3-Aminopropyltriethoxysilane, N-(2-Aminoethyl)3-amino-propyltriethoxysilane (TMsen) '2-Cyanoethyltriethoxysilane (CNTS), Epoxypropoxypropyltriethoxysilane (EPTS) and Methyltriethoxysilane (METS)# Phenyltriethoxysilane (PHTS) ° - Why Need to modify the surface of aerogel? Take cerium oxide aerogel as an example of the surface of amorphous aerated cerium oxide. The _ 矽 hydroxyl group, which is called the surface of hydroxylation. The surface of this ruthenium-oxidized surface exposed to water will cause water to adsorb on the surface due to hydrogen bonding. Properties, specific surface area, hardness, etc., the right month b changes its surface chemical or physical properties through surface modification to produce unique applicability. For example: First, analysis: (4) column packing; (8) metal ion adsorption and separation. Catalysis: (4) direct catalysis of surface functional groups; (b) surface metal complex catalysis; (c) composite materials. 3. biological phase • application (a) biosensor (7) biochip. The gas coagulating method provided by the embodiment can be used for the preparation of the titanium dioxide series aerogel of Table 7. The other method, the application of the present invention, &gt; β surface modification aerogel manufacturing method The obtained aerogel can be made into two technical textiles, bio-composites, etc. by using knives/composite polymer electrolytes (CPEs), and knives/t:t*. Specific base The weight of the 7-oxyl monomer and the 2-aryloxyl monomer is about 20% to 50% by weight of the at least-o-oxyl monomer and/or 18 1329032 ^' aroma base. In the case of the second yard type, when the specific group is an amine group or a diamine group, the specific surface area and pore size of the modified aerogel decrease as the content of the amine and the diamine decane increases. On the other hand, the modified aerogel was subjected to adsorption test on metal ions, and it was found that the modified gas gel had adsorption capacity for both Cu(n) and Zn(n). As described in the first embodiment, when the central element species of the alkoxy monomer and/or the aryloxy monomer are the same, the non-alkoxy region of the alkoxy monomer and/or the aryloxy monomer is used. As the molecular weight increases, the specific surface area of the aerogel also increases. Therefore, the alkoxy monomer and/or the aryloxy monomer selected in the present embodiment has a plurality of central 7L elements to increase the specific surface area of the surface-modified aerogel, thereby enhancing the effects of adsorption, catalysis and the like. When the specific group on the metal oxide of the tomb is a stimuli group (for example, a methyl group) or an aromatic group (for example, a phenyl group), the modified aerogel is changed as the content of the saponin or the aryl group is changed. The specific surface area changes accordingly. On the other hand, the modified C gel was bubbled into an aqueous solution and found to be incapable of being submerged by water, demonstrating that the surface of the aerogel has changed from hydrophilic to hydrophobic. When the specific group on the metal oxide oxide is a functional group T (e.g., epoxy group) which can react with the radical, the modified agglomerate pores and the specific surface change with the change of the specific group content. In the above-described embodiments of the present invention, the present invention is composed of an ion immersion liquid having different properties and a paste A which has a specific amount of a gas enthalpy and a specific surface 19 1329032. On the other hand, the method for producing a surface-modified aerogel provided by the present invention can be applied to adsorption, catalysis, organic/inorganic composite materials and bio-aerogel composite materials. Accordingly, the present invention can meet economic benefits and industrial applicability. A third embodiment of the present invention discloses a method of manufacturing a biocomposite. The biocomposite has many fields of application, such as immobilized enzymes, drug controlled release, bioseparation techniques, sensors, and the like.

固定化酵素(immobilizedenzyme )的定義為「將酵素局限 於特疋區域内,但不妨礙其活性部位(active 8丨⑹使得酵素 可以重覆使狀連續操作,減少酵素的使用量,並能將最終產 物與酵素做最有朗分離」。酵伽定化的方法繁多,通常可 分為吸附法、離子結合法、共價鍵結法、㈣法、包埋法等, 其中將酵素固定於擔體的共價鍵結法具_結賴、穩定性高 等優點,是最相的酵翻定方法之—。固定鱗素具有可^ 覆使用+、能和產物快速分離、以及提升酵素穩定性等多項優點。 藥物控制釋放技術於1970年代開始蓬勃發展,主要是透 雜送系統’以各働理性、化學性、或生物性的方法來^制 樂物在灰中的濃度,進而於接收雜_物濃度的得以控制於 不同程度’而達到不同應對效果的藥理伽。而在藥物控制釋 的研紅,A部分I力於或改變材料性 、’_高分子材料的滲透性來控鶴物釋放速率最為常 20 1329032 見:過去h $者則以高分子水膠_彡潤特性來達碰制釋放 速=的目的’料針賴物在高分子蹄情送鋪的探討亦 為承見之討論議題。 在生物分子的辨識上,所謂的分子模板技術(Molecular Templates)即是彻雜互_雛進行分離。由於不同的生 齡子往往具有不_雜,此時它麟把微特殊的输 匙’如果我們想要把這個分子從眾多不同分子中分離出來,那 # 賊們所需要的是正確的鎖。換句話說,製造篩選特定分子的 特殊材料需要先取得-個標的分子作為模板,再將標的分子與 有效單體形成錯合物,姻交聯劑作用產生聚合反應,經移除 模板(標的分子)後,就可在聚合物之結構中形成了分子的形 狀’最後這個聚合物就有選擇性_特殊分子的功能。藉由分 子模板技術所製作出來的材料往往具有極高的辨識功能,可以 贿侧或分離不_微小生物分子如蛋白f、_、病毒、 • 微生物等等,廣泛應用於疾病或食物檢測領域。若同時結合分 子模板與電子技術,可以設計$能_不同分子的薄膜感應 器,所測得的信號輸出以供進-步分析。此外,分子模板技術 還可以應用在模擬抗原抗體或酵素受質的結合反應、提供催化 作用以利化學反應、開發各類生物研究或醫療檢測的分析工具 等等。 本實施例所揭露之生物複合材料的製造方法,首先提供The immobilized enzyme (immobilized enzyme) is defined as "the enzyme is restricted to the special region, but does not hinder its active site (active 8 丨 (6) allows the enzyme to repeat the operation, reduce the amount of enzyme used, and will eventually The products are separated from the enzymes. The methods of gamification are usually divided into adsorption method, ion binding method, covalent bonding method, (four) method, embedding method, etc., in which the enzyme is immobilized on the support. The covalent bonding method has the advantages of _ reliance and high stability, and is the most suitable method for the determination of yeast. The fixed lucifer has the ability to use +, the rapid separation of energy and products, and the stability of enzymes. Advantages. Drug controlled release technology began to flourish in the 1970s, mainly through the transmission system 'to the rational, chemical, or biological methods to control the concentration of music in the ash, and then receive the impurities The concentration can be controlled to different degrees to achieve different therapeutic effects of the pharmacological gamma. In the drug controlled release of the research red, part A I force or change the material properties, '_ polymer material permeability to control the crane release The rate is most often 20 1329032 See: In the past, h $ is based on the characteristics of polymer water gel _ 彡 特性 来 碰 释放 释放 释放 = = = = = = = = = ' ' 高分子 高分子 高分子 高分子 高分子 高分子 高分子 高分子 高分子 高分子 高分子 高分子 高分子 高分子 高分子 高分子In the identification of biomolecules, the so-called Molecular Templates are separated from each other. Because different ages often have no coma, at this time it has a special input. 'If we want to separate this molecule from many different molecules, then the thief needs the right lock. In other words, the special material for screening a particular molecule needs to get the first target molecule as a template. The target molecule forms a complex with the effective monomer, and the crosslinking agent acts to form a polymerization reaction. After removing the template (the target molecule), the shape of the molecule can be formed in the structure of the polymer. Selective _ special molecular function. Materials made by molecular template technology often have a very high recognition function, can bribe or separate non-micro biomolecules such as protein f, _ Viruses, • Microorganisms, etc., are widely used in disease or food testing. If molecular templates and electronic technologies are combined, it is possible to design a thin film sensor with different molecules and the measured signal output for further analysis. In addition, the molecular template technique can also be applied to a binding reaction that mimics an antigen-antibody or an enzyme substrate, provides a catalytic action to facilitate a chemical reaction, develops an analytical tool for various biological studies or medical tests, etc. The biocomposite disclosed in this embodiment Material manufacturing method, first provided

21 (S J -前驅溶液,其包含-親水性軒熔液、—催化水解與/或縮 合反應試劑、至少一種生物分子以及至少一種烷氧基單體 (alkoxide)與/或芳香氧基單體(aryl〇xide),其中,催化水解與/ 或縮合反應·包含下列鱗巾之―者或其任意齡:醇類及 生物分子所需之緩衝劑(buffer),其中,緩衝劑的pH值範圍約 為5至9。其次,對前驅溶液進行一固化程序,以便於至少一 種烧氧基單體與/或㈣氧基單财行轉反触聚合反應, 藉此固化並包覆至少-種生物分子以形成—生物複合材料。然 後’藉由-/讀丨對生物複合材料進行—萃取程序以取代生物複 合材料中所含之離子驗。接著,對生物複合材料進行一乾燥 程序以去除生物複合材料中所含之溶劑。 當上述之生物複合材料係應用於分離用途時,有兩種常 見的形式:第-種紐生物複合材料進行—擊碎程序以形成複 數個生物複合材料。然後,填充複數個生物複合材料於一分離 管柱中即可形成-生物分離裝置。第二種為直接將生物複合材 料形成於管柱(例如:毛細紐)的喊面,便可職另一種 生物分離裝置。 上述之生物分子包含下顺群巾之_者:抗原、單株抗 體(monoclonal antibodies )、多株抗體(p〇lyd〇nai antib〇dies )、 核酉文(nucleic acids )[包含單體態(m〇n〇merjc )與寡聚態 (oligomeric)]、蛋白質(pr〇teins)、酵素(enzymes)、脂類 22 (lipid)、多醣類(polysaccharides)、醣類(SUgars)、胜肽 (peptides)、多胜肽(polypeptides)、藥物(drugs)、病毒、 微生物與生質配體(bioligands)。 上述之親水性離子炼液係為常溫離子熔液,其較佳選擇 選自第一實施例(例如:BMIC-BF4),以便於與親水性的微小 分子均勻混合。上述之院氧基單體與/或芳香氧基單體、其中 心元素的選擇、親水性離子熔液的重量範圍與第一實施例相 同。上述製成生物複合材料的平均孔徑範圍約為〗nm至5〇 nm ’比表面積大於或等於1〇〇 m2/g,孔隙度範圍為观至 99%,孔體積(pore volume)範圍為大於或等於1 〇cm3/g。 於本實施例中,上述之固化程序包含一均勻混合程序與 靜置私序,首先對上述之氣凝膠前驅溶液進行—均勻混合程 序(例如:強賴拌或強力震盪),以盡量分散前驅溶液中之 各成分’特別是模板-離子炼液,以使得⑥氧基單體與/或芳香 氧基單體充分轉鄕合,±述料齡程賴續進行到該氣 凝膠前驅溶液_ —特定減,且該歧織大於或等於15〇 cps ’較佳者大於或等於2〇〇cps。於均勻混合程序完成後,靜 置上述之級轉縣液,贿賊氧絲贿/21 (SJ - a precursor solution comprising - a hydrophilic melt, a catalytic hydrolysis and / or condensation reaction reagent, at least one biomolecule and at least one alkoxide and / or an aromaticoxy monomer ( Aryl〇xide), wherein the catalytic hydrolysis and/or condensation reaction comprises a buffer of the following scales or any age: alcohols and biomolecules, wherein the buffer has a pH range of about 5 to 9. Secondly, a curing process is performed on the precursor solution to facilitate at least one activating epoxy group and/or (tetra)oxy group to undergo reverse tactile polymerization, thereby curing and coating at least one biomolecule. To form a biocomposite. Then, the biocomposite is subjected to an extraction process by --reading the biocomposite to replace the ion test contained in the biocomposite. Then, a drying procedure is performed on the biocomposite to remove the biocomposite. The solvent contained in the above. When the above-mentioned biocomposite is used for separation purposes, there are two common forms: the first-type neo-biocomposite--crushing procedure to form a plurality of biocomposites Then, a plurality of biocomposites are filled in a separation column to form a bioseparation device. The second is to directly form the biocomposite on the column of the column (for example, capillary), and the other is Bioseparation device. The biomolecules described above include the following: antigen, monoclonal antibody, multi-drug antibody (p〇lyd〇nai antib〇dies), nuclear nucleic acid [including Monomeric (m〇n〇merjc) and oligomeric (oligomeric), protein (pr〇teins), enzymes, lipids 22, polysaccharides, sugars (SUgars) , peptides, polypeptides, drugs, viruses, microorganisms and bioligands. The above hydrophilic ion refining system is a normal temperature ionic liquid, which is preferred. From the first embodiment (for example: BMIC-BF4) to facilitate uniform mixing with hydrophilic micromolecules. The above-mentioned oxy- and/or aromatic-oxyl monomers, the selection of their central elements, and hydrophilic ionic melting The weight range of the liquid and the first real The same applies. The above-mentioned biocomposite has an average pore size ranging from about nm to 5 〇 nm. The specific surface area is greater than or equal to 1 〇〇 m 2 /g, and the porosity ranges from 99% to about 20%. The range is greater than or equal to 1 〇cm3/g. In the present embodiment, the above curing procedure comprises a uniform mixing procedure and a static private sequence, first performing a uniform mixing procedure on the aerogel precursor solution (for example: strong Mix or strongly oscillate) to disperse the components of the precursor solution as much as possible, especially the template-ion refining solution, so that the 6-oxyl monomer and/or the aromatic oxy monomer are fully converted, and the temperature is continued. The aerogel precursor solution is subjected to a specific reduction, and the woven fabric is greater than or equal to 15 〇 cps' preferably greater than or equal to 2 〇〇 cps. After the uniform mixing process is completed, the above-mentioned grades are transferred to the county liquid, and the bribery bribes are bribed/

單體持續轉财合,藉此形減·。 I &amp;本實_造之生物複合材·了具有分子模板的功 此外’更重要的是能約保持生物分子的活性藉由相同生物分 *· 23 丄: 子彼此間的親和力,以達到較佳的分離效果。為了_生物分 子的活性,程序的參數選擇與操作範圍十分重要,例如:固化 程序溫度持或_ 5(rc;萃取賴包含下韻群中之一者 或其任意組合:醇類、水及生物分子所需之緩衝娜uffer),其 中緩制的pH錄圍為5至9。萃取程序的溫度小於或等 於50 C ;乾燥程序係為冷柬乾燥程序,其壓力小於或等於2〇 Pa冷康乾燥程序的溫度選擇與萃取溶劑相關,當萃取溶劑為 水時’乾燦程序的溫度小於或等於〇。〇;當萃取溶劑為醇類時, 乾燥程序的溫度小於或等於_2〇。(:。 舉例來說’當以域絲自(DsRed)做為分子模板以及 二氧化發氣凝膠(siliea aerGgel)為基材,所製成之生物包覆 材料測試結果如下: I掃瞄式電子顯微鏡(SEM)測試: 第二圖係以掃瞄式電子顯微鏡(SEM)觀察氣凝膠表面 之微觀型態’第二圖(a)之放大倍率爲3〇k,觀測得知二氧 化矽氣凝膠表面呈現圓球形態,且藉由第二圖(b)放大倍率 300k的觀測,可以發現上述之圓球形態是由更多更小的二氧 化石夕所組成,每個二氧化矽大小約2〇~3〇 nm,由此可證實基 材為奈来級之氣凝膠孔洞材料。 3.氮氣吸附脫附儀測試: 第三圖分別顯示二氧化矽氣凝膠(siHcaaer〇gel)、二氧化 24 矽氣凝膠包覆紅$移自(Aerogel + DSRed)的氮氣吸附脫附 曲線’所製備之二氧化石夕氣凝膠之比表面積約為768 m2/g,孔 洞體積為2.1 cm3/g,平均孔洞大小為14 〇nm ;在包覆紅螢光 蛋白後,比表面積約為699 m2/g,孔洞體積為2 〇 cm3/g,平均 孔洞大小為13.8 nm;由此可得知包覆前後孔洞體積略有下 降,配合第四圖可以說明是由於紅螢光蛋白被包覆在基材中所 致。 4. 共 1焦顯微鏡(Confocal Laser Scanning Microscopy ; CLSM) 測試: 第四圖為包覆紅螢光蛋白之二氧化矽氣凝膠之共聚焦顯 微鏡影像圖。一般來說’共聚焦顯微鏡可以獲得樣品不同深度 層次的圖像,這些圖像訊息就能顯示所包覆之紅螢光蛋白的立 分散情形及包埋狀況。第四圖中點狀分佈部分係為紅螢光蛋 白’顯不本方法所製備之二氧化石夕氣凝碜(siUcaaer〇㈣對紅 螢光蛋白(DsRed)有良好的包覆性和均勻分散性,成功的製備 成生物級的複合材料,此對二氧化矽氣凝膠的應用上是一重要 突破。 5. 螢光光譜儀(Fluorescence Spectrophotometer)測試: 第五圖與第六圖為紅螢光蛋白(DsRed)以及生物級氣凝膠 在室溫中以558 nm為激發光光源的光激發光光譜圖。原則 上,摻雜紅螢光蛋白(DsRed)的氣凝膠以激發光線558 nm與吸 1329032 收光線583nm來測定;摻雜綠螢光蛋白(EGFp)的氣凝膠以激 發光線488nm與吸收光線507nm來測定,藉由百分比比例來 檢測存活量。第五圖顯示紅螢光蛋白有三個特殊的吸收峰,隨 -· 著時間的增加其活性會有些許下降;第六圖為二氧化矽氣凝膠 - 包覆紅螢光蛋白後之活性檢測,可以發現包覆後的第一天活性 下降的程度較大,約下降11%,但之後二氧切氣凝膠骨架 逐漸建構完成,而將紅螢光蛋包覆並保護其中,故活性逐漸呈 _ 現—個姆穩定練值,即便是經賴板移除的過程,活性仍 回達70 %以上,這對未來的應用提供了一個良好的發展平 台。 顯然地,依照上面實施例中的描述,本發明可能有許多 的修正與差異。因此需要在其附加的權利要求項之範圍内加以 =解’除了上述詳細的福述外,本發明還可以廣泛地在其他的 _ 貫㈣】中知行。上述僅為本發明之較佳實施例而已,並非用以 • 限定本發明之”糊軸;凡其株聽本發明賴示之精 神下所完成的等效改變或修飾,均應包含在下述申請專利 内。The monomer continues to turn into a financial combination, thereby reducing the amount. I &amp; 实 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Good separation effect. For the activity of biomolecules, the choice of parameters and the scope of operation of the program are very important, for example: the temperature of the curing program is _ 5 (rc; the extraction depends on one of the rhyme groups or any combination thereof: alcohols, water and organisms) The buffer required by the molecule is nuffer), wherein the pH range of the retardation is 5 to 9. The temperature of the extraction procedure is less than or equal to 50 C; the drying procedure is a cold-drying procedure, the pressure of which is less than or equal to 2 〇 Pa. The temperature selection of the cold-drying procedure is related to the extraction solvent, and when the extraction solvent is water, the dry-drying procedure The temperature is less than or equal to 〇. 〇; When the extraction solvent is an alcohol, the temperature of the drying procedure is less than or equal to _2 〇. (: For example, 'When using DsRed as a molecular template and siliea aerGgel as a substrate, the bio-clad material test results are as follows: I-scanning Electron microscopy (SEM) test: The second figure shows the microscopic shape of the aerogel surface by scanning electron microscope (SEM). The magnification of the second graph (a) is 3〇k, and the cerium oxide is observed. The surface of the aerogel exhibits a spherical shape, and by observing the magnification of 300k in the second figure (b), it can be found that the above-mentioned spherical shape is composed of more and smaller dioxide, each of the cerium oxide. The size is about 2〇~3〇nm, which proves that the substrate is Nai's aerogel pore material. 3. Nitrogen adsorption desorber test: The third figure shows the cerium oxide aerogel (siHcaaer〇gel) ), the dioxide dioxide 24 矽 aerogel coated red $ moved from (Aerogel + DSRed) nitrogen adsorption desorption curve 'the prepared silica dioxide aerogel has a specific surface area of about 768 m2 / g, the pore volume is 2.1 cm3/g, the average pore size is 14 〇nm; after coating red fluorescein, specific surface area It is about 699 m2/g, the volume of the hole is 2 〇cm3/g, and the average pore size is 13.8 nm. It can be seen that the volume of the hole before and after coating is slightly decreased. The fourth figure can be explained by the fact that red fluorescein is Coated in a substrate. 4. Confocal Laser Scanning Microscopy (CLSM) Test: The fourth picture shows a confocal microscope image of a cerium oxide aerogel coated with red fluorescent protein. In the case of confocal microscopy, images of different depth levels of the sample can be obtained. These image information can show the vertical dispersion and embedding of the coated red fluorescent protein. The point distribution in the fourth figure is Red fluorescein' shows that the dioxide dioxide prepared by the method has good coating and uniform dispersion of red fluorescein (DsRed), and has been successfully prepared into a biological composite. Materials, this is an important breakthrough in the application of cerium oxide aerogel. 5. Fluorescence Spectrophotometer test: The fifth and sixth figures are red fluorescent protein (DsRed) and biological aerogel At room temperature 558 nm is the spectrum of the photoexcitation of the excitation light source. In principle, the aerogel doped with red fluorescent protein (DsRed) is measured by excitation light 558 nm and absorption 1322932 light 583 nm; doped green fluorescent protein ( The aerogel of EGFp is measured by excitation light 488 nm and absorption light 507 nm, and the survival is detected by a percentage ratio. The fifth figure shows that red fluorescent protein has three specific absorption peaks, and its activity increases with time. There will be a slight decrease; the sixth picture shows the activity detection of cerium oxide aerogel-coated red fluorescent protein, and it can be found that the degree of activity decline on the first day after coating is large, about 11%, but then The anaerobic aerogel skeleton is gradually constructed, and the red fluorescent egg is coated and protected. Therefore, the activity is gradually stabilized, even if it is removed by the plate, the activity is still returned. More than 70%, this provides a good development platform for future applications. Obviously, many modifications and differences may be made to the invention in light of the above description. Therefore, it is necessary to make a solution within the scope of the appended claims. In addition to the above detailed description, the present invention can be widely practiced in other aspects. The above are only the preferred embodiments of the present invention, and are not intended to limit the invention, and the equivalent changes or modifications made by the present invention in the spirit of the present invention should be included in the following application. Within the patent.

26 【圖式簡單說明】 的mfr圖係根據本發明之第一實施例中,二氧化石夕氣凝膠 勺固L核磁共振光譜(solidstate29si NMR)分析結果; 第二圖係根據本發明之第三實施例中,生物包覆材料的 ^瞒式電子顯微鏡(SEM)照片(a)放大倍率為3Q 放大倍率300k ; 第三圖分^顯示二氧化石夕氣凝膠(silicaaer〇gel)、包覆紅26 [mesh diagram] A mfr diagram according to a first embodiment of the present invention, a solid-state nuclear magnetic resonance spectrum analysis (solidstate 29si NMR) analysis results of a dioxide dioxide gas gel; the second diagram is according to the present invention In the third embodiment, the electron microscopy (SEM) photograph of the biocladding material (a) magnification is 3Q magnification 300k; the third graph shows the magnet dioxide aerogel (silicaaer〇gel), package Reddish

“蛋白之一氧化石夕氣凝膠(Aer〇gel + DsRed)的氮氣吸附 附曲線; 心,曰81Μ覆紅®光蛋自之二氧化⑦氣凝膠的共聚焦顯 U鏡影像;與 圖與第六圖為紅螢光蛋白(DsRed)以及包覆紅螢光蛋 政之丁氧化石夕氣凝膠在室溫中以558 nm為激發光光源的光激 發光光譜圖。 S &gt; 27"The nitrogen adsorption curve of one of the protein oxidized stone aerated gel (Aer〇gel + DsRed); the confocal U-mirror image of the heart, 曰81Μ red-coated® light egg from the oxidized 7-aerogel; The sixth picture shows the spectrum of photoexcitation of the red fluorescent protein (DsRed) and the red fluorescein-coated oxidized stone cerium aerogel at 558 nm as the excitation light source at room temperature. S &gt; 27

Claims (1)

1329032 十、申請專利範圍: * 〜 1.-種氣娜的製造方法,魏_的製造方法包含. 提供一氣凝膠前驅溶液,其中,該氣凝膠前驅溶液包含一 -離子溶液、一催化水解與/或縮合反應試劑以及至少一種烧狀 賴(―峨/絲魏鱗體_。涵),財,雜化搞 與/或細合反應試劑包含下列族群中之一者或其任意組合:醇 類、酸性化合物與鹼性化合物; ♦ 觸氣凝膠前驅溶液進行-均勻混合程序,以便於至少一 種該烧氧基單體與/或芳香氧„體水解與聚合,直到該氣凝膠 前驅溶液達到-特定減,域特定減大於鱗於15〇啊; 靜置該氣郷前驅溶液,以便於至少—種铖氧基單體與/ 或芳香氧基單體持續水解與聚合,藉此形成該氣凝膠;與 藉由-溶麵該氣郷it行-雜程序樣代該氣凝朦孔 隙中所含之離子熔液。 • 2·如申請專利範圍第1項所述氣凝膠的製造方法,其中上述之烷氧 基單體與/或芳香氧基單體的中心元素包含下列族群中之一 者.Li、Na、K、Rb、Cs、Be、Mg、Ca、Sr、Ba、Ti、Te、Cr、 Cu、Er、Fe、Ta、V、Zn、Zr、A卜 Si、Ge、Sn 與 Pb。 3·如申請專利範圍第1項所述氣凝膠的製造方法,其中上述之烷氧 基單體與/或芳香氧基單體包含下列族群中之一者Metramethyl orthosilicate (TMOS)、tetraethyl orthosilicate (TEOS)、 bis(triethoxysilyl)ethane (BTSE) ' bis(triethoxysilyl)benzene 28 1329032 (BTSB)、tetrabutyl titanate (TBOT)與 vanadium oxytripropoxide。 4. 如申請專娜郎丨項所述氣_的製造方法,其巾上述之離子 熔液係為常溫離子熔液(R〇〇mtemperature i〇nic丨丨职记)。 5. 如申請專利範圍第丨項所述氣凝膠賴造方法,其巾上述之離子 溶液其係由一有機驗與—路易斯酸混合而成,且該路易斯酸不 為鹵化酸。 6·如申請專植圍帛5項所述氣凝膠的製造方法,其巾上述有機驗 中陽離子基團可為烷基或芳香基團,一般式如下: - R3 R4 其^所示:1329032 X. Patent application scope: * ~ 1.- The manufacturing method of the seed gas, the manufacturing method of Wei_ contains. Providing an aerogel precursor solution, wherein the aerogel precursor solution comprises a 1-ion solution, a catalytic hydrolysis And/or a condensation reaction reagent and at least one calcined lysate (-峨/丝魏体体_ 涵), a hybrid, a hybridization reaction and/or a fine reaction reagent comprising one of the following groups or any combination thereof: an alcohol, An acidic compound and a basic compound; ♦ a tenter gel precursor solution-uniform mixing procedure to facilitate hydrolysis and polymerization of at least one of the alkoxy monomers and/or aromatic oxygen until the aerogel precursor solution reaches - Specific reduction, the domain specific reduction is greater than the scale of 15 〇; the gas precursor solution is allowed to stand so as to continuously hydrolyze and polymerize at least the methoxyl monomer and/or the aryloxy monomer, thereby forming the gas condensation An ionic liquid contained in the pores of the gas condensate by means of a gas-dissolving surface--a procedural preparation. 2. The method for producing an aerogel according to the first aspect of the patent application, The above alkoxy monomer / or the central element of the aromatic oxy monomer comprises one of the following groups: Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, Ti, Te, Cr, Cu, Er, Fe, Ta, V, Zn, Zr, A, Si, Ge, Sn, and Pb. The method for producing an aerogel according to claim 1, wherein the above alkoxy monomer and/or aromatic oxy group The monomer comprises one of the following groups: Metramethyl orthosilicate (TMOS), tetraethyl orthosilicate (TEOS), bis (triethoxysilyl)ethane (BTSE) 'bis(triethoxysilyl)benzene 28 1329032 (BTSB), tetrabutyl titanate (TBOT) and vanadium oxytripropoxide. 4. For the manufacturing method of the gas _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The aerogel manufacturing method according to the above item, wherein the ionic solution of the towel is formed by mixing an organic test with a Lewis acid, and the Lewis acid is not a halogenated acid. The method for producing an aerogel according to the above, It may be an alkyl group or an aromatic group, the following general formula: - which ^ R3 R4 shown: ri-4n 29 c6h6ch2 ch3 CH3CH2CH2CH2 H c6h6ch2 ch3 (CH3CH2)(CH3)CH H c6h6ch2 ch3 ch3ch2ch2ch2ch2 H ch3 H c2h5 ch3 C2H5 H C2H5 ch3Ri-4n 29 c6h6ch2 ch3 CH3CH2CH2CH2 H c6h6ch2 ch3 (CH3CH2)(CH3)CH H c6h6ch2 ch3 ch3ch2ch2ch2ch2 H ch3 H c2h5 ch3 C2H5 H C2H5 ch3 7. 如申請專利範圍第5項所述氣凝膠的製造方法,其中上述有機鹼 陽離子包含下列族群中之一者: (BMI ) 1 -octanyl-3-methylimidazolium (〇MI )、 l-dodecanyl-3-methylimidazolium ( DMI ) 與 l-hexadecanyl-3-methylimidazolium (HDMI) ° 8. 如申請專利範圍第5項所述氣凝膠的製造方法,其中上述之路易7. The method for producing an aerogel according to claim 5, wherein the organic base cation comprises one of the following groups: (BMI) 1 -octanyl-3-methylimidazolium (〇MI ), l-dodecanyl- 3-methylimidazolium ( DMI ) and l-hexadecanyl-3-methylimidazolium (HDMI) ° 8. The method for producing an aerogel according to claim 5, wherein the above-mentioned Louis 斯酸中的陰離子基團包含下列族群中之一者:BF4_、ρ^·、 AsF6- &gt; SbF6-,F(HF)n- ^ CF3SO3- , CF3CF2CF2CF2S〇36 , (cf3so2)2n·、(CF3S〇2)3c、Cf3C00·與 CF3CF2CF2(:〇a。 9. 如申請專利細第1項所述氣娜的製造方法,其中上述之離子 熔液的重量範圍約為10%至90%。 1〇.如申請專利範圍第1項所述氣凝膠的製造方法,其中上述之 子溶液的重量範圍約為20%至50%。 化如申請專利範圍第1項所述氣凝膠的製造方法,其中上述 定黏度大於或等於200cps。 “之特 12. 如申請專植㈣丨項所魏凝_製造方法,射上述之催 化水解與/或縮合反應試劑包含醇類,該均句混合程序包含一加 熱程序。 13. Γ請專利範圍第12項所述氣凝膠的製造方法,其中上述之加 熱程序溫度範圍為50至150¾。 申請專利範圍第丨項所述氣凝膠的製造方法,其中上述溶劑 沸點小於或等於200。〇。The anionic group in the acid includes one of the following groups: BF4_, ρ^·, AsF6- &gt; SbF6-, F(HF)n-^CF3SO3-, CF3CF2CF2CF2S〇36, (cf3so2)2n·, (CF3S 〇2) 3c, Cf3C00· and CF3CF2CF2 (: 〇a. 9. The method for producing qi according to the above-mentioned patent item 1, wherein the ionic melt has a weight ranging from about 10% to 90%. The method for producing an aerogel according to the above aspect of the invention, wherein the weight of the above-mentioned sub-solution is in the range of about 20% to 50%. The above-mentioned fixed viscosity is greater than or equal to 200 cps. "Special 12. If applying for planting (4) 丨 所 魏 魏 _ 制造 制造 制造 制造 制造 制造 制造 催化 催化 催化 催化 催化 催化 催化 催化 催化 催化 催化 催化 催化 催化 催化 催化 催化 催化 催化 催化 催化 催化 催化 催化 催化 催化 催化The method for producing an aerogel according to the invention of claim 12, wherein the heating process temperature range is 50 to 1503⁄4. The method for producing an aerogel according to the above application, wherein the solvent The boiling point is less than or equal to 200. K如申請專利細第1項所述氣凝膠的製造方法,其中上述之溶 =類包含下列族群中之一者:猜類(咖le)、醇類、醜與 水等。 16.如申請專利範圍第丨項所述氣凝膠的製造方法,其中上述之萃 取程序的溫度範圍約為50。匸至200。^。K. The method for producing an aerogel according to the above-mentioned item 1, wherein the above-mentioned dissolution class comprises one of the following groups: a guess, an alcohol, an ugly water, and the like. 16. The method of producing an aerogel according to the above application, wherein said extraction step has a temperature in the range of about 50.匸 to 200. ^. 17=申,專利範圍第i項所述氣凝膠的製造方法,於上述之萃取 ,序凡成後’進彳了-錢程序以去除該氣轉孔隙巾所含之溶 18·如申請專讎_丨項所述氣_賴造方法,其中上述之氣 ;轉前驅溶液更包含具有至少—特定顧之錄基單體與/或 方香乳基單體,該特定基團包含下列族群中之—者:銳基、 硫醇基、胺基、二胺基、烧基、芳香基、環氧基與氰基,藉此 形成表面修飾之氣凝膠。 、申明專她圍第1項所述氣凝膠的製造方法,其中上述之氣 凝膠成分包含下列族群中之-者或其任意組合:Si02、Ti02、 V2〇5 與 Al2〇3。 31 丄 wy〇32 20. 如申請專利範圍第丨項所述氣娜的製造方法,其巾上述之氣 凝膠係為二氧切·二氧錄(Si02_Ti02)兩元缺膠,且二氧 化石夕與二氧化鈦的莫耳比細為丨:9至5 : 5。 21. 如申請專利朗第丨項所述氣凝膠的製造方法,其中上述之氣 凝膠的比表面積大於或等於100 m2/g。 22. 如申請專利範圍第i項所述氣凝膠的製造方法,其中上述之氣 凝膠的平均孔經範圍約為lnm至50nm。 • 23.如申請專利範圍第1項氣凝膠的製造方法,其中上述之氣凝膠 的孔隙度範圍為50%至99%。 24. 如申請專利範圍第!項氣凝膠的製造方法,其中上述之氣凝膠 的孔體積(pore volume)範圍大於或等於L〇 cmVg。 25. -種生物複合材料的製造方法,該生物複合材料的製造方法包 含: 提供一前驅溶液,其中,該前驅溶液包含一親水性離子熔 φ 液、一催化水解與/或縮合反應試劑、至少一種生物分子以及至 少一種燒氧基單體(alkoxide)與/或芳香氧基單體㈣〇涵),其 中,該催化水解與/或縮合反應試劑包含下列族群中之一者或其 任意組合:醇類及生物分子所需之緩衝劑(buffer); 對該前驅溶液進行一固化程序,以便於至少一種該烷氧基 單體與/絲魏基單舰行轉反應鮮合反應,#此固化並 包覆至少一種該生物分子以形成該生物複合材料;與 藉由一 /谷劑對該生物複合材料進行一萃取程序以取代該生 物複合材料中所含之離子熔液。 32 1329032 26. 如申請專利範圍第25項所述生物複合材料的製造方法,其中上 述之生物分子包含下列族群中之一者:抗原、單株抗體 (monoclonal antibodies )、多株抗體(polyclonal antibodies )、核 酸(nucleic acids)[包含單體態(monomeric )與寡聚態 (oligomeric)]、蛋白質(proteins)、酵素(enZymes)、脂類 (lipid)、多醣類(polysaccharides)、醣類(SUgars)、胜肽 (peptides)、多胜肽(polypeptides)、藥物(drugs)、病毒、微 生物與生質配體(bioligands )。 27. 如申請專利範圍第25項所述生物複合材料的製造方法,其中上 述之炫氧基單體與/或芳香氧基单體的中心元素包含下列族群 中之者.Li、Na、K、Rb、Cs、Be、Mg、Ca、Sr、Ba、Ti、 Te、Cr、CU、Er、Fe、Ta、V、Zn、Zr、AhSi、Ge、Sr^Pb。 28. 如申凊專利範圍第25項所述生物複合材料的製造方法,其中上 述之烧氧基單體與/或芳香氧基單體包含下列族群中之一者: tetramethyl orthosilicate (TMOS) &gt; tetraethyl orthosilicate (TEOS)、bis(triethoxysilyI)ethane (BTSE)、 biS(trieth〇xysilyl)benzene (BTSB)、 vanadium oxytripropoxide ° 29. 如申請專利範圍第25項所述生物複合材料的製造方法,其中上 述之親水性料紐係為纽料賴(細m ionic liquid )。 3〇.如申請專利範圍第%項所述生物複合材料的製造方法,其中上 述之親水性離子溶液其係由一有機驗與一路易斯酸混合^ 33 成,且該路易斯酸不為鹵化酸。 申《月專利範圍第25項戶斤述生物複合材料的製造方法,其中上 述之親水性離子溶液的重量範圍約為祕至资。。 .如申。月專利範圍帛25項所述生物複合材料的製造方法,其中上 述^水性離子熔液的重絲_為2q%至观。 申明專利範®第25項所述生物複合材料的製造方法,其中上 述之緩衝劑的pH值範圍約為5至9。 _ 34·如申請專利範圍第25項所述生物複合材料的製造方法,其中上 述之固化程序包含: 對該氣凝膠前驅溶液進行一均勻混合程序,以便於至少一種 〇、元氧基單體與/絲香氧基單體水解與聚合,直到該氣凝膠前 驅溶液達到-特絲度’城蚊織大於或等於 150 cps ;與17=申, The method for manufacturing aerogel according to item i of the patent scope, in the above-mentioned extraction, after the completion of the process, the process of removing the gas contained in the gas-filled aperture towel is removed. The method according to the above, wherein the precursor solution further comprises at least a specific monomer and/or a fragrant-based monomer, the specific group comprising the following groups; The ones are: sharp group, thiol group, amine group, diamine group, alkyl group, aryl group, epoxy group and cyano group, thereby forming a surface-modified aerogel. The invention relates to a method for producing an aerogel according to Item 1, wherein the aerogel component comprises - or any combination of the following groups: SiO 2 , TiO 2 , V 2 〇 5 and Al 2 〇 3 . 31 丄wy〇32 20. As described in the scope of application of the scope of the patent, the gas gel is a two-dimensional gel of dioxobic dioxide (Si02_Ti02) and dioxide. The molar ratio of cerium to titanium dioxide is 丨: 9 to 5: 5. 21. The method of producing an aerogel according to the patent application, wherein the aerogel has a specific surface area greater than or equal to 100 m2/g. 22. The method of producing an aerogel according to the invention of claim 1, wherein the aerogel has an average pore passage range of from about 1 nm to about 50 nm. • A method of producing an aerogel according to claim 1, wherein the aerogel has a porosity ranging from 50% to 99%. 24. If you apply for a patent scope! The method for producing an aerogel, wherein the aerogel has a pore volume range greater than or equal to L 〇 cmVg. 25. A method of producing a biocomposite comprising: providing a precursor solution, wherein the precursor solution comprises a hydrophilic ion melt solution, a catalytic hydrolysis and/or condensation reaction reagent, at least A biomolecule and at least one alkoxide and/or an aryloxy monomer (IV), wherein the catalytic hydrolysis and/or condensation reagent comprises one of the following groups or any combination thereof: a buffer required for the alcohol and the biomolecule; performing a curing procedure on the precursor solution to facilitate the reaction of at least one of the alkoxy monomer and the /Wowei single ship And coating at least one biomolecule to form the biocomposite; and extracting the ionic liquid contained in the biocomposite by performing an extraction process on the biocomposite by a/valley. The method for producing a biocomposite according to claim 25, wherein the biomolecule comprises one of the following groups: an antigen, a monoclonal antibody, and a polyclonal antibody. Nucleic acids [including monomeric and oligomeric], proteins, enZymes, lipids, polysaccharides, sugars (SUgars) ), peptides, polypeptides, drugs, viruses, microorganisms, and bioligands. 27. The method of producing a biocomposite according to claim 25, wherein the central element of the above-mentioned methoxyl monomer and/or aryloxy monomer comprises the following groups: Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, Ti, Te, Cr, CU, Er, Fe, Ta, V, Zn, Zr, AhSi, Ge, Sr^Pb. 28. The method of producing a biocomposite according to claim 25, wherein the alkoxy monomer and/or the aryloxy monomer comprises one of the following groups: tetramethyl orthosilicate (TMOS) &gt; Tetraethyl orthosilicate (TEOS), bis(triethoxysilyI)ethane (BTSE), biS(trieth〇xysilyl)benzene (BTSB), vanadium oxytripropoxide ° 29. The method for producing a biocomposite according to claim 25, wherein the above The hydrophilic material is a fine ionic liquid. The method for producing a biocomposite according to the above aspect of the invention, wherein the hydrophilic ionic solution is mixed with an organic acid and a Lewis acid, and the Lewis acid is not a halogenated acid. The method of manufacturing the biocomposite material of the 25th item of the monthly patent range, wherein the weight range of the hydrophilic ion solution mentioned above is about secret. . Such as Shen. The method of manufacturing a biocomposite according to the above-mentioned patent, wherein the above-mentioned aqueous ionic melt has a weight of from 2% to 2%. The method for producing a biocomposite according to claim 25, wherein the buffer has a pH in the range of about 5 to 9. The method for producing a biocomposite according to claim 25, wherein the curing procedure comprises: performing a uniform mixing procedure on the aerogel precursor solution to facilitate at least one oxime and an oxyl monomer. Hydrolysis and polymerization with the /silk oxy- ing monomer until the aerogel precursor solution reaches - the specificity of the city 's mosquito woven is greater than or equal to 150 cps; 靜置該氣郷前驅溶液,錢槪少—種驗氧基單體與/ 或芳香氧基單體持續水解與聚合,藉此形成氣凝膠。 %如申請專利範圍第Μ項所述生物複合材料的製造方法,其中上 述之特定黏度大於或等於2〇〇 cps。 , 36·如申請翻麵&quot;項所述生物複合材料的製造方法 述之固化程序溫度小於或等於5(rc。 八丁工 37.如申請專利細&quot;項所魅物複合材料的製造方法 述溶劑種類包含下列族群中之一者或其任意組合:醇類、-中^ 生物分子所需之缓衝劑(buffer s〇iutiQnq。 扯如申請專利細第38項所述生物複合材料的製造方法,其中上 34 1329032 述之緩衝劑的pH值範圍約為5至9。 3从申請專利範圍第25項所述生物複合材料的製造方法, 述之卒取程序的溫度小於或等於5〇。匚。 /、丁工 肌如申請專利範圍第25項所述生物複合材料的製造方法,於上述 程序完成後,對該生物複合材料進行«絲 該生物複合材料中所含之溶劑。 礼如申請專利範圍第40項所述生物複合材料的製造方法,㈠上 述之乾燥程序的溫度小於或等於0^。 /、 42.如申請專利範圍第4〇項所述生物複合材料的製造方法,其中上 述之乾燥程序的壓力小於或等於2〇 pa。 43·如申請專利範圍第25項所述生物複合材料的製造方法,其中上 述之生物複合材料的比表面積大於或等於1⑽以2/。 礼如申請專利範圍第25項所述生物複合材料的製造g方法,其中上 述之生物複合材料的平均孔徑範圍約為11^至5〇1^。八 仏如申請專利範圍第25項生物複合材料的製造方法,其中上述之 生物複合材料的孔隙度範圍為50%至99%。 46·如申請專娜㈣25項生物複合㈣的觀方法,其巾上述氣 凝膠的孔體積(p〇re v〇lume)範圍大於或等於^ 〇咖3/忌。“ 35The gas precursor solution is allowed to stand, and the oxirane-type oxy-compound and/or the aryloxy monomer are continuously hydrolyzed and polymerized, thereby forming an aerogel. % The method of manufacturing a biocomposite according to the above application, wherein the specific viscosity is greater than or equal to 2 〇〇 cps. 36. The method for manufacturing a biocomposite according to the application of the above-mentioned biocomposite is described in which the curing procedure temperature is less than or equal to 5 (rc. 八丁工37. If the patent application is fine&quot; The solvent type includes one of the following groups or any combination thereof: an alcohol, a buffer required for the biomolecule (buffer s〇iutiQnq), and a method for producing the biocomposite according to claim 38. The pH of the buffer described in the above 34 1329032 ranges from about 5 to 9. 3 The method for producing a biocomposite according to claim 25, wherein the temperature of the stroke program is less than or equal to 5 〇. /, Ding Mu muscle, as claimed in the patent application scope of the biological composite material manufacturing method, after the completion of the above procedure, the bio-composite material is «the silk compound contained in the bio-composite material. The method for producing a biocomposite according to Item 40, wherein the temperature of the drying procedure is less than or equal to 0. /, 42. The preparation of the biocomposite according to the fourth aspect of the patent application. The method of manufacturing a biocomposite according to claim 25, wherein the biocomposite has a specific surface area greater than or equal to 1 (10) to 2/. The method for producing a biocomposite according to claim 25, wherein the biocomposite has an average pore size ranging from about 11 to about 5 〇 1 ^. The method for producing a material, wherein the above-mentioned biocomposite has a porosity ranging from 50% to 99%. 46. If the application method is applied to the biological compound (4), the pore volume of the aerogel (p〇re) V〇lume) range is greater than or equal to ^ 〇 coffee 3 / bogey. " 35
TW095149391A 2006-12-28 2006-12-28 Method for fabricating aerogels and their applications in biocomposites TWI329032B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW095149391A TWI329032B (en) 2006-12-28 2006-12-28 Method for fabricating aerogels and their applications in biocomposites
US12/948,124 US8679808B2 (en) 2006-12-28 2010-11-17 Method for fabricating a biocomposite comprising an aerogel wrapping a biomolecule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW095149391A TWI329032B (en) 2006-12-28 2006-12-28 Method for fabricating aerogels and their applications in biocomposites

Publications (2)

Publication Number Publication Date
TW200827022A TW200827022A (en) 2008-07-01
TWI329032B true TWI329032B (en) 2010-08-21

Family

ID=44817071

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095149391A TWI329032B (en) 2006-12-28 2006-12-28 Method for fabricating aerogels and their applications in biocomposites

Country Status (1)

Country Link
TW (1) TWI329032B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109052415B (en) * 2018-09-10 2020-04-21 西南科技大学 MTMS-based silica aerogel and preparation method thereof
TWI695856B (en) * 2018-12-07 2020-06-11 台灣氣凝膠科技材料開發股份有限公司 Composite material having modified aerogel powder with special function group

Also Published As

Publication number Publication date
TW200827022A (en) 2008-07-01

Similar Documents

Publication Publication Date Title
Wei et al. Preparation and physisorption characterization of d-glucose-templated mesoporous silica sol− gel materials
US8679808B2 (en) Method for fabricating a biocomposite comprising an aerogel wrapping a biomolecule
Galarneau et al. Understanding the stability in water of mesoporous SBA-15 and MCM-41
Ryoo et al. Block-copolymer-templated ordered mesoporous silica: array of uniform mesopores or mesopore− micropore network?
Zhang et al. Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water
Ryoo et al. Energetically favored formation of MCM-48 from cationic− neutral surfactant mixtures
Kim et al. Facile synthesis of monodisperse spherical MCM-48 mesoporous silica nanoparticles with controlled particle size
Fan et al. Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores
Yang et al. A fast way for preparing crack-free mesostructured silica monolith
Kleitz et al. Phase domain of the cubic Im 3̄ m mesoporous silica in the EO106PO70EO106− Butanol− H2O system
Jung et al. Creation of novel double-helical silica nanotubes using binary gel system
Simon et al. Block copolymer− ceramic hybrid materials from organically modified ceramic precursors
Chen et al. Porous silica nanocapsules and nanospheres: dynamic self-assembly synthesis and application in controlled release
Kruk et al. Characterization of high-quality MCM-48 and SBA-1 mesoporous silicas
Chia et al. Patterned hexagonal arrays of living cells in sol− gel silica films
Ryoo et al. Optically transparent, single-crystal-like oriented mesoporous silica films and plates
Garcia et al. Self-assembly approach toward magnetic silica-type nanoparticles of different shapes from reverse block copolymer mesophases
Hartmann et al. Glycol-modified silanes: novel possibilities for the synthesis of hierarchically organized (hybrid) porous materials
Melosh et al. Macroscopic shear alignment of bulk transparent mesostructured silica
Ogawa Mesoporous silica layer: preparation and opportunity
Clark Wooten et al. Synthesis and nanofiltration membrane performance of oriented mesoporous silica thin films on macroporous supports
TW200914372A (en) Silica particles and methods of making and using the same
Brennan et al. Fluorescence and NMR characterization and biomolecule entrapment studies of sol− gel-derived organic− inorganic composite materials formed by sonication of precursors
Bourlinos et al. “Side chain” modification of MCM-41 silica through the exchange of the surfactant template with charged functionalized organosiloxanes: an efficient route to valuable reconstructed MCM-41 derivatives
Yazawa et al. Effect of cooling rate on pore distribution in quenched sodium borosilicate glasses

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees