TWI374249B - Positioning and tracking method and related device - Google Patents

Positioning and tracking method and related device Download PDF

Info

Publication number
TWI374249B
TWI374249B TW97142612A TW97142612A TWI374249B TW I374249 B TWI374249 B TW I374249B TW 97142612 A TW97142612 A TW 97142612A TW 97142612 A TW97142612 A TW 97142612A TW I374249 B TWI374249 B TW I374249B
Authority
TW
Taiwan
Prior art keywords
optical signal
signal sources
optical
sources
tracking device
Prior art date
Application number
TW97142612A
Other languages
Chinese (zh)
Other versions
TW201018866A (en
Inventor
Yueh Sheng Ho
Original Assignee
Asustek Comp Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asustek Comp Inc filed Critical Asustek Comp Inc
Priority to TW97142612A priority Critical patent/TWI374249B/en
Publication of TW201018866A publication Critical patent/TW201018866A/en
Application granted granted Critical
Publication of TWI374249B publication Critical patent/TWI374249B/en

Links

Description

1374249 九、發明說明: 【發明所屬之技術領域】 本發明係指一種定位追蹤方法及相關裝置,尤指一種可利用光 學訊號源判斷空間位置變化之定位追蹤方法及相關裝置。 【先前技術】 光學影像感測元件可用來作為將光轉換為電子訊號的光學積 體電路70件’目前已廣泛地被應用在光電產品,例如數位相機或 具有照相功能之電子裝置科照相魏的顧;而在其他方面的 應用也有許多的朗,像是制光發射源(例如紅外線訊號源) 搭配光學影像感測元件的_感應裝置,可以反應出所欲偵測物 H然而,傳統的技術中,影像感測树對於紅外線訊號源的辨 哉此力不足’無法分辨侧範圍内的訊號差異,因此,當有其它 =紅1卜線訊號源進人伽範_,不免會造成影像感測元_錯 項。,甚絲響到正確的運算。簡單的說,當有其它多餘的紅 、:喊源出現在_範_時,對於影像_元件的運算上將 子視為雜5fL干擾值,而妨礙正確的辨識。 件,將置通常係洲具空間動作感測能力之感測元 、j者的動作轉換成訊號以提供運用,傳統上必須利用陀 1374249 但其製造成本相對昂貴且佔 螺儀或加速儀等裝置來達到此目的 用較大的產品體積。 【發明内容】 因此本發狄主要在雜供—歡位触方法及相關裝置。 本毛月揭⑬#定位追縱方法,包含有於複數個位置設置複數 個光學訊號源,該複數個鱗訊_係根據概侧碼序列產生 複數個明滅航;_該魏絲職狀贼航,以產生一 侧結果;根_侧結果,判_複數個絲城源之相對位 置;以及根據該複數個光學峨源之相對位置,判斷該物體之空 間位置變化。 本發明另揭露-種定位追縱敦置,包含有複數個光學訊號源、 • 一驅動單70、一影像感測單元、一第一判斷單元及一第二判斷單 元;該複數個光學訊號源用以提供複數個光學訊號;該驅動單元, 耦接於該複數個光學訊號源,用來根據複數個編碼序列,控制複 數個明滅情況;該影像感測單元,用來偵測該複數光學訊號源之 . 明滅情況,以產生一偵測結果;該第一判斷單元,耦接於該影像 感測單元,用來根據該偵測結果,判斷該複數個光學訊號源之相 對位置;以及該第二判斷單元,耦接於該第一判斷單元,用來根 據該複數個光學訊號源之相對位置,判斷該物體之空間位置變化。 6 1374249 本發明之定位追蹤方法及相關裝置實施例根據編碼序列控制 物體上之光學訊號源的明滅情況,再透過影像感測單元依所谓測 到光學訊號源的明滅情況,可輕易且正確地判斷出光學訊號源, 則當有多個光學訊號源在影像感測單元之偵測範圍内時,將不會 發生錯誤判讀光學訊號源之情況。 【實施方式】 月 > 考第1圖帛1圖為本發明實施例之―定位追蹤裝置 =示意圖。定位追職置IG包含有光學峨源Ai〜An、一驅重 早7L 102、-影像感測單元1〇4、一第—判斷單元咖及一第二多 Γ圖單元108。光學訊號源A1〜M係設置於一物體0B (未侧 ^上,用以提供n個不同形式的光學峨 於光學訊號源A1〜An,用爽㈣绝心 ^ 元序數V控_滅情況Ζ1 Γ ία] 〇表利 學―沔A1 A 〜Zn '錄感測單元104用來偵測光 予。fl唬源A1〜An之明滅情況, 斷單元1〇6_於影像感測單元ι〇 —則結果⑽。第一判 判斷光學tfiu A1〜A 歸制結果DCT, 據光學訊號源Al〜An之相立置,而第二判斷單元108則根 立置,判斷物體OB之空間位置變化。 簡言之,本發明實施例 源ANAn之明滅μ $ 喝序列C丨[i]〜Cn[i]控制光學訊號 輯况’再透過影像感測單元1〇4依所偵測到之 1374249 明滅情況,辨識出光學訊號源A1〜An的相對位置,以判斷物體 〇B之空間位置變化。由於光學訊號源〜An係根據編碼序列 Cl[i]〜Cn[i]產生不同的光學訊號,因此,影像感測單元1〇4可正 確辨硪出光學訊號源A1〜An’而不會發生錯誤判讀的情況。如此 一來,第一判斷單元1〇6可根據影像感測單元1〇4的感測結果 DCT,判斷出光學訊號源八卜如的相對位置,使得第二判斷單 元108可比對出物體0B之空間位置變化,以精確地追縱物體〇b 鲁的位置及動作’因而不需利用陀螺儀或加速儀等裝置,可降低生 產成本及縮小產品體積。 ' 請參考第2圖,第2圖為本發明之一定位追蹤流程加之示意 圖。定位追縱流程20係適用於定位追蹤裝置1〇之操作流程苴 包含有下列步驟: 八 步驟200 :開始。 步驟202 ··於物體〇B之n個位置設置光學訊號源A1〜An ’光 學訊號源Ai〜An係根據編碼序列Ci[i]〜 明滅情況Z1〜Zn。 步驟204 :偵測光學訊號源Al〜An之明滅情況以 結果DCT。 期 步驟施:細貞猶果DCT,_她職、AH 對位置。 步驟208:根據光學訊號源A1〜如夕知非^如1374249 IX. Description of the Invention: [Technical Field] The present invention relates to a positioning and tracking method and related apparatus, and more particularly to a positioning and tracking method and related apparatus for determining a spatial position change using an optical signal source. [Prior Art] An optical image sensing element can be used as an optical integrated circuit 70 for converting light into an electronic signal. Currently, it has been widely used in optoelectronic products, such as digital cameras or electronic devices with camera functions. In other applications, there are many applications, such as a light source (such as an infrared signal source) with an optical image sensing element _ sensing device, which can reflect the desired object H. However, in the traditional technology The image sensing tree does not have the ability to distinguish the source of the infrared signal. It is impossible to distinguish the signal difference in the side range. Therefore, when there is another = red 1 line signal source into the gamma _, it will inevitably cause the image sensing element. _ wrong item. , even the sound of the correct operation. To put it simply, when there are other redundant reds: the source of the shout appears in _fan_, the computational actor for the image_component is treated as a miscellaneous 5fL interference value, which prevents proper identification. The device will convert the sensing element of the space motion sensing capability and the motion of the j to the signal to provide the operation. Traditionally, it is necessary to utilize the tortoise 1374249, but its manufacturing cost is relatively expensive and it occupies a device such as a screw or an accelerometer. To achieve this goal with a larger product volume. SUMMARY OF THE INVENTION Therefore, the present invention is mainly used in the miscellaneous supply-friendly touch method and related devices. The method of locating the tracking of the 13# positioning method includes setting a plurality of optical signal sources in a plurality of positions, and the plurality of scalar _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ To generate a side result; a root_side result, determine a relative position of the plurality of silk city sources; and determine a spatial position change of the object based on a relative position of the plurality of optical sources. The present invention further discloses a positioning and tracking device comprising a plurality of optical signal sources, a driving unit 70, an image sensing unit, a first determining unit and a second determining unit; and the plurality of optical signal sources The plurality of optical signals are coupled to the plurality of optical signal sources for controlling a plurality of extinction situations according to the plurality of coding sequences; the image sensing unit is configured to detect the plurality of optical signals The first determining unit is coupled to the image sensing unit for determining a relative position of the plurality of optical signal sources according to the detection result; and the first The second determining unit is coupled to the first determining unit, and configured to determine a spatial position change of the object according to the relative positions of the plurality of optical signal sources. 6 1374249 The positioning tracking method and related device embodiment of the present invention controls the extinction condition of the optical signal source on the object according to the coding sequence, and then can be easily and correctly judged by the image sensing unit according to the so-called detection of the optical signal source. When the optical signal source is out, when there are multiple optical signal sources within the detection range of the image sensing unit, the erroneous interpretation of the optical signal source will not occur. [Embodiment] Month > Figure 1 is a schematic diagram of a "positioning tracking device" according to an embodiment of the present invention. The positioning and tracking IG includes an optical source Ai~An, a drive 7L 102, an image sensing unit 1〇4, a first-determining unit, and a second multi-picture unit 108. The optical signal sources A1~M are arranged on an object 0B (not on the side) to provide n different forms of optical 峨 to the optical signal source A1~An, using cool (four) sacred ^ yuan ordinal number V control _ Ζ Ζ 1 Γ ία] 〇 利 沔 沔 沔 沔 1 1 1 1 1 1 录 感 录 录 感 感 感 感 感 感 感 感 感 感 感 感 唬 唬 唬 唬 唬 唬 唬 唬 唬 唬 唬 唬 唬 唬 唬 唬 唬 唬 唬 唬 唬 唬 唬 唬 唬 唬Then, the result is (10). The first judgment optical tfiu A1 to A is the result of the DCT, and the optical signal source A1 to An is placed upright, and the second judging unit 108 is set up to determine the spatial position change of the object OB. In the embodiment of the present invention, the source ANAN is cleared out. The drinking sequence C丨[i]~Cn[i] controls the optical signal condition and is transmitted through the image sensing unit 1〇4 according to the detected 1374249 The relative positions of the optical signal sources A1 to An are determined to determine the spatial position change of the object 〇B. Since the optical signal source ~An generates different optical signals according to the coding sequence Cl[i]~Cn[i], the image sense is The measuring unit 1〇4 can correctly identify the optical signal source A1~An' without erroneous interpretation. In this way, the first determining unit 1〇6 can determine the relative position of the optical signal source according to the sensing result DCT of the image sensing unit 1〇4, so that the second determining unit 108 can compare the object 0B. The position of the space changes to accurately track the position and movement of the object 'b Lu. Therefore, it is not necessary to use a gyroscope or an accelerometer to reduce the production cost and reduce the product volume. ' Please refer to Figure 2, Figure 2 A positioning tracking process of the present invention is further provided with a schematic diagram. The positioning tracking process 20 is applicable to the operation process of the positioning tracking device 1 and includes the following steps: Eight steps 200: Start. Step 202 · · n positions of the object 〇B The optical signal source A1~An 'the optical signal source Ai~An is set according to the coding sequence Ci[i]~ the clear condition Z1~Zn. Step 204: Detect the optical signal source Al~An to extinguish the condition to the result DCT. : 细贞果果DCT, _ her job, AH to the position. Step 208: According to the optical signal source A1 ~

相對位置,判斷物體OB 、 之空間位置變化。 8 1374249 步驟210 :結束。 透過流程20,本發明實施例係於物體〇B之n個位置設置光學 訊號源Α1〜An。光學訊號源Α1〜Αη係根據編碼序列a[i]〜 Cn[i],產生明滅情況Zl〜Zr^當物體〇B進入影像感測單元1〇4 之制範圍時,影像感測單元1〇4會俄測出光學訊號源A1〜An 之明滅情況,以產生债測結果DCT。根據偵測結果DCT,第一判 # 斷單元106可判斷光學訊號源A1〜An之相對位置❶然後,第二 判斷早7G 108再根據第一判斷單A 1〇6所判斷之光學訊號源A1〜 An之相對位置,判斷出物體OB之空間位置變化。 本發明實關根據編碼序列湖物體上之光封罐源的明減 奴’再透郷像❹样元賴侧到光學峨源_滅情況, 2易且正j地辨識出光學訊號源。因此,當有多個光學訊號源在 鲁影像感測單元之偵測範圍内時,不會發生錯誤判讀光學訊號源之 情況。同時,树明實關可透過所麟Μ學訊魏的相對位 置來比對出物體ΟΒ之空間位置變化,可精確地追縱物件的位 及動作。 Α外’本判實施舰—步絲學減源獅在乡物體辨 情況’請參^第3圖,第3圖為本發明實施例之另—定位追縱襄、 置^)之不意圖。定位追蹤裝置3〇包含有光學訊號源ai〜知、驅 *動单兀Dl〜Dn、一影像感測單元304及-判斷單元3〇6。光學气 9 U74249 . 戒源八1〜An分別設置於複數個物體OBI〜OBn (未繪於第3圖) 上’用以提供η個不同形式的光學訊號。驅動單元di〜Dn分別 耦接於光學訊號源A1〜An ,用來根據編碼序列C^il-Cyi] (i表 不位元序數),控制明滅情況zl〜Zr^影像感測單元3〇4用來偵 測光學訊號源A1〜An之明滅情況,以產生一偵測結果DCT。判 斷單元306耦接於影像感測單元3〇4,用來根據偵測結果DCT, 判斷出光學訊號源A1〜An對應之複數個物體〇B1〜〇Bn。較佳 φ 地’可判斷出複數個物體OB1〜〇Bn之相對位置。 簡言之,本發明實施例根據編碼序列Ci[i]〜Cn[i]控制光學訊號 源A1〜An之明滅情況,再透過影像感測單元3〇4依所偵測到之 明滅情況,辨識出光學訊號源A1〜An以及其相對位置,再藉此 判斷出物體OB1〜〇Bn。由於光學訊號源A1〜An係根據編碼序 列產生不同的光學訊號,因此,影像感測單元3〇4可 正確辨識出光執號源A1〜An,而不會發生錯誤判讀的情況。如 • 此一來,判斷單元306可根據影像感測單元304的感測結果DCT, 判斷出光學訊號源A1〜An以及其相對位置,使得本發明實施例 針對複數個物體的情況下,可以在偵測範圍内,精確地辨識出物 體OB1〜OBn以及其相對位置,可有效提升辨識的能力。 • 請參考第4圖,第4圖為本發明之-定位追蹤流程40之示音 圖。定位追縱流程40係適用於定位追縱襄置3〇之操作流程,^ 包含有下列步驟: ^ 1374249 步驟400 :開始。 步驟4〇2:於物體OB1〜OBn上分別設置光學訊號源Al〜An, 光學訊號源A1〜An係根據編碼序列。[丨]〜匸⑴ 產生明滅情況Z1〜Zn。 步驟4〇4 :彳貞測光學滅源A1〜An之明滅纽,以產生個 結果DCT。 步驟406 :根據偵測結果DCT,判斷複數個物體〇m〜〇Bn。 步驟408 :結束。 透過流程40,本發明實施例係於物體〇B1〜〇Bn上分別設置 光學訊號源A1〜An。光學訊魏A1〜An錄據編碼序列^ 〜_’產生明滅情·〜Ζη。當物體呢進入影像感測單元3〇4 之偵測範圍時,影像感測單元304會偵測出光學訊號源Αι〜Αη 之明滅情況,以產生偵測結果DCT。根據偵測結果dct,判斷單 元306可判斷出複數個物體OB1〜〇Bn。 本發明實細根據編碼序顺制物體上之光學峨源的明滅 情況’再透·像_單元依所偵_光學訊號源_滅情況, 輕易且正確地舰出絲峨源,以分辨出減⑽〜咖,及 判斷出其姆位置。因此,本發明實施例針對複數個物體的情況 下’可以在偵測範圍内,精確地辨識出物體〇bi〜 對位置,可有效提升辨識的能力。 乂及,、相 1374249 條·注忍的疋’定位追蹤裝置1〇及定位追蹤裝置%係為本發 月之實把例本領域具通常知識者當可據以做不同之變化而不 限於此。舉例來說,光學訊號源Al〜An可以是可見光訊號源或 不可見光訊魏’健地,村以是紅外線減源。此外,由於 .發光二滅_快速之贼反應雛,運作鮮高,適合用來如 本發明實施例之調㈣滅情況來實現編碼序列。在此情況下,光 子fl5虎源A1 An較佳地可以是n個紅外線發光二極體^另一方 • *,本發明實_所述之影像感測單元104及304不拘於特定裝 置”要疋月匕正確感測光學訊號源Α1〜Α_發出之訊號者即可, 舉例來說’較佳地係為一互補金屬氧化半導體影像感測元件。此 外’定:追蹤裝置1()及定位追蹤裝置1〇較佳地另包含一編碼序 列產生單it韓產生複數個編碼相聊〜⑽]。再者,第1 圖第判斷單元1〇6與第二判斷單元⑽係分別用來判斷光學 訊號源A1〜An之相對位置及判斷物體㈤之空間位置變化,實際 _上第判斷單兀106與第二判斷單元1〇8亦可整合於同-判斷 _ 裝置或晶片中,其皆屬本發明之範脅。 進一步地綱本發明實施例之運作方式,首先,以n=8為例, 說明透過編物代1[i]〜«_識光學峨源A1〜A8及定位追 •蹤物體OB之運作方式。請參考第5圖及第㈣,第㈤為本發 :::蝴訊號源ai〜aw始相對位置之示意圖,第6圖 為,明貫施例之光學訊號源A1〜A8辨識之示意圖。首先,驅 '動早讀係根據編碼序列Cl[i]〜C8[i]來控制光學訊號源幻〜 12 1374249 A8 ;例如’若編碼〇表示「滅」,而編碼】表示「明」,則 ^列叫=_時’表示光學峨源A1係依序切換「滅、明、 ^明」’即明滅情況Z1。同樣的,雜碼序列明=_ 表不光學訊絲A2係依序切換「明、滅、明、滅」,即明滅情況 ^此類推,光學訊號源A1〜A8可產生明滅情況21〜烈。在 下’若光學訊號源A1〜八8進入影像感測單元⑽之偵測 範圍時’影像感測單元1G4會偵_光學訊號源αι〜α8之 情況Zi〜Z8 ’以輯載情況Ζ1〜Ζ8與編碼相叩I 從而經由明滅情況Ζ1〜Ζ8辨識出光學訊_αι〜α8,以產 應的飢结果DCT。如此一來’第一判斷單元1〇6可依 果DCT,判斷光學訊號源A1〜A8之相對位置,而第二判斷單: 則根據第—判斷單元所酬之光學訊號_〜a8之相; 位置,判斷出物體0B之空間位置變化。在定位追縱物體〇b 較佳地,第二觸單元⑽可比對光學訊號源AU之相對位 ,與一參考資訊’如啟始位置資訊,以判斷物體〇b之空間仅置 變化。此外’本發明實施例亦不需_到所有絲訊號源ai〜 二即可以判斷出物體㈤之空間位置變化如第6圖所示,僅 Μ、M、A?與第5圖之啟始位置資訊比對,即可知 物體%度逆時鐘方向的翻轉變化。 接著’朗透過編碼序^Cl[i]〜c3刚識光學訊號#ai〜a3 來分辨物體⑽〜⑽之運作方式。請參考第7圖,第7圖 發明實施例之光學訊號_〜A3辨識之示意圖。魏,假設目 13 ^374249 前存在5個物體(物體0B1〜0B5),每一物體上分別設有一光學 訊號源A1〜A5,驅動單元D1〜D5係根據編碼序列^⑴〜C5[i] 來控制光學訊號源A1〜A5 ;如前所述之編碼序列運作規則,在此 不再贅述,以此類推,光學訊號源A1〜A5可產生明滅情況ζι〜 Z5。如第7圖所示’若光學訊號源Ai〜A3進入影像感測單元3〇4 之偵測範® SA時(光學訊號源A4及A5位於偵測範圍SA之外), 影像感測單元304會偵測到光學訊號源A1〜A3之明滅情況ζι〜 Z3 ’以比對明滅情況Z1〜Z3與編碼序列⑽卜印],從而經由 明滅情況Z1〜光學罐源Ai〜A3,以產生對應的偵測 結果DCT。如此一來,判斷單元3〇6可依據偵測結果dct,判斷 出光學訊號源A1〜A3及其相對位置,航可辨識出物體〇Bl〜 OB3 〇 牙'上所述,本發明實施例根據編碼序列控制物體上之光學訊號· 源的明滅情況,再透難像_單元依__光學職源的明b 滅情況,可輕易且正確地_出光學訊號源,則#衫個光學訊 號源在影像_單元之侧細内時,將不會發生錯誤判讀光學 訊號源之情況。如此—來,本發明實施例除了可透過所判斷出的 光學喊縣觸出物體,更可根據光學喊源_對位置來比 對出物體之帥位置變化,以提升影像制之賊能力並精確 地追蹤物件的位£及_,同時降低生產成本及縮小產品體積。 以上所述僅為本發明之較佳實施例、,凡依本發明申請專利範 1374249 圍所做之均㈣化與修飾,皆應屬本發明之涵蓋範圏。 【圖式簡單說明】 第1圖為本發明實施例之一定位&蹤裝置之示意圖。 第2圖為本發明之一定位追蹤流程之示意圖。" 第3圖為本發明實施例之另—定位追縱裝置之示意圖。 第4圖為本發明之另一定位追蹤流程之示意圖。 第5圖為本發明實施例之光學訊號源起始相 墙c 示意圖 弟6圖為本發明實施例之光學訊號源辨識之示意圖。 第7圖為本發明另一實施例之光學訊號源辨識之示意圖。 【主要元件符號說明】The relative position determines the spatial position of the object OB. 8 1374249 Step 210: End. Through the process 20, the embodiment of the present invention sets the optical signal sources Α1 to An at n positions of the object 〇B. The optical signal source Α1~Αη is generated according to the coding sequence a[i]~Cn[i], and the image sensing unit 1〇 is generated when the object 〇B enters the range of the image sensing unit 1〇4. 4 The Russians measured the extinction of the optical signal source A1~An to generate the debt measurement result DCT. According to the detection result DCT, the first judgment unit 106 can determine the relative position of the optical signal sources A1 to An, and then the second judgment 7G 108 and then the optical signal source A1 determined according to the first judgment sheet A 1〇6. ~ Relative position of An, to determine the spatial position of the object OB changes. According to the invention, according to the code sequence, the light-seal can source on the lake object, the light-removing slave, and the optical source, the optical source, and the optical source are recognized. Therefore, when there are multiple optical signal sources within the detection range of the Lu image sensing unit, the erroneous interpretation of the optical signal source does not occur. At the same time, Shuming Guanguan can compare the spatial position of the object through the relative position of the Weishen Wei, and accurately track the position and movement of the object. Α外's judgment on the implementation of the ship-step-reduction lion in the township object's situation, please refer to Figure 3, the third figure is the other part of the embodiment of the invention is not intended to locate and set up. The position tracking device 3 includes an optical signal source ai~known, a drive unit D1~Dn, an image sensing unit 304, and a determination unit 3〇6. Optical gas 9 U74249 . The ring source 八1~An is set on a plurality of objects OBI~OBn (not shown in Fig. 3) to provide η different forms of optical signals. The driving units di to Dn are respectively coupled to the optical signal sources A1 to An for controlling the extinction condition z1 to Zr^ image sensing unit 3〇4 according to the encoding sequence C^il-Cyi] (i is not a bit number ordinal). It is used to detect the extinction of the optical signal sources A1 to An to generate a detection result DCT. The determining unit 306 is coupled to the image sensing unit 〇4 for determining the plurality of objects 〇B1 〇Bn corresponding to the optical signal sources A1 〜An according to the detection result DCT. Preferably, φ ground ' can determine the relative positions of the plurality of objects OB1 〇 〇 Bn. In short, the embodiment of the present invention controls the extinction of the optical signal sources A1 to An according to the coding sequences Ci[i] to Cn[i], and then identifies the detected and extinguished conditions through the image sensing unit 3〇4. The optical signal sources A1 to An and their relative positions are output, and then the objects OB1 to 〇Bn are determined. Since the optical signal sources A1 to An generate different optical signals according to the code sequence, the image sensing unit 3〇4 can correctly recognize the light source numbers A1 to An without erroneous interpretation. For example, the determining unit 306 can determine the optical signal sources A1 to An and their relative positions according to the sensing result DCT of the image sensing unit 304, so that the embodiment of the present invention can be used for a plurality of objects. Within the detection range, the objects OB1 OB OBn and their relative positions are accurately identified, which can effectively improve the identification ability. • Please refer to Figure 4, which is a sound map of the location tracking process 40 of the present invention. The positioning tracking process 40 is applicable to the operation process of the positioning tracking device, and the following steps are included: ^ 1374249 Step 400: Start. Step 4〇2: Optical signals sources A1 to An are respectively disposed on the objects OB1 to OBn, and the optical signal sources A1 to An are based on the coding sequence. [丨]~匸(1) Produces a brightening condition Z1~Zn. Step 4〇4: Measure the optical extinction source A1~An to extinguish the button to generate a result DCT. Step 406: Determine a plurality of objects 〇m~〇Bn according to the detection result DCT. Step 408: End. Through the process 40, in the embodiment of the present invention, the optical signal sources A1 to An are respectively disposed on the objects 1B1 to 〇Bn. Optical News Wei A1 ~ An record code sequence ^ ~ _ 'produces the genius ~ ~ Ζ η. When the object enters the detection range of the image sensing unit 3〇4, the image sensing unit 304 detects the extinction of the optical signal source Αι~Αη to generate the detection result DCT. Based on the detection result dct, the judgment unit 306 can determine a plurality of objects OB1 to 〇Bn. According to the invention, according to the coding sequence, the extinction condition of the optical source on the object is reconciled. The re-transmission image unit is responsive to the optical signal source _, and the source is easily and correctly extracted to distinguish the subtraction. (10) ~ Coffee, and judge the position of its position. Therefore, in the case of a plurality of objects, the embodiment of the present invention can accurately recognize the object 〇bi~ to the position within the detection range, and can effectively improve the recognition capability.乂和,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, . For example, the optical signal sources A1 to An may be visible light sources or invisible light, and the village is infrared source. In addition, because of the illuminating annihilation _ fast thief reaction, the operation is high, and is suitable for implementing the coding sequence according to the adjustment (4) of the embodiment of the present invention. In this case, the photon fl5 tiger source A1 An may preferably be n infrared illuminating diodes ^ the other side *, and the image sensing units 104 and 304 of the present invention are not limited to a specific device. The 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 匕 , , , , , , , , , , , , , , , , , , , , , , , , , 较佳 较佳 较佳 较佳 较佳 较佳 较佳 较佳 较佳 较佳Preferably, the device 1 further includes a code sequence for generating a single iteration to generate a plurality of code chats (10). Further, the first picture determining unit 1〇6 and the second determining unit (10) are respectively used to determine the optical signal. The relative positions of the sources A1 to An and the spatial position of the object (5) are changed, and the actual determination unit 106 and the second determination unit 1〇8 may also be integrated in the same-judgment_device or the wafer, which are all the inventions. Further, in the operation mode of the embodiment of the present invention, first, taking n=8 as an example, it is explained that through the code generation 1[i]~«_the optical source A1~A8 and the positioning pursuit object OB How it works. Please refer to Figure 5 and (4). (5) This is the issue::: A schematic diagram of the relative position of the source ai~aw, and Fig. 6 is a schematic diagram of the identification of the optical signal sources A1 to A8 of the Mingshi example. First, the driving early reading system is based on the coding sequence Cl[i]~C8[i] To control the optical signal source illusion ~ 12 1374249 A8; for example, if the code 〇 means "off", and the code 】 means "bright", then the ^ column is called = _ when the optical source A1 is switched in sequence. , "明"' is the case of Z1. Similarly, the code sequence =_ indicates that the optical signal A2 is sequentially switched to "bright, extinguish, clear, and extinguish", that is, the case of extinction. In this way, the optical signal sources A1 to A8 can produce a bright-off condition 21~. In the following case, if the optical signal sources A1 to 八8 enter the detection range of the image sensing unit (10), the image sensing unit 1G4 will detect the optical signal source αι~α8 in the case of Zi~Z8' in the case of the Ζ1~Ζ8 Coding phase I to identify the optical signal _αι~α8 through the annihilation condition Ζ1~Ζ8 to produce the hunger result DCT. In this way, the first determining unit 1〇6 can determine the relative position of the optical signal sources A1 to A8 according to the DCT, and the second determining unit: according to the phase of the optical signal _~a8 paid by the first determining unit; The position is judged to change the spatial position of the object 0B. Preferably, the second touch unit (10) compares the relative position of the optical signal source AU with a reference information such as the start position information to determine that the space of the object 〇b is only changed. In addition, the embodiment of the present invention does not require all the silk signal sources ai~2 to determine the spatial position change of the object (5) as shown in Fig. 6, only the starting positions of Μ, M, A? and Fig. 5 The information comparison can be used to know the flipping change of the object in the counterclockwise direction. Then, the lang is used to distinguish the operation modes of the objects (10) to (10) by the coding sequence ^Cl[i]~c3. Please refer to FIG. 7 and FIG. 7 for a schematic diagram of optical signal_~A3 identification of the embodiment of the invention. Wei, suppose that there are 5 objects (objects 0B1~0B5) before 13 ^374249, each of which has an optical signal source A1~A5, and the driving units D1~D5 are based on the coding sequence ^(1)~C5[i] The optical signal sources A1 to A5 are controlled; the coding sequence operation rules are as described above, and will not be described here, and so on, the optical signal sources A1 to A5 can generate the extinction conditions ζι to Z5. As shown in FIG. 7, if the optical signal sources Ai to A3 enter the detection range of the image sensing unit 3〇4, the optical signal sources A4 and A5 are outside the detection range SA, the image sensing unit 304 The optical signal sources A1 to A3 are detected to be extinguished ζι~Z3 'to compare the annihilation cases Z1 to Z3 with the coding sequence (10), thereby generating the corresponding via the illuminating case Z1 to the optical can source Ai~A3. Detect the result DCT. In this way, the determining unit 3〇6 can determine the optical signal sources A1 to A3 and their relative positions according to the detection result dct, and the navigation can identify the objects 〇B1 OB OB3 〇 ', as described in the embodiment of the present invention. The coding sequence controls the optical signal and the source of the object on the object, and then the image is broken. The unit can be easily and correctly _ out of the optical signal source, then the optical source of the optical source When the image_unit is thinner, the erroneous interpretation of the optical signal source will not occur. In this way, the embodiment of the present invention can change the position of the object according to the optical source _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Track the position of the item and _, while reducing production costs and reducing product size. The above description is only the preferred embodiment of the present invention, and all the modifications and modifications made in accordance with the patent application No. 1374249 of the present invention are all included in the scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a positioning & tracking device according to an embodiment of the present invention. Figure 2 is a schematic diagram of a positioning and tracking process of the present invention. " Fig. 3 is a schematic diagram of another positioning and tracking device according to an embodiment of the present invention. Figure 4 is a schematic diagram of another location tracking process of the present invention. FIG. 5 is a schematic diagram of an optical signal source starting phase wall c according to an embodiment of the present invention. FIG. 6 is a schematic diagram of optical signal source identification according to an embodiment of the present invention. FIG. 7 is a schematic diagram of optical signal source identification according to another embodiment of the present invention. [Main component symbol description]

10、30 定位追蹤裝置 A1 〜An 光學訊號源 102 驅動單元 104、304 影像感測單元 106 第一判斷單元 108 第二判斷單元 306 判斷單元 OB 物體 Cl[i]〜Cn[i] 編碼序列 15 137424910, 30 Positioning Tracking Device A1 ~ An Optical Signal Source 102 Driving Unit 104, 304 Image Sensing Unit 106 First Judging Unit 108 Second Judging Unit 306 Judging Unit OB Object Cl[i]~Cn[i] Encoding Sequence 15 1374249

Z1〜Zn 明滅情況 20 流程 200、202、204、206、208、210 400、402、403、404、406、408 步驟 16Z1~Zn annihilation case 20 Processes 200, 202, 204, 206, 208, 210 400, 402, 403, 404, 406, 408 Step 16

Claims (1)

1374249 十、申請專利範圍: 1. 一種定位追蹤方法,包含有: 於複數個位置設置複數個光學訊號源,該複數個光學訊號源係 根據複數個編碼序列產生複數個明滅情況; 偵測該複數光學訊號源之明滅情況,以產生一偵測結果; 根據該偵測結果,判斷該複數個光學訊號源之相對位置;以及 根據該複數個光學訊號源之相對位置,判斷該物體之空間位置 變化。 2. 如請求項1所述之定位追蹤方法,其中該複數個位置在一物 體上。 3. 如請求項1所述之定位追蹤方法,其中該複數個位置分別位 於複數個物體上。 《如請求項1所述之定位追财法,其找複數㈣學訊號源 係為複數個可見光訊號源。 5·如請求項丨所述之定料蹤方法,其巾該概絲學訊號源 係為複數個不可見光訊號源。 &amp;如請求項丨所述之雜追財法,其巾細該複數光學訊號 1374249 源之明減情況以產生該偵測結果,係偵测該複數光學訊號源 之明滅情況,以根據該複數光學訊號源之明減情況,比對該 複數個編碼序列,進而產生該偵測結果。 7. 如請求項1所述之定位追蹤方法,其中根據該複數個光學訊 號源之相對位置判斷該物體之空間位置變化,包含比對該複 數個光學訊號源之相對位置與一參考資訊,以判斷該物體之 空間位置變化。 8. 如請求項7所述之定位魏方法,其中該參考資訊係為該複 數個光學訊號源之啟始位置資訊。 9·如請求項1所述之定位追縱方法,其中係由—互補式金氧半 «影像感測元件_該複數個光學訊號源之明滅情況。 10· —種定位追蹤裝置,包含有: 複數個光學訊號源,用以提供複數個光學訊號; 一驅動單元,祕於該複數個光學訊魏,用來根據複數個編 碼序列,控制複數個明滅情況; -影像感測單元,用來偵測該複數光學訊號源之明滅情況以 產生一偵測結果; -第-判斷早,触於該影像_單元,絲根據該債測妹 果’判_概個縣訊贿之相對位置 ;以及 —第二判斷單元,耦接於該第一判斷單元,用來根據該複數個 光學訊號源之相對位置,判斷該物體之空間位置變化。 如請求項10所述之定位追蹤裝置,其中該複數個位置在一物 體上。 如請求項10所述之定位追蹤裝置’其中該複數個位置分別位 於複數個物體上。 如請求項10所述之定位追蹤裝置,另包含一編碼序列產生單 元’用來產生該複數個編碼序列。 如請求項10所述之定位追蹤裝置,其中該複數個光學訊號源 係為複數個可見光訊號源。 如請求項10所述之定位追蹤裝置,其中該複數個光學訊號源 係為複數個不可見光訊號源。 如請求項10所述之定位追跛裝置,其中該影像感測單元係用 來偵測該複數光學訊鶴之,崎_複數光學訊 號源之明滅情況’比對該複數個編鱗列,進而產生該偵測 結果。 如請求項10所述之定位追縦裝置,其中該第二判斷單元係比 1374249 對該複數個光學訊號源之相對位置與一參考資訊,以判斷該 物體之空間位置變化。 18. 如請求項17所述之定位追蹤裝置,其中該參考資訊係為該複 數個光學訊號源之啟始位置資訊。 19. 如請求項10所述之定位追蹤裝置,其中該影像感測單元係為 一互補式金氧半導體影像感測元件。 十一、圖式: 201374249 X. Patent application scope: 1. A positioning tracking method, comprising: setting a plurality of optical signal sources at a plurality of positions, the plurality of optical signal sources generating a plurality of extinction conditions according to a plurality of coding sequences; detecting the complex number Determining the optical signal source to generate a detection result; determining a relative position of the plurality of optical signal sources according to the detection result; and determining a spatial position change of the object according to a relative position of the plurality of optical signal sources . 2. The location tracking method of claim 1, wherein the plurality of locations are on an object. 3. The location tracking method of claim 1, wherein the plurality of locations are respectively located on a plurality of objects. According to the positioning pursuit method described in claim 1, the source of the complex number (4) is a plurality of sources of visible light signals. 5. The method of claiming the item as described in the item ,, the source of the wire signal is a plurality of sources of invisible light signals. &amp; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The brightness reduction of the optical signal source is compared to the plurality of coding sequences to generate the detection result. 7. The method according to claim 1, wherein the spatial position change of the object is determined according to the relative position of the plurality of optical signal sources, including a relative position of the plurality of optical signal sources and a reference information, Determine the spatial position of the object. 8. The method according to claim 7, wherein the reference information is start position information of the plurality of optical signal sources. 9. The method of claim tracking according to claim 1, wherein the image is replaced by a complementary optical oxidizer. A positioning tracking device includes: a plurality of optical signal sources for providing a plurality of optical signals; a driving unit secreting the plurality of optical signals for controlling a plurality of extinctions according to the plurality of coding sequences Situation; - image sensing unit for detecting the extinction condition of the plurality of optical signal sources to generate a detection result; - first - judging early, touching the image_unit, and judging according to the debt test result The second judging unit is coupled to the first judging unit for determining a spatial position change of the object according to the relative positions of the plurality of optical signal sources. The location tracking device of claim 10, wherein the plurality of locations are on an object. The location tracking device as described in claim 10 wherein the plurality of locations are respectively located on a plurality of objects. The location tracking device of claim 10, further comprising a code sequence generating unit </RTI> for generating the plurality of code sequences. The location tracking device of claim 10, wherein the plurality of optical signal sources are a plurality of visible light signal sources. The location tracking device of claim 10, wherein the plurality of optical signal sources are a plurality of invisible light sources. The locating device according to claim 10, wherein the image sensing unit is configured to detect the singularity of the plurality of optical signals, and the singularity of the plurality of optical signals is compared to the plurality of scales. The detection result is generated. The positioning tracking device of claim 10, wherein the second determining unit compares the relative position of the plurality of optical signal sources with a reference information to determine a spatial position change of the object. 18. The location tracking device of claim 17, wherein the reference information is origin information of the plurality of optical signal sources. 19. The position tracking device of claim 10, wherein the image sensing unit is a complementary MOS image sensing element. XI. Schema: 20
TW97142612A 2008-11-05 2008-11-05 Positioning and tracking method and related device TWI374249B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97142612A TWI374249B (en) 2008-11-05 2008-11-05 Positioning and tracking method and related device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97142612A TWI374249B (en) 2008-11-05 2008-11-05 Positioning and tracking method and related device

Publications (2)

Publication Number Publication Date
TW201018866A TW201018866A (en) 2010-05-16
TWI374249B true TWI374249B (en) 2012-10-11

Family

ID=44831461

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97142612A TWI374249B (en) 2008-11-05 2008-11-05 Positioning and tracking method and related device

Country Status (1)

Country Link
TW (1) TWI374249B (en)

Also Published As

Publication number Publication date
TW201018866A (en) 2010-05-16

Similar Documents

Publication Publication Date Title
US10262177B2 (en) Optical information reading device
CN106303266B (en) Control method, device and the terminal of flash lamp
JP6955211B2 (en) Identification device, identification method and program
US7683963B2 (en) Method of distance estimation to be implemented using a digital camera
JP2022002100A (en) Image processing device, image processing method, and program
US8619061B2 (en) Optical touch apparatus and operating method thereof
JP2011039454A5 (en) Focus adjustment device, focus adjustment method and program
US11736792B2 (en) Electronic device including plurality of cameras, and operation method therefor
EP2963528B1 (en) Projector device, interactive system, and interactive control method
US9485412B2 (en) Device and method for using pressure-sensing touch screen to take picture
TW201351262A (en) Display control device, control method and program thereof
EP2691744B1 (en) Three dimensional optical sensing through optical media
CN103135855A (en) Optical touch device and touch image processing method
TWI517092B (en) Three-dimensional gesture sensing device and method of sensing three-dimensional gestures
KR101674099B1 (en) Apparatus for generating image for face authentication and method thereof
US7151561B2 (en) Method for detecting movement of image sensors
JP2006317441A (en) Localization system including image display and image sensor
US11366450B2 (en) Robot localization in a workspace via detection of a datum
TWI374249B (en) Positioning and tracking method and related device
US8354996B2 (en) Electronic reading apparatus and input method thereof
JP6504180B2 (en) Anomaly detection device, anomaly detection method and anomaly detection program
TWI525507B (en) Optical touch system, method of touch detection, and computer program product
TWI574175B (en) Anti-theft method and computer system thereof
US20130321619A1 (en) Electronic device with distance measuring function and method thereof
TW201241696A (en) Optical touch display system