TW200934197A - Real-time control system of dynamic petri recurrent-fuzzy-neural-network and its method - Google Patents

Real-time control system of dynamic petri recurrent-fuzzy-neural-network and its method

Info

Publication number
TW200934197A
TW200934197A TW97103910A TW97103910A TW200934197A TW 200934197 A TW200934197 A TW 200934197A TW 97103910 A TW97103910 A TW 97103910A TW 97103910 A TW97103910 A TW 97103910A TW 200934197 A TW200934197 A TW 200934197A
Authority
TW
Taiwan
Prior art keywords
network
layer
fuzzy
output
neural network
Prior art date
Application number
TW97103910A
Other languages
Chinese (zh)
Other versions
TWI363546B (en
Inventor
Rong-Jong Wai
Chia-Ming Liu
Original Assignee
Univ Yuan Ze
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Yuan Ze filed Critical Univ Yuan Ze
Priority to TW97103910A priority Critical patent/TWI363546B/en
Publication of TW200934197A publication Critical patent/TW200934197A/en
Application granted granted Critical
Publication of TWI363546B publication Critical patent/TWI363546B/en

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

This invention focused on the reveal of real-time control system of dynamic Petri recurrent-fuzzy-neural-network (DPRFNN) and its method. It is composed of a DPRFNN, a controlled plant, an on-line parameter tuning module, and a learning-rate update module. In the DPRFNN, the concept of a Petri net (PN) and the recurrent frame of internal feedback loops are incorporated into a traditional fuzzy neural network (FNN) to alleviate the computation burden of parameter learning and to enhance the dynamic mapping of network ability. Moreover, the supervised gradient descent method is used to develop the on-line training algorithm for the DPRFNN control. In order to guarantee the convergence of system control errors, analytical methods based on a discrete-type Lyapunov function are proposed to determine varied learning rates for DPRFNN.

Description

200934197 214 網路輸出層與網路規則層之間權重值 215 網路輸出訊號 八、 本案若有化學式時,請揭示最能顯示發明特徵的化學式: 九、 發明說明: 【發明所屬之技術領域】 本發明「動態派翠遞迴式模糊類神經網路即時控制系統及其 ® 方法」所涉及之技術領域主要包含有模糊控制、類神經網路、非 線性控制及智慧型控制;根據以上技術,發展一即時控制系統及 其方法,該即時控制系統以模糊類神經網路為核心,加入網路派 * 翠層以及遞迴結構,形成動態派翠遞迴式模糊類神經網路,並藉 • 由線上參數調整模組與學習率更新模組,使受控體達到所欲控制 之目的。 【先前技術】 〇 傳統控制領域中,控制系統動態模式的精確與否是影響控制 性能優劣的最主要關鍵,系統動態的資訊越詳細,則越能達到精 確控制目的;然而,對於非線性系統,往往難以正確的描述系統 的動態,於是研究學者便利用各種方法來簡化系統動態,以達成 控制目的,但卻不盡理想。換言之,傳統的控制理論對於明確系 統具有強而有力的控制能力,但對於過於複雜或難以精確描述的 系統,則顯得無能為力,因此許多研究學者便嘗試著以模糊數學 5 200934197 來處理此類控制問題。 自從Zadeh學者發展出模糊數學之後,對於不明確系統的控 制有著極大的貢獻’自七〇年代以後,便有-些實用的模糊控制 器相繼的元成,模糊控制(Fuzzy Control)具有強健性、不需要精確 的數學模型、強大近似能力以及採用人類的經驗來建立模糊規 則…等優點[1]。參考文獻[2]提出以模糊邏輯的方式與新的地圖量 測來運用在_自走車裝置。參考文獻m發驗人絲糊控制器 ❹1#·^自走車裝置’並經由里亞普諾(LyapunGV)穩定理論證明其收 傲性。參考文獻[4]設計—個即時的模糊控制架構並使用紅外線感 測器,使自走車達到目標追尋的功能。參考文獻[习利用模糊邏輯 .能夠仿效人類思考的行為,使自走車能夠追隨特定的路徑。雖然 ^這些技巧能夠以仿效人類的行為來建構控制系統,但是要取得適 合的模糊規則以達到良好的控制性能卻是相當困難的。 類神經網路(Neural Network, NN)係模仿人類腦部活動所發展 〇出來的一種模型。就網路架構而言,由許多簡單而且互相連接的 處理單元(Processing Elements),也就是神經元(Neur〇ns)所組成; 就網路功能而言,係由生物模型所產生的新型態資訊處理與計算 方式。近幾年來也有許多人研究類神經網路運用在系統鑑別或動 態系統控制[6]-[8]。參考文獻[7]採用類神經網路的方式,研究如 何在自走車追蹤的過程中避開障礙物。參考文獻[8]發展簡單的類 神經網路來擁縱自走車,並且無需使用自走車的速度資訊。雖然 6 200934197 類神經網路具有強大的函數近似能力,但是網路的參數值通常必 須經過長時間離線(Off-Line)訓練才能達到良好的控制,由於剛開 始的網路參數值還沒有訓練完成,導致網路參數沒有對應適合的 值,因此初始控制性能普遍不佳。近年來,參考文獻[9]_[ 11]提出 遞迴式類神經網路(Recurrent Neural Network,RNN)達到快速的對 應能力’其效能明顯比類神經網路來的優越,但是由於類神經網 路是由神經元所組成的,因此在比較複雜的系統中,易造成網路 〇 過於龐大的問題》 現今結合模糊控制與類神經網路成為相當熱門的研究主題 [12]-[14]。模糊類神經網路(Fuzzy Neural Network, FNN)可結合模 糊控制與類神經網路各自的優點達到不錯的效能,其網路架構比 - 類神經網路來得簡單,並且相對應模糊規則可以利用類神經網路 學習理論求得。此外,參考文獻[15]、[16]提出遞迴式模糊類神經 網路(Recurrent Fuzzy Neural Network,RFNN)的架構,因為遞迴結 0 構可以加快網路的對應能力,一般而言’遞迴式模糊類神經網路 控制性能比模糊類神經網路優越。另一方面,派翠網路(Petri Net, PN)提出後便有許多人開始研究於不同的領域中[Π]、[18],參考 文獻[19]提出派翠模糊類神經網路(Petri Fuzzy Neural Network, PFNN)的架構運用於線型感應馬達,其主要的概念是在模糊類神經 網路中加入派翠運算的機制’達到減少運算量的功效’由於派翠 模糊類神經網路缺少遞迴結構,因此控制性能方面略遜於遞迴式 7 200934197 模糊類神經網路。 備註:參考文獻 [1] L. X. Wang, A Course in Fuzzy Systems and Control. New Jersey: Prentice-Hall, 1997.200934197 214 Weight value between network output layer and network rule layer 215 Network output signal 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: Nine, invention description: [Technical field of invention] The technical field involved in the "dynamic dispatching fuzzy back-type fuzzy neural network real-time control system and its method" mainly includes fuzzy control, neural network, nonlinear control and intelligent control; according to the above technology, To develop an instant control system and its method, the real-time control system takes the fuzzy neural network as the core, joins the network pie layer and the recursive structure, and forms a dynamic dispatched fuzzy neural network. The online parameter adjustment module and the learning rate update module enable the controlled body to achieve the desired control. [Prior Art] In the field of traditional control, the accuracy of the dynamic mode of the control system is the most important factor affecting the performance of the control. The more detailed the information of the system dynamics, the more precise control can be achieved; however, for nonlinear systems, It is often difficult to correctly describe the dynamics of the system, so research scholars can easily use various methods to simplify the system dynamics to achieve control purposes, but not ideal. In other words, traditional control theory has strong and powerful control ability for clear systems, but it is powerless for systems that are too complicated or difficult to describe accurately. Therefore, many researchers try to deal with such control problems with fuzzy mathematics 5 200934197. . Since the development of fuzzy mathematics by Zadeh scholars, it has greatly contributed to the control of ambiguous systems. Since the Seventies, there have been some practical fuzzy controllers. The fuzzy control is robust. There is no need for precise mathematical models, strong approximation capabilities, and the use of human experience to establish fuzzy rules... and so on [1]. Reference [2] proposes to use the fuzzy map and the new map measurement in the _ self-propelled vehicle. References m issued a human body silk paste controller ❹ 1 # · ^ self-propelled vehicle device ' and through the Yarapno (LyapunGV) stability theory to prove its pride. Reference [4] is designed as an instant fuzzy control architecture and uses an infrared sensor to enable the self-propelled vehicle to achieve the desired function. References [Learning the use of fuzzy logic. It is able to follow the behavior of human thinking, enabling the self-propelled car to follow a specific path. Although these techniques can be used to construct control systems in the same way as human behavior, it is quite difficult to achieve appropriate fuzzy rules to achieve good control performance. The Neural Network (NN) is a model that mimics the development of human brain activity. As far as the network architecture is concerned, it consists of many simple and interconnected Processing Elements, ie Neurons (Neur〇ns); in terms of network functions, it is a new state produced by biological models. Information processing and calculation methods. In recent years, many people have studied the use of neural networks in system identification or dynamic system control [6]-[8]. Reference [7] uses a neural network-like approach to study how to avoid obstacles during self-propelled vehicle tracking. Reference [8] develops a simple neural network to conceal self-propelled vehicles without the need to use speed information for self-propelled vehicles. Although the 6 200934197 neural network has a strong function approximation capability, the network parameter values usually have to undergo long-term offline (Off-Line) training to achieve good control, since the initial network parameter values have not been trained. As a result, the network parameters do not have corresponding values, so the initial control performance is generally poor. In recent years, reference [9]_[11] proposes that the Recurrent Neural Network (RNN) achieves a fast correspondence capability. Its performance is significantly superior to that of a neural network, but due to the neural network. It is composed of neurons, so in a more complex system, it is easy to cause the problem of too large a network. Nowadays, combining fuzzy control and neural networks has become a very popular research topic [12]-[14]. Fuzzy Neural Network (FNN) can combine the advantages of fuzzy control and neural network to achieve good performance. The network architecture is simpler than the neural network, and the corresponding fuzzy rules can be used. The theory of neural network learning is obtained. In addition, references [15], [16] propose a recurrent Fuzzy Neural Network (RFNN) architecture, because the recursive structure can speed up the network's corresponding ability, generally speaking The control performance of the back-fuzzy neural network is superior to that of the fuzzy neural network. On the other hand, after the introduction of Petri Net (PN), many people began to study in different fields [Π], [18], and reference [19] proposed the Paifu fuzzy neural network (Petri). The architecture of the Fuzzy Neural Network (PFNN) is applied to linear induction motors. The main concept is to add the mechanism of the Pai Cui operation to the fuzzy neural network to achieve the effect of reducing the computational complexity. Back to the structure, so the control performance is slightly inferior to the recursive 7 200934197 fuzzy class neural network. Remarks: References [1] L. X. Wang, A Course in Fuzzy Systems and Control. New Jersey: Prentice-Hall, 1997.

[2] H. Seraji and A. Howard, ^Behavior-based robot navigation on challenging terrain: a fuzzy logic approach/* IEEE Trans. Robot. Automat., vol. 18, no. 3, pp. 308-321,2002.[2] H. Seraji and A. Howard, ^Behavior-based robot navigation on challenging terrain: a fuzzy logic approach/* IEEE Trans. Robot. Automat., vol. 18, no. 3, pp. 308-321, 2002 .

[3] S. X. Yang, H. Li, M. Q. H. Meng, and P. X. Liu, ^An embedded fuzzy controller for a behavior-based mobile robot with guaranteed performance,5, IEEE Trans. Fuzzy Syst., vol. 12, no. 4, pp. 436-446, 2004.[3] SX Yang, H. Li, MQH Meng, and PX Liu, ^An embedded fuzzy controller for a behavior-based mobile robot with guaranteed performance, 5, IEEE Trans. Fuzzy Syst., vol. 12, no. 4, Pp. 436-446, 2004.

[4] T. H. S. Li, S. J. Chang, and W. Tong, uFuzzy target tracking control of autonomous mobile robots by using infrared sensors,IEEE Trans. Fuzzy Syst., vol. 12, no. 4, pp. 491-501, 2004.[4] T. H. S. Li, S. J. Chang, and W. Tong, uFuzzy target tracking control of autonomous mobile robots by using infrared sensors, IEEE Trans. Fuzzy Syst., vol. 12, no. 4, pp. 491-501, 2004.

[5] G. Antonelli, S. Chiaverini, and G. Fusco, t$A fuzzy-logic-based approach for mobile robot path tracking,5, IEEE Trans. Fuzzy Syst., vol. 15, no. 2, pp. 211-221,2007.[5] G. Antonelli, S. Chiaverini, and G. Fusco, t$A fuzzy-logic-based approach for mobile robot path tracking, 5, IEEE Trans. Fuzzy Syst., vol. 15, no. 2, pp. 211-221, 2007.

[6] O. Omidvar, and D. L. Elliott, Neural Systems for Control. Academic Press, 〇 1997.[6] O. Omidvar, and D. L. Elliott, Neural Systems for Control. Academic Press, 〇 1997.

[7] S. X. Yang and M. Q. H. Meng, ^Real-time collision-free motion planning of a mobile robot using a neural dynamics-based approach,” /五五五 NeuralNetw., vol. 14, no. 6, pp. 1541-1552, 2003.[7] SX Yang and MQH Meng, ^Real-time collision-free motion planning of a mobile robot using a neural dynamics-based approach,” / 5th Five-Year NeuralNetw., vol. 14, no. 6, pp. 1541- 1552, 2003.

[8] T. Das, I. N. Kar, and S. Chaudhury, "Simple neuron-based adaptive controller for a nonholonomic mobile robot including actuator dynamics,5, Neurocomputing, vol. 69, no. 16-18, pp. 2140-2151, 2006.[8] T. Das, IN Kar, and S. Chaudhury, "Simple neuron-based adaptive controller for a nonholonomic mobile robot including actuator dynamics,5, Neurocomputing, vol. 69, no. 16-18, pp. 2140- 2151, 2006.

[9] F. J. Lin, R. J. Wai, W. D. Chou and S. P. Hsu, ^Adaptive backstepping control using recurrent neural network for linear induction motor drive,55 IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 134-146,2002. 8 200934197 [10] R. J. Wai,C· M. Lin and Υ· F. Peng,“Adaptive hybrid control for linear piezoelectric ceramic motor drive using diagonal recurrent CMAC network," IEEE Trans. Neural Netw., vol. 15, no. 6, pp. 1491-1506, 2004.[9] FJ Lin, RJ Wai, WD Chou and SP Hsu, ^Adaptive backstepping control using recurrent neural network for alternating induction motor drive,55 IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 134- 146,2002. 8 200934197 [10] RJ Wai, C. M. Lin and Υ· F. Peng, “Adaptive hybrid control for linear piezoelectric ceramic motor drive using diagonal recurrent CMAC network," IEEE Trans. Neural Netw., vol . 15, no. 6, pp. 1491-1506, 2004.

[11] S. J. Yoo, Y. H. Choi, and J. B. Park, ^Generalized predictive control based on self-recurrent wavelet neural network for stable path tracking of mobile robots: adaptive learning rates approach,5* IEEE Trans. Circuit Syst., vol. 53, no. 6, pp. 1381-1394,2006.[11] SJ Yoo, YH Choi, and JB Park, ^Generalized predictive control based on self-recurrent wavelet neural network for stable path tracking of mobile robots: adaptive learning rates approach, 5* IEEE Trans. Circuit Syst., vol. 53 , no. 6, pp. 1381-1394, 2006.

[12] C. T. Lin, and C. S. George Lee, Neural Fuzzy Systems, New Jersey: Prentice-Hall, 1996.[12] C. T. Lin, and C. S. George Lee, Neural Fuzzy Systems, New Jersey: Prentice-Hall, 1996.

[13] F. J. Lin, R. J. Wai, and C. C. Lee, MFuzzy neural network position controller for ultrasonic motor drive using push-pull DC-DC converter,M IEE Proc. Control Theory Appl., vol. 146, no. 1, pp. 99-107, 1999.[13] FJ Lin, RJ Wai, and CC Lee, MFuzzy neural network position controller for ultrasonic motor drive using push-pull DC-DC converter, M IEE Proc. Control Theory Appl., vol. 146, no. 1, pp. 99-107, 1999.

[14] C. Ye, N. H. C. Yung, and D. Wang, MA fuzzy controller with supervised learning assisted reinforcement learning algorithm for obstacle avoidance/* IEEE Trans. Syst., Man, Cybern. B, vol. 33, no. 1, pp. 17-27,2003.[14] C. Ye, NHC Yung, and D. Wang, MA fuzzy controller with supervised learning assisted reinforcement learning algorithm for obstacle avoidance/* IEEE Trans. Syst., Man, Cybern. B, vol. 33, no. Pp. 17-27, 2003.

[15] F. J. Lin, R. J. Wai, K. K. Shyu and T. M. Liu, ^Recurrent fuzzy neural network control for piezoelectric ceramic linear ultrasonic motor drive,M IEEE Trans. Ultrason., Ferroelect., Freq. Cont., vol. 48, no. 4, pp. 900-914, 2001.[15] FJ Lin, RJ Wai, KK Shyu and TM Liu, ^Recurrent fuzzy neural network control for piezoelectric ceramic linear ultrasonic motor drive, M IEEE Trans. Ultrason., Ferroelect., Freq. Cont., vol. 48, no. 4, pp. 900-914, 2001.

[16] R. J. Wai,“Total sliding-mode controller for PM synchronous servo motor drive using recurrent fuzzy neural network/* IEEE Trans. Ind. Electron. t vol. 48, no. 5, pp. 926-944, 2001.[16] R. J. Wai, “Total sliding-mode controller for PM synchronous servo motor drive using recurrent fuzzy neural network/* IEEE Trans. Ind. Electron. t vol. 48, no. 5, pp. 926-944, 2001.

[17] R. David and H. Alla,“Petri nets for modeling of dynamic systems-A survey,5, Automatica, vol. 30, no. 2, pp. 175-202,1994.[17] R. David and H. Alla, “Petri nets for modeling of dynamic systems-A survey, 5, Automatica, vol. 30, no. 2, pp. 175-202, 1994.

[18] V. R. L. Shen, ^Reinforcement learning for high-level fuzzy petri nets,55 IEEE Trans. Syst., Man, Cybern. B, vol. 33, no. 2, pp. 351-362, 2003.[18] V. R. L. Shen, ^Reinforcement learning for high-level fuzzy petri nets, 55 IEEE Trans. Syst., Man, Cybern. B, vol. 33, no. 2, pp. 351-362, 2003.

[19] R. J. Wai and C. C. Chu, ^Motion control of linear induction motor via petri fuzzy-neural-network,IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 281-295, 2007. 200934197 【發明内容】 動態派翠遞迴式模糊類神經網路即時控制系統方塊圖如第一 圖所示,其中包含100動態派翠遞迴式模糊類神經網路、101受控 體、102線上參數調整模組以及103學習率更新模組,該100動態 派翠遞迴式模糊類神經網路的輸入為誤差訊號及其微分,經由網 路運算得到控制訊號輸出,100動態派翠遞迴式模糊類神經網路的 輸入與輸出的個數分別由受控體的狀態及控制訊號所決定。以第 ❹一圖為例,輸入為e,和〜= 及其微分之和έ〆其中X及少 為受控體狀態且^及乃為所對應控制命令,輸出控制訊號為〇1和 〇2 ;該101受控體為任何欲控制之裝置,通常輸入為控制訊號,輸 - 出為感測器所量測到該受控體的狀態,並且該受控體狀態與所對 . 應控制命令相減成為誤差訊號,將此誤差訊號及其微分傳送至100 動態派翠遞迴式模糊類神經網路,形成即時控制系統;該102線 上參數調整模組根據學習率(%,Ά,%)、誤差訊號及其微分 © (έ,Α)來調整100動態派翠遞迴式模糊類神經網路參數的變化量 (△<,Δ^_,Δ5/,Δα/);該103學習率更新模組根據100動態派翠遞迴 式模糊類神經網路參數(«,«)、誤差訊號()及其微分 (4)’以離散型里亞普諾(Discrete-type Lyapunov)穩定理論求得學習 率的更新值。 、 動態派翠遞迴式模糊類神經網路 100動態派翠遞迴式模糊類神經網路的架構如「第二圖」所示總 200934197 共分為五層,其中包含201網路輸入層、202網路歸屬函數層、208 網路派翠層、210網路規則層及213網路輸出層,此外202網路歸 屬函數層中加入204網路遞迴結構,其各層訊號傳遞流程表系如 下: 第一層為201網路輸入層,將200網路輸入訊號;¢,.(/ = 1,...,《,·)直 接傳送到202網路歸屬函數層。 第二層為202網路歸屬函數層,每個203網路歸屬函數神經 ^ 元的輸入為上一次206網路歸屬函數層輸出乘上205網路遞迴緒 構權重值,並加上本次200網路輸入訊號,可表示成(1)式 r/ ⑻=a («) + 〆(π - ΐχ (1) 其中η代表離散時間,α丨代表205網路遞迴結構權重值,〆代 表上一次206網路歸屬函數層輸出,且ζ-1為207時間延遲單元。, 般而言,習用歸屬函數種類眾多,包含三角形函數、梯形函數、 倒鐘型函數、高斯函數(Gaussian Function)、等,本發明所採用之 歸屬函數為高斯函數,可表示成(2)式 ® ⑽^/[«^.(rf)] = expM.(r/)] (2) 其中 exp[.]代表指數函數(Exponential Function),< 和 彳〇· = 1,...,《,;·/· = 1,.··,')分別代表高斯函數之中心點和寬度,〜·則為 對於每個200網路輸入訊號之語句變數的數目。 206 第三層為208網路派翠層,在這一層中根據(3)式來判斷 網路歸屬函數層輸出是否傳送至第四層 "41,♦⑽队 * [ο, μ1[ηβί]{τΙ)]<άΛ (3) 200934197 其中心代表預設臨界值,ί/為209傳送閥。 第四層為210網路規則層,211網路規則層輸出為所對應的 208網路派翠層之輸出的乘積,可表示成(4)式 (4) ΥΙ^βMlinetjiri)] , tj =\ i=\ 0 ,ί/=0 其中么(A: = 1,···,')代表211網路規則層輸出; <為212網路派翠層 與網路規則層之間權重值,設定為1 為210網路規則層中神經[19] RJ Wai and CC Chu, ^Motion control of analog induction motor via petri fuzzy-neural-network, IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 281-295, 2007. 200934197 SUMMARY OF THE INVENTION The block diagram of the dynamic dispatching fuzzy neural network real-time control system is shown in the first figure, which includes 100 dynamic dispatched fuzzy neural network, 101 controlled body, and 102 online parameter adjustment. Module and 103 learning rate update module, the input of the 100 dynamic dispatching fuzzy-type neural network is the error signal and its differentiation, and the control signal output is obtained through the network operation, and the 100 dynamic dispatching fuzzy type The number of inputs and outputs of the neural network is determined by the state of the controlled body and the control signal. Taking the first picture as an example, the input is e, and the sum of ~= and its differential, where X and less are the controlled body state and ^ is the corresponding control command, and the output control signals are 〇1 and 〇2. The 101 controlled body is any device to be controlled, usually input as a control signal, and the output is the state of the controlled body measured by the sensor, and the controlled body state and the corresponding control should be controlled. The subtraction becomes an error signal, and the error signal and its differential are transmitted to the 100 dynamic dispatched fuzzy neural network to form an instant control system; the 102 online parameter adjustment module is based on the learning rate (%, Ά, %) , error signal and its differential © (έ, Α) to adjust the variation of the dynamic dynamic recursive fuzzy neural network parameters (△ <, Δ^_, Δ5 /, Δα /); the learning rate of 103 The update module is based on the Discrete-type Lyapunov stability theory based on the 100 dynamic dispatched fuzzy neural network parameters («, «), error signal () and its differential (4)'. The updated value of the learning rate. The dynamic dispatching fuzzy-like neural network 100 dynamic dispatched fuzzy-like neural network architecture as shown in the "second map" total 200934197 is divided into five layers, including 201 network input layer, 202 network attribution function layer, 208 network distribution layer, 210 network rule layer and 213 network output layer, in addition to the 202 network attribution function layer, 204 network recursive structure is added, and the signal transmission flow table of each layer is as follows The first layer is the 201 network input layer, which transmits 200 network input signals; ¢, . (/ = 1,..., ", ·) directly to the 202 network attribution function layer. The second layer is the 202 network attribution function layer, and the input of each 203 network attribution function neuron is the last 206 network attribution function layer output multiplied by 205 network recursive weight value, and this time plus 200 network input signal, can be expressed as (1) r / (8) = a («) + 〆 (π - ΐχ (1) where η represents discrete time, α 丨 represents 205 network recursive structure weight value, 〆 represents The last 206 network attribution function layer output, and ζ-1 is 207 time delay unit. In general, there are many kinds of custom attribution functions, including triangle function, trapezoidal function, inverted clock function, Gaussian function, Etc., the attribution function used in the present invention is a Gaussian function, which can be expressed as (2)® (10)^/[«^.(rf)] = expM.(r/)] (2) where exp[.] represents an index Function (Exponential Function), < and 彳〇· = 1,..., ",;··· = 1,.··, ') respectively represent the center point and width of the Gaussian function, ~· for each The number of statement variables for a 200 network input signal. 206 The third layer is the 208 network dispatch layer, in which the network attribution function layer output is transmitted to the fourth layer according to the formula (3). "41, ♦(10) Team* [ο, μ1[ηβί] {τΙ)]<άΛ (3) 200934197 The center represents the preset threshold and ί/ is the 209 transfer valve. The fourth layer is the 210 network rule layer, and the 211 network rule layer output is the product of the corresponding output of the 208 network Pai layer, which can be expressed as (4) (4) ΥΙ^βMlinetjiri)], tj =\ i=\ 0 , ί/=0 where (A: = 1,···, ') represents the 211 network rule layer output; < is the weight value between the 212 network layer and the network rule layer, Set to 1 for 210 neural network in the rule layer

元的總數目。 第五層為213網路輸出層,本層中每個215網路輸出訊號為 211網路規則層輸出與212網路派翠層與網路規則層之間權重值乘 積的總和,可表示成(5)式 y〇=zl<(^k (5) 其中w丨代表214網路輸出層與網路規則層之間權重值; 凡0 = 1,···,《。)代表215網路輸出訊號,《。為213網路輸出層中神經 ❹ 元的總數目。 二、線上參數調整模組 102線上參數調整模組,主要係以監督式梯度遞減法 (Supervised Gradient Descent Method)得到 100動態派翠遞迴式模 糊類神經網路中參數值的變化量,該102線上參數調整模組所有參 數值的變化量是藉由特定能量函數對所欲調整參數偏微分而產 生。偏微分的計算則採用連鎖率,由於偏微分的順序是由網路的 12 200934197 輸出傳回内部的節點,因此亦稱之為倒傳遞演算法則。為了推導 100動態派翠遞迴式模糊類神經網路參數值的變化量,定義能量函 數五如下: E = —[(¾ - ^)2 + {yd - yf + (xd - χ)2 + (yd - ^)2] : ⑹ =全(e»X) 其中&和乃為控制命令,弋和九為其微分;λ:和j為受控體狀態, 义和少為其微分;4=4-λ:和代表誤差訊號,和 < 為其 Φ 微分。本系統中,100動態派翠遞迴式模糊類神經網路的輸入為 A、&、之和4(亦即《,. = 4) ; 100動態派翠遞迴式模糊類神經網路 的輸出為和〇2 (亦即《。= 2)。10 2線上參數調整模組之倒傳遞演算 法則描述如下: . 213網路輸出層中,能量函數對215網路輸出訊號偏微分可表 示成The total number of yuan. The fifth layer is the 213 network output layer. The sum of the 215 network output signals in this layer is the product of the 211 network rule layer output and the weight value between the 212 network layer and the network rule layer. (5) Formula y〇=zl<(^k (5) where w丨 represents the weight value between the 214 network output layer and the network rule layer; where 0 = 1,···, ".) represents the 215 network Output signal, ". The total number of neural units in the 213 network output layer. Second, the online parameter adjustment module 102 online parameter adjustment module, mainly by the Supervised Gradient Descent Method (Supervised Gradient Descent Method) to obtain the variation of the parameter value in the 100 dynamic dispatched fuzzy neural network, the 102 The amount of change in all parameter values of the online parameter adjustment module is generated by partial differentiation of the desired parameter by a specific energy function. The partial differential calculation uses the chain rate. Since the order of partial differential is transmitted back to the internal nodes by the network's 12 200934197 output, it is also called the inverse transfer algorithm. In order to derive the variation of the parameter values of the 100 dynamic dispatching fuzzy neural network, the energy function is defined as follows: E = —[(3⁄4 - ^)2 + {yd - yf + (xd - χ)2 + (yd - ^)2] : (6) = all (e»X) where & is the control command, 弋 and 九 are their differentiation; λ: and j are the controlled body states, and the sum is less differential; 4 =4-λ: and represent the error signal, and < is its Φ differential. In this system, the input of the 100 dynamic dispatched fuzzy-like neural network is A, &, and the sum 4 (ie, ",. = 4); 100 dynamic dispatched fuzzy-like neural network The output is 〇2 (also known as ".= 2"). The inverse transfer algorithm of the 10 2 online parameter adjustment module is described as follows: . 213 In the network output layer, the energy function can be expressed as a partial differential of the 215 network output signal.

dE ❹ dE dex dx dE dey dy dE dex dx dE dey dy dex dx dyQ + dey dy dy0 + dex dx dy0 + dey dy dy0 ⑺ ^y〇 y^y〇 x^y0 ydy0 則214網路輸出層與網路規則層之間權重值的變化量可表示為dE ❹ dE dex dx dE dey dy dE dex dx dE dey dy dex dx dyQ + dey dy dy0 + dex dx dy0 + dey dy dy0 (7) ^y〇y^y〇x^y0 ydy0 then 214 network output layer and network The amount of change in the weight value between the rule layers can be expressed as

λ 〇 dEλ 〇 dE

dE ⑻ 其中%為214網路輸出層與網路規則層之間權重值的學習率。214 網路輸出層與網路規則層之間權重值更新可表示成 (9) < 0 +1)= < ⑻ + △< ⑻ 13 200934197 能量函數對211網路規則層輸出偏微分為 dE ^y〇dE (8) where % is the learning rate of the weight value between the 214 network output layer and the network rule layer. 214 The weight value update between the network output layer and the network rule layer can be expressed as (9) < 0 +1)= < (8) + △< (8) 13 200934197 The energy function pairs 211 network rule layer output partial differential dE ^y〇

此里w双到· nei/A)倨微分為 dE _dE 办0 (net !(^))λ dnetjir^) L办。冰_ {dMf(netj(rJ:)) dnet.^) ,’/ = 1 t 208網路派翠層 (11) 0 , tj =〇 © 則m/、彳以及α/的變化量可表示為 dE dy r dnetj{rjt)^ dy0 dnetj(rJ.) l > (12) Δ^/=-^^Γ = ^ dmj dE -部办。"I dnet.(rJi)^ lsds{ Vs dy0dnet.{rj.) l dsI > ^IsPj 2{rJ.-mi)2 ~W~ (13)Here w double to · nei / A) 倨 micro-division dE _dE do 0 (net ! (^)) λ dnetjir ^) L do. Ice _ {dMf(netj(rJ:)) dnet.^) , '/ = 1 t 208 Network Pai Cui (11) 0 , tj =〇© Then m/, 彳 and α/ can be expressed as dE dy r dnetj{rjt)^ dy0 dnetj(rJ.) l > (12) Δ^/=-^^Γ = ^ dmj dE - Department. "I dnet.(rJi)^ lsds{ Vs dy0dnet.{rj.) l dsI > ^IsPj 2{rJ.-mi)2 ~W~ (13)

dE 征 dyn Ί r Οηβί^Ϋ nadal % dy0 dnet.(rJ.) l dai J (14) €>其中I、I和心分別代表高斯函數之令心點和寬度以及2〇5網路 (15) (16) (17) 遞迴結構權重值的學習率。高斯函數之中心點和寬度以及205網 路遞迴結構權重值更新值可表示成 mj (η +1) = mj («) + Am/ (η) sj (η +1) = sj (η) + Asj (η) aj (η +1) = aj (ή) + Δα/ («) 由於一般系統含有不確定量因素’導致系統靈敏度改/办、 200934197 办/也、δλ/也以及办/办。不能夠輕易的決定,雄然智慧$锻別器 (Intelligent Identifier)可以用來估算系統靈敏度,但是須要龐大的計算 量。為了克服這個問題,且增加線上學習的速率,本發明系統靈 敏度以符號函數近似如下: dx Δχ、 / = sgn ^ - Sgn ^y〇 Ay〇) dy τ—= sgn (Αν、 r = sgn V ^y〇 dx i考 "Δχ" / = sgn <Ay〇) ί ΔνΝ r —= sgn 办。 = SgQ V 其中sgn(·)代表符號函數 jc(n) - x{n -1) y(n)-y{n-\) ,y〇{n)-y0{n-\)) (18) ❹ χ{ή) - x(n -1) 凡(”)-凡(《-i) y{n)-y{n-\) y〇{n)-y0{n~^). 三、學習率更新模组 選擇不同的參數學習率對於網路的效能有著明顯的影響’為 了能夠有效的訓練100動態派翠遞迴式模糊類神經網路的參數 ο 值’本發明利用離散型里亞普諾(Discrete-type Lyapunov)穩定理論求 得學習率之更新值以使得誤差訊號得以收斂。 根據(6)式’定義離散式里亞普謹(Discrete-type Lyapunov)函數變 化量為 ^(n)^E(n^\)-E(n) 因此能量函數可藉由(8)和(12)-(14)式表示為 £(« + 1) = £(η) + Δ£(η) 15 200934197 dwk dE(n) ❹ /=1 j^\ 〇mi U、i <E(n) + E(n) + E(n) E(n) 1 4 E(n) 1 nm 4 五⑻ 1 ns 4 五⑻ 1 % 4 E(n) ti tfl /=1 j-\ o=l ί±ί y=i dEjn) dya \ ^y〇 daj \2 Δα/] 8E(n) dxf dy0 dE(n) dx( dy0ax,D/ dE(n) dxt dya dx{ dy0 da{ \2 (20) ❹ 其中、Am/、As/和Δα/分別表示214網路輸出層與網路規則層 之間權重值的變化量、高斯函數中心點和寬度的變化量以及205 網路遞迴結構權重值的變化量;Η表示取絕對值。100動態派翠遞 迴式模糊類神經網路的學習率設計為五⑻ % 4 〇=! k=l dE(n) dya五⑻ \2 + € (21) 4 lit /=1 j=\ 〇=1dE sign dyn Ί r Οηβί^Ϋ nadal % dy0 dnet.(rJ.) l dai J (14) €> where I, I and heart represent the heart point and width of the Gaussian function and the 2〇5 network (15 (16) (17) Regressive learning rate of structural weight values. The center point and width of the Gaussian function and the updated value of the 205 network recursive structure weight value can be expressed as mj (η +1) = mj («) + Am/ (η) sj (η +1) = sj (η) + Asj (η) aj (η +1) = aj (ή) + Δα/ («) Since the general system contains uncertain factors, the system sensitivity is changed/doing, 200934197/yes, δλ/ also and office/office. It is not easy to decide, and the Intelligent Identifier can be used to estimate the sensitivity of the system, but it requires a lot of calculations. To overcome this problem and increase the rate of online learning, the sensitivity of the system of the present invention is approximated by a sign function as follows: dx Δχ, / = sgn ^ - Sgn ^y〇Ay〇) dy τ—= sgn (Αν, r = sgn V ^ Y〇dx i test"Δχ" / = sgn <Ay〇) ί ΔνΝ r —= sgn do. = SgQ V where sgn(·) represents the symbol function jc(n) - x{n -1) y(n)-y{n-\) , y〇{n)-y0{n-\)) (18) ❹ χ{ή) - x(n -1) where (")-fan ("-i) y{n)-y{n-\) y〇{n)-y0{n~^). The rate update module selects different parameter learning rates to have a significant impact on the performance of the network. 'In order to be able to effectively train the parameters of the 100 dynamic dispatched fuzzy-like neural network ο value', the present invention utilizes the discrete Rialp The Discrete-type Lyapunov stability theory obtains the updated value of the learning rate so that the error signal converges. According to the formula (6), the discrete variation of the Discrete-type Lyapunov function is ^(n) ^E(n^\)-E(n) Therefore, the energy function can be expressed by (8) and (12)-(14) as £(« + 1) = £(η) + Δ£(η) 15 200934197 dwk dE(n) ❹ /=1 j^\ 〇mi U,i <E(n) + E(n) + E(n) E(n) 1 4 E(n) 1 nm 4 Five (8) 1 Ns 4 five (8) 1 % 4 E(n) ti tfl /=1 j-\ o=l ί±ί y=i dEjn) dya \ ^y〇daj \2 Δα/] 8E(n) dxf dy0 dE(n ) dx( dy0ax,D/ dE(n) dxt dya dx{ dy0 da{ \2 (20) ❹ where, Am/, As/, and Δα/ respectively represent 214 network loss The amount of change in the weight value between the egress layer and the network rule layer, the change in the center point and width of the Gaussian function, and the change in the weight value of the 205 network recursive structure; Η indicates the absolute value. 100 Dynamic Pai recursive The learning rate of the fuzzy neural network is designed to be five (8) % 4 〇 =! k=l dE(n) dya five (8) \2 + € (21) 4 lit /=1 j=\ 〇=1

Vs dE(n) dxf dy0 dx( dy0 dmj m (22) + € 4 dxiVs dE(n) dxf dy0 dx( dy0 dmj m (22) + € 4 dxi

V + ε (23) 16 % = (24) 200934197 五⑻ 4 miV + ε (23) 16 % = (24) 200934197 Five (8) 4 mi

dE{n) dxt dy0 dx( dy0daj J + ε 其中s為正的常數。根據(21)-(24)學習率設計,使得 dE{n) dy0 4 Sy〇 dw°k % i A,-1Σ -m \2 dE(n) dxt 4 dx( dy0dmj 1 dE(n) dxt dy0 、2 dE{n) dxt dyc 4 五⑻办。3a/dE{n) dxt dy0 dx( dy0daj J + ε where s is a constant constant. According to the (21)-(24) learning rate design, let dE{n) dy0 4 Sy〇dw°k % i A,-1Σ - m \2 dE(n) dxt 4 dx( dy0dmj 1 dE(n) dxt dy0 , 2 dE{n) dxt dyc 4 5 (8). 3a/

Va 巧nJ %-ΣΣΣ \2 <1 (25) 因此可得到五(《 + 1)<五(《),再根據(6)式得知五(《)>0和Δ^(η)<0,所 以誤差訊號會漸漸地收斂。 【實施方式】 本發明「動態派翠遞迴式模糊類神經網路即時控制系統及其 方法」之一實施例為運用在自走車之循軌即時控制系統,所採用 自走車裝置之示意圖如「第三圖」所示,包含兩個操縱輪與一支 撐輪設置於車體,該操縱輪分別由兩個獨立之直流馬達所控制, 並且平行於輪軸。該支撐輪為被動之自由輪,可隨操縱輪控制於 任意之角度。圖中处為兩個操縱輪之間的距離,且操縱輪之直徑 表示為2r;圖中C點為自走車之質心位置;圖中Ρ點為輪軸與該輪 軸之穿過C點垂直線之交叉點,該P點表示自走車在座標系統之位 17 200934197 置;圖中_,V}為全域座標系統,自走車在全域座標系統的位置 可表不成P = [M Vf,其中分別代表全域座標中的橫軸與縱 轴;圖中{P’X,Y}為局部座標系統,亦即以P點為原點之座標系統; 圖中0為全域座標與局部座標之相對角度,且起始角由17軸開始量 起。假設自走車的輪子只有轉動且不產生侧移的情況之下,亦即 自走車移動的方向垂直於輪軸,因此自走車之行動約束可表示成 T>cos0-!isin0 = 〇 μ (26) 〇自走車移動之示意圖如「第四圖」所示,圊中Q和Q,代表自走車的 位置從取樣時間„,到%+1 ;如和如表示全域座標+ u軸和v軸之 位移量;ΑΘ表示自走車角度之旋轉量;G、r。和&代表Q點移動至 Q’點的旋轉半徑,即~為原點〇至左輪之間的距離;為原點〇至Q 點之間的距離;◊為原點Ο至右輪之間的距離;且4、《及4為所 對應旋轉半徑之弧長;ΔΘ和可表示成 ❹ _ At=奶I) vr +V, r〇=-L~^~bVr'V, (27)(28) 其甲Δί代表取樣時間的間隔、和^分別代表左輪速度和右輪逮 度其最大值限制設定^眶;在全域座標系統中自走車之離散式 動態方程式可表示成 <ns +1) = U(ns) + ro{sin[^(Ks) + )] - sin^C^)} v(ns +1) = v(Wi) + r〇 {c〇s^(Mi) - cos^ ) + A0(ns)]} (29) 其中义代表取樣時間。假如自走車在全域座標的控制命令位置為 18 200934197 〆=[& ,設計控制器時須將全域座標藉由轉換矩陣 cos^ sin0 sinΘ -cosθ ·( cos0 sin0 _ «_ ud _yd. sin0 -cos0 - ·. Λ. T-1轉換成局部座標系統/哨w,亦即 (30) ❹ Ο 本系統中’其主要的控制目的是找到適合的控制訊號使自走車 能夠達到即時軌跡追縱控制,為了達到此控制目標,定義X轴和Υ 軸的追縱誤差訊號分別為十其中,和#局部 座標系統之麟,織經岐祕__合社輪速度⑻以及 右輪速度(〇來操縱自走車達到路徑追縱控制之目的。 為了能夠使自走車在不同參考路徑(控制命令)達到追縱之效 月t> »又汁501自走車動態派翠遞迴式模糊類神經網路,其結合2〇8 網路派翠層収2〇4晴遞迴結構於傳⑽__經網路中, 其即時控制系統方塊圖如「第五圖」所示,圖中包含獅座標轉 換器501自走車動態派翠遞迴式模糊類神經網路、5〇2自走車裝 置503自走車線上參數調整模組及5〇4自走車學習率更新模組。 該500座標轉換器將全域座標轉為局部座標·,該训自走車動態 派翠遞迴式模_神、_路採用本發明之丨⑼動態派翠遞迴式模 糊類神經網路,根據追㈣差簡职)及其微分(U)求得適合 之左輪速度⑻和右輪速度⑻來操縱搬自走車裝置;該5〇2自 走車裝置根據左右輪速來移動自走車,並且以全域座標以及 車子方位Θ表示自走車的姿態;該5〇3自走車線上參數調整模組採 200934197 用本發明之102線上參數調整模組,根據學習率(心,t,%,%)、追 蹤誤差訊號(ϋ)及其微分(1石)來調整501自走車動態派翠遞迴 式模糊類神經網路參數之變化量(△河,^/,碎;,么〇;該504自走車 學習率更新模組採用本發明之1〇3學習率更新模組,根據501自 走車動態派翠遞迴式模糊類神經網路參數(河,历/,5/,〇、追縱誤差 訊號(¾^)及其微分(¾¾)求得學習率之更新值。 為了驗證本發明的即時控制性能,在此亦提出習用之網路架 © 構控制系統來比較其性能,其自走車裝置的參數可表示為 r = 0.0925m; 6 = 0.167m; vmax=0.4m/s (31) 為了顯示501自走車動態派翠遞迴式模糊類神經網路有較優越的 效能,比較另外三個不同的網路結構,包含模糊類神經網路 - (FNN)、遞迴式模糊類神經網路(RFNN)以及派翠模糊類神經網路 (PFNN),且使用相同的503自走車線上參數調整模組、504自走 車學習率更新模組、輪入訊號以及輸出訊號。其輸入訊號為追蹤 ®誤差訊號(€,5)及其微分(忑,Jy);輸出訊號為左輪速度(V,)和右輪速 度(vr)。網路參數初始值為先前訓練過的值,此先前訓練的參數值 採用先前所介紹之5〇3自走車線上參數調整模組及504自走車學 習率更新模組’當其達到滿意之控制效能的值,再將此次的參數 值設定為下一次執行之初始值。 本實驗所採用之敕體為visual C++,撰寫於Pentium IV之個 人電腦上;自走車之型號為Pi〇neer,由MobileRobots公司所製造。 200934197 發展板為 Hitachi H8S;頻率 44·2368ΜΗζ; 32bitRISC; 32k RAM ; 128k FLASH ;自走車與電腦的連線採用無線網路傳輸模組;輪子 由12伏特直流馬達控制採用PWM訊號;每個馬達裝有 128count/mm的感測器用於位置回授。本實驗選擇兩種參考路徑 (控制命令)來測試控制系統的性能,一是8字型的軌跡,其表示式 ❹ 如下: cos( cos( cos( 2πί π Τ 2 ,π 2πί '2 Τ 2πί π Τ 2 Μ 2πί ),0<ί<40 ),40<ί<80 ),80<ί<120 2 Τ yd 1 + sin( Τ 一2) {π 2πίΛ 〔2 Τ (2πί Τ 2) ,π 2πί、 2 Τ (32) 另一個為方形的軌跡,其表示式如下: ❹ xd O.lt 1 + cos[ 2 1 + cos[ 2π(ί-\0) Τ 2 2_-30) Τ f] 1-0.10-70) 2π(卜 50) -l + cos[ -2 -l + cos[ T 2 2π{ί + \0) π. Τ 2· ,0<ί <10 ,10</<30 ,30<ί <50 ,50<ί <70 ,70<ί <90 ,90<ί<110 ,110<ί<130 ,130<ί<150 ,150<ί <160 21 200934197 yd 1 + sin[Va 巧 nJ %-ΣΣΣ \2 <1 (25) Therefore, five (" + 1" < five (") can be obtained, and then five (") > 0 and Δ^ (η) are obtained according to the formula (6) ) < 0, so the error signal will gradually converge. [Embodiment] One embodiment of the "dynamic dispatching fuzzy back-type fuzzy neural network real-time control system and method thereof" is a schematic diagram of a self-propelled vehicle device used in a tracking automatic control system of a self-propelled vehicle. As shown in the "third diagram", two steering wheels and one supporting wheel are disposed on the vehicle body, and the steering wheels are respectively controlled by two independent DC motors and are parallel to the axle. The support wheel is a passive freewheel that can be controlled at any angle with the steering wheel. In the figure, the distance between the two steering wheels is shown, and the diameter of the steering wheel is expressed as 2r; the point C in the figure is the centroid position of the self-propelled car; the point in the figure is the axis of the wheel and the axis of the wheel passing through the C point. At the intersection of the line, the P point indicates that the self-propelled vehicle is in the position of the coordinate system 17 200934197; in the figure, _, V} is the global coordinate system, and the position of the self-propelled vehicle in the global coordinate system can not be expressed as P = [M Vf, They represent the horizontal and vertical axes of the global coordinates; respectively, {P'X, Y} in the figure is the local coordinate system, that is, the coordinate system with the P point as the origin; 0 is the relative coordinate of the global and the local coordinates. Angle, and the starting angle is measured from the 17th axis. Assuming that the wheel of the self-propelled vehicle only rotates and does not produce a side shift, that is, the direction in which the self-propelled vehicle moves is perpendicular to the axle, the action constraint of the self-propelled vehicle can be expressed as T>cos0-!isin0 = 〇μ ( 26) The schematic diagram of the self-propelled vehicle movement is shown in the “fourth figure”. The Q and Q in the middle of the vehicle represent the position of the self-propelled vehicle from the sampling time „, to %+1; if the sum indicates the global coordinate + u-axis and The displacement amount of the v-axis; ΑΘ indicates the rotation amount of the self-propelled vehicle angle; G, r, and & represents the radius of rotation of the Q point moving to the Q' point, that is, the distance from the origin to the left wheel; The distance between the point and the point Q; ◊ is the distance from the origin Ο to the right wheel; and 4, “and 4 is the arc length of the corresponding radius of rotation; ΔΘ can be expressed as ❹ _ At=milk I) Vr +V, r〇=-L~^~bVr'V, (27)(28) Its A Δί represents the sampling time interval, and ^ represents the left wheel speed and the right wheel catching maximum limit setting respectively; The discrete dynamic equation of the self-propelled vehicle in the global coordinate system can be expressed as <ns +1) = U(ns) + ro{sin[^(Ks) + )] - sin^C^)} v(ns + 1) = v(Wi) + r〇{c〇s^(Mi) - cos ^ ) + A0(ns)]} (29) where the meaning represents the sampling time. If the control position of the self-propelled vehicle in the global coordinates is 18 200934197 〆 = [& , the controller must be designed with the global coordinates by the transformation matrix Cos^ sin0 sinΘ -cosθ ·( cos0 sin0 _ «_ ud _yd. sin0 -cos0 - ·. Λ. T-1 is converted into local coordinate system / whistle w, ie (30) ❹ Ο 'The main one in this system' The purpose of the control is to find a suitable control signal so that the self-propelled vehicle can achieve the instantaneous trajectory tracking control. In order to achieve this control target, the tracking error signals defining the X-axis and the 轴-axis are respectively ten, and the #local coordinate system is the lining. Weaving secrets __ Heshe wheel speed (8) and right wheel speed (〇 to manipulate the self-propelled car to achieve the purpose of path tracking control. In order to enable the self-propelled car to achieve the tracking effect in different reference paths (control orders) t> » Juice 501 self-propelled car dynamic Pai Cui recursive fuzzy neural network, which combines 2〇8 network sent green layer to receive 2〇4 clear recursive structure in the biography (10) __ via the network, its instant The control system block diagram is shown in the "fifth figure", which contains the lion coordinate conversion. 501 self-propelled car dynamic dispatched back-type fuzzy neural network, 5〇2 self-propelled vehicle 503 self-propelled car line parameter adjustment module and 5〇4 self-propelled car learning rate update module. The 500 coordinate converter Turn the global coordinates into local coordinates ·, the training from the dynamic dynamics of the Cui recursive model _ God, _ road using the invention (9) dynamic Pai Cui recursive fuzzy neural network, according to chasing (four) poor job And its differential (U) finds the appropriate left-wheel speed (8) and right-wheel speed (8) to operate the self-propelled vehicle; the 5〇2 self-propelled vehicle moves the self-propelled vehicle according to the left and right wheel speeds, and uses the global coordinates and The car's position indicates the attitude of the self-propelled car; the 5〇3 self-propelled car line parameter adjustment module adopts 200934197 with the 102 online parameter adjustment module of the present invention, according to the learning rate (heart, t, %, %), tracking error The signal (ϋ) and its differential (1 stone) are used to adjust the variation of the parameters of the 501 self-propelled vehicle dynamic dispatching fuzzy-type neural network (△河,^/,碎;,么〇; the 504 self-propelled car The learning rate update module adopts the 1〇3 learning rate update module of the present invention, according to the 501 self-propelled car dynamics The Cui recursive fuzzy neural network parameters (river, calendar/, 5/, 〇, tracking error signal (3⁄4^) and its differential (3⁄43⁄4) are used to obtain the updated value of the learning rate. In order to verify the instant control performance of the present invention, a conventional network frame control system is also proposed to compare its performance. The parameters of the self-propelled device can be expressed as r = 0.0925m; 6 = 0.167m; vmax = 0.4 m/s (31) In order to show that the 501 self-propelled vehicle dynamic dispatched fuzzy neural network has superior performance, compare three different network structures, including fuzzy neural network-(FNN), Recursive fuzzy neural network (RFNN) and Paifu fuzzy neural network (PFNN), and use the same 503 self-propelled vehicle line parameter adjustment module, 504 self-propelled vehicle learning rate update module, wheeled signal And the output signal. The input signals are Tracking ® Error Signal (€, 5) and its derivative (忑, Jy); the output signals are the left wheel speed (V,) and the right wheel speed (vr). The initial value of the network parameter is the previously trained value. The previously trained parameter value adopts the previously described 5〇3 self-propelled vehicle line parameter adjustment module and the 504 self-propelled vehicle learning rate update module' when it is satisfied. Control the value of the performance, and then set the parameter value of this time to the initial value of the next execution. The carcass used in this experiment was visual C++, written on a personal computer of the Pentium IV; the model of the self-propelled car was Pi〇neer, manufactured by MobileRobots. 200934197 Development board is Hitachi H8S; frequency 44·2368ΜΗζ; 32bitRISC; 32k RAM; 128k FLASH; self-propelled car and computer connection using wireless network transmission module; wheels are controlled by 12V DC motor using PWM signal; each motor A 128count/mm sensor is used for position feedback. In this experiment, two reference paths (control commands) are selected to test the performance of the control system. One is an 8-shaped trajectory whose expression ❹ is as follows: cos( cos( 2πί π Τ 2 , π 2πί '2 Τ 2πί π Τ 2 Μ 2πί ), 0 < ί < 40 ), 40 < ί < 80 ), 80 < ί < 120 2 Τ yd 1 + sin ( Τ 1 2) {π 2πίΛ 〔2 Τ (2πί Τ 2) , π 2πί 2 Τ (32) The other is a square trajectory whose expression is as follows: ❹ xd O.lt 1 + cos[ 2 1 + cos[ 2π( ί-\0) Τ 2 2_-30) Τ f] 1- 0.10-70) 2π(卜50) -l + cos[ -2 -l + cos[ T 2 2π{ί + \0) π. Τ 2· , 0 < ί <10 , 10 </<30 , 30<ί <50,50<ί <70,70<ί<90,90<ί<110,110<ί<130,130<ί<150,150<ί<160 21 200934197 yd 1 + Sin[

2π(ί-10) ~T f] 1 + 0.10-30) 2π(ί-30) π] 3 + sin[ 42π(ί-10) ~T f] 1 + 0.10-30) 2π(ί-30) π] 3 + sin[ 4

T 3 + sin[2M 3-0.10-110) 2. π. ~ΐ' ,0 <ί <10 ,10</<30 ,30</<50 ,50<ί <70 ,70<ί <90 ,90<ί<110 ,110<ί<130 (33) l + sin[2;r^ + 1Q)--] ,130<ί<150 Τ 2T 3 + sin[2M 3-0.10-110) 2. π. ~ΐ' , 0 < ί <10 , 10 < / < 30 , 30 < / < 50 , 50 < ί < 70 , 70 <;ί<90,90<ί<110,110<ί<130 (33) l + sin[2;r^ + 1Q)--] ,130<ί<150 Τ 2

0 ,150</<160 自走車的初始位置和角度預設為零,且系統之控制參數表示如下: dth=0.l ; ^ = 0.05; Δ/ = 0.05s (34) (34)式中的控制參數係考慮可能之運作環境下所選取較佳性能的 一組參數值。為了能夠比較各網路結構控制系統的性能,在此定 義平均誤差值(MSE)為 MSE=4t>K2(«) + e» (35) 其中Τ'代表取樣時間的總和。 本實驗首先針對模糊類神經網路(FNN)在歸屬函數層中不同 數目之神經元時,所產生不同的即時控制效能,其平均誤差值(MSE) 和執行時間顯示在第六圖。根據第六圖的結果可發現,神經元在 七個的時候效能最好,換句話說,此網路% =4、' = 7、 〜=7x7x7x7 = 2401及=2時,較其他的網路大小更適合自走車路 徑追蹤,因此接下來的實驗以此網路為基礎,控制系統調整的參 22 200934197 數總合共有2χ„ίΧ〜+w4858l μ自走車動態派翠遞 迴式模糊類神經網路參數調整的數目則是根據⑺式的預設臨界值 4而疋’因此所需要的記憶體和執行速度都比模糊類神經網路 阐控制系統要來的少,儘管需要更多的規則數來增強追蹤響 應,並不會造錢大的運算量,料會使電腦或微處理器當機。0,150</<160 The initial position and angle of the self-propelled vehicle are preset to zero, and the control parameters of the system are expressed as follows: dth=0.l; ^=0.05; Δ/ = 0.05s (34) (34) The control parameters in the equation are a set of parameter values that take into account the preferred performance selected for the possible operating environment. In order to be able to compare the performance of each network structure control system, the mean error value (MSE) is defined here as MSE=4t>K2(«) + e» (35) where Τ' represents the sum of the sampling times. This experiment firstly produces different instantaneous control performances for fuzzy neural networks (FNN) with different numbers of neurons in the attribution function layer. The average error value (MSE) and execution time are shown in the sixth graph. According to the results of the sixth graph, the neurons are the best at seven times. In other words, the network is %=4, '=7, ~=7x7x7x7 = 2401 and =2, compared to other networks. The size is more suitable for self-propelled vehicle path tracking, so the next experiment based on this network, the control system adjustment of the reference 22 200934197 total number of total 2 χ Χ Χ + + + + + + + + + + + + + + + + + + The number of neural network parameter adjustments is based on the preset threshold 4 of equation (7), so the required memory and execution speed are less than that of the fuzzy neural network control system, although more is needed. The number of rules to enhance the tracking response does not create a large amount of computation, which may cause the computer or microprocessor to crash.

所有控制系統的實驗結果都顯示在圖七到圖十四,包括8字 型和方形的路徑追縱,其中圖七、九、十—以及十三為8字型的 追蹤響應KA、十、十二以及十四為方形的追蹤響應。每張圖 中(a)和(啦別代表X軸和作的追縱響應;⑷和⑷分別代表X轴 和Y轴的舰誤差;(e)和⑺分別代表左輪速度和右輪速度;⑻為 路禮追縱響應是路徑追蹤誤差^實驗結果得知,影響即 時控制系統的追蹤響應以及強健性能的最大因素為控制系統本身 的學習能力,影響執行時間則是網路的架構。第十五圖整理所有 網路結構控制系統的平均誤差值(MSE)和執行時間,遞迴式模糊類 神經網路(RFNN)的控制效能明顯比模糊類神經網路(FNN)來得 奸,因為遞迴式模糊類神經網路(RFNN)的遞迴結構增加網路之對 應能力;雖然派翠模糊類神經網路(PFNN)的平均誤差值(MSE)稍 微較遞迴式模糊類神經(RFNN)的大’但是執行時間卻少許多,因 為派翠模糊類神經網路(PFNN)中有預設臨界值的限制,使得過低 的網路歸屬函數層輪出和所對應之變化量不執行運算;比較圖十三 和十四與圖七到十二,501自走車動態派翠遞迴式模糊類神經網路 23 200934197 的平均誤差值(MSE)比遞迴式模糊類神經網路(RFNN)來的小,其 執行時間接近於派翠模糊類神經網路(PFNN),由此結果得知5〇1 自走車動態派翠遞迴式模糊類神經網路的效能確實較其他網路結 構控制系統優越。 本實施例成功的結合208網路派翠層和204網路遞迴結構於 傳統之模糊類神經網路,並且展現501自走車動態派翠遞迴式模 糊類神經網路的即時控制性能於路徑追蹤上q〇〇動態派翠遞迴式 ©模糊類神經網路可簡化規則數之運算以及增加網路之對應能力, 由實驗結果得知5〇1自走車動態派翠遞迴式模糊類神經網路追縱 效能比模糊類神經網路(FNN)提高23 42% :其執行時間亦減少 95.65%。 本發明「動態派翠遞迴式棋糊類神經網路即時控制系統及其 方法」主要之優點分述如下: ❿ 1. 本發月動態派翠遞迴式模糊類神經網路即時控制系統及其 方法」提出新的動態派翠物式模糊類神經網路結構,且加入 線上參數調龍組達_路錢之學習,錢⑽學習率更新模 組使得誤差減得以㈣,因此本發明相當具有新顆性。 2. 本發月動態派翠遞迴式棋糊類神經網路即時控制系統及其 方法」提出之網路結構成輕運詩自走車裝置上,由實驗結果 可也月其!·生I比以往之網路結構控制性能來的優越,因此本發明 較習用技術明顯具有進步性。 24 200934197 3.本發明「動態派翠遞迴式模糊類神經網路即時控制系統及其 方法」提出之即時控制系統可運用於任意之101受控體,同時可 加入102線上參數調整模組及103學習率更新模組,達到所需之 即時控制效能,因砵本發明相當具有產業利用性。 雖然本發明已前述較佳實施例揭示,然其並非用以限定本發 明,任何熟習此技藝者,再不脫離本發明之精神和範圍内,當可 作各種之變動與修改,因此本發明之保護範圍當視後附之申請專 Ο利範圍所界定者為準。 【圖式簡單說明】 第一圖 表示本發明動態派翠遞迴式模糊類神經網路即時控 制系統方塊圖 第二圖 表示本發明動態派翠遞迴式模糊類神經網路之架構 圖 Q 第三圖 表示自走車裝置之示意圖 第四圖 表示自走車移動之示意圖 第五圖 表示自走車即時控制系統方塊圖 第六圖 表示模糊類神經網路控制系統之平均誤差值和執行 時間 第七圖 表示8-字型路徑追蹤採模糊類神經網路控制系統之 實驗結果 第八圖 表示方形路徑追蹤採模糊類神經網路控制系統之實 25 200934197 驗結果 第九圖 表示8-字型路徑追蹤採遞迴式模糊類神經網路控制 系統之實驗結果 第十圖 表示方形路徑追蹤採遞迴式模糊類神經網路控制系 統之實驗結果 第十一圖表示8-字型路徑追蹤採派翠模糊類神經網路控制系 統之實驗結果 〇 第十二圖表示方形路徑追蹤採派翠模糊類神經網路控制系統 之實驗結果 第十三圖表示8-字型路徑追蹤採動態派翠遞迴式模糊類神經 網路控制系統之實驗結果 第十四圖表示方形路徑追蹤採動態派翠遞迴式模糊類神經網 路控制系統之實驗結果 第十五圖表示模糊類神經網路、遞迴式模糊類神經網路、派 〇 翠模糊類神經網路及動態派翠遞迴式模糊類神經網 路控制系統之平均誤差值和執行時間 【主要元件符號說明】 100 動態派翠遞迴式模糊類神經網路 101 受控體 102 線上參數調整模組 103 學習率更新模組 26 200934197The experimental results of all control systems are shown in Figure 7 to Figure 14, including 8-shaped and square path tracking, where Figures 7, 9, 10, and 13 are 8-shaped tracking responses KA, 10, and 10 Two and fourteen are square tracking responses. In each figure, (a) and (ie, represent the X-axis and the tracking response; (4) and (4) represent the ship error of the X-axis and the Y-axis, respectively; (e) and (7) represent the left-wheel speed and the right-wheel speed, respectively; (8) The ritual tracking response is the path tracking error. The experimental results show that the biggest factor affecting the tracking response and robust performance of the immediate control system is the learning ability of the control system itself, and the execution time is the architecture of the network. The average error value (MSE) and execution time of all network structure control systems, the control performance of the recursive fuzzy neural network (RFNN) is significantly better than that of the fuzzy neural network (FNN) because of the recursive fuzzy class. The recursive structure of the neural network (RFNN) increases the corresponding power of the network; although the average error value (MSE) of the Paifu fuzzy-like neural network (PFNN) is slightly larger than that of the recursive fuzzy-like nerve (RFNN), The execution time is much less, because there is a preset threshold value in the Paifu fuzzy neural network (PFNN), so that the too low network attribution function layer rotation and the corresponding change amount do not perform the operation; Three and fourteen with figure By the 12th, 501 self-propelled car dynamics, the average error value (MSE) of the 200934197 is smaller than that of the recursive fuzzy neural network (RFNN), and its execution time is close to that of the pie. The fuzzy fuzzy neural network (PFNN), the result shows that the performance of the 5〇1 self-propelled vehicle dynamic regenerative fuzzy neural network is indeed superior to other network structure control systems. The successful combination of this embodiment The 208 network sent the layer and the 204 network recursively structure the traditional fuzzy-like neural network, and showed the real-time control performance of the 501 self-propelled vehicle dynamic dispatching fuzzy-like neural network on the path tracking. Dynamic Pai Cui recursive © fuzzy neural network can simplify the calculation of the number of rules and increase the corresponding ability of the network. From the experimental results, it is known that the 5〇1 self-propelled vehicle dynamics are sent back to the fuzzy neural network. The performance is 23 42% higher than the fuzzy neural network (FNN): its execution time is also reduced by 95.65%. The main advantages of the "dynamic dispatching back-type chess-like neural network real-time control system and its method" of the present invention are described. As follows: ❿ 1. This month’s dynamic dispatch Fuzzy-like neural network real-time control system and its method" proposes a new dynamic-styled-style fuzzy-like neural network structure, and joins the online parameter Tiaolong group to reach _Lu Qianzhi learning, money (10) learning rate update module makes The error is reduced (4), so the present invention is quite new. 2. The dynamic structure of the dynamic control system and method of the present-day dynamic dispatching chess-like chess-like neural network is proposed. On the device, the experimental results are also available! The raw I is superior to the previous network structure control performance, so the present invention is significantly more advanced than the conventional technology. 24 200934197 3. The present invention "dynamic dispatching The fuzzy neural network real-time control system and its method" can be applied to any 101 controlled body, and can also add 102 online parameter adjustment module and 103 learning rate update module to achieve the required immediate control. Performance, because the invention is quite industrially useful. The present invention has been disclosed in the foregoing preferred embodiments, and is not intended to limit the scope of the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope is subject to the definition of the scope of the application for the benefit of the application. BRIEF DESCRIPTION OF THE DRAWINGS The first figure shows the block diagram of the dynamic dispatching fuzzy neural network real-time control system of the present invention. The second figure shows the architecture diagram of the dynamic dispatching fuzzy-like neural network of the present invention. The three diagrams show the schematic diagram of the self-propelled vehicle. The fourth diagram shows the movement of the self-propelled vehicle. The fifth diagram shows the block diagram of the self-propelled vehicle. The sixth diagram shows the average error value and execution time of the fuzzy neural network control system. The seven graphs represent the experimental results of the 8-word path tracking fuzzy neural network control system. The eighth graph shows the square path tracking fuzzy neural network control system. 25 200934197 The results of the ninth figure shows the 8-shaped path. Experimental results of the tracking and returning fuzzy-like neural network control system The tenth figure shows the experimental results of the square path tracking and returning fuzzy-like neural network control system. The eleventh figure shows the 8-shaped path tracking. Experimental results of the fuzzy neural network control system 〇 The twelfth figure shows the square path tracking and the acquisition of the fuzzy fuzzy neural network control system. Results The thirteenth figure shows the experimental results of the 8-shaped path tracking mining dynamic dispatching fuzzy fuzzy neural network control system. The fourteenth figure shows the square path tracking mining dynamic dispatching fuzzy fuzzy neural network control The fifteenth graph of the experimental results of the system shows the average error value of the fuzzy neural network, the recursive fuzzy neural network, the sentimental fuzzy neural network and the dynamic dispatched fuzzy neural network control system. And execution time [main component symbol description] 100 dynamic dispatched fuzzy back-type neural network 101 controlled body 102 online parameter adjustment module 103 learning rate update module 26 200934197

200 網路輸入訊號 201 網路輸入層 202 網路歸屬函數層 203 網路歸屬函數神經元 204 網路遞迴結構 205 網路遞迴結構權重值 206 網路歸屬函數層輸出 207 時間延遲單元 208 網路派翠層 209 傳送閥 210 網路規則層 211 網路規則層輸出 212 網路派翠層與網路規則層之間權重值 213 網路輸出層 214 網路輸出層與網路規則層之間權重值 215 網路輸出訊號 500 座標轉換器 501 自走車動態派翠遞迴式模糊類神經網路 502 自走車裝置 503 自走車線上參數調整模組 504 自走車學習率更新模組 27200 network input signal 201 network input layer 202 network attribution function layer 203 network attribution function neuron 204 network recursive structure 205 network recursive structure weight value 206 network attribution function layer output 207 time delay unit 208 network Road Pai Cui Layer 209 Transfer Valve 210 Network Rule Layer 211 Network Rule Layer Output 212 Weight between Network Pai Layer and Network Rule Layer 213 Network Output Layer 214 Between Network Output Layer and Network Rule Layer Weight value 215 Network output signal 500 Coordinate converter 501 Self-propelled vehicle dynamic dispatched fuzzy-type neural network 502 Self-propelled vehicle device 503 Self-propelled vehicle line parameter adjustment module 504 Self-propelled vehicle learning rate update module 27

Claims (1)

200934197 十、申請專利範園: 1. —種動態派翠遞迴式模糊類神經網路即時控制系統及其方法, 其包含: 一動態派翠遞迴式模糊類神經網路; 一受控體; 一線上參數調整模組;及 一學習率更新模組; Φ 該動態派翠遞迴式模糊類神經網路輸入為誤差訊號及其微分, 輸出為控制訊號;該受控體為所欲控制之裝置,通常該受控體 輸入為控制訊號,輸出為感測器所量測到該受控體的狀態,該 . 受控體狀態與所對應控制命令相減成為誤差訊號,將此誤差訊 號及其微分傳送至動態派翠遞迴式模糊類神經網路,形成即時 控制系統;該線上參數調整模組係根據學習率、誤差訊號及其 微分來調整動態派翠遞迴式模糊類神經網路參數的變化量;該 Q 學習率更新模組係根據動態派翠遞迴式模糊類神經網路參數、 誤差訊號及其微分,以離散型里亞普諾(Discrete-type Lyapunov) 穩定理論求得學習率之更新值,使得誤差訊號得以收歛。 2. 如申請專利範圍第1項之動態派翠遞迴式模糊類神經網路即時 控制系統及其方法,該動態派翠遞迴式模糊類神經網路包含一 網路輸入層、一網路歸屬函數層、一網路派翠層、一網路規則 層及一網路輸出層;該網路輸入層將網路輸入訊號直接傳送到 該網路歸屬函數層;該網路歸屬函數層運算該網路輸入層送來 28 200934197 的訊號,經特定歸屬函數運算將結果傳送到該網路派翠層;該 網路派翠層以傳送閥的機制,判斷是否將資料傳到該網路規則 層;該網路規則層輸出為所對應的網路派翠層之輸出的乘積; 該網路輸出層輸出為網路輸出訊號,每個網路輸出訊號為該網 路規則層輸出和該網路派翠層與該網路規則層之間權重值乘積 的所有總和。 3.如申請專利範圍第2項之動態派翠遞迴式模糊類神經網路即時 〇 控制系統及其方法的動態派翠遞迴式模糊類神經網路,該網路 歸屬函數層包含一網路歸屬函數神經元及一網路遞迴結構;該 網路歸屬函數神經元的輸入為上一次網路歸屬函數層輸出乘上 網路遞迴結構權重值,並加上本次網路輸入訊號,透過特定歸 屬函數做運算將結果輸出;該網路遞迴結構可將網路歸屬函數 層輸出以時間延遲一次的方式作為下次運算的資訊,達到快速 動態對應網路之能力。 © 4.如申請專利範圍第2項之動態派翠遞迴式模糊類神經網路即時 控制系統及其方法的動態派翠遞迴式模糊類神經網路架構,該 網路派翠層為一傳送閥之機制,該機制能判斷網路歸屬函數層 輸出值的是否高於預設臨界值,禁止過低的網路歸屬函數層輸 出通過,該未通過的網路歸屬函數層輸出不需要調整該歸屬函 數層之參數,可有效減少網路運算量。 5.如申請專利範圍第1項之動態派翠遞迴式模糊類神經網路即時 29 200934197 控制系統及其方法,該線上參數調整模組主要係以監督式梯度 遞減法(Supervised Gradient Descent Method)得到動態派翠遞迴 式模糊類神經網路中參數值的變化量,該線上參數調整模組所 有參數值的變化量是藉由特定能量函數對所欲調整參數偏微分 而產生,經由改變動態派翠遞迴式模糊類神經網路中參數值以 達到學習的功能,使得即時控制系統具有較佳的控制性能。 6. —種動態派翠遞迴式模糊類神經網路即時控制系統及其方法, ❹ 其包含: 一動態派翠遞迴式模糊類神經網路; 一受控體;及 - 一線上參數調整模組; 該動態派翠遞迴式模糊類神經網路輸入為誤差訊號及其微分, 輸出為控制訊號;該受控體為所欲控制之裝置,通常該受控體 輸入為控制訊號,輸出為感測器所量測到該受控體的狀態,該 〇 受控體狀態與所對應控制命令相減成為誤差訊號,將此誤差訊 號及其微分傳送至動態派翠遞迴式模糊類神經網路,形成即時 控制系統;該線上參數調整模組係根據固定學習率、誤差訊號 及其微分來調整動態派翠遞迴式模糊類神經網路參數的變化 量。 7. 如申請專利範圍第6項之動態派翠遞迴式模糊類神經網路即時 控制系統及其方法,該動態派翠遞迴式模糊類神經網路包含一 200934197 網路輸入層、一網路歸屬函數層、一網路派翠層、一網路規則 層及一網路輸出層;該網路輸入層將網路輸入訊號直接傳送到 該網路歸屬函數層;該網路歸屬函數層運算該網路輸入層送來 的訊號,經特定歸屬函數運算將結果傳送到該網路派翠層;該 網路派翠層以傳送閥的機制,判斷是否將資料傳到該網路規則 層;該網路規則層輸出為所對應的網路派翠層之輸出的乘積; 該網路輸出層輸出為網路輸出訊號,每個網路輸出訊號為該網 Ο 路規則層輸出和該網路派翠層與該網路規則層之間權重值乘積 的所有總和。 8. 如申請專利範圍第7項之動態派翠遞迴式模糊類神經網路即時 • 控制系統及其方法的動態派翠遞迴式模糊類神經網路,該網路 • 歸屬函數層包含一網路歸屬函數神經元及一網路遞迴結構;該 網路歸屬函數神經元的輸入為上一次網路歸屬函數層輸出乘上 網路遞迴結構權重值,並加上本次網路輸入訊號,透過特定歸 © 屬函數做運算將結果輸出;該網路遞迴結構可將網路歸屬函數 層輸出以時間延遲一次的方式作為下次運算的資訊,達到快速 動態對應網路之能力。 9. 如申請專利範圍第7項之動態派翠遞迴式模糊類神經網路即時 控制系統及其方法的動態派翠遞迴式模糊類神經網路架構,該 網路派翠層為一傳送閥之機制,該機制能判斷網路歸屬函數層 輸出值的是否高於預設臨界值,禁止過低的網路歸屬函數層輸 31 200934197 出通過,該未通過的網路歸屬函數層輸出不需要調整該歸屬函 數層之參數,可有效減少網路運算量。 10.如申請專利範圍第6項之動態派翠遞迴式模糊類神經網路即時 控制系統及其方法,該線上參數調整模組主要係以監督式梯度 遞減法(Supervised Gradient Descent Method)得到動態派翠遞迴 式模糊類神經網路中參數值的變化量,該線上參數調整模組所 有參數值的變化量是藉由特定能量函數對所欲調整參數偏微分 © 而產生,經由改變動態派翠遞迴式模糊類神經網路中參數值以 達到學習的功能,使得即時控制系統具有較佳的控制性能。 ❹ 32200934197 X. Application for Patent Park: 1. A dynamic dispatching fuzzy-like neural network real-time control system and method thereof, comprising: a dynamic dispatching fuzzy-like neural network; a controlled body An on-line parameter adjustment module; and a learning rate update module; Φ The dynamic dispatched fuzzy back-type neural network input is an error signal and its differential, and the output is a control signal; the controlled body is controlled as desired The device usually inputs the control signal as a control signal, and the output is the state of the controlled body measured by the sensor, and the controlled body state is subtracted from the corresponding control command to become an error signal, and the error signal is obtained. The differential transmission is transmitted to the dynamic Pai Cui recursive fuzzy neural network to form an instant control system. The online parameter adjustment module adjusts the dynamic dispatching fuzzy neural network based on the learning rate, error signal and its differential. The change of the road parameter; the Q learning rate update module is based on the dynamic dispatched fuzzy neural network parameters, the error signal and its differential, and the discrete type of Rialpno (Discrete-typ) e Lyapunov) The stability theory finds the updated value of the learning rate so that the error signal converges. 2. The dynamic dispatching fuzzy-like neural network real-time control system and method thereof according to the first application of the patent scope, the dynamic dispatching fuzzy-type neural network comprises a network input layer and a network a attribution function layer, a network dispatch layer, a network rule layer and a network output layer; the network input layer directly transmits the network input signal to the network attribution function layer; the network attribution function layer operation The network input layer sends a signal of 28 200934197, and the result is transmitted to the network Pai layer through a specific attribution function operation; the network sends a valve mechanism to determine whether to transmit data to the network rule. The network rule layer output is the product of the output of the corresponding network Pai layer; the output layer of the network output is a network output signal, and each network output signal is the network rule layer output and the network All sums of the product of the weight value between the road and the network rule layer. 3. The dynamic Pai Cui recursive fuzzy neural network of the dynamic dispatching fuzzy neural network real-time control system and method thereof according to the second paragraph of the patent application scope, the network attribution function layer includes a network The path attribution function neuron and a network recursive structure; the input of the network attribution function neuron is the last network attribution function layer output multiplied by the network recursive structure weight value, and the current network input signal is added. The result is output through a specific attribution function; the network recursive structure can use the network attribution function layer output as the information of the next operation in a time delay manner to achieve the capability of quickly and dynamically corresponding to the network. © 4. Dynamic Dispatch-based fuzzy neural network real-time control system and its method, as described in the second paragraph of Patent Application No. 2, the dynamic dispatching fuzzy-like neural network architecture, the network is a The mechanism of the transfer valve, the mechanism can determine whether the output value of the network attribution function layer is higher than a preset threshold, prohibiting the output of the network attribute layer that is too low, and the output of the failed network attribution function layer does not need to be adjusted. The parameters of the attribution function layer can effectively reduce the amount of network operations. 5. For example, the dynamic dispatching fuzzy-type neural network of the first paragraph of the patent application scope 29 200934197 control system and its method, the online parameter adjustment module is mainly based on the Supervised Gradient Descent Method (Supervised Gradient Descent Method) The variation of the parameter values in the dynamic dispatched fuzzy neural network is obtained. The variation of all parameter values of the parameter adjustment module on the line is generated by a specific energy function to differentiate the parameters to be adjusted, and the dynamics are changed. The parameters of the Pai Cui recursive fuzzy neural network to achieve the learning function, so that the instant control system has better control performance. 6. A dynamic dispatching fuzzy-like neural network real-time control system and method thereof, ❹ comprising: a dynamic dispatched fuzzy back-type neural network; a controlled body; and - an on-line parameter adjustment The module; the dynamic sentimentary fuzzy neural network input is an error signal and its differential, and the output is a control signal; the controlled body is a device to be controlled, and usually the controlled body input is a control signal, and the output is The state of the controlled body is measured by the sensor, and the state of the controlled body is subtracted from the corresponding control command into an error signal, and the error signal and its differential are transmitted to the dynamic dispatching fuzzy type neural The network forms an instant control system; the online parameter adjustment module adjusts the variation of the dynamic dispatching fuzzy neural network parameters according to the fixed learning rate, the error signal and the differential. 7. The dynamic dispatching fuzzy-like neural network real-time control system and method thereof according to the sixth patent application scope includes a 200934197 network input layer and a network. a path attribution function layer, a network dispatch layer, a network rule layer and a network output layer; the network input layer directly transmits the network input signal to the network attribution function layer; the network attribution function layer Computing the signal sent by the input layer of the network, and transmitting the result to the network of the network via a specific attribution function operation; the network sends a valve mechanism to determine whether to transmit data to the network rule layer The network rule layer output is the product of the output of the corresponding network send layer; the output layer of the network is the network output signal, and each network output signal is the network rule layer output and the network All sums of the product of the weight value between the road and the network rule layer. 8. For the dynamic Pai Cui recursive fuzzy neural network of the dynamic dispatch control fuzzy neural network instant control system and method thereof, the network • attribution function layer includes a Network attribution function neuron and a network recursive structure; the input of the network attribution function neuron is the last network attribution function layer output multiplied by the network recursive structure weight value, and the current network input signal The result is output through a specific function of the attribute function; the network recursive structure can use the time delay of the network attribution function layer as the information of the next operation to achieve the capability of quickly and dynamically corresponding to the network. 9. The dynamic dispatching fuzzy-like neural network architecture of the dynamic dispatching fuzzy-like neural network real-time control system and method thereof according to the seventh patent application scope, the network dispatched layer is a transmission The mechanism of the valve, the mechanism can determine whether the output value of the network attribution function layer is higher than a preset threshold, and prohibit the too low network attribution function layer to pass through, and the failed network attribution function layer output is not The parameters of the attribution function layer need to be adjusted, which can effectively reduce the amount of network operations. 10. The dynamic dispatching fuzzy neural network real-time control system and method thereof according to the sixth application of the patent scope, the online parameter adjustment module is mainly obtained by the Supervised Gradient Descent Method. The amount of change in the parameter value in the Pai Cui recursive fuzzy neural network. The variation of all parameter values of the parameter adjustment module on the line is generated by the specific energy function to the parameter differentiation of the desired parameter. The value of the parameters in the Cui reversal fuzzy neural network to achieve the learning function makes the instant control system have better control performance. ❹ 32
TW97103910A 2008-01-31 2008-01-31 Real-time control system of dynamic petri recurrent-fuzzy-neural-network TWI363546B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97103910A TWI363546B (en) 2008-01-31 2008-01-31 Real-time control system of dynamic petri recurrent-fuzzy-neural-network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97103910A TWI363546B (en) 2008-01-31 2008-01-31 Real-time control system of dynamic petri recurrent-fuzzy-neural-network

Publications (2)

Publication Number Publication Date
TW200934197A true TW200934197A (en) 2009-08-01
TWI363546B TWI363546B (en) 2012-05-01

Family

ID=44866180

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97103910A TWI363546B (en) 2008-01-31 2008-01-31 Real-time control system of dynamic petri recurrent-fuzzy-neural-network

Country Status (1)

Country Link
TW (1) TWI363546B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104931538A (en) * 2015-06-10 2015-09-23 中冶南方工程技术有限公司 Learning type hydrochloric acid concentration and Fe ion concentration on-line detection system and method
TWI721582B (en) * 2019-10-01 2021-03-11 遠東科技大學 Digital fuzzy controller and control method based on adaptive network based fuzzy inference system for boost converter
TWI813316B (en) * 2022-05-31 2023-08-21 瑞昱半導體股份有限公司 Method for data access control among multiple nodes and data access system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10664746B2 (en) * 2018-07-17 2020-05-26 Macronix International Co., Ltd. Neural network system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104931538A (en) * 2015-06-10 2015-09-23 中冶南方工程技术有限公司 Learning type hydrochloric acid concentration and Fe ion concentration on-line detection system and method
TWI721582B (en) * 2019-10-01 2021-03-11 遠東科技大學 Digital fuzzy controller and control method based on adaptive network based fuzzy inference system for boost converter
TWI813316B (en) * 2022-05-31 2023-08-21 瑞昱半導體股份有限公司 Method for data access control among multiple nodes and data access system

Also Published As

Publication number Publication date
TWI363546B (en) 2012-05-01

Similar Documents

Publication Publication Date Title
Pothal et al. Navigation of multiple mobile robots in a highly clutter terrains using adaptive neuro-fuzzy inference system
Wai et al. Design of dynamic petri recurrent fuzzy neural network and its application to path-tracking control of nonholonomic mobile robot
US8996177B2 (en) Robotic training apparatus and methods
Park et al. Adaptive formation control of electrically driven nonholonomic mobile robots with limited information
CN107561942A (en) Intelligent vehicle track following model predictive control method based on model compensation
CN107168324A (en) A kind of robot path planning method based on ANFIS fuzzy neural networks
Kazem et al. Modified vector field histogram with a neural network learning model for mobile robot path planning and obstacle avoidance.
Algabri et al. Mobile robot navigation and obstacle-avoidance using ANFIS in unknown environment
TW200934197A (en) Real-time control system of dynamic petri recurrent-fuzzy-neural-network and its method
Lu et al. An autonomous learning mobile robot using biological reward modulate STDP
Vatankhah et al. Adaptive critic-based neuro-fuzzy controller in multi-agents: Distributed behavioral control and path tracking
CN116476825B (en) Automatic driving lane keeping control method based on safe and reliable reinforcement learning
Tanaka et al. Smooth control of an articulated mobile robot with switching constraints
Xue et al. Extended kalman filter based resilient formation tracking control of multiple unmanned vehicles via game-theoretical reinforcement learning
CN113848927A (en) Automatic driving system capable of automatically planning path
Li et al. Application of artificial neural network based on q-learning for mobile robot path planning
Jin et al. Fuzzy logic system based obstacle avoidance for a mobile robot
Yi et al. A navigation method for mobile robots using interval type-2 fuzzy neural network fitting Q-learning in unknown environments
Phinni et al. Obstacle Avoidance of a wheeled mobile robot: A Genetic-neurofuzzy approach
Wai et al. Robust path tracking control of mobile robot via dynamic petri recurrent fuzzy neural network
Chen et al. Neural fuzzy inference systems with knowledge-based cultural differential evolution for nonlinear system control
TWI413005B (en) Robust path tracking control for mobile robot via dynamic petri recurrent-fuzzy-neural-network
Wang et al. Bio-inspired navigation of mobile robots
Wang et al. Model predictive control of multi-robot formation based on the simplified dual neural network
Jiang et al. Path planning based on fuzzy logic algorithm for robots in hierarchical control

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees