Claims (1)
叫正替換頁 1373860 十、申請專利範園: 卜一種非軸對稱le:d封裝結構,包括: —基底; -LED晶片,係設置於該基底上,且提供一光源;以及 -透光元件,係繼該基底上咐於請W,該 轴對稱之—術,™__為—有= 折射平面,於該令空折射平面中央位於⑽晶片之位置開設一缺口, ^於該缺口的底部設置-絲6面,其中射空折射平面與該全反射 曲面係滿足下列條件: 公式(1): 公式(2): Θ sin-1 'sin ⑻、 l n ) ( 90 + ^ + tan'1 V 2 公式(3) : g = tan_l tan' U-试) ,(^1 (少丨-甙) Χχ\-χίί). 公式(4) : θ3 = θ,θ2 公式(5) : X丨=xw 公式(6) : (似 X tan (θ3) - X, X tan (9〇 _ θ,、+ — :以及 公式(7) : 1 tan(^)^tan(9O-02) 公式(8):州=(從丨-仰)以如(03) +少《 中’(X,y)與(XI,yi)分別為該全反射曲面上任二點座標,(xh 沾)及(成作)分別為該LED晶片上任意二點座標,(xu,yu 12 1373860 101年8月1〇曰修正替換頁 ”(XU·,yUl)為该中空折射平面上任意二兩點之座標;㊀r為入射 射工折射平面之入射角,θ|為折射出該中空折射平面之折射角η 為該透光元件之介質密度,θ為由(χι,y〇延伸與該全反射曲面形 成之切線與由(Xl,y,)延伸之水平線所形成之夾角,02為(成yfl) 及(Xf2’ yf2)分別與(X|,yi)組成之連線與水平線形成之二夹角 的角度產’ 03為(xu,yu)與(XU|,yu|)二點組成之連線與水平 線所形成的夹角;該全反射曲面係滿足該公式⑸與該公式⑹且 該中空折射平面係滿足該公式⑺與該公式⑻,經由以上公式⑴至 a式(8)。十才將可確保5玄晶片所提供之光源於入射至該全反射曲 面上時將皆全反射至該中空折射平面上。 2、 如申請專利範圍第i項所述之非軸對稱咖封裝結構,其中該半球體係 由複數縱向轉純數橫向㈣所構成,域半球齡為—半擴圓球 體。 3、 如申請專利範圍第2項所述之非軸對稱封裝結構,其中該複數縱向 曲線與該複數橫向曲線之曲率各自不同。 4、 如申請專利範圍第2項所述之非軸對稱哪封褒結構,其中該複數縱向 曲線與該複數橫向曲線之長度係各自不同。 5、 如申請專利範圍第2項所述之非軸對稱⑽封裝結構,其中該複數縱向 曲線與該複雜向崎所控制之絲分布係各自不同。 6、 如申請專利範B第丨項所述之非軸對稱LED封襄結構,其中該光源透過 5亥透光7L件所產生之光形為矩形,且亮度平均分佈於兩側。 13 \ , . 101年8月10曰修正替換頁 、如申請專利觸丨項所述之非軸對稱LED封裝結構,其中 係為一折射聚光面。 I如申料利範圍第i項所述之非轴對稱封裝結構其中該透光元件 係為%氧樹脂、壓克力材質或玻璃材質。 9如申睛專利範圍第丨項所述之非軸對稱LED封裝結構其中該⑽晶片 上係將均勻舖灑一螢光粉層。 10、如申睛專利範圍第i項所述之非軸對稱·封裝結構其中該·晶 片係於相對該絲Μ的位置於該基底上往γ方向偏移設置使該光 源透過透光元件呈現單邊高梯度光形。 η、如申請專利範圍第ίο項所述之非軸對稱LED崎結構,其中該晶 片面積大致為lmnm咖’該γ方向偏移設置之偏移量約為& 3〜〇. 5刪。 12、如申請專利範圍第i項所述之非軸對稱㈣封裝結構,更包括複數條 金屬線’係設置於該透光元件内,且電性連接該⑽晶片與該基底。Calling a replacement page 1373860 X. Patent application: A non-axisymmetric le:d package structure comprising: a substrate; an LED chip disposed on the substrate and providing a light source; and a light transmissive element, Following the substrate, the axis is symmetric, and the TM__ is - having a refractive plane, and a gap is formed at the center of the (10) wafer at the center of the empty refractive plane, and is disposed at the bottom of the gap. - 6 sides of the wire, wherein the jet refracting plane and the total reflection surface satisfy the following conditions: Equation (1): Formula (2): Θ sin-1 'sin (8), ln ) ( 90 + ^ + tan'1 V 2 Equation (3): g = tan_l tan' U-test), (^1 (less 丨-甙) Χχ\-χίί). Equation (4): θ3 = θ, θ2 Equation (5): X丨=xw Formula (6) : (like X tan (θ3) - X, X tan (9〇_ θ, , + — : and formula (7) : 1 tan(^)^tan(9O-02) Equation (8): State = (from 丨-仰) to (03) + less "中" (X, y) and (XI, yi) are respectively the two-point coordinates on the total reflection surface, (xh dip) and (production) Any two-point coordinates on the LED chip, (xu Yu 12 1373860 August 1st, 1st, revised replacement page" (XU·, yUl) is the coordinate of any two points on the hollow refractive plane; one r is the incident angle of the incident beam's refractive plane, and θ| is the reflection The refraction angle η of the hollow refractive plane is the medium density of the light transmissive element, and θ is the angle formed by the tangential line formed by the extension of the χι, y〇 and the total reflection surface and the horizontal line extended by (Xl, y,), 02 The angle between the two angles formed by the line formed by (yf) and (Xf2'yf2) and (X|, yi) and the horizontal line is '03 is (xu, yu) and (XU|, yu|) The angle formed by the line connecting the point and the horizontal line; the total reflection surface satisfies the formula (5) and the formula (6) and the hollow refractive plane satisfies the formula (7) and the formula (8), via the above formula (1) to the formula (8) The tenth will ensure that the light source provided by the 5th wafer will be totally reflected onto the hollow refractive plane when incident on the total reflection surface. 2. Non-axisymmetric coffee as described in claim i a package structure in which the hemispherical system is converted from a plurality of longitudinal to a pure horizontal (four) The domain hemisphere is a semi-expanded sphere. 3. The non-axisymmetric package structure as described in claim 2, wherein the complex longitudinal curve and the complex transverse curve have different curvatures. The non-axisymmetric structure of the second aspect of the invention, wherein the complex longitudinal curve and the length of the complex transverse curve are different from each other. 5. The non-axisymmetric (10) package structure of claim 2, wherein the complex longitudinal curve is different from the complex wire-controlled wire distribution system. 6. The non-axisymmetric LED package structure as claimed in claim 4, wherein the light source generated by the light source passing through the 7L light is rectangular, and the brightness is evenly distributed on both sides. 13 \ , . August 10, 2010 Correction replacement page, such as the non-axisymmetric LED package structure described in the patent application, which is a refractive concentrating surface. I. The non-axisymmetric package structure as described in claim ii, wherein the light transmissive element is made of % oxygen resin, acrylic material or glass material. 9 A non-axisymmetric LED package structure as described in claim </ RTI> wherein the (10) wafer is uniformly coated with a phosphor layer. 10. The non-axisymmetric package structure according to claim i, wherein the wafer is offset from the substrate by a position in the γ direction relative to the wire so that the light source passes through the light transmitting component to present a single Edge height gradient light shape. η. The non-axisymmetric LED sacrificial structure as described in claim </ RTI> wherein the area of the wafer is approximately lmnm. The offset of the gamma-direction offset is about & 3~〇. 12. The non-axisymmetric (four) package structure of claim i, further comprising a plurality of metal wires disposed in the light transmissive element and electrically connecting the (10) wafer to the substrate.