TWI373389B - - Google Patents

Download PDF

Info

Publication number
TWI373389B
TWI373389B TW99101280A TW99101280A TWI373389B TW I373389 B TWI373389 B TW I373389B TW 99101280 A TW99101280 A TW 99101280A TW 99101280 A TW99101280 A TW 99101280A TW I373389 B TWI373389 B TW I373389B
Authority
TW
Taiwan
Prior art keywords
lens
frame
coordinate
point
laser
Prior art date
Application number
TW99101280A
Other languages
Chinese (zh)
Other versions
TW201125670A (en
Original Assignee
Univ Nat Formosa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Formosa filed Critical Univ Nat Formosa
Priority to TW99101280A priority Critical patent/TW201125670A/en
Publication of TW201125670A publication Critical patent/TW201125670A/en
Application granted granted Critical
Publication of TWI373389B publication Critical patent/TWI373389B/zh

Links

Landscapes

  • Laser Beam Processing (AREA)

Description

1373389 六、發明說明: 【發明所屬之技術領域】 本發明係有關一種自動化的眼鏡鏡片雷射切割之方法 與裝置。 【先前技術】 傳統的鏡片研磨機在鏡片製程加工裡加工方式大部分 都先以吸盤式夾具、治具、真空吸附等方式固定鏡片之後 再用旋轉式刀具切削鏡片。如果要在鏡片上打洞做造型在 刀具的選擇上可使用多種銑切刀具和雕刻刀具。鐃片材料 本身若不平整(厚度有厚、薄差),則執行等深度加工時, 除非是已經過特殊設計之機種,否則加工會非常麻煩。進 打鏡片加工時刀具路徑需注意避開治具以免發生撞車狀 況。加工中會產生粉塵和碎4(依材料和加工方式之不同而 不同)。某些材質於加工中,亦會因刀具切削磨擦產生之高 溫’而發出異味對於環境的汗染頗具有影響。切割加工時, 受限於刀具之直#,|^ > 無法執仃較細微之切割工作,當刀具 狀況良好時,亩77 "5Γ +Π , 刀了切割出垂直度較好的斷面,切割斷 :會有刀痕。若鏡片材料㈣克力,加卫後需要有“抛 (走光)之尾工程序。倒角時,需更換-把尖刀,才可以 做倒角的工作且鏡片周 热法自動倒角需用人工2次加 :材二底面時,較大面積之切割需換用較大的刀 二主要耗材為刀具,但是某些機種之工作台面會 〇冑求’也屬消耗品。因為是接觸式加工,所以 1373389 般而。刀具損耗量極大。一般切削刀具大多有現品可選 購’但是雕刻刀具’則大多仍由使用者視工作需求,自行 磨刀製作。一般刀具之價格並不高,但是,若使用特殊刀 具’則價格也不便宜。傳統上製作一副無框眼鏡時,要先 以吸盤式鏡片夾具固定鏡片之後再放到鏡片研磨機上研磨 鏡片,約需 位精度約在 1 5分鐘的時間才完成。吸盤式鏡片夾具中心定 0.1以上,使用鏡片鑽孔機在鏡片上鑽孔,每 附眼鏡製作的時間從30分鐘到一兩個小時都有可能。由於 刖面所執仃的加工都無法自動進行所以都需要操作員在加 工物前面進行操作才能完成。 【發明内容】 本發明的一主要目的在提供眼鏡鏡片雷射切割之方法 與裝置。 依本發明内容所完成的一種眼鏡鏡片雷射切割之方 法,包含下列步驟: a) 擷取一眼鏡鏡框的影像; b) 轉化該影像為鏡框座標資料; c) 计算該鏡框座標資料的鏡框中心點座標,包括取一 水平長方形的座標資料,該水平長方形的四邊切過該龍 的外周緣,及計算該水平長方形的中心點座標作為 心點座標; d) 以該鏡框中心點座標作為一軟體座標原點轉換該 鏡框座標資料; 、^ 1373389 e)依一輸入的瞳孔在鏡框内的位置平移該轉換過的 鏡框座標資料,包括將該轉換過的鏡框座標資料減去該瞳 孔位置的座標; . f)使用該平移後的鏡框座標資料的第一點座標至最 • 後一點座標驅動一雷射光源在一眼鏡鏡片上方進行有次序 • 的點對點直線繞圈運動,直到該眼鏡鏡片為該雷射光源所 產生的雷射光所切穿,於是獲得一符合該眼鏡鏡框的切割 鏡片 較佳地’步驟f)的眼鏡鏡片的光學中心與步轉d)的軟 體座標原點重疊。 較佳地’步驟f)的繞圈運動配合該雷射光源的功率大 小被重覆多圈。 較佳地,步驟f)的雷射光源係安裝在X軸導軌上,而 該X轴導軌係被安裝在一個γ軸導軌上;或者該雷射光源 係安裝在Y軸導執上,而該γ軸導軌係被安裝在一個又轴 導軌上’於疋該雷射光源可被驅動進行X方向及γ方向移 • 動。 較佳地’步驟f)的眼鏡鏡片被固定於一夾具的圓孔 内’該圓孔具有對應於該眼鏡鏡片的大小及形狀。 較佳地,步驟f)進一步包含在該繞圈運動之前依一輸 入的安裝孔位置及大小’驅動該雷射光源在該眼鏡鏡片上 方移動,直到該眼鏡鏡片為該雷射光源所產生的雷射光所 穿孔而形成該安裝孔。 較佳地,步驟f)包含計算眼鏡鏡片在平移後的鏡框座 1373389 標資料的第一點至最後一點座標的厚度;依該厚度計算出 該第一點至最後一點座標值的倒肖距離及倒角深度;依平 移後的鏡框座標資料的第一點至最後一點座標、該倒角距 離及倒角深度驅動該雷射光源在該眼鏡鏡片上方進行有次 序的點對點直線繞圈運動,直到該眼鏡鏡片的一半厚度為 該雷射光源所產生的雷射光所除去;翻轉該眼鏡鏡片並且 將前述第一點至最後一點座標、倒角距離及倒角深度依該 翻轉方式進行對稱轉換;及以對稱轉換後的第一點至最後 一點座標、倒角距離及倒角深度驅動該雷射光源在該翻轉 後的眼鏡鏡片上方進行有次序的點對點直線繞圈運動,直 到該眼鏡鏡片的另一半厚度為該雷射光源所產生的雷射光 所除去’於是獲得一邊緣具有倒角及符合該眼鏡鏡框的切 割鏡片。 本發明亦提供一種眼鏡鏡片雷射切割之裝置,包含: 一雷射光源; 一馬達模組,其包X軸導軌及Y轴導軌,其中該乂軸 導軌係被安裝在該γ軸導軌上,或者該γ轴導執係被安裝 在該X軸導軌上;一 X軸步進馬達;及一 Υ轴步進馬達, 其中該雷射光源被安裝在X軸導軌上,該χ軸導軌係被安 裝在一個Υ軸導軌上,該χ轴步進馬達用於驅動該雷射光 源在該X軸導轨上進行χ方向移動,及該γ軸步進馬達用 於驅動該X軸導軌在該γ軸導軌上進行γ方向移動;或者 該雷射光源係安裝在Υ軸導軌上,該γ轴導執係被安裝在 -個X軸導軌上’ $ γ轴步進馬達用於驅動該雷射光源在 該Y軸導執上進行 動該γ軸導執在該 υ方向移動,及該X軸步進馬達用於驅 Χ轴導軌上進行X方向移動; —功率控制模組, 率;及 其用於控制該雷射光源的輪出功 電腦,其用於執行下列步驟: )轉化-眼鏡鏡框的影像為鏡框座標資料; ,11)計算該鏡框座標資料的鏡框中心點座標,包括取一 水平長方形的座標資料,該水平長方形的四邊切過該鏡框 的卜周緣及4算該水平長方形的巾C點座標作為鏡框中 心點座標; 以該鏡框中心點座標作為一軟體座標原點轉換該 鏡棍座標資料;及 iv)依一輪入的瞳孔在鏡框内的位置平移該轉換過的 鏡框座標f料,包括將該轉換過的鏡框座標資料減去該瞳 孔位置的座標;及 V)將該平移後的鏡框座標資料的第一點座標至最後 一點座標輸出給該馬達模組及將雷射光源的輸出功率的信 號輸出給該功率控制模組, 於是該雷射光源被驅動在一目艮鏡鏡片上方進行有次序 的點對點直線繞圈運動,直到該眼鏡鏡片為該雷射光源所 產生的雷射光所切穿’而獲得一符合該眼鏡鏡框的切割鏡 片。 較佳地’該眼鏡鏡片的光學中心與步驟iii)的軟體座標 原點重疊。 1373389 較佳地,於本發明的裝置中該眼鏡鏡片被固定於一夾 具的圓孔内,該圓孔具有對應於該眼鏡鏡片的大小及形狀。 本發明提供的眼鏡鏡片雷射切割技術具有提昇眼鏡鏡 片切割速度,並增加無框眼鏡造型設計的彈性的優點。另 外本發明的技術亦可避免先前技藝中必須使用吸盤式鏡片 夾具來固定鏡片的缺點。 【實施方式】 本發明將藉由下文及配合圖式所描述的較佳具體實施 例被進一步了解,說等内容僅為說明之用,而非唯一用於 限制本發明的範圍。 眼鏡鏡片雷射切割系統架構圖如圖1所示。利用CCD 鏡頭拍攝眼鏡之鏡框,利用影像處理技術取得鏡框邊緣點 座標,將鏡框邊緣點資料以文字檔的資料格式匯入眼鏡鏡 片雷射切割控制系統内。鏡框邊緣座標經過像素與以該鏡 框中心點座標作為一軟體座標原點轉換該鏡框座標資料, 依據患者瞳孔位置將鏡片圖形做偏移座標計算。接著藉由 眼鏡鏡片雷射切割軌跡規劃計算出鏡片圖形雷射切割運動 路徑,接著由眼鏡鏡片雷射切割運動控制模組輸出X axis 及Yaxis控制信號至眼鏡鏡片雷射切割機馬達模組,及分 別輸出On/Off功率信號至眼鏡鏡片雷射切割功率控制模 組。馬達模組依據鏡片外緣路徑移動雷射頭,雷射切割功 率控制模組則依據所需之深度調整雷射輸出功率,完成鏡 眼鏡鏡片雷射切割機之中心定位 本發明針對眼鏡鏡片雷射切判 辦雯機規劃硬體零點以及截 體零點,為使眼鏡鏡片雷射切割 ’ 眼鏡鏡片設計二種不同形式之專㈣75針對 裡个U办式之專用雷射切割夾呈, 圓孔式以及夹持式,並選用三 、別為 進行雷射切割廣泛應用之規袼鏡片 、69 88m 4 ^鏡片直徑分別為71.〇_ 69.88mm、64.67mm之鏡片,使用_你_ ^ u ^ ^ 吏用一種鏡片夹具進行眼鏡 兄片雷射切割機中心點與鏡片中 ΛΙ Jtl 甜對準之調整。最#將 針對配鏡者之眼睛部位參數進 .^ 蒼數進仃瞳孔中心對焦,配合瞳孔 中心偏移調整鏡框邊緣座標 點與鏡片中心之偏移㈣片邊緣實際座標 偏移里相加,即為瞳孔中心位置對焦後之 鏡片邊緣座標點,於取得鏡片 听顆:片窗射切割圖形座標後,進 眼鏡鏡片雷射切割之軌跡規劃。 硬體零點回歸與軟體零點回歸 眼鏡鏡片雷射切割機Χ軸導執u工作範圍為7〇〇職 軸導軌21工作範圍為__,本發明將硬體零點設定 於工作平面最右上角之兔 為置並使用遮蔽式感測器來偵測 X轴與Y軸是否到達硬體裳 心W隨琴點,硬體回歸零點路徑圖如圖 2所示。假設雷射頭1 〇 珩頌w現在位於工作平面某處,當硬體回 歸零點時,控制器將同眭 J時對X軸與Υ轴輸出正脈衝(Pulse] 給X轴步進馬達12盥γ缸丰、任、土 , 轴步進馬達22,X軸則向右方移 動至X轴紅外缘感測1¾、1 ^ 、器13之位置’此時控制器收到感測器 ^73389 低電位訊號停止x軸正脈波輸出,此位置為χ軸工作行程 之最右端》γ軸則向上方移動至Υ:Ν}紅外線感測_ 23之位 置,此時控制器收到Y轴感測器低電位訊號停止γ軸正脈 波輸出’此位置為Υ軸工作行程之碁L F叮往您敢上端,設此點為硬體 零點oh。 本發明設定眼鏡鏡片雷射切割機之軟體零點0s於工作 平面中心之處,本發明所使用的步進馬達規格為每轉動一 圈需要4000個脈衝,X軸與γ軸馬達轉動一圈所位移之距 離為50毫米(mm),因此可知馬達轉動每i毫米需要8〇個 脈衝。軟體回歸零點路徑圖如圖3所示。其中當軟體回歸 零點時,控制器對X轴輸出28〇〇〇個負脈衝訊號,χ轴則 向左方移動至35〇mm之位置,此時控制器輸出完畢χ軸停 北’此位置為Χϋ工作行程之中•點。控制器也同時對Υ軸 輸出20000個負脈衝訊號,γ軸則向下方移動至25〇mm之 位置,此時控制器輸出完畢γ轴停止,此位置為γ轴工作 行程之中點,設此點為軟體零點〇s,亦即軟體座標原點。 圓孔式眼鏡鏡片夾具 圓孔式眼鏡鏡片夾具顧名思.義也就是將未切割之鏡片 放置在與鏡片相同規格之圓孔内,於圓孔式鏡片夾具使用 前,必須先校正並找出鏡片雷射切割機工作平面之中心。 眼鏡鏡片雷射切割機工作平面中心圖如圖4所示,其中首 先將雷射頭回歸至硬體零點〇h位置,接著使用雷射切割長 度為190mm、寬度為26〇mm四邊形之底部基板31,並在 10 1373389 底部基板的四個角落切割基板固定圓孔32其半徑為i 5mm ’使用直徑3mm螺絲將底部基板3i固定於工作平面3〇上 接著使用雷射於四邊形基板上繪出水平中心線與垂直中 心線’兩中心線之焦點即為工作平面中心,找出工作平面 - 中心點後,使用雷射清掃出以工作平面中心點為中心之四 邊形凹槽33,其長度為150mm、寬度為220mm、深度為 3mm,為放置圓孔式鏡片夹具之用。 籲 於找出鏡片雷射切割機工作平面中心後,需將圓孔式 眼鏡鏡片夾具放入以工作平面中心之四邊形凹槽内,圓孔 式眼鏡鏡片夾具圖如圖5所示。圓孔式鏡片夾具4〇為一四 邊形木板長度為150mm、寬度為220mm、厚度為5mm,中 間為一圓孔41是以四邊形中心為圓心所切割而成,圓孔之 直徑則是依據本發明所選用之三種不同規格之鏡片直徑分 別為71.47mm、69.88mm、64.67mm。使用圓孔式鏡片夾具 進行眼鏡鏡片切割時,首先需先確定鏡片之規格,遷用此 φ 規格之圓孔式鏡片夾具’將鏡片放入圓孔内,接著再將裝 -有鏡片之圓孔式夾具放入位於工作平面上底部基板的凹槽 - 内’即可進行眼鏡鏡片之切割。 瞳孔中心對焦 本發明之鏡片雷射切割方法於加工前需要將原始鏡片 之中心位置與鏡片雷射切割平台中心對準,接著根據配鏡 者瞳孔中心位置調整鏡片圖形之水平與垂直位置。配鏡者 在配戴眼鏡時,瞳孔的位置必須與鏡片光學中心位置相匹 11 1373389 配*’才能確保眼鏡舒適度達到輔助視力之功能,因此本發 明規劃了鏡框與配鏡者眼睛部位之相關參數,以促使眼鏡 鏡片雷射切割時,能夠更精確且完整的符合配鏡者所要的 需求。 眼鏡鏡框參數圖如圖6所示,其中幾何中心(gc):即 眼鏡鏡框二長邊或二寬邊等距離之點。幾何中心距(gcd) :幾何中心距,又稱鏡框曈距(FPD),是在鏡架左、右鏡框 二個幾何中心間的距離。鏡片間距(DBL):鏡片間距,又稱 樑架尺寸(Bridge Size) ’是鏡架左、右兩眼鏡框間最短的距 離,即鼻橋尺寸。鏡片尺寸(L):鏡框的水平長度,即左、 右眼各鏡框最外側點與最内側點間距離。鏡片高度(H):即 左、右眼各鏡框的最高點與最低點間的距離。打孔圓心(〇) .鏡片打孔時鏡片上打孔圓中心的位置。打孔直徑(D):鏡 片打孔時鏡片上打孔圓直徑的長度。 配鏡者眼睛參數圖如圖7所示,其中瞳孔中心(p):瞳 孔中心距離(FPD):即配鏡者左、右二個瞳孔中心間的距 離。左眼瞳距(PDL):左眼曈距是指配鏡者左眼瞳孔中心 到鼻樑正中的距離。右眼瞳距(PDR):右眼瞳距是指配鏡者 右眼瞳孔中心到鼻標正中的距離。曈孔高度(pH):瞳孔高 度是指配鏡者瞳孔中心到鏡框内緣最下方的垂直距離。當 配鏡者之瞳距剛好與鏡框之幾何中心距離重合時,則不需 要移心,將鏡片的光學中心放在鏡框的幾何中心即可。 如果鏡片幾何中心與配鏡者的曈距不相符合時,鏡片 中心定位圖如圖8所示,其中當鏡框1〇〇的幾何中心與配 12 1373389 變化’在此針對200度球面近視鏡片計算出所切割鏡片邊 緣座“各點之厚度,乃於正面與反面倒角切割時,得以準 確針對該點深度調整雷射功率之大小,減少因為球面所產 生之深度偏差。眼鏡鏡片雷射切割時,為使鏡片與鏡框能 更加緊密配合,本發明調整雷射之功率於鏡片邊緣進行倒 角加工,眼鏡鏡片雷射切割系統所使用的雷射切割方式, 是以調整雷射激發開/關時間比例(T〇n/T〇ff)的方式來改變 所激發之雷射光功率進行鏡片切割。 鏡片之點對點運動軌跡規劃 眼鏡鏡片雷射切割轨跡規劃是依據鏡片雷射切割圖形 座私點计算出X軸與Y軸之移動量,並將其轉換成為脈衝 信號傳送至步進馬達模組,本發明所使用的步進馬達規格 為每轉動一圈需要4000個脈衝,χ軸與γ軸馬達轉動一圈 所位移之距離為50毫米,因此可知馬達轉動每1毫米需要 〇個脈衝。鏡片雷射切割之運動模式是以鏡片切割圖形座 標點進行點對點間直線運動,眼鏡鏡片雷射切割轨跡圖如 圖9所不。圖9中A1Α2點為鏡片圖形座標的其中兩點, =點座標位置之X軸及Y軸方向相減,可求得出χ軸移動 量心與Y軸移動量dy’接著將移動量心與匆乘上肋脈 衝/毫米轉換成脈衝量,然後送至眼鏡鏡片雷射切割運動控 制杈組進行直線路徑插值輪出脈衝信號至步進馬達模組驅 動馬達轉動。眼鏡鏡片雷射切割程式流程圖如圖1()所示。 圖10所不的本發明切割程式流程使用鏡框座標資料從第1373389 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to an automated method and apparatus for laser cutting of spectacle lenses. [Prior Art] In the conventional lens grinding machine, most of the processing methods in the lens processing are first to fix the lens by a suction cup type jig, a jig, a vacuum suction, and the like, and then the lens is cut by a rotary cutter. If you want to make a hole in the lens, you can use a variety of milling tools and engraving tools. If the enamel material itself is not flat (thickness and thickness difference), it is very troublesome to perform equal depth machining unless it is a specially designed machine. When cutting the lens, the tool path should be careful to avoid the fixture to avoid a crash. Dust and shreds are generated during processing (depending on the material and processing method). In some materials, the high temperature generated by the cutting friction of the tool will produce an odor that has an impact on the environment. When cutting, it is limited to the straightness of the tool#,|^ > can not handle the finer cutting work, when the tool is in good condition, the mu 77 "5Γ +Π, the knife cuts the section with better perpendicularity , cutting off: there will be knife marks. If the lens material (four) gram force, after the addition of defense, you need to have a "throwing (light) tailing procedure. When chamfering, you need to replace - the sharp knife can be used for chamfering work and the lens is automatically chamfered by manual heating. 2 times: When the bottom surface of the material is two, the cutting of the larger area needs to be replaced by the larger knife. The main consumables are the tools, but the working table of some models will beg, 'it is also a consumable item. Because it is contact processing, Therefore, the amount of tool loss is very large. Most of the general cutting tools are available for purchase. However, most of the engraving tools are still made by the user depending on the work requirements. The price of the general tool is not high, but if The use of special tools is not cheap. Traditionally, when making a pair of rimless glasses, the lens should be fixed with a suction-cup lens holder and then placed on the lens grinding machine to grind the lens. The accuracy of the required position is about 15 minutes. The time is completed. The center of the suction-type lens holder is set at 0.1 or higher, and the lens drilling machine is used to drill holes in the lens. The time for making each pair of glasses is from 30 minutes to one or two hours. The processing that is performed cannot be performed automatically, so that the operator needs to operate in front of the workpiece to complete. SUMMARY OF THE INVENTION A primary object of the present invention is to provide a method and apparatus for laser cutting of an eyeglass lens. The completed method for laser cutting of a spectacle lens comprises the steps of: a) capturing an image of a spectacle frame; b) converting the image into a frame coordinate data; c) calculating a coordinate of the frame center point of the frame coordinate data, including taking a horizontal rectangular coordinate data, the four sides of the horizontal rectangle cut through the outer circumference of the dragon, and calculate the center point coordinate of the horizontal rectangle as a heart point coordinate; d) convert the center point coordinate of the frame as a software coordinate origin Frame coordinate data; , ^ 1373389 e) Translating the converted frame coordinate data according to the position of the input pupil in the frame, including subtracting the coordinate of the converted frame coordinates from the pupil position; f) using the The first point coordinate of the frame coordinate data after translation to the most • the last point coordinate drives a laser light source in a pair of glasses An order-wise, point-to-point linear winding motion is performed above the sheet until the spectacle lens cuts through the laser light generated by the laser source, thereby obtaining a lens that conforms to the cutting lens of the spectacle frame, preferably 'step f) The optical center of the lens overlaps with the origin of the soft body of step d). Preferably, the winding motion of 'step f) is matched with the power of the laser source by a plurality of turns. Preferably, the thunder of step f) The light source is mounted on the X-axis rail, and the X-axis rail is mounted on a γ-axis rail; or the laser source is mounted on the Y-axis guide, and the γ-axis guide is mounted on one The laser light source of the laser light source can be driven to move in the X direction and the γ direction. Preferably, the spectacle lens of the 'step f) is fixed in a circular hole of a jig corresponding to the The size and shape of the spectacle lens. Preferably, step f) further comprises driving the laser light source to move over the spectacle lens according to an input mounting hole position and size before the winding motion, until the spectacle lens is a thunder generated by the laser light source The light is perforated to form the mounting hole. Preferably, the step f) comprises calculating the thickness of the first point to the last point coordinate of the frame of the lens frame 1373389 after the translation of the eyeglass lens; calculating the inverse distance of the first point to the last point coordinate value according to the thickness and Chamfer depth; according to the first point to the last point coordinate of the frame coordinate data after translation, the chamfer distance and the chamfer depth drive the laser light source to perform an orderly point-to-point linear winding motion above the spectacle lens until the The half thickness of the spectacle lens is removed by the laser light generated by the laser light source; the spectacle lens is turned over and the first point to the last point coordinate, the chamfer distance and the chamfer depth are symmetrically converted according to the flipping manner; The symmetrically converted first point to last point coordinate, chamfer distance and chamfer depth drive the laser light source to perform an orderly point-to-point linear winding motion over the inverted eyeglass lens until the other half of the eyeglass lens thickness The laser light generated by the laser source is removed', so that a cut lens having a chamfered edge and conforming to the spectacle frame is obtainedThe invention also provides a laser lens laser cutting device, comprising: a laser light source; a motor module comprising an X-axis guide rail and a Y-axis guide rail, wherein the x-axis guide rail is mounted on the γ-axis guide rail, Or the γ-axis guide is mounted on the X-axis guide; an X-axis stepping motor; and a 步进-axis stepping motor, wherein the laser source is mounted on an X-axis guide, the 导轨-axis guide is Mounted on a cymbal guide rail for driving the laser light source to move in the χ direction on the X-axis guide rail, and the γ-axis stepping motor for driving the X-axis guide rail at the γ The y-axis movement is performed on the shaft guide rail; or the laser light source is mounted on the y-axis guide rail, and the γ-axis guide is mounted on an X-axis guide rail. The γ-axis stepping motor is used to drive the laser light source. Moving the γ-axis guide in the υ direction on the Y-axis guide, and the X-axis stepping motor is used to drive the X-direction movement on the guide rail; - power control module, rate; A computer for controlling the laser light source for performing the following steps: The image of the mirror frame is the coordinate data of the frame; 11) calculating the coordinates of the center point of the frame of the frame coordinate data, including taking a coordinate data of a horizontal rectangle, the four sides of the horizontal rectangle cut through the circumference of the frame and 4 calculate the horizontal rectangle The coordinates of the point C of the towel are used as the coordinates of the center point of the frame; the coordinates of the center point of the frame are used as a software coordinate origin to convert the coordinate information of the frame; and iv) the position of the converted frame is translated according to the position of the hole in the frame. f material, including the coordinate of the converted frame coordinate data minus the pupil position; and V) outputting the first coordinate of the translated frame coordinate data to the last coordinate to the motor module and the laser A signal of the output power of the light source is output to the power control module, and the laser light source is driven to perform an orderly point-to-point linear winding motion over the lens of the eyepiece until the eyeglass lens is a lightning generated by the laser light source The cut light is cut through to obtain a cutting lens that conforms to the spectacle frame of the eyeglass. Preferably, the optical center of the spectacle lens overlaps with the soft coordinate origin of step iii). 1373389 Preferably, in the apparatus of the present invention, the spectacle lens is secured within a circular aperture of a clamp having a size and shape corresponding to the spectacle lens. The eyeglass lens laser cutting technology provided by the invention has the advantages of improving the cutting speed of the eyeglass lens and increasing the elasticity of the rimless eyeglass design. In addition, the techniques of the present invention may also avoid the disadvantages of prior art techniques in which a suction cup lens holder must be used to secure the lens. The present invention will be further understood by the following description of the preferred embodiments of the invention. The lens lens laser cutting system architecture diagram is shown in Figure 1. The CCD lens is used to capture the frame of the glasses, and the image processing technology is used to obtain the coordinates of the edge of the frame, and the data of the edge of the frame is transferred into the laser cutting control system of the glasses lens in the data format of the text file. The edge coordinates of the frame are converted to the coordinate data of the frame through the pixel and the coordinates of the center point of the frame as a software coordinate origin, and the lens pattern is calculated as an offset coordinate according to the pupil position of the patient. Then, the lens pattern laser cutting motion path is calculated by the glasses lens laser cutting trajectory planning, and then the X-ray and Yaxis control signals are outputted by the spectacle lens laser cutting motion control module to the spectacle lens laser cutting machine motor module, and The On/Off power signals are respectively output to the glasses lens laser cutting power control module. The motor module moves the laser head according to the outer edge path of the lens, and the laser cutting power control module adjusts the laser output power according to the required depth to complete the center positioning of the mirror lens laser cutting machine. The invention is directed to the eyeglass lens laser Cut the machine to plan the hardware zero and the cut-off zero, in order to make the lens lens laser cut 'glass lens design two different forms of special (four) 75 for the U-type dedicated laser cutting clip, round hole and Clamping type, and select three, for the laser cutting widely used lens, 69 88m 4 ^ lens diameter of 71. 〇 _ 69.88mm, 64.67mm lens, use _ you _ ^ u ^ ^ 吏Use a lens holder to adjust the center point of the lens laser cutting machine and the ΛΙ Jtl sweet alignment in the lens. The most # will be directed to the optician's eye part parameters. ^ Cang number into the pupil center focus, with the pupil center offset to adjust the frame edge coordinate point and the lens center offset (four) the edge of the actual coordinate offset, ie For the lens edge coordinate point after the center position of the pupil is focused, after obtaining the lens listening piece: the window window is cut and cut the graphic coordinate, the trajectory of the laser lens cutting into the eyeglass lens is planned. Hardware zero point return and soft zero point return lens lens laser cutting machine Χ axis guide u working range is 7 〇〇 axle guide 21 working range is __, the invention sets the hardware zero point in the upper right corner of the working plane In order to set the use of the shielded sensor to detect whether the X-axis and the Y-axis reach the hardware body W, the hardware return zero path diagram is shown in Figure 2. Assume that the laser head 1 〇珩颂w is now located somewhere on the working plane. When the hardware returns to zero, the controller will output a positive pulse (Pulse) to the X-axis stepping motor 12 for the X-axis and the Υ-axis. γCylinder Feng, Ren, earth, shaft stepper motor 22, X axis moves to the right to X-axis infrared edge sensing 13⁄4, 1 ^, position of the device 13 'At this time the controller receives the sensor ^ 73389 low The potential signal stops the x-axis positive pulse wave output. This position is the rightmost end of the 工作 axis working stroke. The γ axis moves upward to the position of Υ:Ν}infrared sensing _ 23, at which time the controller receives the Y-axis sensing. The low potential signal stops the γ-axis positive pulse wave output. This position is the 工作 axis working stroke 碁 叮 您 您 敢 敢 敢 , , , , , , , 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 At the center of the working plane, the stepping motor used in the present invention requires 4000 pulses per revolution, and the distance between the X-axis and the γ-axis motor is 50 mm (mm), so that the motor is rotated. 8 pulses are required per millimeter. The software regression zero path diagram is shown in Figure 3. When the software returns to zero, the controller outputs 28 negative pulse signals to the X axis, and the χ axis moves to the left to the position of 35 〇mm. At this time, the controller outputs the χ axis to stop north. During the stroke, the controller also outputs 20,000 negative pulse signals to the Υ axis, and the γ axis moves downward to the position of 25 〇mm. At this time, the controller outputs the γ axis to stop, and this position is the γ axis working stroke. In the middle point, set this point to soft zero point 〇 s, which is the origin of the soft coordinate. Round hole glasses lens fixture round hole glasses lens fixture Gu Mingsi. It is to put the uncut lens in the same size as the lens In the hole, before using the round hole lens fixture, the center of the working plane of the lens laser cutting machine must be corrected and found. The center plane of the working plane of the glasses lens laser cutting machine is shown in Figure 4, in which the laser head is first used. Return to the position of the hardware zero point ,h, and then use the laser to cut the bottom substrate 31 having a length of 190 mm and a width of 26 mm, and cut the radius of the substrate fixing hole 32 at the four corners of the bottom substrate of 10 1373389. i 5mm 'Use the 3mm diameter screw to fix the bottom substrate 3i on the working plane 3〇 and then use the laser to draw the horizontal center line and the vertical center line on the quadrilateral substrate. The focus of the two center lines is the center of the work plane, find out the work. After the plane-center point, the quadrilateral groove 33 centered on the center point of the working plane is cleaned by laser, and its length is 150mm, the width is 220mm, and the depth is 3mm, which is used for placing the circular hole lens holder. After the lens laser cutting machine working plane center, the circular aperture glasses lens fixture needs to be placed in the quadrilateral groove in the center of the working plane, and the circular aperture glasses lens fixture diagram is shown in Fig. 5. The circular aperture lens fixture 4 〇 is a quadrilateral wood board with a length of 150mm, a width of 220mm, a thickness of 5mm, a circular hole 41 in the middle is cut by the center of the quadrilateral center, and the diameter of the round hole is three different specifications of the lens selected according to the invention. The diameters are 71.47 mm, 69.88 mm, and 64.67 mm, respectively. When using a round-hole lens holder to cut the spectacle lens, first determine the specifications of the lens, and use the φ-size round-hole lens holder to put the lens into the hole, and then install the lens with the hole. The clip is placed in the groove - in the bottom substrate on the work plane to cut the spectacle lens. Pupil Center Focusing The lens laser cutting method of the present invention requires alignment of the center position of the original lens with the center of the lens laser cutting platform prior to processing, and then adjusting the horizontal and vertical position of the lens pattern based on the pupil center position of the lens. When the wearer wears the glasses, the position of the pupil must match the optical center position of the lens 11 1373389* to ensure the comfort of the eyeglasses to achieve the function of assisting vision. Therefore, the present invention plans the correlation between the frame and the eye part of the wearer. The parameters, in order to promote the laser cutting of the spectacle lens, can more accurately and completely meet the needs of the optician. The parameter frame of the eyeglass frame is shown in Figure 6, where the geometric center (gc) is the point where the two long sides or the two wide sides of the eyeglass frame are equidistant. Geometric center distance (gcd): The geometric center distance, also known as the frame pitch (FPD), is the distance between the two geometric centers of the left and right frames of the frame. Lens pitch (DBL): The lens pitch, also known as the Bridge Size, is the shortest distance between the left and right frames of the frame, ie the size of the nose bridge. Lens size (L): The horizontal length of the frame, that is, the distance between the outermost point and the innermost point of each frame of the left and right eyes. Lens height (H): The distance between the highest point and the lowest point of each frame of the left and right eyes. Punch center (〇). The position of the center of the hole on the lens when the lens is punched. Punch Diameter (D): The length of the diameter of the perforated circle on the lens when the lens is punched. The eye parameters of the optician are shown in Figure 7, where the pupil center (p): the pupil center distance (FPD): the distance between the left and right pupil centers of the optician. Left eyelid distance (PDL): The left eyelid distance is the distance from the center of the pupil of the left eye to the center of the bridge of the nose. Right eyelid distance (PDR): The distance between the right eye and the eye is the distance from the center of the pupil of the right eye to the center of the nose. Pupil height (pH): The pupil height is the vertical distance from the center of the pupil of the optician to the lowest edge of the inner edge of the frame. When the distance between the opticians and the geometric center of the frame coincides, the center of the lens is not required to be placed, and the optical center of the lens is placed at the geometric center of the frame. If the geometric center of the lens does not match the distance of the optician, the center of the lens is shown in Figure 8, where the geometric center of the frame 1〇〇 changes with the distribution of 12 1373389 'here for the 200 degree spherical myopia lens calculation The thickness of each point of the cut lens edge seat is used to accurately adjust the laser power for the depth of the point when cutting the front and back chamfers, and reduce the depth deviation caused by the spherical surface. In order to make the lens and the frame more closely fit, the present invention adjusts the power of the laser to chamfer the edge of the lens, and the laser cutting method used in the laser cutting system of the spectacle lens is to adjust the ratio of laser excitation on/off time. (T〇n/T〇ff) way to change the laser light power to perform lens cutting. The point-to-point motion trajectory of the lens is planned. The laser lens cutting trajectory planning is based on the private point of the lens laser cutting pattern. The amount of movement of the shaft and the Y-axis is converted into a pulse signal and transmitted to the stepping motor module. The stepping motor used in the present invention has a specification of per revolution. It takes 4,000 pulses to move one turn, and the distance between the x-axis and the γ-axis motor is 50 mm. Therefore, it is known that one pulse is required every 1 mm of the motor rotation. The motion mode of the lens laser cutting is the lens cutting pattern coordinate. The point is linearly moved from point to point. The laser cutting trajectory of the spectacle lens is shown in Fig. 9. In Fig. 9, A1Α2 points are two points of the lens pattern coordinate, and the X coordinate and the Y axis direction of the point coordinate position are subtracted. Calculate the 移动 axis movement centroid and the Y-axis movement amount dy', then convert the moving centroid and the rushing upper rib pulse/mm into a pulse amount, and then send it to the spectacle lens laser cutting motion control group to perform the linear path interpolation wheel. The pulse signal is sent to the stepping motor module to drive the motor to rotate. The flowchart of the laser lens laser cutting program is shown in Fig. 1(). The cutting program flow of the present invention shown in Fig. 10 uses the frame coordinate data from the first

S 14 1373389 P =λ/5 • 一 X I (3) ip 1 =cos > (4) Q =R; sinGj (5) f P、 θ〇 = cos (6) Q〇 = Rosin0o ⑺ t = Qo-Qi -5.2mm (8) 眼鏡鏡片邊緣雷射倒角 眼鏡鏡片雷射切割時,為使鏡片與鏡框能更加緊密配 合需將鏡片邊緣進行倒角’由於鏡片表面為球面,所以在 進行倒角時必須考慮雷射切割深度偏差量,眼鏡鏡片切割 則,須計算出所切割之鏡片外緣各點之厚度,乃於正面與 射面切。_1倒角時,得以準確針對鏡片邊緣各點深度調整雷 對力率之大小,減少因為球面所產生之深度偏差。在此針 示雷射倒角進行說明,全框鏡片邊緣側視圖如圖^所 要_ A中Γ蚁為鏡片邊緣之倒角半徑,全框鏡片倒角時需 要一' 次加工,下 而 面再完成背 雷射切割倒角完成後將鏡片左右翻轉反 割系統之雷:倒角之雷射切割。本發明所使用鏡片雷射切 63〜°j的最小線寬為〇.lmnl,雷射焦距範圍為 •間。 全樞鏡片、 連行雷射倒角時,藉由倒角層數來影響鏡片 1373389 邊緣雷射倒角表面的精細程度,於倒角半徑不改變的情況 下’ s雷射倒角切割層數越多時,鏡片邊緣倒角表面就越 旦 Jr Φ P rr» ** 一易因為層數過多進給量過小造成雷射能量過 方f 聋· Φ > +77 ΦΙ Η ' 層數過少時,則鏡片邊緣倒角表面就越粗糙, 也不合易完成倒角之斜面。本發明之雷射切割層數η介於 5 $_ 10 夕1 pq 入 間’全框鏡片倒角深度圖如圖13所示。其中 倒角切割層數為n,若倒角之角度為45度每一層雷射切 J之罙度增加量為倒角半徑^長度除以η#,雷射光頭向 外之進給量為倒角半徑Γ長度除以n]層由於雷射切割 的最小線寬為〇.lmm ’所以雷射頭向外進給量須大於 0.05mm,每次進給量皆 相门眼鏡鏡片正面與背面皆為球 面,為使所切割之倒角在鏡片邊緣中間位置 層雷射切割鏡片邊緣各點 點之深度D1如式(9)所示。其中太 鏡片厚度的一半減去第— 、為 a ^ 層雷射切割之深度增加量,笛_ 層之雷射切割鏡片邊緣各點之深度D2如式 :一 為鏡片厚度的一半減去第- 不/、中 上往下逐層切割,以此類 又日加量,由 此切割方式完成背面倒角。 貧面亦疋使用 (9) A =玉-[(卜《)χ(η-2)] 17 (10) 1373389 眼鏡鏡片雷射切割之功率控制 眼鏡鏡片雷射切割的功率必須與切割速度相配合,切 割的功率大速度慢加I能量也就強,切割的功率大速度快 也因為速度快 所以加工時間短在加工物件上累積的能量 也就相對減小 精細度會提高 切割的功率小速度慢能量較小但所加工的 切割的功率小速度快適合較薄的加工物件 因為能量較小不適合做較深的切割 射切割系統所使用的雷射切割方式 關時間比(Ton/Toff)的方式來進行鏡片 。本發明之眼鏡鏡片雷 ’是以調整雷射源的開/ 切割,經由眼鏡鏡片 雷射切割運動控制模組的1/〇點輸出兩控制㈣,一桃 關信號’當輸出信號為3.3〜5伏特(v)間之高電位時,則雷 射電源開啟雷射管激發雷射光,當輸出信號為〇〜3 3伏特 間之低電位時’則雷射關閉。另一控制信號為控制雷射功 率大小之信號,調整所送出脈衝信號工作週期之開㈣與 關(off)之比例,可調整範圍為〇〜1〇〇百分比(%),本發明使 用反向放大器請〇,將輸出信號反向並放大至眼鏡鏡月 雷射切割功率控制模組内的雷射電源控制器所能接受之電 壓準位,當眼鏡鏡片雷射切割運動控制模組輸出信號工作 週期百分比為20%時,雷射功率信號工作週期鳩之波形 圖如圖Μ所示。圖14中上方波形為眼鏡鏡片雷射切割運 動控制模組輸出端信號,工作週期為2〇%,信號頻率為 2.12kHZ,平均電壓為2.6伏特,經反向放大後產生下方之 波形為雷射電源控制器輸入端信號’工作週期為79 6%, 信號頻率為2.12kHz,平均電壓為4.07伏特,則雷射管所 18 1373389 < · ' 激發之雷射功率為47.7瓦。 當眼鏡鏡片雷射切割運動控制模組輸出信號工作週期 百分比為50%時’雷射功率信號工作週期5〇%之波形圖如 圖15所示。圖15中上方波形為眼鏡鏡片雷射切割運動控 制模組輸出端信號,工作週期為50%,信號頻率為 2.13kHz ’平均電壓為2.6伏特,經反向放大後產生下方之 波形為雷射電源控制器輸入端信號,工作週期為5〇%,信 號頻率為2.13kHz,平均電壓為4 〇7伏特,則雷射管所激 籲發之雷射光功率為全開時的一半,本發明所使用之雷射裝 置為60瓦’所以工作週期百分比5〇%也就是3〇瓦。 如上述本發明實際針對兩種類型的眼鏡鏡片進行切割 分別為全框眼鏡以及無框眼鏡,根據眼鏡鏡片雷射切割流 程利用CCD鏡頭拍攝鏡框,並使用影像處理技術偵測鏡框 内緣之邊緣點,將鏡片邊緣座標點匯入眼鏡鏡片雷射切割 系統内。鏡框内緣座標經過像素與校正值轉換成為實際尺 _ 寸之座標,依據配鏡者瞳孔位置將鏡片圖形做偏移座標的 * 計算。然後藉由眼鏡鏡片雷射切割軌跡規劃出鏡片雷射切 - 割之運動路徑,接著由眼鏡鏡片雷射切割系統輸出控制信 號至眼鏡鏡片雷射切割機馬達模組與眼鏡鏡片雷射切割功 率控制模組進行鏡片切割。本發明自行設計特殊造型之無 框眼鏡實際進行雷射切割,增加無框眼鏡造型變化之彈 性。實際完成特殊造型無框鏡片圖如圖16所示。本發明所 切割之無框鏡片需打兩個圓孔為固定鏡架之用,於鏡片上 切割7個造型用之圓孔,特殊造型無框眼鏡鏡片邊緣為直 19 1373389 接切斷,為避免邊緣雷射切割時能量累積,使用小功率多 次切割。 【圖式簡單說明】 圖1顯不本發明之眼鏡鏡片雷射切割控制系統的架構 方塊圖。 圖2為圖1中之本發明的眼鏡鏡片雷射切割機馬達模 組的上視示意圖,其中顯示硬體回歸零點路徑。 圖3為圖i中之本發明的眼鏡鏡片雷射切割機馬達模 組的上視示意圖,其中顯示軟體回歸零點路徑。 圖4為本發明的眼鏡鏡片雷射切割機的工作平面及底 部基板的上視示意圖。 圖5為本發明的圓孔式眼鏡鏡片夾具的上視示意圖。 圖6為一眼鏡鏡框的平面示意圖,其顯示了眼鏡鏡框 參數。 圖7為一眼睛的平面示意圖,其顯示了眼睛參數。 圖8為一眼鏡鏡框配合眼鏡鏡片的平面示意圖,其顯 不了眼鏡鏡框中心與眼睛曈孔位置的偏移。 圖9顯示眼鏡鏡片雷射切割軌跡圖。 圖1 〇顯示本發明的眼鏡鏡片雷射切割程式流程方塊 圖。 圖 』示直徑為71.47mm之球面鏡片的剖面圖。 圖1 2為全框鏡片邊緣之側視示意圖。 圖13為全框鏡片邊緣之側視示意圖,其顯示全框鏡片 20 倒角深度。 ® 14顯示本發明之眼鏡鏡片雷射切割運動控制模組 ϊ出信號(工作週期2〇%)之波形,及眼鏡鏡片雷射切割功 率控制模組内的雷射電源控制器輸入端信號(工作週期 ‘ 80%) 〇 ' 圖15顯示本發明之眼鏡鏡片雷射切割運動控制模組 輸出信號(工作週期50%)之波形,及眼鏡鏡片雷射切割功 鲁 率控制模組内的雷射電源控制器輸入端信號(工作週期 50%) 〇 圖16為依本發明雷射切割方法所完成之特殊造型的 無框眼鏡鏡片的照片。 【主要元件符號說明】 iO..雷射頭 11..X軸導軌 12..Y轴導軌 12..X轴步進馬達 22..Y轴步進馬達 13.. X軸紅外線感測器 23.· Y轴紅外線感測器 〇h..硬體零點 〇s..軟體零點(軟體座標原點) 3 0..工作平面 31..底部基板 3 2 .·固定圓扎 33 ··四邊形凹槽 40·.鏡片夾具 41..夾具圓孔 G C..幾何中心 GCD..幾何中心距 FPD..瞳孔中心距離 DBL..鏡片間距 L..鏡片尺寸 H..鏡片高度 0. ·打孑L圓心 D·.打孔直徑 21 1373389 Ρ..瞳孔中心 PDL.·左眼瞳距 PDR..右眼瞳距 Ρ Η..瞳孔高 100..鏡框 200..鏡片 △ X..水平移心量 △ y..垂直移心量S 14 1373389 P =λ/5 • A XI (3) ip 1 =cos > (4) Q =R; sinGj (5) f P, θ〇= cos (6) Q〇= Rosin0o (7) t = Qo- Qi -5.2mm (8) Eyeglass lens edge Laser chamfering lens lens laser cutting, in order to make the lens and the frame more closely match the edge of the lens must be chamfered 'Because the lens surface is spherical, so when chamfering The laser cutting depth deviation must be considered. When the spectacle lens is cut, the thickness of each point of the outer edge of the cut lens must be calculated, and the front surface and the ejection surface are cut. _1 When chamfering, it is possible to accurately adjust the magnitude of the force rate for each point depth of the lens edge and reduce the depth deviation caused by the spherical surface. In this case, the laser chamfering is illustrated. The side view of the edge of the full-frame lens is as shown in Fig. _ A Γ Γ is the chamfer radius of the edge of the lens. When the full-frame lens is chamfered, it needs a 'secondary processing, and then the next After the completion of the back laser cutting chamfering, the lens is turned to the left and right of the anti-cutting system: the chamfered laser cutting. The minimum line width of the lens laser cut 63~°j used in the present invention is 〇.lmnl, and the laser focal length range is •. When the full-hinge lens and the continuous laser chamfering, the number of chamfering layers affects the fineness of the surface of the laser 1367389 edge chamfering surface, and the number of the laser-chamfering cutting layer is less when the chamfering radius is not changed. For a long time, the chamfered surface of the lens edge is more than Jr Φ P rr» ** one is easy because the number of layers is too small, the amount of feed is too small, causing the laser energy to be too f 聋 · Φ > +77 ΦΙ Η ' When the number of layers is too small, The rougher the chamfered surface of the lens edge, the easier to complete the chamfering slope. The laser cutting layer number η of the present invention is between 5 $_10 夕1 pq and the inter-frame lens chamfer depth map is as shown in Fig. 13. The number of chamfered cutting layers is n. If the angle of the chamfering is 45 degrees, the increase of the thickness of each layer of laser cutting J is the chamfering radius ^ length divided by η#, and the laser head is fed outward. The angular radius Γ length divided by n] layer due to the minimum line width of laser cutting is 〇.lmm 'so the laser head must be larger than 0.05mm, each feed is the front and back of the lens For the spherical surface, the depth D1 of each point of the edge of the laser cutting lens at the middle of the edge of the lens at the chamfer of the cut is as shown in the formula (9). One half of the thickness of the lens is subtracted from the first—the depth increase of the laser cutting of the a ^ layer, and the depth D2 of the edge of the laser cutting lens of the flute _ layer is as follows: one is half the thickness of the lens minus the first - No, the middle and the upper layer are cut layer by layer, and the amount is increased in this way, and the back chamfer is completed by the cutting method. The use of poor face is also used (9) A = jade - [(Bu ") χ (η-2)] 17 (10) 1373389 The power of the laser lens for laser lens cutting of the lens lens must be matched with the cutting speed. The cutting power has a large speed and the I energy is strong. The cutting power is fast and the speed is fast. Therefore, the processing time is short. The accumulated energy on the workpiece is relatively reduced. The fineness will increase the cutting power. The energy is small but the processing power of the cutting is small and fast. It is suitable for thin workpieces because the energy is small and it is not suitable for the deep cutting method of the laser cutting method (Ton/Toff). Carry out the lens. The eyeglass lens Ray of the present invention is to adjust the opening/cutting of the laser source, and the two-point output of the laser-cutting motion control module through the spectacle lens is controlled by two (four), one peach off signal 'when the output signal is 3.3~5 When the voltage between volts (v) is high, the laser power source turns on the laser tube to excite the laser light. When the output signal is at a low potential of 〇~3 3 volts, the laser is turned off. The other control signal is a signal for controlling the magnitude of the laser power, and adjusts the ratio of the opening (four) and the off (off) of the duty cycle of the sent pulse signal, and the adjustable range is 〇~1〇〇% (%), which is used by the present invention. Inverting amplifier, please reverse the output signal and amplify it to the voltage level that can be accepted by the laser power controller in the glasses laser cutting power control module. When the glasses lens laser cutting motion control module outputs When the signal duty cycle percentage is 20%, the waveform of the laser power signal duty cycle is shown in Figure 。. The upper waveform in Figure 14 is the output signal of the laser lens cutting motion control module of the spectacle lens. The duty cycle is 2〇%, the signal frequency is 2.12kHZ, and the average voltage is 2.6 volts. After the reverse amplification, the waveform below is laser. The signal input at the power controller's duty cycle is 79 6%, the signal frequency is 2.12 kHz, and the average voltage is 4.07 volts. The laser tube 18 1373389 < · 'excited laser power is 47.7 watts. When the operating period of the output signal of the glasses lens laser cutting motion control module is 50%, the waveform of the laser power signal working cycle of 5〇% is shown in Fig. 15. The upper waveform in Figure 15 is the output signal of the laser lens cutting motion control module of the spectacle lens. The duty cycle is 50%, the signal frequency is 2.13kHz, and the average voltage is 2.6 volts. After the reverse amplification, the waveform below is the laser power source. The input signal of the controller has a duty cycle of 5〇%, the signal frequency is 2.13kHz, and the average voltage is 4 〇7 volts. The laser light stimulated by the laser tube is half of the full open, which is used by the present invention. The laser device is 60 watts' so the percentage of duty cycle is 5〇%, which is 3 watts. As described above, the present invention actually cuts two types of spectacle lenses into full-frame glasses and rimless glasses, and uses a CCD lens to take a frame according to the laser lens laser cutting process, and uses image processing technology to detect the edge of the inner edge of the frame. The lens edge coordinate points are merged into the eyeglass lens laser cutting system. The coordinates of the inner edge of the frame are converted into the coordinates of the actual size by the pixel and the correction value, and the lens pattern is calculated as the offset coordinate according to the position of the pupil of the lens. Then, through the laser lens cutting trajectory of the spectacle lens, the motion path of the lens laser cutting-cutting is planned, and then the control signal is outputted by the spectacle lens laser cutting system to the laser lens of the spectacle lens laser cutting machine and the laser cutting power control of the spectacle lens. The module performs lens cutting. The invention independently designs the special shape of the rimless glasses to perform laser cutting, and increases the elasticity of the styling change of the rimless glasses. The actual completion of the special shape frameless lens diagram is shown in Figure 16. The frameless lens cut by the invention needs to use two round holes for fixing the frame, and cuts 7 round holes for modeling on the lens, and the edge of the special shape rimless lens lens is straight 19 1373389 to cut off, in order to avoid Energy is accumulated during edge laser cutting, and multiple cuts are performed using low power. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram showing the architecture of a laser lens laser cutting control system of the present invention. Figure 2 is a top plan view of the eyeglass lens laser cutter motor module of the present invention of Figure 1 showing the hardware return zero path. Figure 3 is a top plan view of the eyeglass lens laser cutter motor module of the present invention in Figure i showing the soft return zero path. Fig. 4 is a top plan view showing the working plane and the bottom substrate of the spectacle lens laser cutting machine of the present invention. Figure 5 is a top plan view of the round aperture lens fixture of the present invention. Figure 6 is a plan view of a spectacle frame showing the spectacle frame parameters. Figure 7 is a plan view of an eye showing eye parameters. Figure 8 is a plan view of a spectacle frame with eyeglass lenses showing the offset of the center of the spectacle frame from the pupil position of the eye. Figure 9 shows a laser cutting trajectory of the spectacle lens. Fig. 1 is a block diagram showing the flow of the laser lens cutting program of the present invention. Fig. 』 shows a sectional view of a spherical lens having a diameter of 71.47 mm. Figure 12 is a side elevational view of the edge of the full frame lens. Figure 13 is a side elevational view of the full frame lens edge showing the full frame lens 20 chamfer depth. ® 14 shows the waveform of the laser cutting laser motion control module output signal (working cycle 2〇%) of the present invention, and the laser power controller input signal in the eyeglass lens laser cutting power control module (working Cycle '80%) 〇' Figure 15 shows the waveform of the output signal (work cycle 50%) of the laser lens cutting motion control module of the present invention, and the laser power source in the laser lens laser cutting power control module. Controller input signal (duty cycle 50%) Figure 16 is a photograph of a specially shaped rimless spectacle lens completed in accordance with the laser cutting method of the present invention. [Main component symbol description] iO.. laser head 11.. X-axis guide rail 12.. Y-axis guide rail 12.. X-axis stepping motor 22.. Y-axis stepping motor 13. X-axis infrared sensor 23 .. Y-axis infrared sensor 〇h..hard body zero point 〇s..soft body zero point (soft body coordinate origin) 3 0..working plane 31.. bottom substrate 3 2 .·fixed round bar 33 ··quad Groove 40·. Lens holder 41.. Fixture round hole G C.. Geometric center GCD.. Geometric center distance FPD.. Pupil center distance DBL.. Lens spacing L.. Lens size H.. Lens height 0.孑L center D·. Punch diameter 21 1373389 Ρ.. pupil center PDL.·left eye pupil distance PDR.. right eye pupil distance Η 瞳.. pupil height 100.. frame 200.. lens △ X.. horizontal shift Heart volume △ y.. vertical shifting heart rate

AiOny!),A2(x2,y2),A3(x3,y3),Αη.Κχη.ι,γη.Ο, An(xn,yn)..座 標點 t..鏡片厚度 r..倒角半徑 η..倒角雷射切割.層數 D..倒角層雷射切割深度 22AiOny!), A2(x2, y2), A3(x3, y3), Αη.Κχη.ι, γη.Ο, An(xn, yn).. Coordinate point t.. Lens thickness r.. Chamfer radius η .. chamfered laser cutting. Layer number D.. chamfer layer laser cutting depth 22

Claims (1)

1373389 m ·» 七 、申請專利範圍: ^ 一種眼鏡鏡片雷射切割 田柯叨割之方法,包含下列步驟 擷取一眼鏡鏡框的影像; )轉化該影像為鏡框座標資料; 水平1)彳算該鏡框座標資料的鏡框中心點座標,包括取_ 不十長方形的座標資料,哕k 水千長方形的四邊切過_ 的外周緣,及計算該皮IW 長方形的中心點座標 心點座標; 柩1 d)以該鏡框中心點座炉你在 , ..座標作為—軟體座標原點轉換該 鏡框座標資料; 、 e)依-輸入的瞳孔在鏡框内的位置平移該轉換過的 鏡框座標資料,包括將該轉換過的鏡框座標資料減去該瞳 孔位置的座標; f)使用該平移後的鏡框座標資料的第一點座標至最 後一點座標驅動一雷射光源在一眼鏡鏡片上方進行有次序 的點對點直線繞圈運動,直到該眼鏡鏡片為該雷射光源所 產生的雷射光所切穿’於是獲得—符合該眼鏡鏡框的切割 鏡片。 2. 如申請專利範圍第!項的方法,其中步驟f)的眼鏡 鏡片的光學中心與步驟d)的軟體座標原點重疊。 3. 如申請專利範圍第!項的方法,其中步驟f)的繞圈 運動配合該雷射光源的功率大小被重覆多圈。 23 1373389 4.如申請專利範圍第i,2或 f)的雷射光源係安裝在X軸導軌上 2或3項的方法,其中步驟 裝在一個Y軸導轨上; :x軸導軌上,而該X轴導軌係被安 :或者該雷射光源係安裝在Y轴導執1373389 m ·» VII. Patent application scope: ^ A method for laser lens cutting of the lens lens, which comprises the following steps: capturing the image of a spectacle frame; converting the image into frame coordinates; level 1) calculating The coordinate of the frame center point of the frame coordinate data includes the coordinate data of the _ not ten rectangle, the outer circumference of the 哕k water thousand rectangle is cut by the four sides, and the coordinates of the center point coordinate of the skin IW rectangle are calculated; 柩1 d At the center of the frame, you are at the center of the frame. The coordinate is used as the origin of the soft coordinate to convert the coordinate data of the frame; and e) the position of the input frame is translated in the frame to translate the coordinates of the frame, including The converted frame coordinate data is subtracted from the coordinate of the pupil position; f) using the first coordinate to the last coordinate of the translated frame coordinate data to drive a laser light source to perform an orderly point-to-point line above the spectacle lens Moving around the circle until the spectacle lens cuts through the laser light generated by the laser source, so that it is obtained - in accordance with the spectacle frame Cut lens. 2. If you apply for a patent scope! The method of item wherein the optical center of the spectacle lens of step f) overlaps with the origin of the soft body of step d). 3. If you apply for a patent scope! The method of item, wherein the winding motion of step f) is matched with the power of the laser source by a plurality of turns. 23 1373389 4. The laser source of claim i, 2 or f) is a method of mounting 2 or 3 items on an X-axis rail, wherein the steps are mounted on a Y-axis rail; on the x-axis rail, And the X-axis guide is mounted: or the laser source is mounted on the Y-axis guide 在一個X轴導軌上,於是該雷On an X-axis rail, then the mine 5. 如申請專利範圍第4項的方法,其中步驟f)的眼鏡 鏡片被固定於一夾具的圓孔内,該圓孔具有對應於該眼鏡 鏡片的大小及形狀。 6. 如申請專利範圍第4項的方法,其中步驟f)進一步 包含在該繞圈運動之前依一輸入的安裝孔位置及大小,驅 動該雷射光源在該眼鏡鏡片上方移動,直到該眼鏡鏡片為 該雷射光源所產生的雷射光所穿孔而形成該安裝孔。 7. 如申請專利範圍第1項的方法,其中步驟f)包含計 算眼鏡鏡片在平移後的鏡框座標資料的第一點至最後一點 座標的厚度;依該厚度計算出該第一點至最後一點座標值 的倒角距離及倒角深度;依平移後的鏡棍座標資料的第一 點至最後一點座標、該倒角距離及倒角深度驅動該雷射光 源在該眼鏡鏡片上方進行有次序的點對點直線繞圈運動, 直到該眼鏡鏡片的一半厚度為該雷射光源所產生的雷射光 所除去;翻轉該眼鏡鏡片並且將前述第一點至最後一點座 24 1373389 標、倒角距離及倒角深度依該翻轉方式進行對稱轉換;及 以對稱轉換後的第一點至最後一點座標、倒角距離及倒角 深度驅動該雷射光源在該翻轉後的眼鏡鏡片上方進行有次 序的點對點直線繞圈運動,直到該眼鏡鏡片的另一半厚度 為該雷射光源所產生的雷射光所除去’於是獲得一邊緣具 有倒角及符合該眼鏡鏡框的切割鏡片。 8. —種眼鏡鏡片雷射切割之裝置,包含: 一雷射光源; 一馬達模組,其包X軸導軌及γ軸導軌,其中該 導軌係被安裝在該Υ軸導軌上,或者該γ轴導軌係被安莱 在該X軸導軌上;一Χ軸步進馬達;及一Υ軸步進馬達 其中該雷射光源被安裝在χ軸導執上,該χ轴導軌係被安 裝在個Υ軸導軌上’該父軸步進馬達用於驅動該雷射井 源在該X轴導軌上進行X古 仃χ方向移動,及該Υ軸步進馬達用 於驅動該X轴導軌在該γ轴導軌上進行γ方向移動;或者 該雷射光源係安裝在¥轴導軌上,該Υ軸導軌係被安裝在 一個X軸導軌上,該丫軸 女裝在 該γ軸導軌上,,,,達用於驅動該雷射光源在 該γ軸導軌上進订γ方向移動,及該 動該Υ轴導軌在該χ軸導軌上進行X方向移動·於驅 率;Γ率控制模組,其用於控制該雷射光源的輸出功 -電腦,其用於執行下列步驟: 丨)轉化-眼鏡鏡框的影像為鏡框座標資料; 25 13/3389 U)什算該鏡框座標資料的鏡框中心點座標包括取— 永平長方形的座標資料,該水平長方形的四邊切過該鏡柩 的外周緣’及計算該水平長方形的中d座標作為鏡框中 心點座標; ui)以該鏡框中心點座標作為一軟體座標原點轉換該 鏡框座標資料;及 iv) 依一輸入的瞳孔在鏡框内的位置平移該轉換過的 鏡柩座標資料,包括將該轉換過的鏡框座標資料減去該瞳 孔位置的座標;及 v) 將該平移後的鏡框座標資料的第一點座標至最後 一點座標輸出給該馬達模組及將雷射光源的輸出功率的信 號輸出給該功率控制模組, 於是該雷射光源被驅動在一眼鏡鏡片上方進行有次序 的點對點直線繞圈運動,直到該眼鏡鏡片為該雷射光源所 產生的雷射光所切穿,而獲得一符合該眼鏡鏡框的切割鏡 片0 9. 如申請專利範圍第8項的裝置,其中該眼鏡鏡片的 光學中心與步驟iii)的軟體座標原點重疊。 10. 如申請專利範圍第8或9項的裝置,其中該眼鏡 鏡片被固定於一夹具的圓孔内,該圓孔具有對應於該眼鏡 鏡片的大小及形狀。5. The method of claim 4, wherein the spectacle lens of step f) is secured within a circular aperture of a clamp having a size and shape corresponding to the spectacle lens. 6. The method of claim 4, wherein the step f) further comprises driving the laser light source to move over the spectacle lens according to an input mounting hole position and size before the winding motion until the spectacle lens The mounting hole is formed by perforating the laser light generated by the laser light source. 7. The method of claim 1, wherein the step f) comprises calculating a thickness from a first point to a last point coordinate of the frame coordinate data of the spectacle lens after translation; calculating the first point to the last point according to the thickness The chamfer distance and the chamfer depth of the coordinate value; driving the laser light source in an orderly manner above the spectacle lens according to the first point to the last point coordinate of the mirror stick coordinate data, the chamfer distance and the chamfer depth Point-to-point linear winding motion until half of the thickness of the spectacle lens is removed by the laser light generated by the laser source; flipping the spectacle lens and marking the first point to the last point 24 1373389, chamfering distance and chamfering The depth is symmetrically converted according to the flipping manner; and the laser source is driven by the symmetrically converted first point to the last point coordinates, the chamfering distance and the chamfering depth to perform an orderly point-to-point straight line winding over the inverted spectacle lens The circle moves until the thickness of the other half of the spectacle lens is removed by the laser light generated by the laser source, so that an edge is obtained And in line with the spectacle frame cutting lenses. 8. A device for laser cutting of an eyeglass lens, comprising: a laser light source; a motor module comprising an X-axis guide rail and a γ-axis guide rail, wherein the guide rail is mounted on the y-axis guide rail, or the γ The shaft guide is attached to the X-axis guide rail; an axis stepping motor; and a shaft stepping motor, wherein the laser light source is mounted on the x-axis guide, the x-axis guide rail is mounted on the The parent shaft stepping motor is configured to drive the laser shaft source to perform X-axis movement on the X-axis rail, and the x-axis stepping motor is used to drive the X-axis rail at the γ The y-axis movement is performed on the shaft guide rail; or the laser light source is mounted on the ¥axis guide rail, and the y-axis guide rail is mounted on an X-axis guide rail, and the y-axis guide rail is mounted on the γ-axis guide rail, Up to drive the laser light source to move in the γ direction on the γ-axis guide rail, and move the y-axis guide rail to move in the X direction on the y-axis guide rail; the yaw rate control module is used For controlling the output power of the laser source - the computer is used to perform the following steps: 丨) conversion - The image of the mirror frame is the frame coordinate data; 25 13/3389 U) The coordinate of the frame center point of the frame coordinate data includes the coordinate data of the Yongping rectangle, and the four sides of the horizontal rectangle cut through the outer circumference of the mirror frame. And calculating a d coordinate of the horizontal rectangle as a coordinate of the center point of the frame; ui) converting the coordinate of the frame with the coordinates of the center point of the frame as a software coordinate origin; and iv) translating the position of the pupil in the frame according to an input The converted lens coordinate data includes coordinates of the converted frame coordinate data minus the pupil position; and v) outputting the first coordinate of the translated frame coordinate data to the last coordinate output to the motor module And outputting a signal of the output power of the laser light source to the power control module, wherein the laser light source is driven above an eyeglass lens to perform an orderly point-to-point linear winding motion until the eyeglass lens is the laser light source The generated laser light is cut through to obtain a cutting lens that conforms to the spectacle frame of the spectacle lens. Means, wherein the optical center of the spectacle lens of step iii) software origin of coordinates overlap. 10. The device of claim 8 or 9, wherein the spectacle lens is secured within a circular aperture of a clamp having a size and shape corresponding to the spectacle lens.
TW99101280A 2010-01-18 2010-01-18 Laser cutting method and device for optical lens TW201125670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99101280A TW201125670A (en) 2010-01-18 2010-01-18 Laser cutting method and device for optical lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99101280A TW201125670A (en) 2010-01-18 2010-01-18 Laser cutting method and device for optical lens

Publications (2)

Publication Number Publication Date
TW201125670A TW201125670A (en) 2011-08-01
TWI373389B true TWI373389B (en) 2012-10-01

Family

ID=45024220

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99101280A TW201125670A (en) 2010-01-18 2010-01-18 Laser cutting method and device for optical lens

Country Status (1)

Country Link
TW (1) TW201125670A (en)

Also Published As

Publication number Publication date
TW201125670A (en) 2011-08-01

Similar Documents

Publication Publication Date Title
TWI464363B (en) Improved destructive and visual measurement automation system for web thickness of microdrills and method thereof
CN104669065B (en) Diamond tool in-situ detection and positioning method
JP2009131939A (en) Eyeglass lens rim processing device
CN1722995A (en) Method and system for determining the position and alignment of a surface of an object in relation to a laser beam
JP5331464B2 (en) Spectacle lens processing apparatus and spectacle lens processing method
US20180021886A1 (en) Laser machining apparatus with workpiece position adjusting capability relative to focal point of laser beam
JP5394204B2 (en) Cutting blade consumption control method
EP2105814A3 (en) Method for controlling a machine tool and apparatus therefor
JP2008100258A (en) Laser beam machining apparatus
TWI352001B (en) Laser machining system and process for laser machi
CN109848564A (en) A kind of laser processing of glass material surface frosting
CN104325641A (en) 3D (three dimensional) printing process with laser beam scanning in archimedes spiral way
EP2756921A2 (en) Eyeglass lens processing apparatus and processing control data generating program
JP5902490B2 (en) Laser beam spot shape detection method and spot shape detection device
JP6631202B2 (en) Laser processing apparatus and control method for laser processing apparatus
WO2011133050A1 (en) Method and device for cutting openings in flat, concave or convex surfaces
TWI373389B (en)
CN204964857U (en) Ultraviolet heart laser scanning camera lens far away
CN107009023B (en) A kind of focus control and its focus adjustment method adjusting laser focal
JP6116420B2 (en) Laser processing equipment
KR101470150B1 (en) A laser marking system having laser scanner with camera
JP2003181672A (en) Method for laser processing
CN207205561U (en) Laser marking machine automatic focusing mechanism
TWI379725B (en)
CN206269811U (en) One kind positioning aligner

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees