TWI363546B - Real-time control system of dynamic petri recurrent-fuzzy-neural-network - Google Patents

Real-time control system of dynamic petri recurrent-fuzzy-neural-network Download PDF

Info

Publication number
TWI363546B
TWI363546B TW97103910A TW97103910A TWI363546B TW I363546 B TWI363546 B TW I363546B TW 97103910 A TW97103910 A TW 97103910A TW 97103910 A TW97103910 A TW 97103910A TW I363546 B TWI363546 B TW I363546B
Authority
TW
Taiwan
Prior art keywords
network
layer
fuzzy
output
neural network
Prior art date
Application number
TW97103910A
Other languages
Chinese (zh)
Other versions
TW200934197A (en
Inventor
Rong Jong Wai
Chia Ming Liu
Original Assignee
Univ Yuan Ze
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Yuan Ze filed Critical Univ Yuan Ze
Priority to TW97103910A priority Critical patent/TWI363546B/en
Publication of TW200934197A publication Critical patent/TW200934197A/en
Application granted granted Critical
Publication of TWI363546B publication Critical patent/TWI363546B/en

Links

Description

1363546 _ 101年01月13日修正替換頁 . 214 網路輸出層與網路規則層之間權重值 . 215 網路輸出訊號 八、 本案若有化學式時,請揭示最能顯示發明特徵的化學式: 九、 發明說明: 【發明所屬之技術領域】 本發明「動態派翠遞迴式模糊類神經網路即時控制系統」所 ^ 涉及之技術領域主要包含有模糊控制、類神經網路、非線性控制 及智慧型控制;根據以上技術,發展一即時控制系統,該即時控 制系統以模糊類神經網路為核心,加入網路派翠層以及遞迴結 構,形成動態派翠遞迴式模糊類神經網路,並藉由線上參數調整 模組與學習率更新模組,使受控體達到所欲控制之目的。 【先前技術】 傳統控制領域中,控制系統動態模式的精確與否是影響控制 性能優劣的最主要關鍵,系統動態的資訊越詳細,則越能達到精 確控制目的;然而,對於非線性系統,往往難以正確的描述系統 的動態,於是研究學者便利用各種方法來簡化系統動態,以達成 控制目的,但卻不盡理想。換言之,傳統的控制理論對於明確系 統具有強而有力的控制能力,但對於過於複雜或難以精確描述的 系統,則顯得無能為力,因此許多研究學者便嘗試著以模糊數學 來處理此類控制問題。 1363546 ιοί年01月13日修正替換頁 自從Zadeh學者發展出模糊數學之後,對於不明確系統的控 制有著極大的貢獻,自七〇年代以後,便有一些實用的模糊控制 器相繼的完成,模糊控制(FUZZy c〇ntr〇i)具有強健性、不需要精確 的數學模型、強大近似能力以及採用人類的經驗來建立模糊規 - 則…等優點[1]。參考文獻[2]提出以模糊邏輯的方式與新的地圖量 測來運用在操縱自走車裝置。參考文獻[3]發展嵌入式模糊控制器 去控制自走車裝置’並經由里亞普諾(Lyapun〇v)穩定理論證明其收 斂性。參考文獻[4]設計一個即時的模糊控制架構並使用紅外線感 鲁 測器,使自走車達到目標追尋的功能。參考文獻[5]利用模糊邏輯 月b夠仿效人類思考的行為,使自走車能夠追隨特定的路徑。雖然 这些技巧能夠以仿效人類的行為來建構控制系統,但是要取得適 合的模糊規則以達到良好的控制性能卻是相當困難的。 類神經網路(Neural Network, NN)係模仿人類腦部活動所發展 出來的種模型。就網路架構而言,由許多簡單而且互相連接的 處理單/^Processing Elements) ’也就是神經元(Neur〇ns)所植成;# 就網路功能而言,係由生物模型所產生的新型態資訊處理與計算 方式。近幾年來也有許多人研究類神經網路運用在系聽別或動 態系統控制[6]_[8]。參考文獻[7]採用類神經網路的方式,研究如 何在自走車追㈣過程巾·障_。參考文獻[8]發展簡單醜 - 神經網路來操縱自走車,並且無需使用自走車的速度資訊。雖然* 、員神網路具有強大的函數近似能力,但是網路的參數值通常必 1363546 年〇1月13日修正替換頁 須經過長時間離線(Off-Line)訓練才能達到良好的於^· ' 始的網路參數值還沒有訓練完成’導致網路參數沒有對應適合的 值,因此初始控制性能普遍不佳。近年來,參考文獻[9] [11]提出 遞迴式類神經網路(Recurrent Neural Network, RNN)達到快速的對 應能力,其效能明顯比類神經網路來的優越,但是由於類神經網 路是由神經元所組成的’因此在比較複雜的系統中,易造成網路 過於龐大的問題。1363546 _ 101 January 101 revised replacement page. 214 Weight between network output layer and network rule layer. 215 Network output signal 8. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention: IX. Description of the invention: [Technical field of the invention] The technical field of the "dynamic dispatching recursive fuzzy neural network real-time control system" of the present invention mainly includes fuzzy control, neural network, and nonlinear control. And intelligent control; according to the above technology, the development of an instant control system, the real-time control system with the fuzzy neural network as the core, join the network sentiment layer and recursive structure, forming a dynamic sentimentary fuzzy neural network The road, and through the online parameter adjustment module and the learning rate update module, the controlled body achieves the purpose of the desired control. [Prior Art] In the field of traditional control, the accuracy of the dynamic mode of the control system is the most important factor affecting the performance of the control. The more detailed the information of the system dynamics, the more precise control can be achieved; however, for nonlinear systems, It is difficult to correctly describe the dynamics of the system, so researchers can easily use various methods to simplify the system dynamics to achieve control purposes, but not ideal. In other words, traditional control theory has strong and powerful control ability for clear systems, but it is powerless for systems that are too complicated or difficult to describe accurately. Therefore, many researchers have tried to deal with such control problems with fuzzy mathematics. 1363546 ιοί年01月13 Revision of the replacement page Since the development of fuzzy mathematics by Zadeh scholars, it has greatly contributed to the control of ambiguous systems. Since the Seventies, there have been some practical fuzzy controllers to complete, fuzzy control (FUZZy c〇ntr〇i) has the advantages of robustness, no need for precise mathematical models, strong approximation ability, and the use of human experience to establish fuzzy rules--[...] Reference [2] proposes to use the fuzzy map and the new map measurement to operate the self-propelled vehicle. Reference [3] developed an embedded fuzzy controller to control the self-propelled vehicle device' and proved its convergence through the Lyapun〇v stability theory. Reference [4] designed an instant fuzzy control architecture and used an infrared sensor to enable the self-propelled vehicle to achieve the desired function. Reference [5] uses fuzzy logic Month b is enough to follow the behavior of human thinking, enabling the self-propelled car to follow a specific path. Although these techniques can model the control system by emulating human behavior, it is quite difficult to achieve appropriate fuzzy rules to achieve good control performance. The Neural Network (NN) is a model that mimics the development of human brain activity. In terms of network architecture, it is made up of many simple and interconnected processing elements, ie, neurons (Neur〇ns); in terms of network functions, it is generated by biological models. New state information processing and calculation methods. In recent years, many people have studied the use of neural networks in the listening system or dynamic system control [6]_[8]. Reference [7] uses a neural network-like approach to study how to chase after a self-propelled vehicle (4) process towel. Reference [8] develops a simple ugly - neural network to manipulate the self-propelled car without the need to use the speed information of the self-propelled car. Although the * and the sacred network have powerful function approximation ability, the parameter value of the network usually must be 1363546. On January 13th, the replacement page must be subjected to long-term offline (Off-Line) training to achieve good. The initial network parameter values have not been trained to complete, resulting in network parameters that do not have corresponding values, so the initial control performance is generally poor. In recent years, reference [9] [11] proposed that the Recurrent Neural Network (RNN) achieves a fast correspondence capability, and its performance is significantly better than that of a neural network, but because the neural network is It consists of neurons, so in a more complex system, it is easy to cause the network to be too large.

現今結合模糊控制與類神經網路成為相當熱門的研究主題 [12]-[14]。模糊類神經網路(Fuzzy Neural Network, FNN)可結合模 糊控制與類神經網路各自的優點達到不錯的效能,其網路架構比 類神經網路來得簡單,並且相對應模糊規則可以利用類神經網路 學習理論求得。此外,參考文獻[15]、[16]提出遞迴式模糊類神經 網路(Recurrent Fuzzy Neural Network,RFNN)的架構,因為遞迴結 構可以加快網路的對應能力,一般而言,遞迴式模糊類神經網路 控制性能比模糊類神經網路優越。另一方面,派翠網路(Petri Net, PN)提出後便有許多人開始研究於不同的領域中[π]、[ι8],參考 文獻[19]提出派翠模糊類神經網路(petri Fuzzy Neural Network, PFNN)的架構運用於線型感應馬達,其主要的概念是在模糊類神經 網路中加入派翠運算的機制,達到減少運算量的功效,由於派翠 模糊類神經網路缺少遞迴結構,因此控制性能方面略遜於遞趣式 模糊類神經網路。 1363546 __ 101年01月13日修正替換頁 備註:參考文獻 [1] L. X. Wang, A Course in Fuzzy Systems and Control. New Jersey: Prentice-Hall, 1997.Nowadays, combining fuzzy control and neural network has become a very popular research topic [12]-[14]. Fuzzy Neural Network (FNN) can combine the advantages of fuzzy control and neural network to achieve good performance. Its network architecture is simpler than that of neural networks. Corresponding fuzzy rules can use neural networks. Road learning theory is obtained. In addition, references [15], [16] propose a recurrent Fuzzy Neural Network (RFNN) architecture, because the recursive structure can speed up the network's corresponding ability, in general, recursive The fuzzy neural network control performance is superior to the fuzzy neural network. On the other hand, after the introduction of Petri Net (PN), many people began to study in different fields [π], [ι8], and reference [19] proposed the Paifu fuzzy neural network (petri). The architecture of Fuzzy Neural Network (PFNN) is applied to linear induction motors. The main concept is to add the mechanism of Pai Cui operation to the fuzzy neural network to reduce the computational complexity. Back to the structure, so the control performance is slightly inferior to the hand-like fuzzy neural network. 1363546 __ January 13, 101 revised replacement page Remarks: References [1] L. X. Wang, A Course in Fuzzy Systems and Control. New Jersey: Prentice-Hall, 1997.

[2] H. Seraji and A. Howard, “Behavior-based robot navigation on challenging terrain: a fuzzy logic approach,5, IEEE Trans. Robot. Automat., vol. 18, no. 3, pp. 308-321,2002.[2] H. Seraji and A. Howard, “Behavior-based robot navigation on challenging terrain: a fuzzy logic approach, 5, IEEE Trans. Robot. Automat., vol. 18, no. 3, pp. 308-321, 2002.

[3] S. X. Yang, H. Li, M. Q. H. Meng, and P. X. Liu, uAn embedded fuzzy controller for a behavior-based mobile robot with guaranteed performance,5, IEEE Trans. Fuzzy Syst., vol. 12, no. 4, pp. 436-446, 2004.[3] SX Yang, H. Li, MQH Meng, and PX Liu, uAn embedded fuzzy controller for a behavior-based mobile robot with guaranteed performance, 5, IEEE Trans. Fuzzy Syst., vol. 12, no. 4, pp 436-446, 2004.

[4] T. H. S. Li, S. J. Chang, and W. Tong, uFuzzy target tracking control of 鲁 autonomous mobile robots by using infrared sensors/5 IEEE Trans. Fuzzy[4] T. H. S. Li, S. J. Chang, and W. Tong, uFuzzy target tracking control of Lu autonomous mobile robots by using infrared sensors/5 IEEE Trans. Fuzzy

Syst., vol. 12, no. 4, pp. 491-501, 2004.Syst., vol. 12, no. 4, pp. 491-501, 2004.

[5] G. Antonelli, S. Chiaverini, and G. Fusco, UA fuzzy-logic-based approach for mobile robot path tracking,5, IEEE Trans. Fuzzy Syst., vol. 15, no. 2, pp. 211-221,2007.[5] G. Antonelli, S. Chiaverini, and G. Fusco, UA fuzzy-logic-based approach for mobile robot path tracking, 5, IEEE Trans. Fuzzy Syst., vol. 15, no. 2, pp. 211- 221, 2007.

[6] O. Omidvar, and D. L. Elliott, Neural Systems for Control. Academic Press, 1997.[6] O. Omidvar, and D. L. Elliott, Neural Systems for Control. Academic Press, 1997.

[7] S. X. Yang and M. Q. H. Meng,“Real-time collision-free motion planning of a mobile robot using a neural dynamics-based approach,” /E五五 7>vmy. Neural Netw., vol. 14, no. 6, pp. 1541-1552, 2003.[7] SX Yang and MQH Meng, “Real-time collision-free motion planning of a mobile robot using a neural dynamics-based approach,” /E五五7>vmy. Neural Netw., vol. 14, no. 6 , pp. 1541-1552, 2003.

[8] T. Das, I. N. Kar,and S. Chaudhury,“Simple neuron-based adaptive controller for a nonholonomic mobile robot including actuator dynamics,” Neurocomputing, vol. 69, no. 16-18, pp. 2140-2151, 2006.[8] T. Das, IN Kar, and S. Chaudhury, “Simple neuron-based adaptive controller for a nonholonomic mobile robot including actuator dynamics,” Neurocomputing, vol. 69, no. 16-18, pp. 2140-2151, 2006.

[9] F. J. Lin, R. J. Wai,W. D. Chou and S. P. Hsu, “Adaptive backstepping control using recurrent neural network for linear induction motor drive,5, IEEE Trans, lnd. Electron., vol. 49, no. 1, pp. 134-146, 2002.[9] FJ Lin, RJ Wai, WD Chou and SP Hsu, “Adaptive backstepping control using recurrent neural network for linear induction motor drive, 5, IEEE Trans, lnd. Electron., vol. 49, no. 1, pp. 134 -146, 2002.

[10] R. J. Wai, C. M. Lin and Y. F. Peng, “Adaptive hybrid control for linear piezoelectric ceramic motor drive using diagonal recurrent CMAC network,IEEE Trans. Neural Netw., vol. 15, no. 6, pp. 1491-1506, 2004. 8 1363546 101年01月13日修正替換頁 [11] S. J. Yoo, Y. H. Choi, and J. B. Park, ''Generalized predictive control based on self-recurrent wavelet neural network for stable path tracking of mobile robots: adaptive learning rates approach,IEEE Trans. Circuit Syst., vol. 53, no. 6, pp. 1381-1394, 2006.[10] RJ Wai, CM Lin and YF Peng, “Adaptive hybrid control for linear piezoelectric ceramic motor drive using diagonal recurrent CMAC network, IEEE Trans. Neural Netw., vol. 15, no. 6, pp. 1491-1506, 2004 8 1363546 Modified on January 13, 2011 [11] SJ Yoo, YH Choi, and JB Park, ''Generalized predictive control based on self-recurrent wavelet neural network for stable path tracking of mobile robots: adaptive learning rates approach , IEEE Trans. Circuit Syst., vol. 53, no. 6, pp. 1381-1394, 2006.

[12] C. T. Lin, and C. S. George Lee, Neural Fuzzy Systems, New Jersey: Prentice-Hall, 1996.[12] C. T. Lin, and C. S. George Lee, Neural Fuzzy Systems, New Jersey: Prentice-Hall, 1996.

[13] F. J. Lin, R. J. Wai,and C. C. Lee, “Fuzzy neural network position controller for ultrasonic motor drive using push-pull DC-DC converter, IEEProc. Control TheoryAppl., vol. 146, no. 1, pp. 99-107, 1999.[13] FJ Lin, RJ Wai, and CC Lee, “Fuzzy neural network position controller for ultrasonic motor drive using push-pull DC-DC converter, IEE Proc. Control Theory Appl., vol. 146, no. 1, pp. 99- 107, 1999.

[14] C. Ye, N. H. C. Yung, and D. Wang, fuzzy controller with supervised learning assisted reinforcement learning algorithm for obstacle avoidance,,5 IEEE Trans. Syst., Man, Cybern. B, vol. 33, no. 1, pp. 17-27, 2003.[14] C. Ye, NHC Yung, and D. Wang, fuzzy controller with supervised learning assisted reinforcement learning algorithm for obstacle avoidance,, 5 IEEE Trans. Syst., Man, Cybern. B, vol. 33, no. Pp. 17-27, 2003.

[15] F. J. Lin, R. J. Wai, K. K. Shyu and T. M. Liu, ^Recurrent fuzzy neural network control for piezoelectric ceramic linear ultrasonic motor drive,” IEEE Trans. Ultrason., Ferroelect., Freq. Cont., vol. 48, no. 4, pp. 900-914, 2001.[15] FJ Lin, RJ Wai, KK Shyu and TM Liu, ^Recurrent fuzzy neural network control for piezoelectric ceramic linear ultrasonic motor drive,” IEEE Trans. Ultrason., Ferroelect., Freq. Cont., vol. 48, no. 4, pp. 900-914, 2001.

[16] R. J. Wai, “Total sliding-mode controller for PM synchronous servo motor drive using recurrent fuzzy neural network,55 IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 926-944, 2001.[16] R. J. Wai, “Total sliding-mode controller for PM synchronous servo motor drive using recurrent fuzzy neural network, 55 IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 926-944, 2001.

[17] R. David and H. Alla, “Petri nets for modeling of dynamic systems-A[17] R. David and H. Alla, “Petri nets for modeling of dynamic systems-A

Automatica, vol. 30, no. 2, pp. 175-202, 1994.Automatica, vol. 30, no. 2, pp. 175-202, 1994.

[18] V. R. L. Shen, ''Reinforcement learning for high-level fuzzy petri nets,55 IEEE Trans. Syst., Man, Cybern. B, vol. 33, no. 2, pp. 351-362, 2003.[18] V. R. L. Shen, ''Reinforcement learning for high-level fuzzy petri nets, 55 IEEE Trans. Syst., Man, Cybern. B, vol. 33, no. 2, pp. 351-362, 2003.

[19] R. J. Wai and C. C. Chu, "Motion control of linear induction motor via petri fuzzy-neural-network,IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 281-295, 2007. 【發明内容】 動態派翠遞迴式模糊類神經網路即時控制系統方塊圖如第一 1363546 _ 101年01月13日修正替換頁 圖所示,其中包含1〇〇動態派翠遞迴式模糊類神經網路、101受控 體、102線上參數調整模組以及103學習率更新模組,該100動態 派翠遞迴式模糊類神經網路的輸入為誤差訊號及其微分,經由網 路運算得到控制訊號輸出,1〇〇動態派翠遞迴式模糊類神經網路的 輸入與輸出的個數分別由受控體的狀態及控制訊號所決定。以第 一圖為例,輸入為4 =〜-1和气=义-少及其微分之和其中x及少 為受控體狀態且及乃為所對應控制命令,輸出控制訊號為〇,和 〇2 ;該101受控體為任何欲控制之裝置,通常輸入為控制訊號,輸 ® 出為感測器所量測到該受控體的狀態,並且該受控體狀態與所對 應控制命令相減成為誤差訊號,將此誤差訊號及其微分傳送至100 動態派翠遞迴式模糊類神經網路,形成即時控制系統;該102線 上參數調整模組根據學習率(/^,〜,^,,^^、誤差訊號㈠:^^^及其微分 (Κ)來調整100動態派翠遞迴式模糊類神經網路參數的變化量 (△Μ,Δ/γ,Δί/,Δα/);該103學習率更新模組根據100動態派翠遞迴 式模糊類神經網路參數(«,«)、誤差訊號(α,\)及其微分 ® (Κ),以離散型里亞普諾(Discrete-typeLyapunov)穩定理論求得學習 率的更新值。 一、動態派翠遞迴式模糊類神經網路 100動態派翠遞迴式模糊類神經網路的架構如「第二圖」所示總 共分為五層,其中包含201網路輸入層、202網路歸屬函數層、208 網路派翠層、210網路規則層及213網路輸出層,此外202網路歸 1363546 101 年 〇1 月 ^ 屬函數層中加入204網路遞迴結構,其各層訊號 下: 表示如〜-- 第-層為201網路輸入層,將·網路輸入訊號 接傳送到202網路歸屬函數層。 ’〜’···,《,)直 第二層為202網路歸屬函數層,每個203網路歸屬函數 元的輸入為上-次2〇6網路歸屬函數層輸出乘上2〇5網路 構權重值’並加上本次200網路輸入訊號,可表示成⑴式、-[19] RJ Wai and CC Chu, "Motion control of analog induction motor via petri fuzzy-neural-network, IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 281-295, 2007. SUMMARY OF THE INVENTION The block diagram of the dynamic dispatching fuzzy neural network real-time control system is shown in the first 1363546 _ 101 January 13, revised replacement page, which includes a dynamic paradigm fuzzy class. The neural network, the 101 controlled body, the 102-line parameter adjustment module, and the 103 learning rate update module, the input of the 100 dynamic dispatched fuzzy-type neural network is the error signal and its differential, and is obtained through network operation. Control signal output, 1) The number of inputs and outputs of the dynamic Pai Cui recursive fuzzy neural network is determined by the state of the controlled body and the control signal. Taking the first figure as an example, the input is 4 = ~-1 and the gas = meaning - less and the sum of the differentials, wherein x and less are the controlled body state and the corresponding control command, the output control signal is 〇, and 〇 2; The 101 controlled body is any device to be controlled, usually input as a control signal, and the output is measured by the sensor to measure the state of the controlled body, and the controlled body state is corresponding to the corresponding control command. The error signal is reduced to the error signal, and the differential signal is transmitted to the 100 dynamic dispatched fuzzy neural network to form an instant control system; the 102 online parameter adjustment module is based on the learning rate (/^, ~, ^, , ^^, error signal (1): ^^^ and its differential (Κ) to adjust the variation of the dynamic dynamic recursive fuzzy neural network parameters (△ Μ, Δ / γ, Δί /, Δα /); The 103 learning rate update module is based on a 100-dynamic dynamic recursive fuzzy neural network parameter («, «), error signal (α, \) and its differential ® (Κ), with discrete Rialpno ( Discrete-typeLyapunov) Stability theory to obtain the updated value of the learning rate. I. Dynamic Pai Cui recursive fuzzy neural network 100 dynamic The architecture of the Cui reversal fuzzy neural network is divided into five layers as shown in the "second picture", including 201 network input layer, 202 network attribution function layer, 208 network dispatch layer, 210 network. Rule layer and 213 network output layer, in addition to 202 network is 1363546 101 years in January ^ is a function layer added 204 network recursive structure, under each layer signal: means as ~ --- layer - 201 network The input layer transmits the network input signal to the 202 network attribution function layer. '~'···, ",) The second layer is the 202 network attribution function layer, and each 203 network belongs to the function element. The input is the upper-second 2〇6 network attribution function layer output multiplied by 2〇5 network construction weight value' and the current 200 network input signal can be expressed as (1), -

其中”代表離散時間,α丨代表2。5網路遞迴結構權重值.) —1)代 表上一次206網路歸屬函數層輸出,且厂1為207時間延遲單元。— 般而言’㈣歸屬函數種類眾多,包含三角形函數、梯形函數: 倒鐘型函數:高斯函數(GaussianFuncti〇n)、等,本發明所採用之 歸屬函數為尚斯函數,可表示成(2)式 ⑽人'、—)_,"/[叫(〇] = eXp[^(d ⑺ ,、中 exp[]代表指數函數(Exp〇nentiai Functi〇n),w/和 彳0 = 1’“’,《,;_/ = 1,〜,~)分別代表高斯函數之中心點和寬度,'則為 對於每個200網路輸入訊號之語句變數的數目。 第二層為208網路派翠層,在這一層中根據(3)式來判斷206 網路歸屬函數層輪出是否傳送至第四層 tj\^ ^tj{ri)\>dth l0j MHnetj(ri)]<dih (3) 八中 < 代表預設臨界值,(;/為2〇9傳送閥。 第四層為210網路規則層,211網路規則層輸出為所對應的 1363546 _ 101年01月13日修正替換頁 208網路派翠層之輸出的乘積,可表示成(4)式 . %Where "represents discrete time, α丨 represents 2. 5 network recursive structure weight value.) —1) represents the last 206 network attribution function layer output, and factory 1 is 207 time delay unit.—Generally speaking, '(4) There are many kinds of attribution functions, including triangular functions and trapezoidal functions: inverted clock function: Gaussian function, etc., and the attribution function used in the present invention is a Shangss function, which can be expressed as (2) (10) people', —)_,"/[called(〇] = eXp[^(d (7) , , exp[] stands for exponential function (Exp〇nentiai Functi〇n), w/ and 彳0 = 1'", ", ;_/ = 1,~,~) represent the center point and width of the Gaussian function, respectively, 'the number of statement variables for each 200 network input signal. The second layer is the 208 network sendi layer, here In the first layer, according to the formula (3), it is judged whether the network attribution function layer round is transmitted to the fourth layer tj\^^tj{ri)\>dth l0j MHnetj(ri)]<dih (3) eight middle <; represents the preset threshold, (; / is 2〇9 transfer valve. The fourth layer is 210 network rule layer, the 211 network rule layer output is corresponding to 1363546 _ 101 January 13 Web product 208 to send output Chui layers replacement sheets, can be expressed as (4).%

A (4) Υ[^ΊμΙ[ηβί^)] , tj=\ =1 Ο , t/ = 0 其中么(A: = 1,.··,〜)代表211網路規則層輸出; <為212網路派翠層 與網路規則層之間權重值,設定為1 為210網路規則層中神經 元的總數目。 第五層為213網路輸出層,本層中每個215網路輸出訊號為 211網路規則層輸出與212網路派翠層與網路規則層之間權重值乘 積的總和,可表示成(5)式 y〇 = Ew〇^ (5) k=\ 其中 < 代表214網路輸出層與網路規則層之間權重值; 凡(ο = 1,···,《σ)代表215網路輸出訊號,《。為213網路輸出層中神經 元的總數目。 二、線上參數調整模組 102線上參數調整模組,主要係以監督式梯度遞減法 (Supervised Gradient Descent Method)得到 100動態派翠遞迴式模 糊類神經網路中參數值的變化量,該102線上參數調整模組所有參 數值的變化量是藉由特定能量函數對所欲調整參數偏微分而產 生。偏微分的計算則採用連鎖率,由於偏微分的順序是由網路的 輸出傳回内部的節點,因此亦稱之為倒傳遞演算法則。為了推導 100動態派翠遞迴式模糊類神經網路參數值的變化量,定義能量函 數五如下:A (4) Υ[^ΊμΙ[ηβί^)] , tj=\ =1 Ο , t/ = 0 where (A: = 1,.··, ~) represents 211 network rule layer output; < The weight value between the 212 network layer and the network rule layer is set to 1 to the total number of neurons in the 210 network rule layer. The fifth layer is the 213 network output layer. The sum of the 215 network output signals in this layer is the product of the 211 network rule layer output and the weight value between the 212 network layer and the network rule layer. (5) Formula y〇= Ew〇^ (5) k=\ where < represents the weight value between the 214 network output layer and the network rule layer; where (ο = 1,···, "σ" represents 215 Network output signal, ". The total number of neurons in the 213 network output layer. Second, the online parameter adjustment module 102 online parameter adjustment module, mainly by the Supervised Gradient Descent Method (Supervised Gradient Descent Method) to obtain the variation of the parameter value in the 100 dynamic dispatched fuzzy neural network, the 102 The amount of change in all parameter values of the online parameter adjustment module is generated by partial differentiation of the desired parameter by a specific energy function. The partial differential calculation uses the linkage rate. Since the order of partial differential is transmitted back to the internal nodes by the output of the network, it is also called the inverse transfer algorithm. In order to derive the amount of change in the value of the dynamic dynamic recursive fuzzy neural network, the energy function is defined as follows:

12 丄2 ~ X^2 + - yf + (xd ~ x)2 + (yd - y)2 ]12 丄2 ~ X^2 + - yf + (xd ~ x)2 + (yd - y)2 ]

2 1 2 ^2+ey +K2+ey2) ⑹ y中〜和&為控制命令、和九為其微分;—為受控體狀態, Ί微刀’ 代表誤差訊號和 微分。太4纪& ' ,100動態派翠遞迴式模糊類神經網路的輸入為 少&和亦即%=4) ; 100動態派翠遞迴式模糊類神經網路 輪出為01和02(亦即〜=2)。102線上參數調整模組之倒傳遞演算 法則描述如下: 213網路輪出層中,能量函數對215網路輸出訊號偏微分可表 示成 δ.2 1 2 ^2+ey +K2+ey2) (6) In y, ~ and & are control commands, and nin are differential; - for controlled body state, Ί micro-knife' represents error signal and differential. Too 4 & ', 100 dynamic Pai Cui recursive fuzzy neural network input is less & and ie %=4); 100 dynamic Pai Cui recursive fuzzy neural network rounds for 01 and 02 (ie ~=2). The inverse transfer algorithm of the 102-line parameter adjustment module is described as follows: In the 213 network round-trip layer, the energy function can be expressed as δ for the partial differential of the 215 network output signal.

dE dE dex dx | dE dey dy [ dE dex dx dE dey dy dex dx dy0 dey dy dya ~dex dx dy0 dey dy^T dx dy . dx . dy ^T + ey^ + e^ + ey^r- ⑺ 則214網路輸出層與網路規則層之間權重值的變化量可表示為 Λ 〇 從 一 7、,久 0 = % dE~ ㈤ 1 ^〇\ l^rj nJA (8) (9) 其中I為214網路輸出層與網路規則層之間權重值的學習率。214 網路輸出層與網路規則層之間權重值更新可表示成 w°k (« +1) = w°k (η) + Aw°k («) 能量函數對211網路規則層輸出偏微分為dE dE dex dx | dE dey dy [ dE dex dx dE dey dy dex dx dy0 dey dy dya ~dex dx dy0 dey dy^T dx dy . dx . dy ^T + ey^ + e^ + ey^r- (7) The amount of change in the weight value between the network output layer and the network rule layer can be expressed as Λ 〇 from a 7, long time 0 = % dE~ (5) 1 ^ 〇 \ l^rj nJA (8) (9) where I The learning rate of the weight value between the 214 network output layer and the network rule layer. 214 The weight value update between the network output layer and the network rule layer can be expressed as w°k (« +1) = w°k (η) + Aw°k («) The energy function is 211 network rule layer output bias Differential

13 1363546 101年01月13日修正替換頁 208網路派翠層中,能量函數對《eiy〇c,_)偏微分為 ρΜί)=~ dE "dEdyl dnetj^rj) -H ^{netjiri)) dnetjiri) ^ k ,今=1 (11) .Ο ,ί/=〇 則w/、彳以及〇變化量可表示為 △w/. dE dmj.13 1363546 On January 13, 101, the revised replacement page 208, the energy function for the eiy〇c, _) is slightly divided into ρΜί)=~ dE "dEdyl dnetj^rj) -H ^{netjiri) ) dnetjiri) ^ k , now = 1 (11) . Ο , ί / = 〇 w/, 彳 and 〇 change can be expressed as △ w /. dE dmj.

Vn, -IsVn, -Is

dEdE

Aaf ~Va dE dalAaf ~Va dE dal

Vs % '9E dy0 f dnet.{rj.)^ dy^etjirj) A dmi J dE dya Ύ dnetj^r】)、 dy0 dnetjirl)^ dsf J ~ dE dyn ' f dnet^r^ = ^mPj· VsPj dy0 dnety.) da{ 2(r/ - mj ) -从一^^-1) (s!f (12) 2(r/ - mff ~W~ (13)Vs % '9E dy0 f dnet.{rj.)^ dy^etjirj) A dmi J dE dya Ύ dnetj^r】), dy0 dnetjirl)^ dsf J ~ dE dyn ' f dnet^r^ = ^mPj· VsPj dy0 Dnety.) da{ 2(r/ - mj ) - from a ^^-1) (s!f (12) 2(r/ - mff ~W~ (13)

(Η) 其1別代表高斯函數之中心點和寬度以及施網路 遞迴結構權重值的學科。高斯函數之中心點和寬度以及2〇5網 路遞迴結構權重值更新值可表示成 mj (« +1) = m/ (η) + Amj (η) 5/ {n + \) = sf (η) + Asj(n)(Η) The discipline that represents the center point and width of the Gaussian function and the value of the network recursive structure weight. The center point and width of the Gaussian function and the update value of the 2〇5 network recursive structure weight value can be expressed as mj (« +1) = m/ (η) + Amj (η) 5/ {n + \) = sf ( η) + Asj(n)

(15) (16) +1) = α/⑻ + △«/(«) 由於-般系統含有不綠定量因素,導致系統靈敏度蜂。、 ㈣。、辦。以及⑽β不能夠輕易的決定,雖然智慧型鑑別器 伽emgent Iden㈣可以用來估算系統靈敏度,以須要魔大的計算 (17) 量。為了克服這個問題,且增加線上 千習的迷率’本發明系統靈 14 1363546 101年01月13日修正替換頁 敏度以符號函數近似如下 dx i ssgn 、△凡J = sgn V dy \ = sgn .=sgn dx f 二 sgn = sgn V dy ^ V = sgn —= sgn lAy〇, χ{ή) - χ{η -1) I凡⑻-凡〇-i) J y{ri) - y{n -1) .凡(《)_凡(《_1) x{n) - x{n -1) ,y〇{n)-y〇{n-\) j y{n)-y{n-\) y〇{n)-y0{n-\)^ Λ (18) 其中sgn(·)代表符號函數。 三、學習率更新模组 選擇不同的參數學習率對於網路的效能有著明顯的影響,為 了能夠有效的訓練100動態派翠遞迴式模糊類神經網路的參數 值,本發明利用離散型里亞普諾(Discrete-type Lyapunov)穩定理論求 得學習率之更新值以使得誤差訊號得以收斂。 根據(6)式,定義離散式里亞普諾(Discrete-type Lyapunov)函數變 化量為 AE(n)^E(n + \)-E(n) (19) 因此能量函數可藉由(8)和(12)-(14)式表示為 E{n +1) = Ε{ή) + AE(n) 15 1363546 0=1 k-\ ^f: 101年01月13日修正替換頁(15) (16) +1) = α/(8) + △«/(«) Since the system contains non-green quantitative factors, the system sensitivity is caused by bees. (4). ,do. And (10) β can't be easily decided, although the smart discriminator gamempent Iden (4) can be used to estimate the sensitivity of the system, which requires a large amount of calculations (17). In order to overcome this problem, and increase the odds of online learning, the system of the present invention 14 1363546 January 13, 101 revised replacement page sensitivity is similar to the following symbolic function dx i ssgn, △ where J = sgn V dy \ = sgn .=sgn dx f 二sgn = sgn V dy ^ V = sgn —= sgn lAy〇, χ{ή) - χ{η -1) I (8)-凡〇-i) J y{ri) - y{n -1). (()_凡("_1) x{n) - x{n -1) , y〇{n)-y〇{n-\) jy{n)-y{n-\) Y〇{n)-y0{n-\)^ Λ (18) where sgn(·) represents a symbol function. Third, the learning rate update module selects different parameter learning rate has a significant impact on the performance of the network. In order to effectively train the parameter values of the 100 dynamic recursive fuzzy neural network, the present invention utilizes the discrete type. The Discrete-type Lyapunov stability theory finds the updated value of the learning rate so that the error signal converges. According to the formula (6), the discrete variation of the Discrete-type Lyapunov function is defined as AE(n)^E(n + \)-E(n) (19) so the energy function can be obtained by (8) And (12)-(14) are expressed as E{n +1) = Ε{ή) + AE(n) 15 1363546 0=1 k-\ ^f: Modified replacement page on January 13, 101

V,V't^(w)a j , dE(n) dE(n) A ;1Μ[^'+^'+-ύτΑα!] V +五⑻ <E{n) + E(n) E{n) 1 Vw 4 m 1 4 E(n) 1 4 E(n) 1 ”a 4 五⑻ ··〇 'y ΣΣ JH "ί n〇 ΣΣΣ Hi <dE(n)dxi dyn dsf dE{n) dy0 .^y〇 dE(n) dxt dy0 dx, dy0dmi 、2 私 dyQ dsj \2 (20) 其中△<、△<、M和分別表示214網路輸出層與網路規則層 之間權重值的變化量、高斯函數中心點和寬度的變化量以及205 網路遞迴結構權重值的變化量;|.丨表示取絕對值。100動態派翠遞 迴式模糊類神經網路的學習率設計為 Ε{ή) % 4 ΘΕ(η) dyn ^ dy0 dw°k 〇=\ 、2 + ε (21) E(n) 4 "I __J ··〇ΣΣΣ i=l j=\ o=lV,V't^(w)aj , dE(n) dE(n) A ;1Μ[^'+^'+-ύτΑα!] V +5(8) <E{n) + E(n) E{ n) 1 Vw 4 m 1 4 E(n) 1 4 E(n) 1 ”a 4 5(8) ··〇'y ΣΣ JH "ί n〇ΣΣΣ Hi <dE(n)dxi dyn dsf dE{n ) dy0 .^y〇dE(n) dxt dy0 dx, dy0dmi , 2 private dyQ dsj \2 (20) where Δ<, △<, M and respectively represent 214 between the network output layer and the network rule layer The amount of change in the weight value, the change in the center point and width of the Gaussian function, and the change in the weight value of the 205 network recursive structure; |.丨 indicates the absolute value. 100 Dynamic Pai Cui recursive fuzzy neural network learning The rate is designed as Ε{ή) % 4 ΘΕ(η) dyn ^ dy0 dw°k 〇=\ , 2 + ε (21) E(n) 4 "I __J ··〇ΣΣΣ i=lj=\ o=l

Vs dE{n) dxs dyn dXj dy0 dnijE{n) \2 + ε (22) 4 yyy dE(n) dxt dyn (23) + ε 1363546Vs dE{n) dxs dyn dXj dy0 dnijE{n) \2 + ε (22) 4 yyy dE(n) dxt dyn (23) + ε 1363546

Va E{n)Va E{n)

4 ΣΣΣ /=1 y=l o=l4 ΣΣΣ /=1 y=l o=l

dE(n) dxi dyo Y + ε 如丨dy〇 daf 其中5為正的常數。根據(21)-(24)學習率設計,使得 1 f f rdE(n) dy0 Y 4 E(n)tif^ l ^y〇 ^1) 4 Ε{ή) ,=1 j=\ 〇=ι dx. dya dmjdE(n) dxi dyo Y + ε as 丨dy〇 daf where 5 is a positive constant. According to the (21)-(24) learning rate design, let 1 ff rdE(n) dy0 Y 4 E(n)tif^ l ^y〇^1) 4 Ε{ή) ,=1 j=\ 〇=ι dx . dya dmj

V (24) (25)V (24) (25)

4五⑻合台合L \2 <1 1_-^ yyyi^(^)5y, dyn 4 [d^^Td^l 因此可得到五(《 + 1)<五⑻,再根據⑹式得知五⑻>〇和仏⑻<〇,所 以誤差訊號會漸漸地收斂。 【實施方式】 本發明「動態派翠遞迴式模糊類神經網路即時控制系統之 一實施例為運用在自走車之循軌即時控制系統,所採用自走車裝 置之示意圖如「第三圖」所示,包含兩個操縱輪與_支樓輪設置 於車體,該操縱輪分別由兩個獨立之直流馬達所控制,並且平疒 於輪軸。該支樓輪為被動之自由輪,可隨操縱輪控制於任意之^ 度。圖中26為兩個操縱輪之間的距離,且操縱輪之直徑表干w 圖中c點為自走車之質心位置;时p點為輪轴與該料:穿^ 點垂直線之交又點,該P點表示自走車在座標系統之位置;圖中 17 1363546 ___ 101年01月13日修正替換頁 {0,U,V}為全域座標系統,自走車在全域座標系統的位置可表示成 尸=[w vf,其中ί/和V分別代表全域座標中的橫轴與縱軸;圖中 {P,X,Y}為局部座標系統,亦即以P點為原點之座標系統;圖中Θ為 全域座標與局部座標之相對角度,且起始角由U軸開始量起。假 設自走車的輪子只有轉動且不產生側移的情況之下,亦即自走車 移動的方向垂直於輪軸,因此自走車之行動約束可表示成 vcos^-«sin^ = 0 (26) 自走車移動之示意圖如「第四圖」所示,圖中Q和Q·代表自走車的 鲁 位置從取樣時間%到% +1 ;△«和Δν表示全域座標中U軸和V軸之 位移量;ΔΘ表示自走車角度之旋轉量;r,、r。和&代表Q點移動至 Q'點的旋轉半徑,即為原點0至左輪之間的距離;C為原點Ο至Q 點之間的距離;(為原點0至右輪之間的距離;且$、尤及元為所 對應旋轉半徑之弧長;ΑΘ和r。可表示成 △0=尝(Vr_v/) (27) V, + V, L r〇= b (28) 其中Δί代表取樣時間的間隔;V/和v/分別代表左輪速度和右輪速 度,其最大值限制設定為vmax ;在全域座標系統中自走車之離散式 動態方程式可表示成 u{ns +1) = u(ns) + ^{sinf^^) + ^θ(η5)] - sin^^)} +1) = ν(«5) + ro{cos0(ns) - cosf^C^) + Δ^(«5)]} (29) e(ns+\) = e(ns) + A0(ns) 其中%代表取樣時間。假如自走車在全域座標的控制命令位置為4 five (8) combined with L \2 <1 1_-^ yyyi^(^)5y, dyn 4 [d^^Td^l thus can get five (" + 1) < five (8), then according to (6) Knowing five (8) > 〇 and 仏 (8) < 〇, so the error signal will gradually converge. [Embodiment] An embodiment of the dynamic dispatching fuzzy-type neural network real-time control system of the present invention is a tracking automatic control system used in a self-propelled vehicle, and a schematic diagram of a self-propelled vehicle device is used as a third As shown in the figure, the two steering wheels and the _ branch wheel are disposed on the vehicle body, and the steering wheels are respectively controlled by two independent DC motors and are horizontally mounted on the axle. The branch wheel is a passive freewheel that can be controlled at any degree with the steering wheel. In the figure, 26 is the distance between the two steering wheels, and the diameter of the steering wheel is dry. In the figure, point c is the centroid position of the self-propelled vehicle; the point p is the axle and the material: the vertical line of the punching point After the intersection, the P point indicates the position of the self-propelled vehicle in the coordinate system; in the figure, 17 1363546 ___ January 13, 101 revised replacement page {0, U, V} is the global coordinate system, the self-propelled vehicle in the global coordinate system The position can be expressed as a corpse =[w vf, where ί/ and V represent the horizontal and vertical axes in the global coordinates, respectively; {P, X, Y} in the figure is the local coordinate system, that is, the point P is the origin The coordinate system; in the figure, the relative angle between the global coordinates and the local coordinates, and the starting angle is measured by the U axis. Assuming that the wheel of the self-propelled vehicle only rotates and does not produce a side shift, that is, the direction in which the self-propelled vehicle moves is perpendicular to the axle, the action constraint of the self-propelled vehicle can be expressed as vcos^-«sin^ = 0 (26 The schematic diagram of the self-propelled vehicle movement is shown in the “fourth figure”. In the figure, Q and Q· represent the Lu position of the self-propelled vehicle from the sampling time % to % +1; △« and Δν represent the U-axis and V in the global coordinates. The amount of displacement of the shaft; ΔΘ represents the amount of rotation of the self-propelled vehicle angle; r, r. And & represents the radius of rotation of the Q point to the Q' point, which is the distance between the origin 0 and the left wheel; C is the distance between the origin point Q to the Q point; (between the origin 0 to the right wheel) The distance; and $, especially the element is the arc length of the corresponding radius of rotation; ΑΘ and r can be expressed as △0= taste (Vr_v/) (27) V, + V, L r〇= b (28) Δί represents the interval of sampling time; V/ and v/ represent the left wheel speed and the right wheel speed respectively, and the maximum limit is set to vmax; in the global coordinate system, the discrete dynamic equation of the self-propelled vehicle can be expressed as u{ns +1 ) = u(ns) + ^{sinf^^) + ^θ(η5)] - sin^^)} +1) = ν(«5) + ro{cos0(ns) - cosf^C^) + Δ ^(«5)]} (29) e(ns+\) = e(ns) + A0(ns) where % represents the sampling time. If the self-propelled car is in the global coordinate control position

18 1363546 ------- vdf Q01 年01 月 13 曰修 °又。十控制器時須將全域座標 Ta[c〇^ sin^l _ 稽由轉換矩陣 -sin0 — COS0 V c〇s6> sin6>' ( -¾. _sin6> ~cos0 (30) 能夠達到即時狹跳二、疋找到適合的控制訊號’使自走車 縱控制,為了達到此控制目標 =縱誤差一…,其… ^統之座標,然後經由控制法則得到適合的左輪速度⑴以及 右輪速度(〇來操縱自走車達到雜追蹤控制之目的。丨 能,二=?自走車在不同參考路徑(控制命令)達到追蹤之效 又 自走車動態派翠遞迴式模糊類神經網路,其結合20 網路派翠層以及204網路遞迴結構於傳統的模糊類神經網路中, 其即時控制系紙方塊圖如「第五圖」所示,圖中包含綱座標轉 換器 自走車動態派翠遞迴式模糊類神經網路、5〇2自走車妒 置、503自走車線上參數調整模組及5()4自走車學習率更新模纪。 該500座標轉換器將全域座標轉為局部座標;該洲自走車動態 派翠遞迴式模_神經網路制本發明之丨⑽動態派翠遞迴式二 糊類神經轉,《追_差靖印及其好(u)求得適合 之左輪速度(V,)和右輪速度(vj來操縱5〇2自走車裝置;該$的自 走車裝置根據左右輪速來移動自走車,並且以全域座標以及 車子方位Θ表示自走車的姿態;該5〇3自走車線上參數調整模組採 19 1〇i年01月13日修正替換頁 本發月之1〇2線上參數調整模組,根據學習率見)、追 縱誤差訊號(e〆),)及其微分來調整5〇1自走車動態派翠遞迴 式Μ糊類神經網路參數之變化量(△<,_,耐該綱自走車 千習率更新模組採用本發明< 1〇3學習率更新模組,根據5⑴自 走車動I、派翠遞迎式板糊類神經網路參數(«f,旬)、追蹤誤差 訊號呀>及其微分(切求得學習率之更新值。 為了驗證本發明的即時控制性能,在此亦提出習 用之網路架 構控制系統來比較其性能,其自走車裝置的參數可表示& φ -〇.〇925m; 6 = 〇.l67m;Vmax=〇.4m/s (31) 為了顯不501自走車動態派翠遞迴式模糊類神經網路有較優越的 效此,比較另外三個不同的網路結構,包含模糊類神經網路 (FNN)、遞迴式模糊類神經網路(rfnn)以及派翠模糊類神經網路 (PFNN) ’且使用相同的5〇3自走車線上參數調整模組、5〇4自走 車子S率更新模組、輸入訊號以及輸出訊號。其輸入訊號為追蹤 誤差訊號及其微分(<,€);輸出訊號為左輪速度(V,)和右輪速 ® 度(〇。網路參數初始值為先前訓練過的值 ,此先前訓練的參數值 採用先前所介紹之503自走車線上參數調整模組及5〇4自走車學 習率更新模組,當其達到滿意之控制效能的值,再將此次的參數 值设定為下一次執行之初始值。 本實驗所採用之軟體為Visual C++,撰寫於pentium IV之個 人電知上,自走車之型號為Pioneer,由MobileRobots公司所製造。 1363546 _ 101年01月13日修正替換頁 • 發展板為 Hitachi H8S ;頻率 44.2368MHz ; 32bitRISC ; 32k RAM ; . 128k FLASH ;自走車與電腦的連線採用無線網路傳輸模組;輪子 由12伏特直流馬達控制採用PWM訊號;每個馬達裝有 128count/mm的感測器用於位置回授。本實驗選擇兩種參考路徑 (控制命令)來測試控制系統的性能,一是8字型的軌跡,其表示式 如下:18 1363546 ------- vdf Q01 January 13 曰修 ° again. When the controller is ten, the global coordinate Ta[c〇^ sin^l _ audition matrix-sin0 — COS0 V c〇s6>sin6>' ( -3⁄4. _sin6> ~cos0 (30) must be able to achieve the instant spur疋 Find the appropriate control signal 'to make the self-propelled vehicle longitudinal control, in order to achieve this control target = vertical error one..., its ... coordinates, then get the appropriate revolver speed (1) and right wheel speed through the control law Manipulating the self-propelled car to achieve the purpose of miscellaneous tracking control. 丨能,二=? Self-propelled car in different reference paths (control commands) to achieve tracking effect and self-propelled car dynamic sective recursive fuzzy neural network, the combination 20 The network sentiment layer and the 204 network recursive structure are in the traditional fuzzy neural network. The real-time control paper block diagram is shown in the “fifth figure”, which contains the coordinate converter self-propelled car dynamics. Pai Cui recursive fuzzy neural network, 5〇2 self-propelled car, 503 self-propelled car line parameter adjustment module and 5 () 4 self-propelled car learning rate update model. The 500 coordinate converter will be global The coordinates are converted to local coordinates; According to the invention of the invention by the network (10), the dynamic dispatching type of the two-paste type of nerves is turned, and "the chasing _ 静静印 and its good (u) find the suitable revolving speed (V,) and the right wheel speed (vj Manipulating the 5〇2 self-propelled vehicle device; the $ self-propelled vehicle device moves the self-propelled vehicle according to the left and right wheel speeds, and represents the posture of the self-propelled vehicle with the global coordinates and the vehicle orientation; the 5〇3 self-propelled vehicle line parameters The adjustment module is used to adjust the replacement page of the 1st and 2nd line parameter adjustment module of the month of January 1st, which is adjusted according to the learning rate, the tracking error signal (e〆), and its differential. 5〇1 Self-propelled car dynamics, the number of changes in the parameters of the neural network parameters (△<, _, the resistance to the class self-propelled car, the rate of the update module using the invention < 1〇3 learning The rate update module is based on 5(1) self-propelled vehicle movement I, Pai Cui's welcoming plate-like neural network parameters («f, X), tracking error signal y > and its differentiation (required update rate of learning rate) In order to verify the instant control performance of the present invention, a conventional network architecture control system is also proposed to compare the performance of the self-propelled vehicle. Can represent & φ -〇.〇 925m; 6 = 〇.l67m; Vmax=〇.4m/s (31) In order to show the dynamics of the 501 self-propelled car, the Cui recursive fuzzy neural network has superior effect. Thus, compare three other different network structures, including fuzzy neural network (FNN), recursive fuzzy neural network (rfnn), and Paifu fuzzy neural network (PFNN)' and use the same 5 〇3 self-propelled car line parameter adjustment module, 5〇4 self-propelled car S rate update module, input signal and output signal. The input signal is tracking error signal and its differential (<,€); output signal is revolver Speed (V,) and right wheel speed ® degrees (〇. The initial value of the network parameter is the previously trained value. The previously trained parameter value adopts the previously introduced 503 self-propelled vehicle line parameter adjustment module and the 5〇4 self-propelled vehicle learning rate update module, when it reaches satisfactory. Control the value of the performance, and then set the parameter value of this time to the initial value of the next execution. The software used in this experiment is Visual C++, written on the personal computer of the Pentium IV. The model of the self-propelled car is Pioneer, which is manufactured by MobileRobots. 1363546 _ 101 January 101 revised replacement page • Development board for Hitachi H8S; frequency 44.2368MHz; 32bitRISC; 32k RAM; . 128k FLASH; self-propelled car and computer connection using wireless network transmission module; wheel by 12 The volt DC motor control uses PWM signals; each motor is equipped with a 128count/mm sensor for position feedback. This experiment selects two reference paths (control commands) to test the performance of the control system. One is the 8-shaped trajectory, which is expressed as follows:

xd = ,2πί π, cos( π Τ 2' • π 2πί. cost . 2 Τ ,2πί π' cos( τ Τ 2. .π 2πί. cos(--- 2 Τ ,0<,<40 ,40<ί <80 ,80<ί<120 ,120</<160 yd 1 · /2^ 1 + sin(- τ --),0</<40 2 3 + sin(—-2 Ύττί ),40<ί<80 Τ -.2πί 3 + sin(- τ --),80</<120 2 1 + sin(—-2 Οττΐ ),120<ί<160 Τ (32) 另一個為方形的執跡,其表示式如下: xd ΟΛί ,0<?<10 l + cos[2^-1〇>-Τ 昏] ,10<ί <30 2 ,30<ί <50 l + cos[2;r(i-3〇)-Τ 營] ,50<ί <70 1-0.1(ί-70) ,70 < ί < 90 . Γ2π(ί-50) -l + cos[—--- Τ -f] ,90</<110 -2 ,110<ί<130 . Γ2π{ί + \0) -1 + cos「----- Τ -f] ,130<ί<150 -1 + 0.1(ί-110) ,150<ί<160 21 1363546 101年01月13日修正替換頁 1 + sin[ 2π(ί-10) ~~Τ 1 + 0.1(/ - 30) 3 + sin[-神-3〇) 4 Τ 3 + sin[ 2π(ί - 50) ~~Τ 3-0.1(ί-110) 1+ 2^+10) Τ ,0</<10 -],10<ί<30 2 ,30 <ί < 50 -],50<ί<70 2 ,70<ί <90 -1 ,90</<110 2 ,110</<130 奮],130<,<150 (33) Ο ,150<ί<160 自走車的初始位置和角度預設為零,且系統之控制參數表示如下: 4=0.1 ;£= 0.05; Δί = 0.05 s (34) (34)式中的控制參數係考慮可能之運作環境下所選取較佳性能的 一組參數值。為了能夠比較各網路結構控制系統的性能,在此定Xd = , 2πί π, cos( π Τ 2' • π 2πί. cost . 2 Τ , 2πί π' cos( τ Τ 2. .π 2πί. cos(--- 2 Τ ,0<,<40 ,40<;ί<80,80<ί<120,120</<160 yd 1 · /2^ 1 + sin(- τ --),0</<40 2 3 + sin(--2 Ύττί ) ,40<ί<80 Τ -.2πί 3 + sin(- τ --),80</<120 2 1 + sin(--2 Οττΐ ),120<ί<160 Τ (32) the other is square The manifestation is as follows: xd ΟΛί ,0<?<10 l + cos[2^-1〇>-Τ 昏], 10<ί <30 2 ,30<ί <50 l + Cos[2;r(i-3〇)-Τ camp] ,50<ί <70 1-0.1(ί-70) ,70 < ί < 90 . Γ2π(ί-50) -l + cos[ ———-- Τ -f] ,90</<110 -2 ,110<ί<130 . Γ2π{ί + \0) -1 + cos "----- Τ -f] ,130<ί< 150 -1 + 0.1(ί-110) ,150<ί<160 21 1363546 Modified on January 13, 101, replace page 1 + sin[ 2π(ί-10) ~~Τ 1 + 0.1(/ - 30) 3 + Sin[-神-3〇) 4 Τ 3 + sin[ 2π(ί - 50) ~~Τ 3-0.1(ί-110) 1+ 2^+10) Τ ,0</<10 -],10&lt ;ί<30 2 ,30 < ί < 50 -],50<ί <70 2 ,70<ί <90 -1 ,90</<110 2 ,110</<130 Fen],130<,<150 (33) Ο ,150<ί<160 Self-propelled car The initial position and angle are preset to zero, and the control parameters of the system are expressed as follows: 4=0.1 ; £= 0.05; Δί = 0.05 s (34) The control parameters in (34) are considered in the possible operating environment. A set of parameter values for better performance. In order to be able to compare the performance of each network structure control system, here

義平均誤差值(MSE)為The mean error value (MSE) is

MSE = 1^V*)+^ 1 n=\ 其中:r代表取樣時間的總和。 本實驗首先針對模糊類神經網路(FNN)在歸屬函數層中不同 數目之神經元時,所產生不同的即時控制效能,其平均誤差值(MSE) 和執行時間顯示在第六圖。根據第六圖的結果可發現,神經元在 七個的時候效能最好,換句話說,此網路% = 4、'. = 7、 '=7x7x7x7 = 2401及% = 2時,較其他的網路大小更適合自走車路 徑追蹤,因此接下來的實驗以此網路為基礎,控制系統調整的參MSE = 1^V*)+^ 1 n=\ where: r represents the sum of the sampling times. This experiment firstly produces different instantaneous control performances for fuzzy neural networks (FNN) with different numbers of neurons in the attribution function layer. The average error value (MSE) and execution time are shown in the sixth graph. According to the results of the sixth graph, it is found that the neurons perform best at seven times. In other words, this network is lower than the other when %=4, '.=7, '=7x7x7x7 = 2401 and %=2. The network size is more suitable for self-propelled vehicle path tracking, so the next experiment is based on this network, the control system adjustment parameters

22 1363546 】〇】年01月13曰修正替換頁 ' 數總合共有2^«/+«产'=4858個。然而5〇1^態派@--- , 迴式模糊類神經網路參數調整的數目則是根據(3)式的預設臨界值 AM,因A所需要的記憶體和執行迷度都比模糊類神經網路 (FNN)控制系統要來的少,儘管需要更多的規則數來増強追蹤響 應,並不會造成龐大的運算量,亦不會使電腦或微處理器當機。 所有控制系統的實驗結果都顯示在圖七到圖十四,包括8字 ^ 型和方形的路桎追蹤,其中圖七、九、十一以及十三為8字型的 追縱響應;圖人、十、十二以及十四為方形的追縱響應。每張圖 中(a)和(b)分別代表X軸和γ軸的追蹤響應;(c)和(d)分別代表乂軸 和Y軸的追縱誤差,(e)和⑺分別代表左輪速度和右輪速度;⑻為 路t追蹤響應,(h)則是路徑追縱誤差^由實驗結果得知,影響即 時控制系統的追蹤響應以及強健性能的最大因素為控制系統本身 的學習能力;㈣執行時間則是網路㈣構^第十五圖整理所有 鲁網路結構控制系統的平均誤差值(MSE)和執行時間,遞迴式模糊類 神I網路(RFNN)的控制效能明顯比模糊類神經網路(F_來得 好因為遞迴式模糊類神經網路(rfnn)的遞迴結構增加網路之對 應月匕力’雖然派翠模糊類神經網路(pF_的平均誤差值稍 微較遞迴式_類神經(RFNN)的大,但是執行時間卻少許多,因 U翠模糊類H網路(PFNN)中有預設臨界值的限制,使得過低 的’麟歸屬函數層輸出和所對應之變化量不執行運算;比較圖十三 矛口十四愈圖七到— —’501自走車動態派翠遞迴式模糊類神經網路 23 丄 101年01月13日修正替換頁 的平均誤差值(MSE)比遞迴式模糊類神經網路(RFNN)來的小’其 . 執行時間接近於派翠模糊類神經網路(pFNN),由此結果得知5〇1 自走車動態派翠遞迴式模糊類神經網路的效能確實較其他網路結 構控制系統優越。 本實施例成功的結合208網路派翠層和204網路遞迴結構於 傳統之模糊類神經網路,並且展現训自走車動態派翠遞迴式模22 1363546 】 〇 】 January 13 曰 revised replacement page 'The total number of total 2 ^ « / + « production ' = 4858. However, the number of parameter adjustments of the 模糊 fuzzy state neural network is based on the preset threshold value AM of (3), because the memory and execution ambiguity required by A are higher than The fuzzy neural network (FNN) control system has less to come, although it requires more rules to barely track the response, and does not cause a huge amount of computation, nor does it cause the computer or microprocessor to crash. The experimental results of all control systems are shown in Figure 7 to Figure 14, including 8-word type and square path tracking, in which Figures 7, 9, 11 and 13 are 8-shaped tracking responses; , ten, twelve and fourteen are square tracking responses. In each figure, (a) and (b) represent the tracking response of the X-axis and the γ-axis, respectively; (c) and (d) represent the tracking error of the 乂 and Y axes, respectively, and (e) and (7) represent the left wheel speed and the right, respectively. Wheel speed; (8) is the path t tracking response, (h) is the path tracking error ^ is known from the experimental results, the biggest factor affecting the tracking response and robust performance of the immediate control system is the learning ability of the control system itself; (4) execution time It is the network (four) structure ^ fifteenth map to organize the average error value (MSE) and execution time of all Lu network structure control systems, the control efficiency of the recursive fuzzy God I network (RFNN) is significantly better than the fuzzy type of neural The network (F_ is good because the recursive structure of the recursive fuzzy neural network (rfnn) increases the corresponding monthly power of the network'. Although the Peifu fuzzy neural network (the average error value of pF_ is slightly better) The back-type _-like nerve (RFNN) is large, but the execution time is much less. Because of the preset threshold value limitation in the U-fuzzy H-network (PFNN), the output of the low-level lining function layer is too low. The corresponding change amount does not perform the operation; compare the figure thirteen spear 14 To - '501 self-propelled car dynamic Pai Cui recursive fuzzy neural network 23 01 101 January 101 revised the average error value of the replacement page (MSE) than the recursive fuzzy neural network (RFNN) The small 'its. execution time is close to the Paifu fuzzy-like neural network (pFNN), and as a result, it is known that the performance of the 5〇1 self-propelled car dynamic regenerative fuzzy neural network is indeed better than other network structures. The control system is superior. This embodiment successfully combines the 208 network Pai layer and the 204 network recursive structure into the traditional fuzzy neural network, and demonstrates the self-propelled dynamic dispatching mode.

糊類神、·^網路的即時控制性能於路徑追蹤上。1⑼動態派翠遞迴式 模糊類神網路可簡化規則數之運算以及增加網路之對應能力, 由實驗結果得知5〇1 自走車動態派翠遞迴式模糊類神經網路追縱 效能比模糊類神經網j^rpxTXT、a _ 甲、&、馬路(FNN)提高23.42。/。;其執行時間亦減少 95.65〇/〇。 本發月動態派翠遞迴式模糊類神經網路即時控制系統」主 要之優點分述如下: 月動態派翠遞迴式模糊類神經網路即時控制系統」提 出新的動ϋ翠遞迴式模_神經網路結構,且加人收線上參 數調整模__路參數之學習,以及⑼學習率更新模組使得 誤差訊號得以收叙, 做目此本發明相當具有新穎性。 2.本發明㈣派翠遞迴式模糊_ _路即時控制系統」提 出之網路結構成1 力地運料自走車裝置上,由實驗結果可證明苴 性能比以往之網路結播 '、 控制性能來的優越,因此本發明較 術明顯具有進步性。 & 孜 24 1363546 _ 101年01月13日修正替換頁 - 3.本發明「動態派翠遞迴式模糊類神經網路即時控制系統」提 . 出之即時控制系統可運用於任意之101受控體,同時可加入102 線上參數調整模組及103學習率更新模組,達到所需之即時控制 效能,因此本發明相當具有產業利用性。 雖然本發明已前述較佳實施例揭示,然其並非用以限定本發 明,任何熟習此技藝者,再不脫離本發明之精神和範圍内,當可 作各種之變動與修改,因此本發明之保護範圍當視後附之申請專 β利範圍所界定者為準。 【圖式簡單說明】 第一圖 表示本發明動態派翠遞迴式模糊類神經網路即時控 制系統方塊圖 第二圖 表示本發明動態派翠遞迴式模糊類神經網路之架構 圖 ® 第三圖表示自走車裝置之示意圖 第四圖 表示自走車移動之示意圖 第五圖 表示自走車即時控制系統方塊圖 第六圖 表示模糊類神經網路控制系統之平均誤差值和執行 時間 第七圖 表示8-字型路徑追蹤採模糊類神經網路控制系統之 實驗結果 第八圖 表示方形路徑追蹤採模糊類神經網路控制系統之實 25 1363546 _ 101年01月13日修正替換頁 驗結果 第九圖 表示8·字型路徑追蹤採遞迴式模糊類神經網路控制 系統之實驗結果 第十圖 表示方形路徑追蹤採遞迴式模糊類神經網路控制系 統之貫驗結果 第十一圖表示8-字型路徑追蹤採派翠模糊類神經網路控制系 統之實驗結果 第十二圖表示方形路徑追蹤採派翠模糊類神經網路控制系統 β 之實驗結果 第十三圖表示8-字型路徑追蹤採動態派翠遞迴式模糊類神經 網路控制系統之實驗結果 第十四圖表示方形路徑追蹤採動態派翠遞迴式模糊類神經網 路控制糸統之實驗結果 第十五圖表示模糊類神經網路、遞迴式模糊類神經網路、派The real-time control performance of the paste god, ^ network is on the path tracking. 1(9) Dynamic Pai Cui recursive fuzzy celestial network can simplify the calculation of the number of rules and increase the corresponding ability of the network. It is known from the experimental results that the 5〇1 self-propelled car dynamics are sent back to the fuzzy neural network. The performance is 23.42 higher than the fuzzy neural network j^rpxTXT, a _ A, &, and the road (FNN). /. Its execution time was also reduced by 95.65〇/〇. The main advantages of this month's dynamic dispatching fuzzy back-type fuzzy neural network real-time control system are as follows: The monthly dynamic dispatching fuzzy back-type fuzzy neural network real-time control system proposes a new dynamic jade recursive The __ neural network structure, and the addition of the parameter adjustment module __path parameters learning, and (9) the learning rate update module allows the error signal to be narrated, the invention is quite novel. 2. The invention (4) Pai Cui recursive fuzzy _ _ road real-time control system proposed network structure into a force to transport the self-propelled vehicle device, the experimental results can prove that the performance of the network than the previous network ' The control performance is superior, so the present invention is obviously progressive. & 孜 24 1363546 _ 101 January 101 revised replacement page - 3. The instant control system of the "dynamic dispatching fuzzy back-type fuzzy neural network real-time control system" of the present invention can be applied to any 101 The control body can also add 102 online parameter adjustment module and 103 learning rate update module to achieve the required immediate control performance, so the invention is quite industrially useful. The present invention has been disclosed in the foregoing preferred embodiments, and is not intended to limit the scope of the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope is subject to the definition of the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS The first figure shows the dynamic control system of the present invention. The second diagram shows the architecture diagram of the dynamic dispatching fuzzy-type neural network of the present invention. The three diagrams show the schematic diagram of the self-propelled vehicle. The fourth diagram shows the movement of the self-propelled vehicle. The fifth diagram shows the block diagram of the self-propelled vehicle. The sixth diagram shows the average error value and execution time of the fuzzy neural network control system. The seven graphs represent the experimental results of the 8-shaped path tracking fuzzy neural network control system. The eighth figure shows the square path tracking fuzzy neural network control system. 25 1363546 _ 101 January 101 revised replacement page Results The ninth graph shows the experimental results of the 8· font path tracking and returning fuzzy-like neural network control system. The tenth graph shows the results of the square path tracking and harvesting back-type fuzzy neural network control system. The figure shows the experimental results of the 8-shaped path tracking and the acquisition of the Cui fuzzy-like neural network control system. The twelfth figure shows the square path tracking. The experimental results of the network control system β are shown in the thirteenth figure. The experimental results of the 8-shaped path tracking mining dynamic dispatching fuzzy-type neural network control system show that the square path tracking mining dynamics The experimental results of the fuzzy neural network control system, the fifteenth figure shows the fuzzy neural network, the recursive fuzzy neural network, the pie

翠模糊類神經網路及動態派翠遞迴式模糊類神經網 I 路控制系統之平均誤差值和執行時間 【主要元件符號說明】 100 動態派翠遞迴式模糊類神經網路 · 101 受控體 102 線上參數調整模組 103 學習率更新模組The average error value and execution time of the C-fuzzy-like neural network and the dynamic Pai-Cui retro-type fuzzy neural network I-channel control system [Key component symbol description] 100 Dynamic Pai Cui recursive fuzzy neural network · 101 Controlled Body 102 online parameter adjustment module 103 learning rate update module

26 1363546 101年01月13曰修正替換頁 200 網路輸入訊號 201 網路輸入層 202 網路歸屬函數層 203 網路歸屬函數神經元 204 網路遞迴結構 205 網路遞迴結構權重值 206 網路歸屬函數層輸出26 1363546 101 January 101 曰Revision replacement page 200 Network input signal 201 Network input layer 202 Network attribution function layer 203 Network attribution function Neuron 204 Network recursive structure 205 Network recursive structure weight value 206 Network Road attribution function layer output

207 時間延遲單元 208 網路派翠層 209 傳送閥 210 網路規則層 211 網路規則層輸出 212 網路派翠層與網路規則層之間權重值 213 網路輸出層207 Time Delay Unit 208 Network Pai Layer 209 Transfer Valve 210 Network Rule Layer 211 Network Rule Layer Output 212 Weight Value Between Network Pai Layer and Network Rule Layer 213 Network Output Layer

214 網路輸出層與網路規則層之間權重值 215 網路輸出訊號 500 座標轉換器 501 自走車動態派翠遞迴式模糊類神經網路 502 自走車裝置 503 自走車線上參數調整模組 504 自走車學習率更新模組 27214 Network output layer and network rule layer weight value 215 Network output signal 500 coordinate converter 501 Self-propelled vehicle dynamic Pai Cui recursive fuzzy neural network 502 Self-propelled vehicle device 503 Self-propelled car line parameter adjustment Module 504 self-propelled vehicle learning rate update module 27

Claims (1)

1363546 ___ 101年01月13日修正替換頁 十、申請專利範圍: 1. 一種動態派翠遞迴式模糊類神經網路即時控制系統,其包含: 一動態派翠遞迴式模糊類神經網路; 一受控體; 一線上參數調整模組;及 一學習率更新模組; 該動態派翠遞迴式模糊類神經網路輸入為一誤差訊號及其微 分,輸出為一控制訊號;該受控體為所欲控制之裝置,其中該 · 受控體之輸入為該控制訊號,輸出為一感測器所量測到該受控 體的狀態,該受控體狀態與所對應控制命令相減成為該誤差訊 號,將該誤差訊號及其微分傳送至該動態派翠遞迴式模糊類神 經網路,形成即時控制系統;該線上參數調整模組係根據學習 率、該誤差訊號及其微分來調整動態派翠遞迴式模糊類神經網 路參數的變化量;該學習率更新模組係根據動態派翠遞迴式模 糊類神經網路參數、該誤差訊號及其微分,以離散型里亞普諾 # (Discrete-type Lyapunov)穩定理論求得學習率之更新值,使得該 誤差訊號得以收歛。 2. 如申請專利範圍第1項之動態派翠遞迴式模糊類神經網路即時 控制系統,該動態派翠遞迴式模糊類神經網路包含一網路輸入 層、一網路歸屬函數層、一網路派翠層、一網路規則層及一網 路輸出層;該網路輸入層將一網路輸入訊號直接傳送到該網路 歸屬函數層;該網路歸屬函數層運算該網路輸入層送來的該網 28 1363.546 _ 101年01月13日修正替換頁 - 路輸入訊號,經特定歸屬函數運算將結果傳送到該網路派翠 - 層;該網路派翠層以傳送閥的機制,判斷是否將資料傳到該網 路規則層;該網路規則層輸出為所對應的該網路派翠層之輸出 的乘積;該網路輸ώ層輸出為一網路輸出訊號,每個該網路輸 出訊號為該網路規則層輸出和該網路派翠層與該網路規則層之 間權重值乘積的所有總和。 3. 如申請專利範圍第2項之動態派翠遞迴式模糊類神經網路即時 ^ 控制系統,該網路歸屬函數層包含一網路歸屬函數神經元及一 網路遞迴結構;該網路歸屬函數神經元的輸入為上一次網路歸 屬函數層輸出乘上網路遞迴結構權重值,並加上本次網路輸入 訊號,透過特定歸屬函數做運算將結果輸出;該網路遞迴結構 係將網路歸屬函數層輸出以時間延遲一次的方式作為下次運算 的資訊,達到快速動態對應網路之能力。 4. 如申請專利範圍第2項之動態派翠遞迴式模糊類神經網路即時 控制系統,該網路派翠層為一傳送閥之機制,該機制能判斷網 路歸屬函數層輸出值的是否高於預設臨界值,禁止過低的網路 歸屬函數層輸出通過,該未通過的網路歸屬函數層輸出不需要 調整該歸屬函數層之參數,以有效減少網路運算量。 5. 如申請專利範圍第1項之動態派翠遞迴式模糊類神經網路即時 控制系統,該線上參數調整模組主要係以監督式梯度遞減法 (Supervised Gradient Descent Method)得到該動態派翠遞迴式模 29 1363546 _, 101年01月13日修正替換頁 糊類神經網路中參數值的變化量,該線上參數調整模組所有參 數值的變化量是藉由特定能量函數對所欲調整參數偏微分而產 生,經由改變該動態派翠遞迴式模糊類神經網路中參數值以達 到學習的功能,使得即時控制系統具有較佳的控制性能。 6. —種動態派翠遞迴式模糊類神經網路即時控制系統,其包含: 一動態派翠遞迴式模糊類神經網路; 一受控體;及 一線上參數調整模組; — 該動態派翠遞迴式模糊類神經網路輸入為一誤差訊號及其微 分,輸出為一控制訊號;該受控體為所欲控制之裝置,其中該 受控體之輸入為該控制訊號,輸出為一感測器所量測到該受控 體的狀態,該受控體狀態與所對應控制命令相減成為該誤差訊 號,將該誤差訊號及其微分傳送至該動態派翠遞迴式模糊類神 經網路,形成即時控制系統;該線上參數調整模組係根據固定 學習率、該誤差訊號及其微分來調整動態派翠遞迴式模糊類神 @ 經網路參數的變化量。 7. 如申請專利範圍第6項之動態派翠遞迴式模糊類神經網路即時 控制系統,該動態派翠遞迴式模糊類神經網路包含一網路輸入 層、一網路歸屬函數層、一網路派翠層、一網路規則層及一網 路輸出層;該網路輸入層將一網路輸入訊號直接傳送到該網路 歸屬函數層;該網路歸屬函數層運算該網路輸入層送來的該網 30 101年01月〗3日修正替換頁 路輸入訊號,經特定歸屬函數運算將結果傳送到該網路派翠 層;該網路派翠層以傳送閥的機制,判斷是否將資料傳到該網 路規則層;該網路規則層輸出為所對應的該網路派翠層之輸出 的乘積;該網路輸出層輸出為一網路輸出訊號,每個該網路輸 出訊號為該網路規則層輸出和該網路派翠層與該網路規則層之 間權重值乘積的所有總和。 8. 如申請專利範圍第7項之動態派翠遞迴式模糊類神經網路即時 控制系統,該網路歸屬函數層包含一網路歸屬函數神經元及一 網路遞迴結構;該網路歸屬函數神經元的輸入為上一次網路歸 屬函數層輸出乘上網路遞迴結構權重值,並加上本次網路輸入 訊號,透過特定歸屬函數做運算將結果輸出;該網路遞迴結構 係將網路歸屬函數層輸出以時間延遲一次的方式作為下次運算 的資訊,達到快速動態對應網路之能力。 9. 如申請專利範圍第7項之動態派翠遞迴式模糊類神經網路即時 控制系統,該網路派翠層為一傳送閥之機制,該機制能判斷網 路歸屬函數層輸出值的是否高於預設臨界值,禁止過低的網路 歸屬函數層輸出通過,該未通過的網路歸屬函數層輸出不需要 調整該歸屬函數層之參數,以有效減少網路運算量。 10. 如申請專利範圍第6項之動態派翠遞迴式模糊類神經網路即時 控制系統,該線上參數調整模組主要係以監督式梯度遞減法 (Supervised Gradient Descent Method)得到該動態派翠遞迴式模 1363546 101年01月13曰修正替換頁 糊類神經網路中參數值的變化量,該線上參數調整模組所有參 數值的變化量是藉由特定能量函數對所欲調整參數偏微分而產 生,經由改變該動態派翠遞迴式模糊類神經網路中參數值以達 到學習的功能,使得即時控制系統具有較佳的控制性能。1363546 ___ Revised replacement page on January 13, 101. Patent application scope: 1. A dynamic dispatching fuzzy neural network real-time control system, which includes: a dynamic dispatched fuzzy-type neural network a controlled body; an on-line parameter adjustment module; and a learning rate update module; the dynamic senti-return type fuzzy neural network input is an error signal and its differential, and the output is a control signal; The control body is a device to be controlled, wherein the input of the controlled body is the control signal, and the output is the state of the controlled body measured by a sensor, and the controlled body state is corresponding to the corresponding control command. Subtracting the error signal, transmitting the error signal and its differential to the dynamic dispatching fuzzy neural network to form an instant control system; the online parameter adjustment module is based on the learning rate, the error signal and its differential To adjust the variation of the dynamic dispatching fuzzy-type neural network parameters; the learning rate update module is based on the dynamic dispatching fuzzy-like neural network parameters, the error signal and its micro To discrete Calabria Puno # (Discrete-type Lyapunov) stability theory to obtain an updated value of the learning rate, such that the error signal is converged. 2. For example, in the dynamic dispatching fuzzy-type neural network real-time control system of claim 1, the dynamic dispatching fuzzy-like neural network includes a network input layer and a network attribution function layer. a network dispatch layer, a network rule layer and a network output layer; the network input layer directly transmits a network input signal to the network attribution function layer; the network attribution function layer operates the network The network input layer sent by the input layer 28 1363.546 _ 101 January 101 revised replacement page - the road input signal, the result is transmitted to the network Pai-Layer via a specific attribution function operation; the network sends a layer to transmit The mechanism of the valve determines whether the data is transmitted to the network rule layer; the network rule layer outputs the product of the output of the corresponding network layer; the network output layer outputs a network output signal Each of the network output signals is the sum of the network rule layer output and the weight value product between the network layer and the network rule layer. 3. For example, in the dynamic dispatching fuzzy-type neural network instant control system of claim 2, the network attribution function layer comprises a network attribution function neuron and a network recursive structure; The input of the path-attributed function neuron is the last network attribution function layer output multiplied by the network recursive structure weight value, and the current network input signal is added, and the result is output through a specific attribution function; the network is returned. The structure uses the network attribution function layer output as the information of the next operation in a time delay manner to achieve the capability of quickly and dynamically corresponding to the network. 4. For example, the dynamic dispatching fuzzy-type neural network real-time control system of the second patent application scope is a mechanism for transmitting a valve, which can determine the output value of the network attribution function layer. Whether it is higher than the preset threshold, prohibiting the output of the network attribute function layer that is too low, the output of the failed network attribution function layer does not need to adjust the parameters of the attribution function layer, so as to effectively reduce the network operation amount. 5. For example, the dynamic dispatching fuzzy-type neural network real-time control system of the patent application scope item 1 is mainly obtained by the Supervised Gradient Descent Method. Recursive mode 29 1363546 _, January 13, 101 Corrected the amount of change in the parameter value in the replacement page-like neural network. The amount of change in all parameter values of the parameter adjustment module on the line is determined by a specific energy function. The parameter is differentiated and generated, and the parameter value of the dynamic sentimentary fuzzy neural network is changed to achieve the learning function, so that the instant control system has better control performance. 6. A dynamic dispatching fuzzy-like neural network real-time control system, comprising: a dynamic dispatching fuzzy-like neural network; a controlled body; and an on-line parameter adjustment module; The dynamic dispatched fuzzy-type neural network input is an error signal and its differential, and the output is a control signal; the controlled body is a device to be controlled, wherein the input of the controlled body is the control signal, and the output is Measuring the state of the controlled body for a sensor, the controlled body state is subtracted from the corresponding control command to become the error signal, and the error signal and its differential are transmitted to the dynamic dispatching fuzzy The neural network forms an instant control system; the online parameter adjustment module adjusts the amount of change of the dynamic dispatching fuzzy genre @ 网路 网路 根据 according to the fixed learning rate, the error signal and its differential. 7. For example, the dynamic dispatching fuzzy-type neural network real-time control system of the sixth patent application scope includes a network input layer and a network attribution function layer. a network dispatch layer, a network rule layer and a network output layer; the network input layer directly transmits a network input signal to the network attribution function layer; the network attribution function layer operates the network The network input layer sent by the input layer 30, 101, January, 3, revised, replaces the page input signal, and transmits the result to the network Pai layer through a specific attribution function operation; the network sends a valve mechanism to transmit the valve Determining whether data is transmitted to the network rule layer; the network rule layer output is a product of the corresponding output of the network send layer; the output layer of the network is a network output signal, each of which The network output signal is the sum of the network rule layer output and the product of the weight value between the network layer and the network rule layer. 8. For example, the dynamic dispatching fuzzy-type neural network real-time control system of claim 7 includes a network-attributed function neuron and a network recursive structure; the network The input of the belonging function neuron is the last network attribution function layer output multiplied by the network recursive structure weight value, and the current network input signal is added, and the result is output through a specific attribution function; the network recursive structure The network attribution function layer output is used as the information of the next operation in a time delay manner to achieve the capability of quickly and dynamically corresponding to the network. 9. For example, the dynamic dispatching fuzzy-type neural network real-time control system of the seventh application patent scope is a mechanism for transmitting a valve, which can determine the output value of the network attribution function layer. Whether it is higher than the preset threshold, prohibiting the output of the network attribute function layer that is too low, the output of the failed network attribution function layer does not need to adjust the parameters of the attribution function layer, so as to effectively reduce the network operation amount. 10. For the dynamic dispatch control fuzzy neural network real-time control system of the sixth application patent scope, the online parameter adjustment module mainly obtains the dynamic sentiment by the Supervised Gradient Descent Method. Recursive mode 1363546 101 January 101 曰 Corrected the change of the parameter value in the page-like neural network. The variation of all parameter values of the parameter adjustment module on the line is biased by the specific energy function. The differential control is generated by changing the parameter values in the dynamic Pai recursive fuzzy neural network to achieve the learning function, so that the instant control system has better control performance. 3232
TW97103910A 2008-01-31 2008-01-31 Real-time control system of dynamic petri recurrent-fuzzy-neural-network TWI363546B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97103910A TWI363546B (en) 2008-01-31 2008-01-31 Real-time control system of dynamic petri recurrent-fuzzy-neural-network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97103910A TWI363546B (en) 2008-01-31 2008-01-31 Real-time control system of dynamic petri recurrent-fuzzy-neural-network

Publications (2)

Publication Number Publication Date
TW200934197A TW200934197A (en) 2009-08-01
TWI363546B true TWI363546B (en) 2012-05-01

Family

ID=44866180

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97103910A TWI363546B (en) 2008-01-31 2008-01-31 Real-time control system of dynamic petri recurrent-fuzzy-neural-network

Country Status (1)

Country Link
TW (1) TWI363546B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10664746B2 (en) 2018-07-17 2020-05-26 Macronix International Co., Ltd. Neural network system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104931538A (en) * 2015-06-10 2015-09-23 中冶南方工程技术有限公司 Learning type hydrochloric acid concentration and Fe ion concentration on-line detection system and method
TWI721582B (en) * 2019-10-01 2021-03-11 遠東科技大學 Digital fuzzy controller and control method based on adaptive network based fuzzy inference system for boost converter
TWI813316B (en) * 2022-05-31 2023-08-21 瑞昱半導體股份有限公司 Method for data access control among multiple nodes and data access system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10664746B2 (en) 2018-07-17 2020-05-26 Macronix International Co., Ltd. Neural network system
TWI712962B (en) * 2018-10-29 2020-12-11 旺宏電子股份有限公司 Neural network system

Also Published As

Publication number Publication date
TW200934197A (en) 2009-08-01

Similar Documents

Publication Publication Date Title
Yang et al. A bioinspired neurodynamics-based approach to tracking control of mobile robots
CN107168324B (en) Robot path planning method based on ANFIS fuzzy neural network
Gao et al. Adaptive motion control of wheeled mobile robot with unknown slippage
TWI363546B (en) Real-time control system of dynamic petri recurrent-fuzzy-neural-network
Dutta Obstacle avoidance of mobile robot using PSO-based neuro fuzzy technique
Ye Tracking control of a non-holonomic wheeled mobile robot using improved compound cosine function neural networks
Ji et al. Path planning and tracking for vehicle parallel parking based on preview BP neural network PID controller
Liu et al. Kinematic and dynamic control model of wheeled mobile robot under internet of things and neural network
Hu Research on robot fuzzy neural network motion system based on artificial intelligence
Yan et al. Path Planning for Mobile Robot's Continuous Action Space Based on Deep Reinforcement Learning
Jin et al. Fuzzy logic system based obstacle avoidance for a mobile robot
Mohanty et al. Navigation of an autonomous mobile robot using intelligent hybrid technique
Phinni et al. Obstacle Avoidance of a wheeled mobile robot: A Genetic-neurofuzzy approach
Zheng et al. Optimization of an intelligent controller for parallel autonomous parking
Wai et al. Robust path tracking control of mobile robot via dynamic petri recurrent fuzzy neural network
Mohanty et al. A new intelligent approach for mobile robot navigation
Peng et al. Trajectory-tracking control for mobile robot using recurrent fuzzy cerebellar model articulation controller
Ye Tracking control of two-wheel driven mobile robot using compound sine function neural networks
Parhi et al. Sugeno fuzzy based navigational controller of an intelligent mobile robot
Al-Araji et al. Neural autopilot predictive controller for nonholonomic wheeled mobile robot based on a pre-assigned posture identifier in the presence of disturbances
Ruan et al. Balancing control of two-wheeled upstanding robot using adaptive fuzzy control method
Shen Robotic trajectory tracking control system based on fuzzy neural network
Li et al. Combination of fuzzy logic control and back propagation neural networks for the autonomous driving control of car-like mobile robot systems
Chen et al. The study on path tracking control method based on fuzzy-CMAC for autonomous vehicle in rural environment
Suganya et al. Soft computing controller based path planning wheeled mobile robot

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees