TWI363780B - - Google Patents

Download PDF

Info

Publication number
TWI363780B
TWI363780B TW96117109A TW96117109A TWI363780B TW I363780 B TWI363780 B TW I363780B TW 96117109 A TW96117109 A TW 96117109A TW 96117109 A TW96117109 A TW 96117109A TW I363780 B TWI363780 B TW I363780B
Authority
TW
Taiwan
Prior art keywords
manufacturing
fiber
mpa
decane
organic
Prior art date
Application number
TW96117109A
Other languages
Chinese (zh)
Other versions
TW200844168A (en
Inventor
Chen Feng Kuan
Hsu Chiang Kuan
Min Chi Chung
kun chang Lin
Chia Hsun Chen
Hsin Chin Peng
Chih Hao Chiu
Chin Lung Chiang
Original Assignee
Univ Far East
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Far East filed Critical Univ Far East
Priority to TW96117109A priority Critical patent/TW200844168A/en
Publication of TW200844168A publication Critical patent/TW200844168A/en
Application granted granted Critical
Publication of TWI363780B publication Critical patent/TWI363780B/zh

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Reinforced Plastic Materials (AREA)

Description

1363780 2012/1/19 七、指定代表圖: (一) 本案指定代表圖為:第(1)圖。 (二) 本代表圖之元件符號簡單說明: 10〜13:步驟流程。 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式:1363780 2012/1/19 VII. Designated representative map: (1) The representative representative of the case is: (1). (2) A brief description of the component symbols of this representative figure: 10~13: Step flow. 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:

九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種具有水交聯反應性質之生 物分解性高分子複合材料及其製造方法,特別是採 用生物分解性塑膠經由本發明之製備方法之複合材 料,以達成對自然環境造成零污染之目的。 【先前技術】 目前,塑膠的應用已十分普遍,塑膠製品有很多的 優點:乾淨、衛生、可量產,而且可以取代木材、金屬 等有限的資源。因此,塑膠製品常被定位為「用後即 丟」,像垃圾袋、免洗餐具、飲料杯瓶等,都是顯而易 見的例子。 塑膠的種種優點使我們的生活更為便利,但是,它 也有許多缺點:不易腐化、遇高溫會變形及產生有毒氣 1363780 m 201211/19 小的它1後广”這種定位’對我們的環境造成不 成’有許多技術人員投入生物可分解塑膠 解㈣環境㈣響。其f ’先後有光降 解t生塑膠及朋解型塑膠等可分解塑膠被研發出來。IX. Description of the Invention: [Technical Field] The present invention relates to a biodegradable polymer composite material having water cross-linking reaction properties and a method for producing the same, and more particularly to a biodegradable plastic material according to the present invention. Composite materials to achieve zero pollution to the natural environment. [Prior Art] At present, the application of plastics is very common. Plastic products have many advantages: clean, hygienic, mass-produced, and can replace limited resources such as wood and metal. Therefore, plastic products are often positioned as “disappeared after use”, such as garbage bags, disposable dishes, beverage bottles, etc., which are obvious examples. The advantages of plastic make our life more convenient, but it also has many shortcomings: it is not easy to corrode, it will deform when it is high temperature and it will produce toxic gas 1363780 m 201211/19 small it is wide after the "positioning" for our environment There are many technicians who have invested in biodegradable plastic solutions (4) Environment (4). The f's have been developed with photodegradable plastics such as t-plastics and plastics.

其中,光降解性塑膠以傳統塑膠(PE、Ps、P 藉由吸收曰光中的紫外線能量,促成塑 =生巧反應’碎裂崩解後殘留塑料片,終因不能 5 宣告失敗。而崩解型塑膠以傳統塑膠摻配澱粉 物等成分,誘使環境中微生物㈣、崩解殿 二: 分解其中塑膠成分,同樣有塑膠碎片殘 留問題而遭詬病。 -r/i叹 有鑑於光降解性塑膠及崩解型塑膠的缺點,可 塑ί膠一之研究方向就改為研發某種新的生物可分解性 职種能完全在自_境下可被微生物所分解的塑 >,止圖從根本取代原來的石化原料,以 竟污染問題。因此不論在學術界或工業界都對;物 了刀解材料的開發投入大量的研究。 之:於I知技藝之各項問題,為了能夠兼顧解決1 之,本U人基於多年研究開發與諸多實務經驗,提出 :種具有水交聯反應性質之生物分解性高分子複合材 ^及其製造方法,以作為改善上述缺點之實現方式與依 蘇。 【發明内容】 有鑑於此’本發明之目的就是在提供一種且有水交 聯反應性質之生物分解性高分子複合材料及其製造方 5 2012/1/19 法,以提升生物可分解塑膠強化複合材料之機械性質及 電氣性質。 根據本發明之目的,提出一種具有水交聯反應性質 之生物分解性高分子複合材料,其至少包含一生物分解 性塑膠、一天然纖維、一防火難燃劑及一有機不飽和矽 烧物。 再者,本發明再提出一種具有水交聯反應性質之 生物分解性高分子複合材料之製造方法,其包含下列步 驟: a、 提供一生物分解性塑膠、一天然纖維物、一防 火難燃劑及一有機不飽和石夕烧物; b、 以一分散劑使有機不飽和矽烷物分散以與天然 纖維及防火難燃劑混合均勻; c、 將b步驟所製之混合物與該生物分解性塑膠進 行水交聯反應,以使天然纖維物舆生物分解性塑膠藉 由有機不飽和矽烷物所含之矽使其彼此產生Si-0-Si 鍵結。 此外,此生物分解性高分子複合材料更可包含纖維 補強材料、無機填料(filler)或有機填料。 茲為使貴審查委員對本發明之技術特徵及所達 到之功效有更進一步之瞭解與認識,謹佐以較佳之實施 例及配合詳細之說明如後。 1363780 2012/1/19 【實施方式】 以:將參照相關圖示,說明依本發明較佳實施例之 具有水父聯反應的天然纖維/生物分解性塑膠 材料及其製備方法,為使便於理解二述實施=;目 同兀件係以相同之符號標示來說明。 -、凊參閱第1圖,其繪示本發明之具有水交聯反應的 天然纖維/生物分解性塑膠強化複合材料及其製備方I 參步驟流程圖。圖中,此方法包含下列步驟: 步驟10:提供一生物分解性塑膠、一天然纖維物、 一防火難燃劑及一有機不飽和矽烷物。 ‘ 其中,生物分解性塑膠至少包括脂肪族聚酯戋 其共聚物如PLA,PBS等等,而此天然纖維物至少 包含木粉、亞麻、黃麻、紅麻、苧麻、稻殼、豆粉、 丑,、麥粉、麥穀、竹纖、椰纖、蔗纖、花生殼、 竹炭纖維或動物性纖維等。而其中,有機不飽和矽 烷物至少包含乙烯基三曱氧基矽烧、乙烯基三甲乙 基矽烧、乙烯基丁氧基矽烧、烯丙基三甲氧基矽烷 ^烯丙基三乙氧基矽烷等。此外,此生物分解性= 分子複合材料更可包含一纖維補強材料、一盔機g 料(filler)或一有機填料。其中,防火難燃劑可為 Mg(OH)2,Al(〇H)3或構系、氮系化合物。 ”、 步驟11 :以一分散劑使有機不飽和矽烷物分散以與 天然纖維及防火難燃劑混合均勻。 〃 在一實施例中,分散劑係以一丙酮來實施,在 丙酮溶液中添加四乙氧基矽烷(TE〇s)於天然纖維 2012/1/19 中,利用尚速混合機(Hensche〗JViixer)充份混合並同 時除去水分。因為偶合劑上的官能積極易與水產生 反應而失去作用,所以應先將天然纖維中大部分的 水除去,再加入含偶合劑及防火難燃劑之丙酮溶液。 此外,步驟11更可加入反應起始劑,反應起始 劑可為DCP、二(第三丁過氧基二異丙基)苯、 2,5三一 f基·2,5-二(第三丁過氧基)己烷、二苯甲醯基 過氧化物、二枯基過氧化物、二_第三丁基過氧化 物、第二丁基枯基過氧化物、過氧基第三戊酸第三 丁酯或過氧基-2-乙基己酸第三丁酯。 亦或,步驟11中可使用有機金屬化合物為觸媒 以加速反應,此有機金屬化合物可為二月桂酸二丁 基錫、一乙酸二丁基錫、二辛酸二丁基錫、乙酸亞 錫鈦四丁酯、奈酸錯、辛酸鋅、硬酯酸約、硬 酯酸鉛或硬酯酸鎘。 步驟12 :讓步驟η所產生之混合物與生物分解性 塑膠進行水交聯反應,以使天然纖維與生 物分解性塑膠藉由該有機不飽和矽烷&所 含之矽使其彼此產生Si-〇-Si鍵結。 ν驟13 .使用混練造粒用機器進行混練造粒,以產 生水交聯反應的生物分解性高分子複合材 料。 J青參閱第2 ®,其繪示PBS藉由TE〇s之石夕接枝之 貝把例之化學結構示意圖。圖中,生物分解性塑膠係以 1363780 2012/1/19 一聚琥珀酸丁烯酯(PBS)來實施,而有機不飽和矽烷物係 以一四乙氧基矽烷偶合劑來實施。此實施例包含以下步 驟: 步驟21:讓聚琥珀酸丁烯酯單體藉由四乙氧基矽烷 之矽重新排列聚合成包含矽之聚合物; 步驟22:該高分子聚合物藉由水交聯反應與天然纖 維形成緊密之交叉連結結構圖,可以看出 藉由-Si-0-Si-鍵結形成互相交叉連結之網 絡結構,因而有效提升其抗拉伸強度及撓 曲強度。 圖中的方塊代表的是步驟21中聚合的高分子單體。 請參閱表一,其繪示一聚琥珀酸丁烯酯(以下以PBS 簡稱)添加不同比例之天然纖維APP( 10、15、20、30 wt%) 的生物分解性複合材料之機械性質彙總表。由表一之拉 伸強度顯示,隨著APP含量的增加拉伸強度隨之減小, 當添加含量為30 wt%時,拉伸強度則由3 8.8 MPa下降 至23.2 MPa,且延伸率亦同時下降,這是由於APP與 PBS之間無良好的界面與鍵結所致。而當APP含量為15 wt%且經TEOS矽烷偶合劑改質後之拉伸強度則有上昇 的趨勢(31.1上升至32.5 MPa)。而生物分解塑膠複材 的撓曲強度及模數則有明顯增加的趨勢,以添加30 wt% 的APP之撓曲強度,較純PBS提升了 7% ( 38.6 MPa至 41.3 MPa),模數則提升 58.6% ( 607.6 MPa 至 963.5 MPa),而APP以TEOS改質之生物分解性塑膠複材,其 撓曲強度及模數,隨著TEOS含量的增加而有下降的趨 勢,多餘未反應的TEOS在生物分解性塑膠複材中扮演 1363780 2012/1/19 著可塑劑的角色,因而造成撓曲強度及模數下降。 沅拉強度(MPa) 延伸率(%) 撓曲強度(MPa) 撓曲模數(MPa) PBS 38.8 ±0.1 391.2 ±7.5 38.6 ± 0,1 607.6 ± 9.2 天然纖維之 添加比率 抗拉強度(MPa) 延伸率(%) 撓曲強度(MPa) 撓曲模數(MPa) 10% 34.4 土 0.1 341.4 ±6.5 38.7 i 0.1 660.4 ± 5.2 15% 31.1 士 0.1 327.0 ± 5.7 39.8 ± 0.1 725.0 ±8.5 20% 30.4 士 0.2 306.8 ± 3.2 40.8 ± 0.2 799.2 士 4.7 30% 23.2 ±0.1 177.7 ±9.3 41.3 ± 0.2 963.5 ± 8.2 請續參閱表二,其繪示PBS添加15 wt% APP/PBS 生物分解性塑膠複合材料,APP分別經0,0.5,l,2,4hr水 交聯反應處理之機械性質彙總表。表中,此生物分解難 燃複材經水交聯反應4小時後,其拉伸強度則明顯由 32.5 MPa提升至37.8 MPa (提升16.3%),撓曲強度由 42.1 MPa上升至46.9 MPa (提升11.4%),模數則提升 12.3% ( 739.0 MPa 至 830.1 MPa),顯示 APP 經由 TEOS 改質後,其界面形成(TEOS〜)-Si-0-Si_(〜PBS)良好的化 學鍵結,並藉由水交聯反應,交聯生成-Si-0-Si鍵之故, 改善了 APP與PBS之間的界面。 抗拉強度(MPa) 延伸率(%) 撓曲強度(MPa) 撓曲模數 PBS 38.8 ±0.1 391.2 士 7.5 38.6 ± 0.1 607.6 ± 9.2 一 水交聯反應時間 (TEOS=lphr, APP=15%) 抗拉強度(MPa) 延伸率(%) 撓曲強度(MPa) ~mmm. (mp^ Ohr 32.5 ±0.2 351.9±7.1 42.0 ± 0-1 739.0 ± 64 0.5hr 33.8± 0.2 323.4 士 6.5 43.1 ±0.3 768.3 ± 7.9 lhr 35.1± 0.3 311.2 士 6.1 44.7 士 0.3 786.2 ±5.3 1363780 I 2012/1/19 2hrs 37.2± 0.3 294.5 ±5.8 46.4 ±0.2 811.4 ±8.4 4hrs 37.8± 0.2 282.7 ±7.5 46.9 ±0.3 830.1 ± 9.2 表二 請續參閱表三,其繪示PBS添加APP含量為15% 時,其APP以不同含量之TEOS改質之機械強度彙總 表。表中,當TEOS含量為1 phr時,其物性提升的效果 最佳。而APP含量為15 wt%且經TEOS矽烷偶合劑改質 後之撓曲強度及模數呈現上升的趨勢,由該實施例可 # 知,若僅添加天然纖維之生物分解性複合材料,其抗拉鲁 伸強度因生物分解性塑膠與天然纖維間結合度較低而隨 - 用量逐漸降低,而若經本發明之製備方法處理後其機械 性質則有效提昇。 抗拉強度(MPa) 延伸率(%) 撓曲強度(MPa) 撓曲模數(MPa) PBS 38.8 ±0.1 391.2 ±7.5 38.6 ± 0.1 607.6 ± 9.2 TEOS 之 添加含量(phr) (APP=15%) 抗拉強度(MPa) 延伸率(〇/〇) 撓曲強度(MPa) 撓曲模數(MPa) 1 32.5 ± 0.2 351.9±7.1 42.0 ± 0.1 739.0 ± 6.4 2.5 32.3 ±0.1 340.7 ±9.5 41.3 ±0.2 696.4 ± 7.6 5 32.2 ±0.1 346.3 ± 8.5 41.2 ±0.1 689.3 ±8.1 10 29.2 士 0.1 351.1 ±5.2 36.7 ±0.3 615.7 ±6.5 表三 但,所添加之偶合劑含量也有其限制,其撓曲強度 及模數,隨著TEOS含量的增加而有下降的趨勢,這是 由於PBS上的OH基能與TEOS反應的基團有限,多餘 未反應的TEOS在生物分解難燃複材中扮演著可塑劑的 11 1363780 2012/1/19 角色,因而造成撓曲強度及模數下降。 任何未脫離本發明之精神與範疇,而對1進 效修改或變更,均應包含於後附之申請專利範圍中。 【圖式簡單說明】 第1圖係、為本發明之一種具有水交聯反應的天 生物分解性塑膠強化複合材料 隹/ 步驟流程圖;以及 /、展備方法之 第2 =本接發枝明後之△物分解性塑膠與天然織维分別 意圖接枝後再進行水交聯反應之化學結:Among them, photodegradable plastics use traditional plastics (PE, Ps, and P to absorb the ultraviolet energy in the calendering, which promotes the plastic=synthesis reaction'. After the disintegration, the plastic sheet remains, and the failure can not be declared. The plastic is blended with traditional plastics and other ingredients to induce microbes in the environment (4), disintegrating the temple 2: Decomposing the plastic components, and also suffering from the problem of residual plastic debris. -r/i sighs in view of photodegradability The shortcomings of plastic and disintegrating plastics, the research direction of plastics can be changed to the development of a new biodegradable job that can be completely decomposed by microorganisms in the context of It completely replaces the original petrochemical raw materials, so it is a problem of pollution. Therefore, both in academia and industry, there is a lot of research on the development of Knife and Knife. In the case of I know the skills, in order to solve the problem 1. Based on years of research and development and many practical experiences, this U-based person proposes: a biodegradable polymer composite material having a water-crosslinking reaction property and a manufacturing method thereof, as an improvement of the above disadvantages. [Invention] In view of the above, the object of the present invention is to provide a biodegradable polymer composite material having a water-crosslinking reaction property and a method for its manufacture 5 2012/1/19 According to the object of the present invention, a biodegradable polymer composite material having water cross-linking reaction property, comprising at least one biodegradable plastic, a natural fiber, and the like, is proposed. A fire retardant and an organic unsaturated burnt material. Further, the present invention further provides a method for producing a biodegradable polymer composite having water crosslinking reaction properties, which comprises the following steps: a. providing a living organism Decomposable plastic, a natural fiber, a fire retardant and an organic unsaturated stone; b. Dispersing the organic unsaturated decane with a dispersing agent to mix with natural fibers and fire retardant; c And hydrolyzing the mixture prepared in step b with the biodegradable plastic to make the natural fiber material biodegradable plastic The ruthenium contained in the organic unsaturated decane causes Si-0-Si bond formation with each other. Further, the biodegradable polymer composite material may further comprise a fiber reinforced material, an inorganic filler or an organic filler. The reviewer will have a better understanding and understanding of the technical features and the efficacies of the present invention. The preferred embodiment and the detailed description are as follows. 1363780 2012/1/19 [Embodiment] By: Reference Correspondingly, a natural fiber/biodegradable plastic material having a water parent reaction, and a preparation method thereof, according to a preferred embodiment of the present invention, and a method for preparing the same, are provided for ease of understanding, and the same symbols are used for the same DESCRIPTION OF EMBODIMENT - Referring to Figure 1, there is shown a flow chart of the natural fiber/biodegradable plastic reinforced composite material having water cross-linking reaction of the present invention and a preparation method thereof. In the figure, the method comprises the following steps: Step 10: providing a biodegradable plastic, a natural fiber, a fire retardant and an organic unsaturated decane. ' The biodegradable plastic comprises at least an aliphatic polyester, a copolymer thereof such as PLA, PBS, etc., and the natural fiber contains at least wood flour, flax, jute, kenaf, ramie, rice husk, soy flour, Ugly, wheat flour, wheat cereal, bamboo fiber, coconut fiber, sugar cane fiber, peanut shell, bamboo charcoal fiber or animal fiber. Wherein, the organounsaturated decane comprises at least vinyl trimethoxy oxime, vinyl trimethyl ethyl oxime, vinyl butoxy oxime, allyl trimethoxy decane allylic triethoxy Decane and so on. Further, the biodegradable = molecular composite material may further comprise a fiber reinforced material, a helmet, or an organic filler. Among them, the fire retardant may be Mg(OH)2, Al(〇H)3 or a system or a nitrogen compound. Step 11: The organic unsaturated decane is dispersed by a dispersing agent to be uniformly mixed with the natural fiber and the fire retardant. 〃 In one embodiment, the dispersing agent is carried out with one acetone, and four is added to the acetone solution. Ethoxy decane (TE〇s) in natural fiber 2012/1/19, using a still speed mixer (Hensche JViixer) to fully mix and simultaneously remove water. Because the function on the coupling agent is positive and easy to react with water Loss of effect, so first remove most of the water from the natural fiber, and then add the acetone solution containing the coupling agent and fire retardant. In addition, step 11 can be added to the reaction initiator, the reaction initiator can be DCP, Di(t-butylperoxydiisopropyl)benzene, 2,5 tri-f-yl 2,5-di(t-butylperoxy)hexane, benzhydryl peroxide, dicumin Base peroxide, di-tert-butyl peroxide, second butyl cumyl peroxide, peroxy third valeric acid tert-butyl ester or peroxy-2-ethylhexanoic acid tributyl Alternatively, in step 11, an organometallic compound can be used as a catalyst to accelerate the reaction, and the organometallization The material may be dibutyltin dilaurate, dibutyltin diacetate, dibutyltin dioctoate, tetrabutyltin acetate, tetradecanoate, zinc octoate, stearic acid, lead stearate or cadmium stearate. 12: subjecting the mixture produced in the step η to a water cross-linking reaction with the biodegradable plastic, so that the natural fiber and the biodegradable plastic generate Si-〇 from each other by the yttrium contained in the organic unsaturated decane & Si bonding. νStep 13. Biodegradable polymer composite material which is kneaded by a machine using kneading granulation to produce a water cross-linking reaction. J Qing refers to the second ®, which shows PBS by TE〇s Schematic diagram of the chemical structure of the Shixi grafted shell. In the figure, the biodegradable plastic is implemented by 1363780 2012/1/19 polysuccinate (PBS), and the organic unsaturated decane system is The reaction is carried out by using a tetraethoxy decane coupling agent. This embodiment comprises the following steps: Step 21: rearranging the polybutyric acid succinate monomer by hydrazine of tetraethoxy decane to form a polymer containing ruthenium; 22: The polymer is crosslinked by water The reaction forms a close cross-linking structure with the natural fibers. It can be seen that the -Si-0-Si-bonds form a network structure that is cross-linked to each other, thereby effectively improving the tensile strength and flexural strength. The squares represent the polymer monomers polymerized in step 21. Referring to Table 1, it is shown that polybutyric acid succinate (hereinafter referred to as PBS) is added with different proportions of natural fiber APP (10, 15, 20, 30). Wwt%) Summary of mechanical properties of biodegradable composites. The tensile strength of Table 1 shows that the tensile strength decreases with increasing APP content, and tensile strength when added at 30 wt%. From 3 8.8 MPa to 23.2 MPa, and the elongation also decreased, which is due to the lack of good interface and bonding between APP and PBS. When the APP content was 15 wt% and the TEOS decane coupling agent was modified, the tensile strength increased (31.1 to 32.5 MPa). However, the flexural strength and modulus of biodegradable plastic composites have a significant increase trend, adding 30 wt% of APP flexural strength, which is 7% higher than pure PBS (38.6 MPa to 41.3 MPa), and the modulus is 58.6% (607.6 MPa to 963.5 MPa), and the flexo-strength and modulus of APP modified with TEOS have a tendency to decrease with the increase of TEOS content, and excess unreacted TEOS In the biodegradable plastic composite material, it plays the role of 1363780 2012/1/19 plasticizer, resulting in a decrease in flexural strength and modulus. Tensile strength (MPa) Elongation (%) Flexural strength (MPa) Flexural modulus (MPa) PBS 38.8 ±0.1 391.2 ±7.5 38.6 ± 0,1 607.6 ± 9.2 Natural fiber addition ratio Tensile strength (MPa) Elongation (%) Flexural strength (MPa) Flexural modulus (MPa) 10% 34.4 Soil 0.1 341.4 ±6.5 38.7 i 0.1 660.4 ± 5.2 15% 31.1 ± 0.1 327.0 ± 5.7 39.8 ± 0.1 725.0 ± 8.5 20% 30.4 0.2 306.8 ± 3.2 40.8 ± 0.2 799.2 ± 4.7 30% 23.2 ± 0.1 177.7 ± 9.3 41.3 ± 0.2 963.5 ± 8.2 Please refer to Table 2, which shows PBS added 15 wt% APP/PBS biodegradable plastic composite, APP respectively A summary of the mechanical properties of the 0, 0.5, 1, 2, 4 hr water cross-linking reaction. In the table, after the bio-cross-linking reaction of the biodegradable composite material for 4 hours, the tensile strength is obviously increased from 32.5 MPa to 37.8 MPa (up 16.3%), and the flexural strength is increased from 42.1 MPa to 46.9 MPa. 11.4%), the modulus is increased by 12.3% (739.0 MPa to 830.1 MPa), indicating that after the APP is modified by TEOS, its interface forms a good chemical bond (TEOS~)-Si-0-Si_ (~PBS) and borrows By the cross-linking reaction of water, cross-linking produces a -Si-0-Si bond, which improves the interface between APP and PBS. Tensile strength (MPa) Elongation (%) Flexural strength (MPa) Flexural modulus PBS 38.8 ± 0.1 391.2 ± 7.5 38.6 ± 0.1 607.6 ± 9.2 One-water cross-linking reaction time (TEOS = lphr, APP = 15%) Tensile strength (MPa) Elongation (%) Flexural strength (MPa) ~mmm. (mp^ Ohr 32.5 ± 0.2 351.9 ± 7.1 42.0 ± 0-1 739.0 ± 64 0.5hr 33.8 ± 0.2 323.4 ± 6.5 43.1 ± 0.3 768.3 ± 7.9 lhr 35.1 ± 0.3 311.2 ± 6.1 44.7 ± 0.3 786.2 ± 5.3 1363780 I 2012/1/19 2hrs 37.2 ± 0.3 294.5 ± 5.8 46.4 ± 0.2 811.4 ± 8.4 4hrs 37.8 ± 0.2 282.7 ± 7.5 46.9 ± 0.3 830.1 ± 9.2 Please refer to Table 3 for a summary of the mechanical strength of APP with different content of TEOS when the APP content is 15%. In the table, when the TEOS content is 1 phr, the physical property improvement effect is the most. The APP content is 15 wt% and the flexural strength and modulus after upgrading with the TEOS decane coupling agent tend to increase. It can be seen from this example that if only the biodegradable composite material of natural fiber is added, Its tensile strength is due to the low degree of bonding between biodegradable plastic and natural fiber. The amount is gradually reduced, and the mechanical properties are effectively improved after being treated by the preparation method of the present invention. Tensile strength (MPa) Elongation (%) Flexural strength (MPa) Flexural modulus (MPa) PBS 38.8 ± 0.1 391.2 ± 7.5 38.6 ± 0.1 607.6 ± 9.2 TEOS addition content (phr) (APP=15%) Tensile strength (MPa) Elongation (〇/〇) Flexural strength (MPa) Flexural modulus (MPa) 1 32.5 ± 0.2 351.9±7.1 42.0 ± 0.1 739.0 ± 6.4 2.5 32.3 ±0.1 340.7 ±9.5 41.3 ±0.2 696.4 ± 7.6 5 32.2 ±0.1 346.3 ± 8.5 41.2 ±0.1 689.3 ±8.1 10 29.2 ± 0.1 351.1 ±5.2 36.7 ±0.3 615.7 ±6.5 Table 3 However, the added coupling agent content also has its limitation, and its flexural strength and modulus decrease with the increase of TEOS content. This is because the OH group on PBS can react with TEOS with limited groups. Unreacted TEOS acts as a plasticizer in the biodegradable flame retardant composite, which causes a decrease in flexural strength and modulus. Any changes or modifications to the invention that do not depart from the spirit and scope of the invention are intended to be included in the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart of a biodegradable plastic reinforced composite material having a water cross-linking reaction according to the present invention/step flow chart; and/or the second method of the preparation method = the hair extension branch After the Ming Dynasty, the chemical decomposition of the △ decomposition-decomposable plastic and the natural woven dimension are intended to be grafted and then hydro-crosslinked.

Claims (1)

1363780 2012/1/19 I i告本丨 十、申請專利範圍: 1、一種具有水交聯反應的天然纖維/生物分解性塑 膠強化複合材料之製造方法,其包含下列步驟: (a) 提供一生物分解性塑膠、一天然纖維物及一 有機不飽和矽烷物,其中該生物分解性塑膠 至少包括脂肪族聚酯或其共聚物如聚乳酸 (pLA)、聚琥珀酸丁烯酯(PBS)、該天然纖維 物所佔比例係介於1 〇wt%至80wt〇/〇間以及 该有機不飽和矽烷物含量為1、2. 5、5或 lOphr(每百克份數)’並且該有機不飽和矽 φ 烷物至少包含乙烯基三甲氧基矽烷、乙烯基 一甲乙基石夕炫、乙烯基丁氧基石夕烧、烯丙基 二甲氧基矽烧或烯丙基三乙氧基石夕烧; (b) 以一分散劑使該有機不飽和矽烷物分散以 與乾燥天然纖維混合均勻;以及 (c) 將步驟(b)產生之混合物與該聚烯物進行水 父聯反應,以使該天然纖維物與該聚烯物藉 由該有機不飽和矽烷物所含之矽使其彼此 產生Si-0-Si鍵結。 鲁 2、 如申請專利範圍第1項所述之製造方法,其中該 分散劑係為丙酮。 3、 如申請專利範圍第1項所述之製造方法,其中該 步驟(b)中之水交聯反應時間係為4小時。 4、 如申凊專利範圍第3項所述之製造方法,其中該 步驟(b)中之水交聯反應溫度為5〇t>c。 5、 依據申δ青專利範圍第1項所述之製造方法,其中 該步驟(b)更包含加入有反應起始劑,該起始劑 13 * *2012/1/1Q ,為DCP、α-α二(第三丁過氧基二異丙基) 本、2,5 ——甲基-2,5-二(第三丁過氧基)己燒、二 苯甲醯基過氧化物、二枯基過氧化物、二第三 丁基過氧化物、第三丁基枯基過氧化物、過氧基 第二戊酸第三丁酯或過氧基-2-乙基己酸第三丁 酯。 — 如申請專利範圍第1項所述之製造方法,其中該 ν驟(b)中更包含以有機金屬化合物為觸媒。 如申請專利範圍第6項所述之製造方法,其中該 觸媒為二月桂酸二丁基錫、二乙酸二丁基錫、 1辛酸二丁基錫、乙酸亞錫、鈦酸四丁酯、奈酸 ί μ辛^'鋅、奈酸鈷、硬酯酸辞、硬酯酸鈣、硬 酉曰酉文錯或硬S旨酸録等。 、:ΐ專利範圍$1項所述之製造方法,其中 然;維物至少包含木粉、亞麻、黃麻、紅麻 im豆粉、豆潰、麥粉、麥榖、竹纖 、如申& ί 4丨〃化生殼、竹炭纖維或動物性纖維’ = = = :項所述之製造方法,… 有機填料或1 =劑:無機填料(,)、- 〇該防如火=么圍八第9項所述之製造方法,其 氮系化合物。、匕3 Mg(〇H)2,A1(〇H)3或"*系1363780 2012/1/19 I i 告本丨10, the scope of application for patents: 1. A method for producing a natural fiber/biodegradable plastic reinforced composite material having a water crosslinking reaction, comprising the following steps: (a) providing a Biodegradable plastic, a natural fibrous material and an organic unsaturated decane, wherein the biodegradable plastic comprises at least an aliphatic polyester or a copolymer thereof such as polylactic acid (pLA), polybutyl succinate (PBS), The proportion of the natural fibrous material is between 1 〇 wt% and 80 〇 〇 / 以及 and the content of the organic unsaturated decane is 1, 2. 5, 5 or 10 phr (parts per 100 gram) and the organic The saturated 矽φ alkane comprises at least vinyl trimethoxy decane, vinyl monomethyl hexanthene, vinyl butoxylate, allyl dimethoxy oxime or allyl triethoxy sulphur; (b) dispersing the organic unsaturated decane with a dispersing agent to uniformly mix with the dried natural fiber; and (c) subjecting the mixture produced in the step (b) to a water-parent reaction with the polyene to make the natural Fiber and the polyene by the Silane machine unsaturated silicon was contained in it so as to produce another Si-0-Si bonding. 2. The manufacturing method according to claim 1, wherein the dispersing agent is acetone. 3. The manufacturing method according to claim 1, wherein the water crosslinking reaction time in the step (b) is 4 hours. 4. The production method according to claim 3, wherein the water crosslinking reaction temperature in the step (b) is 5 〇t > c. 5. The manufacturing method according to claim 1, wherein the step (b) further comprises adding a reaction initiator, the initiator 13 * *2012/1/1Q, which is DCP, α-二2 (t-butylperoxydiisopropyl), 2,5-methyl-2,5-di(t-butylperoxy)hexan, benzophenone peroxide, Cumyl peroxide, di-tert-butyl peroxide, tert-butyl cumyl peroxide, peroxy-t-butyl valerate or tert-butyl peroxy-2-ethylhexanoate ester. The manufacturing method according to claim 1, wherein the ν (b) further comprises an organometallic compound as a catalyst. The manufacturing method according to claim 6, wherein the catalyst is dibutyltin dilaurate, dibutyltin diacetate, dibutyltin dioctanoate, stannous acetate, tetrabutyl titanate, natriuretic acid 'Zinc, cobalt naphthate, stearic acid, calcium stearate, hard sputum or hard S acid. ΐ: The manufacturing method described in the patent range of $1, wherein the vitamins contain at least wood flour, flax, jute, kenaf im bean powder, bean curd, wheat flour, wheat bran, bamboo fiber, such as Shen & ί 4丨〃Chemical shell, bamboo charcoal fiber or animal fiber ' = = = : The manufacturing method described in the item,... Organic filler or 1 = Agent: Inorganic filler (,), - 〇 The defense is like fire = 么围八The production method according to item 9, which is a nitrogen-based compound. , 匕3 Mg(〇H)2, A1(〇H)3 or "*
TW96117109A 2007-05-14 2007-05-14 Biodegradable polymer composite material having water cross-linking property and manufacturing method thereof TW200844168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96117109A TW200844168A (en) 2007-05-14 2007-05-14 Biodegradable polymer composite material having water cross-linking property and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96117109A TW200844168A (en) 2007-05-14 2007-05-14 Biodegradable polymer composite material having water cross-linking property and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW200844168A TW200844168A (en) 2008-11-16
TWI363780B true TWI363780B (en) 2012-05-11

Family

ID=44822520

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96117109A TW200844168A (en) 2007-05-14 2007-05-14 Biodegradable polymer composite material having water cross-linking property and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TW200844168A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI697522B (en) * 2019-03-07 2020-07-01 大同股份有限公司 Biodegradable plastic composition and manufacturing method thereof

Also Published As

Publication number Publication date
TW200844168A (en) 2008-11-16

Similar Documents

Publication Publication Date Title
Wahit et al. Influence of natural fibers on the mechanical properties and biodegradation of poly (lactic acid) and poly (ε‐caprolactone) composites: A review
Ji et al. Enhanced mechanical properties, water resistance, thermal stability, and biodegradation of the starch-sisal fibre composites with various fillers
CN1205266C (en) Composite resin composition, preparing and processing method thereof
CN101157801A (en) Highly ripping-resistant high temperature sulfidation silicon rubber and method for making same
Zaaba et al. A review on tensile and morphological properties of poly (lactic acid)(PLA)/thermoplastic starch (TPS) blends
JP5376363B2 (en) COMPOSITE MATERIAL COMPRISING NATURAL PLANT FIBER AND SYNTHETIC POLYMER AND METHOD FOR PRODUCING THE SAME
JP6234269B2 (en) Biodegradable polymer composition with improved impact resistance
CN103384704B (en) Biodegradable polymer composite
TW201141954A (en) Resin composition, molded body and composite molded body
CN107474374B (en) A kind of lignin/polyolefin thermoplastic elastomer composite material and preparation method
WO2021190089A1 (en) Wood-plastic composite material having high toughness and high strength and preparation method therefor
Hassan et al. Tailoring lightweight, mechanical and thermal performance of PLA/recycled HDPE biocomposite foams reinforced with kenaf fibre
TWI363780B (en)
JP6547414B2 (en) Modified cellulose fiber-containing resin composition, molding material and molding
CN101942114A (en) Biodegradable amylum colophony for injection molding and preparation method and products thereof
US20080300364A1 (en) Carbon nanotube/polyolefin composite by water-crosslinking reaction and method thereof
TW200842148A (en) Composite material produced from recycled thermosetting plastic flour and preparing method thereof
JP2004182877A (en) Biodegradable resin composition, biodegradable resin product, and method of its production
TWI417178B (en) Environmentally friendly foam composite shoe material and its preparation method
Li Properties of agave fiber reinforced thermoplastic composites
Husseinsyah et al. Chemical treatment on corn cob by acrylic acid and its reinforced soy protein isolated/corn cob biocomposite films
CN100588665C (en) Method for manufacturing grafted starch nano composite material
KR102218903B1 (en) Urushiol modified wood composite and method for preparing the same
Abdul Majid et al. Sodium dodecyl sulfate (SDS) as a filler treatment: effects on mechanical, morphological and swelling properties of poly (vinyl chloride)(PVC)/epoxidized natural rubber (ENR)/kenaf core powder composites
Yu et al. Lightweight composites reinforced by agricultural byproducts

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees