TWI363488B - Bi-directional amplifier for data over coax applications - Google Patents

Bi-directional amplifier for data over coax applications Download PDF

Info

Publication number
TWI363488B
TWI363488B TW097126496A TW97126496A TWI363488B TW I363488 B TWI363488 B TW I363488B TW 097126496 A TW097126496 A TW 097126496A TW 97126496 A TW97126496 A TW 97126496A TW I363488 B TWI363488 B TW I363488B
Authority
TW
Taiwan
Prior art keywords
amplifier
bidirectional
power
signal
tdf
Prior art date
Application number
TW097126496A
Other languages
Chinese (zh)
Other versions
TW200934107A (en
Inventor
Jinfei Yu
Junbiao Zhang
Hongming Gu
Xiangkun Ma
Original Assignee
Thomson Licensing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2007/002146 external-priority patent/WO2009009918A1/en
Priority claimed from PCT/CN2007/002229 external-priority patent/WO2009012614A1/en
Application filed by Thomson Licensing filed Critical Thomson Licensing
Publication of TW200934107A publication Critical patent/TW200934107A/en
Application granted granted Critical
Publication of TWI363488B publication Critical patent/TWI363488B/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Description

1363488 九、發明說明: 【發明所屬之技術領域】 本原理係關於以電镜為基礎的寬頻通信網路。更特定言 之’其係關於一雙向放大器及其實施方法。 【先前技術】 同軸電纜已並繼續用以發射資料。對使用同軸電纜以使 用其他發射協定發射資料的一個限制係由於同軸電纜之約 束及與其相關聯的有限頻寬而缺乏發射速度β在電境網路 中’已考量使用分時雙工雙向放大器。然而,一般地此等 放大器不能支持所需速度及其他約束。 【發明内容】 依據 般態樣,一裝置包括一雙向功率放大器單元, 其經組態用以放大具有一第一方向的信號並放大具有與該 第一方向相對之一方向的信號❶該裝置亦包括一雙向功率 偵測器單元,其係耦合至該雙向放大器單元以便(1)在由該 雙向功率放大器單元放大具有該第一方向的一信號之前偵 測具有該第一方向的該信號之功率,以及在由該雙向功 率放大器單元放大具有該相對方向的該信號之後債測具有 該相對方向之一信號中的功率。 依據本原理之另--般態樣,一放大器電路包括具有一 輸入及一輸出的一定向耦合器。該電路進一步包括一雙向 功率放大器’其具有一旁通模並具有耦合至該定向耗合器 之輸出的一輸入以及經組態用以連接至一數據機的一輸 出’其中該定向放大器之該輸入經組態用以連接至一存取 132610.doc 點。該定向輕合器係連接在該雙向功率放大器之存取點側 上。該電路包括連接至該定向輕合器並經組態用以制上 行鏈路及下行鏈路功率的一功率该測器。該電路包括具有 '分別連接至該功率伯測器的一反相及非反相輸入之-電壓 ·· &較器。該電路包括連接至該電壓比較器之該非反相輸入 、 i經組態用以提供-預偏壓電壓給該電壓比較器的一分壓 網路。該電路包括連接至該電壓比較器及該雙向功率放大 φ 器的一開關。該開關經組態用以改變該雙向功率放大器之 操作態態以回應從該電壓比較器接收的信號。 依據另--般態樣,一方法包括監視一雙向放大器電路 内的-雙向故大器之一存取點側上的一上行鏈路或下行鍵 路信號之存在。該方法進一步包括當僅存在一下行鍵路信 號時將該雙向放大器切換至一發射狀態。 依據另一一般態樣,一裝置包括用於監視一雙向放大器 電路内的一雙向放大器之一存取點側上的一上行鏈路或下 • 行鏈路信號之存在的元件。該裝置亦包括用於當僅存在一 下行鏈路信號時將該雙向放大器切換至一發射狀態的元 - 件。1363488 IX. Description of the invention: [Technical field to which the invention pertains] The present principle relates to a broadband communication network based on an electron microscope. More specifically, it relates to a bidirectional amplifier and its implementation method. [Prior Art] Coaxial cable has been and continues to be used to transmit data. One limitation to the use of coaxial cables to transmit data using other transmission protocols is the lack of transmission speed β in the electrical network due to the confinement of the coaxial cable and its associated limited bandwidth. A time-division duplex bidirectional amplifier has been considered. However, in general these amplifiers cannot support the required speed and other constraints. SUMMARY OF THE INVENTION According to a general aspect, a device includes a bidirectional power amplifier unit configured to amplify a signal having a first direction and amplify a signal having a direction opposite the first direction. A bidirectional power detector unit is coupled to the bidirectional amplifier unit for (1) detecting the power of the signal having the first direction before the bidirectional power amplifier unit amplifies a signal having the first direction And after the signal is amplified by the bidirectional power amplifier unit having the relative direction, the power in the signal having one of the relative directions is measured. In accordance with another aspect of the present principles, an amplifier circuit includes a directional coupler having an input and an output. The circuit further includes a bidirectional power amplifier having a bypass mode and having an input coupled to the output of the directional eliminator and an output configured to connect to a data processor, wherein the input of the directional amplifier Configured to connect to an access 132610.doc point. The directional lighter is coupled to the access point side of the bidirectional power amplifier. The circuit includes a power detector coupled to the directional combiner and configured to make uplink and downlink power. The circuit includes a voltage- & comparator with an inverting and non-inverting input coupled to the power detector. The circuit includes a non-inverting input coupled to the voltage comparator, i is configured to provide a pre-bias voltage to a voltage divider of the voltage comparator. The circuit includes a switch coupled to the voltage comparator and the bidirectional power amplifier φ. The switch is configured to change an operational state of the bidirectional power amplifier in response to a signal received from the voltage comparator. According to another aspect, a method includes monitoring the presence of an uplink or downlink signal on an access point side of a one-way amplifier in a bi-directional amplifier circuit. The method further includes switching the bi-directional amplifier to a transmit state when only the next row of link signals are present. According to another general aspect, an apparatus includes means for monitoring the presence of an uplink or downlink signal on an access point side of a bi-directional amplifier within a bi-directional amplifier circuit. The apparatus also includes means for switching the bi-directional amplifier to a transmit state when only one downlink signal is present.

- 依據另一一般態樣,一放大器電路係預計用於現有 CATV系統,其令CATV系統包括一或多個電纜分佈,每一 電纜分佈具有至少一CATV幹線放大器。該放大器電路包 括與一電纜分佈上的每一 CATV幹線放大器並聯配置的— 雙向放大器單元。該雙向放大器單元致能傳遞同軸電纜資 料(DOCA)協定以在該CATV系統上操作而不干擾在CATV 132610.doc 工3幻488 電窺分佈上承載的一 τν信號或引起對該信號的損失。 依據另—般態樣,一電魔系統包括一至少一功率分離 器’其使至少一輸入連接至一以CATV電纜為基礎的電視 服務提供商並使至少一輸入連接至同軸電纜資料(d〇Ca) 協定系統。該至少一功率分離器具有至少一電纜分佈輸 出。該電纜系統亦包括與該至少一電纜分佈串聯連接的一 CATV幹線放大器。該電镜系統亦包括與該catv幹線放大 器周圍之該至少一電纜分佈並聯連接的一雙向放大器電 路。 依糠另 一乃活a括偵測一功率放大器之一 第-側上具有-特;t發射方向的—信號。該方法包括使用 該功率放大器放大具有該特定發射方向的㈣信號。該方 ㈣㈣㈣功率放大ϋ之該第—側上具有與該特定發制 發射方向的H該方法包括使用該功率 大器放大具有該相對發射方向 鲁 使或多個實二之細節。即 使採用-個特定方式…月,仍應 態哎罝俨外眘&七# '足了採用各種方式紐 :成'、體化實施方案。例如,一實施方案 ’或具體化為經組態用以實行一組操作之或广 用於實行-組操作的指令之一裝 裝置或儲存 下列詳細說明及申請專利範圍中將明白所考量的 【實施方式】 、他態樣及特徵。 為了提供現有同軸電纜TV系統(CAT 至少-個實施方案在該電規存 的資料服務’ 硌中佈置分時功能 132610.doc 1363488 (TDF)協定順應存取點(AP)及台(STA)。經由階層式樹結構 中的分離器連接AP及STA。採用此方式,在家裏的使用者 能經由該電纜存取網路存取遠端IP核心網路。如在圖1中 解說一樣來解說詳細網路佈局。 能從圖1看出,在此典型存取網路基礎結構中,存在一 TDF協定順應AP,其具有與該IP核心網路連接的一乙太網 路介面,以及與該電纜存取網路連接的一同軸電纜介面。 在該電纜存取網路之另一端上,存在TDF協定順應STA, 即端子,其經由該同轴電纜介面與該電纜存取網路連接並 經由該乙太網路介面與家庭LAN (區域網路)連接》 依據至少一實施方案,丁〇?八?及3丁八兩者依據802.1 1系 列規格在邏輯連結控制子層、MAC子層以及實體層中分離 地實施協定堆疊。然而,在MAC子層中,TDP AP及STA 以TDF訊框傳輸實體取代802.1 1訊框傳輸實體。因此,用 於TDF AP及STA的MAC子層係由802.1 1訊框封包/去封包 實體以及TDF訊框傳輸實體組成,而用於802.1 1順應AP及 STA的MAC子層由802.1 1訊框封包/去封包實體及802.1 1訊 框傳輸實體組成。對於整合式AP及STA,TDF訊框傳輸實 體及802.1 1訊框傳輸實體可同時共存,以提供802.11及 TDF功能兩者。能藉由手動或動態組態實現二個模之間的 切換。 基本方法 TDF協定的主要想法係在同轴電纜媒體中而非空中傳輸 IEEE802.il訊框。利用IEEE802.il機制的目的係利用 132610.doc -9- 1363488 802.1 1協定堆疊的成熟硬體及軟體實施方案。 TDF的主要特徵係其有於傳輸IEEE802.1 1資料訊框之獨 特媒體存取控制方法。即,其並不利用傳統IEEE802.il DCF (分佈式協調功能)或PCF (點協調功能)機制以交換 MAC訊框,其包括MSDU (MAC服務資料單元)及MMPDU (MAC管理協定資料單元)。相反,其使用分時近接方法以 傳輸MAC訊框。因此TDF係一存取方法,其定義定位在 MAC子層中的訊框傳輸實體之詳細實施方案。 基於比較之目的,此處解說如圖2中所示之OSI參考模型 中的IEEE802.il MAC子層協定。雖然在圖3中解說用於 OSI參考模型中的TDF協定之準確位置。 通信模進入程序- According to another general aspect, an amplifier circuit is contemplated for use in an existing CATV system that includes the CATV system including one or more cable distributions, each cable distribution having at least one CATV trunk amplifier. The amplifier circuit includes a bidirectional amplifier unit configured in parallel with each CATV trunk amplifier on a cable distribution. The bi-directional amplifier unit enables the transmission of a coaxial cable data (DOCA) protocol to operate on the CATV system without interfering with or causing a loss of a τν signal carried on the CATV 132610. According to another aspect, an electric magic system includes an at least one power splitter that connects at least one input to a CATV cable-based television service provider and connects at least one input to the coaxial cable data (d〇 Ca) Agreement system. The at least one power splitter has at least one cable distribution output. The cable system also includes a CATV trunk amplifier connected in series with the at least one cable distribution. The EM system also includes a bi-directional amplifier circuit coupled in parallel with the at least one cable distribution around the catv mains amplifier. Depending on the other, one of the power amplifiers is detected to have a signal on the first side of the -t; The method includes amplifying a (four) signal having the particular direction of transmission using the power amplifier. The method of (4) (4) (4) power amplification 具有 on the first side has an H with the specific emission direction. The method includes using the power amplifier to amplify details having the relative emission direction or multiple real two. Even if it adopts a specific method...month, it should still be in a state of caution and the use of various methods: the implementation of the program. For example, an embodiment may be embodied in a device that is configured to perform a set of operations or that is widely used in the practice of group operations, or to store the following detailed description and the scope of the patent application. Implementation mode], his appearance and characteristics. In order to provide an existing coaxial cable TV system (CAT at least one implementation in the electrical data storage service 硌 布置 分 132 132 132610.doc 1363488 (TDF) agreement compliant access point (AP) and station (STA). The AP and the STA are connected via a splitter in the hierarchical tree structure. In this way, the user at home can access the remote IP core network via the cable access network. As explained in FIG. 1 , the details are explained. Network layout. As can be seen from Figure 1, in this typical access network infrastructure, there is a TDF protocol compliant AP with an Ethernet interface connected to the IP core network, and the cable a coaxial cable interface for accessing the network connection. On the other end of the cable access network, there is a TDF protocol compliant STA, ie a terminal, via which the cable access network is connected and via the cable interface Ethernet interface and home LAN (local area network connection) According to at least one embodiment, both Ding 八 八 八 and 八 八 八 according to the 802.1 1 series specifications in the logical link control sublayer, MAC sublayer and physical layer Separate implementation of the agreement However, in the MAC sublayer, the TDP AP and the STA replace the 802.1 1 frame transmission entity with the TDF frame transmission entity. Therefore, the MAC sublayer for the TDF AP and the STA is encapsulated/decapsulated by the 802.1 1 frame. The entity and the TDF frame transmission entity are composed, and the MAC sublayer for the 802.1 1 compliant AP and the STA is composed of the 802.1 1 frame packet/decapsulation entity and the 802.1 1 frame transmission entity. For the integrated AP and the STA, the TDF is The frame transmission entity and the 802.1 1 frame transmission entity can coexist simultaneously to provide both 802.11 and TDF functions. The switching between the two modes can be realized by manual or dynamic configuration. The basic idea of the TDF protocol is the same. The IEEE802.il frame is transmitted over the cable media rather than over the air. The purpose of the IEEE 802.il mechanism is to use the mature hardware and software implementation of the 132610.doc -9- 1363488 802.1 1 protocol stack. The main features of the TDF are A unique media access control method for transmitting IEEE 802.1 1 data frames. That is, it does not utilize legacy IEEE 802.il DCF (Distributed Coordination Function) or PCF (Point Coordination Function) mechanisms to exchange MAC frames, including MSDU (MAC Data unit) and MMPDU (MAC Management Protocol Data Unit). Instead, it uses a time-sharing method to transmit MAC frames. Therefore, TDF is an access method that defines the frame transmission entity located in the MAC sublayer. Detailed Description. For purposes of comparison, the IEEE 802. il MAC sublayer protocol in the OSI reference model as shown in Figure 2 is illustrated herein. Although the exact location of the TDF protocol for use in the OSI reference model is illustrated in FIG. Communication mode entry procedure

目前,存在建議用於TDF順應台的二個通信模,如以下 所說明。一個係標準IEEE 802.1 1操作模,其服從IEEE 802.1 1系列標準中定義的訊框結構及傳輸機制;另一個係 在TDF操作模中,關於其的詳細資訊將在下列段落中加以 說明。圖4中指示當啟動一 TDF STA時決定進入何操作模 的策略。一旦一 TDF STA從一 AP接收一同步訊框,則致能 其進入TDF模,若在一預設超時内未接收同步訊框,則該 TDF STA保持或偏移至IEEE 802.1 1模。 TDF協定功能說明 存取方法 TDF台中的實體層可具有多個資料傳送速率能力,其允 許實施方案以改良效能及器件保持之目標而實行動態速率 132610.doc -10- 1363488 切換。目前,TDF台可支援三個類型的資料速率:54 Mbps、1 8 Mbps及6 Mbps。主要以54 Mbps資料速率提供 資料服務。當一台支援54 Mbps資料傳輸存在一些問題 時,其可暫時切換至18 Mbps資料速率。基於網路保持及 台除錯之目的而設計6 Mbps資料速率操作模。 資料速率可在一 TDF台進入TDF通信程序之前靜態地加 以組態,並在整個通信程序期間保持相同。另一方面, TDF台亦可在服務期間支援動態資料速率切換。用於資料 速率的準則可基於頻道信號品質及其他因素。 TDF協定之基本存取方法係分時多向近接(TDMA),其 允許多個使用者藉由將同一頻道劃分成不同時槽而共享同 一頻道。該等TDF STA迅速接連地相繼傳輸上行鏈路訊 務,每一 STA在藉由該TDF AP指派之TDF超訊框中使用其 自己的時槽。對於下行鏈路訊務,該等STA共享頻道,並 藉由將訊框中的目的地位址資訊與其位址比較而選擇以其 為目標的資料或管理訊框。圖5解說當存在同時競爭上行 鏈路傳輸機會的m個STA時,TDF超訊框結構之一範例以 及用於一典型TDF超訊框的時槽分配。 如圖5中所示,存在每TDF超訊框固定 tdfTotalTimeSlotNumber時槽,其係由用以從TDF AP傳送 時脈同步資訊至TDF STA的一個同步時槽組成;一個競爭 時槽,其係用以傳送對上行鏈路時槽分配的註冊請求; tdfUplinkTimeSlotNumber上行鏈路時槽,其係藉由註冊的 TDF STA用以相繼傳送資料及一些管理訊框至TDF AP ; 1326I0.doc 1363488 以及tdfDownlinkTimeSlotNumber下行鏈路時槽,其係藉由 TDF AP用以傳輸資料及註冊回應管理訊框至數據機。除 同步時槽以外,稱為共同時槽的所有其他時槽具有同一持 續時間,其長度等於 tdfCommonTimeSlotDuration。 tdfCommonTimeSlotDuration之數值經定義用以允許傳輸用 於最高速率資料模之一個正常時槽中的至少一最大IEEE 802.1 1 PLCP (實體層會聚協定)協定資料單元(PPDU)。同 步時槽之持續時間tdfSyncTimeSlotDuration係短於該共同 時槽之持續時間,因為在此時槽中從TDF AP傳輸至TDF STA的時脈同步訊框係短於802.1 1資料訊框。 因此,定義為tdfSuperframeDuration的一 TDF超訊框之 持續時間能藉由下列等式加以計算: tdfSuperframeDuration = tdfSyncTimeSlotDuration + tdfCommonTimeSlotDuration * (tdfTotalTimeSlotNumber - 1) tdfTotalTimeSlotNumber、tdfUplinkTimeSlotNumber 與 tdfDownlinkTimeSlotNumber之間的關係滿足下列等式: tdfTotalTimeSlotNumber = tdfUplinkTimeSlotNumber + tdfDownlinkTimeSlotNumber + 2 此外,一TDF超訊框中TDF STA的分配上行鏈路時槽之 數目可從一改變為 tdfUplinkTimeSlotThreshold。因此,一 TDF超訊框中的可用下行鏈路時槽可從 (tdfTotalTimeSlotNumber-2)改變為(tdfTotalTimeSlotNumber-2-tdfMaximumUplinkTimeSlotNumber)。每次存在請求一上 行鏈路時槽的一 TDF STA時,該TDF AP將從該等可用下 132610.doc 1363488 行鏈路時槽推斷一或多個時槽,並接著分配此等時槽給該 TDF STA,只要上行鏈路時槽數目在其之後將不超過 tdfMaximumUplinkTimeSlotNumber ° tdfMaximumUplinkTimeSlotNumber 之數值可在不同實施方案中變化。但是其必須仔細地加以 選擇以便存在可用於一相關聯TDF STA的至少一下行鏈路 時槽以便保證資料服務之QoS。此外,將藉由用於同一方 向傳輸之同一TDF STA或AP使用的所有連續時槽能經合併 用以連續地傳送MAC訊框以避免由不必要的轉換及保護所 引起的此等時槽之邊緣處的浪費。 在目前實施方案中,tdfCommonTimeSlotDuration係約 3 00us,其係足以使TDF STA傳輸用於54M模之一個共同時 槽中的至少一最大802.1 1 PPDU,而且存在每TDF超訊框 總共62個時槽。在此等時槽中,以此方式存在20個上行鏈 路時槽以及40個下行鏈路時槽》當存在20個STA時,能保 證每一 TDF STA具有對680 kbps上行鏈路資料速率的存取 並共享30 Mbps (40個連續時槽)下行鏈路資料速率;當存 在30個STA時,能保證每一 TDF STA具有對680 kbps上行 鍵路資料速率的存取並共享22.5 Mbps (30個連續時槽)下 行鏈路速率。tdfMaximumUplinkTimeSlotNumber係30。最 終’為61個共同時槽與一個同步時槽之總持續時間的 tdfSuperframeDuration之數值係約18.6 ms而且其能加以定 義為用於不同使用的不同數值。例如,若存在僅1個TDF STA,則能保證其具有4個時槽以達到約1 8 Mbps上行鏈路 資料速率及自己的18 Mbps (4個連續時槽)下行鏈路資料速 132610.doc •13· 1363488 率。以此方式’為九個資料時槽與一個同步時槽之總持續 時間的 tdfSuperframeDuration之數量係約 4 ms。 訊框格式Currently, there are two communication modes suggested for the TDF compliant station, as explained below. One is the standard IEEE 802.1 1 operating mode, which is subject to the frame structure and transmission mechanism defined in the IEEE 802.1 1 series of standards; the other is in the TDF operating mode, and detailed information about it will be explained in the following paragraphs. Figure 4 indicates the strategy for deciding which mode of operation to enter when a TDF STA is activated. Once a TDF STA receives a synchronization frame from an AP, it is enabled to enter the TDF mode. If the synchronization frame is not received within a preset timeout, the TDF STA remains or offsets to IEEE 802.1 1 mode. TDF Protocol Functional Description Access Method The physical layer in the TDF station can have multiple data transfer rate capabilities that allow the implementation to implement dynamic rate 132610.doc -10- 1363488 switching with improved performance and device retention goals. Currently, the TDF station supports three types of data rates: 54 Mbps, 18 Mbps, and 6 Mbps. Data services are provided primarily at 54 Mbps data rates. When there is some problem with supporting 54 Mbps data transmission, it can temporarily switch to the 18 Mbps data rate. A 6 Mbps data rate operating mode is designed based on network maintenance and desk debugging. The data rate can be statically configured before a TDF station enters the TDF communication program and remains the same throughout the communication procedure. On the other hand, the TDF station can also support dynamic data rate switching during service. The criteria for data rate can be based on channel signal quality and other factors. The basic access method of the TDF protocol is Time Division Multi-Direction (TDMA), which allows multiple users to share the same channel by dividing the same channel into different time slots. The TDF STAs successively transmit uplink traffic in succession, and each STA uses its own time slot in the TDF hyperframe assigned by the TDF AP. For downlink traffic, the STAs share the channel and select the data or management frame targeted by comparing the destination address information of the frame with its address. Figure 5 illustrates an example of a TDF hyperframe structure and time slot allocation for a typical TDF hyperframe when there are m STAs competing for uplink transmission opportunities simultaneously. As shown in FIG. 5, there is a fixed tdfTotalTimeSlotNumber time slot per TDF hyperframe, which is composed of a synchronization time slot for transmitting clock synchronization information from the TDF AP to the TDF STA; a competing time slot, which is used for Transmitting a registration request for uplink time slot allocation; tdfUplinkTimeSlotNumber uplink time slot, which is used by the registered TDF STA to successively transmit data and some management frames to the TDF AP; 1326I0.doc 1363488 and tdfDownlinkTimeSlotNumber downlink The time slot, which is used by the TDF AP to transmit data and register the response management frame to the data machine. Except for the sync slot, all other slots known as the common slot have the same duration and have a length equal to tdfCommonTimeSlotDuration. The value of tdfCommonTimeSlotDuration is defined to allow transmission of at least one maximum IEEE 802.1 1 PLCP (Physical Layer Convergence Protocol) Protocol Data Unit (PPDU) for use in a normal time slot of the highest rate data mode. The duration of the synchronization time slot tdfSyncTimeSlotDuration is shorter than the duration of the common time slot because the clock synchronization frame transmitted from the TDF AP to the TDF STA in the slot is shorter than the 802.1 1 data frame. Therefore, the duration of a TDF hyperframe defined as tdfSuperframeDuration can be calculated by the following equation: tdfSuperframeDuration = tdfSyncTimeSlotDuration + tdfCommonTimeSlotDuration * (tdfTotalTimeSlotNumber - 1) The relationship between tdfTotalTimeSlotNumber, tdfUplinkTimeSlotNumber and tdfDownlinkTimeSlotNumber satisfies the following equation: tdfTotalTimeSlotNumber = tdfUplinkTimeSlotNumber + tdfDownlinkTimeSlotNumber + 2 In addition, the number of allocated uplink time slots of the TDF STA in a TDF hyperframe can be changed from one to tdfUplinkTimeSlotThreshold. Therefore, the available downlink time slot in a TDF hyperframe can be changed from (tdfTotalTimeSlotNumber-2) to (tdfTotalTimeSlotNumber-2-tdfMaximumUplinkTimeSlotNumber). Each time there is a TDF STA requesting an uplink time slot, the TDF AP will infer one or more time slots from the available link time slots 132610.doc 1363488, and then assign the time slots to The TDF STA may vary in different implementations as long as the number of uplink slots will not exceed the value of tdfMaximumUplinkTimeSlotNumber ° tdfMaximumUplinkTimeSlotNumber thereafter. However, it must be carefully chosen so that there is at least a downlink time slot available for an associated TDF STA in order to guarantee the QoS of the data service. In addition, all consecutive time slots used by the same TDF STA or AP for transmission in the same direction can be combined to continuously transmit MAC frames to avoid such time slots caused by unnecessary conversion and protection. Waste at the edge. In the current embodiment, the tdfCommonTimeSlotDuration is about 300 sec, which is sufficient for the TDF STA to transmit at least one of the largest 802.1 1 PPDUs in a common time slot of the 54M mode, and there are a total of 62 time slots per TDF frame. In these time slots, there are 20 uplink time slots and 40 downlink time slots in this way. When there are 20 STAs, each TDF STA can be guaranteed to have an uplink data rate of 680 kbps. Access and share 30 Mbps (40 consecutive time slots) downlink data rate; when there are 30 STAs, each TDF STA can be guaranteed access to 680 kbps uplink data rate and share 22.5 Mbps (30) Continuous time slot) downlink rate. tdfMaximumUplinkTimeSlotNumber is 30. The final value of tdfSuperframeDuration, which is the total duration of 61 common time slots and a synchronized time slot, is about 18.6 ms and can be defined as different values for different uses. For example, if there is only 1 TDF STA, it can be guaranteed to have 4 time slots to reach about 18 Mbps uplink data rate and its own 18 Mbps (4 consecutive time slots) downlink data speed 132610.doc • 13· 1363488 rate. In this way, the number of tdfSuperframeDurations for the total duration of the nine data time slots and one synchronization time slot is about 4 ms. Frame format

在802.1 1規格中’存在三個主要訊框類型。將資料訊框 用以交換台之間的資料。根據網路,能出現數個不同種類 的資料訊框。控制訊框係結合資料訊框用以實行區域清理 操作、頻道獲取以及載波感測保持功能與接收資料之肯定 確認。控制及資料訊框聯合作業以在台之間可靠地遞送資 料。更明確而言,資料訊框交換的一重要特徵係存在一確 認機制,而且因此存在用於每一下行鏈路單播訊框之一確 認(ACK)訊框,以便減小藉由不可靠無線頻道引起資料損 失的可能性。最終,管理訊框實行監督功能:其係用以接 合並離開無線網路而且在存取點之間移動相關聯物。There are three main frame types in the 802.1 1 specification. Use the data frame to exchange data between stations. Depending on the network, several different types of data frames can appear. The control frame is combined with the data frame for performing the regional clearing operation, the channel acquisition, and the carrier sensing and maintaining function and the positive confirmation of the received data. Control and data frame joint operations to reliably deliver data between stations. More specifically, an important feature of data frame exchange is the existence of an acknowledgment mechanism, and therefore there is an acknowledgment (ACK) frame for each downlink unicast frame to reduce unreliable wireless The possibility of data loss caused by the channel. Eventually, the management frame performs a supervisory function: it is used to join and leave the wireless network and move the associated links between access points.

”而在TDF系統中,因為TDF STA被動地等待自TDF AP的同步訊框找到目標TDF Ap,所以不需要經典探測請In the TDF system, because the TDF STA passively waits for the target TDF Ap to be found from the TDF AP sync frame, no classic probe is required.

求及探測回應訊框°此外’纟同軸電纜而㈣中交換該等 訊框,則更不必定義RTS及CTS訊框以清理一區域並預防 藏節點問題,而且疋義ACK訊框以確保資料訊框之遞送 的可靠性。 ^在TDF協疋中,僅將一些有用的802.1 1 MSDIJ及 MMPDU類型用於同軸電蜆方案中的資料。例如,利用資 料訊框類财㈣料子_,其制以封包上層資料並將 其從一個台傳輸至另一個台。此外’為了配合TDF系統中 的時脈同步要求,定義一種新的管理訊框(同步訊框);而 132610.doc 1363488 且為了實現上行鏈路時槽請求、分配及釋放之功能,定義 另外四種管理訊框,即註冊請求、註冊回應、非註冊請求 以及活躍通知。 總之,已定義TDF協定之管理訊框類型中的四個新子類 型。下列表格定義添加於TDF協定中之類型及子類型的有 效組合。表格1顯示添加於TDF協定中之TDF訊框的有效類 型及子類型。 表格1 類型說明 子類型說明 管理 同步 管理 註冊請求 管理 註冊回應 管理 非註冊請求 管理 活躍通知 TDF存取程序Seeking the detection response frame. In addition to the 'coaxial cable and (4) exchanging the frames, it is not necessary to define the RTS and CTS frames to clean up an area and prevent Tibetan nodes, and the ACK frame is used to ensure the information. The reliability of the delivery of the box. ^ In the TDF protocol, only some useful 802.1 1 MSDIJ and MMPDU types are used for the data in the coaxial power scheme. For example, use the information frame (4) material _, which is used to pack the upper layer data and transfer it from one station to another. In addition, in order to meet the clock synchronization requirements in the TDF system, a new management frame (synchronization frame) is defined; and 132610.doc 1363488 and another function is defined for the function of uplink time slot request, allocation and release. Management frames, registration requests, registration responses, non-registration requests, and active notifications. In summary, four new subtypes in the management frame type of the TDF agreement have been defined. The following table defines the valid combinations of types and subtypes added to the TDF contract. Table 1 shows the valid types and subtypes of TDF frames added to the TDF protocol. Table 1 Type Description Subtype Description Management Synchronization Management Registration Request Management Registration Response Management Non-Registration Request Management Active Notification TDF Access Program

TDF AP尋找及時脈同步程序TDF AP looking for timely pulse synchronization procedures

TDF協定很大程度地取決於至所有節點之時序資訊的分 佈。首先,TDF STA聽取同步訊框以決定是否存在一可用 TDF AP。一旦其進入TDF通信程序,其使用同步訊框以調 適區域定時器,TDF STA根據該定時器決定其是否改為傳 送上行鏈路訊框。在任何時間,同步程序中TDF AP係主 要的,而TDF STA係從屬的。此外,若其在定義為 tdfSynchronizationCycle的預定義臨界週期内未從相關聯 AP接收任何同步訊框,則TDF STA將認為該AP已放棄該 132610.doc -15· 1363488 服務,接著並其停止TDF通信程序,且開始藉由再次聽取 同步訊框來尋找任何TDF AP。 在TDF系統中,與同一 TDF AP相關聯的所有STA將與一 共同時脈同步。該TDF AP將週期性地傳輸包含其時脈資 訊的特殊訊框被呼叫同步以使其區域網路中的數據機同 步》每一個TDF STA將保持一區域時序同步功能(TSF)定 時器,以確保其係與相關聯TDF AP同步》在接收一同步 訊框之後,一 TDF STA始終接受該訊框中的時序資訊。若 其TSF定時器係不同於接收的同步訊框中的時戳,則接收 TDF STA依據接收的時戳值而設定其區域定時器。此外, 其可添加較小偏移至接收的時序值以藉由收發器解決區域 處理。 同步訊框將得以產生以在每一個TDF超訊框時間單元藉 由該TDF AP傳輸一次並且在每一個TDF超訊框之同步時槽 中傳送。 、 註冊程序 圖6解說性地說明整個註冊程序。一旦一TDF STA已從 同步訊框獲得定時器同步資訊,則其將瞭解時槽〇何時開 始。若一 TDF STA並不與任何TDF AP相關聯,則其將設 法採用特定TDF AP註冊’該特定TDF AP藉由在為一 TDF 超訊框中的第二時槽之競爭時槽期間傳送註冊請求訊框至 TDF AP而傳送同步訊框。等於tdfCommonTimeSlotDuration 的競爭時槽之持續時間’以及註冊請求訊框結構應該加以 仔細設計以允許在一競爭時槽中傳送至少 132610.doc •16· 1363488 tdfMaximumUplinkTimeSlotNumber個註冊請求訊框。根據 設計,將競爭時槽劃分成tdfMaximumUplinkTimeSlotNumber 個相同長度的子時槽。 其一找到目標TDF AP,一 TDF STA將選擇該競爭時槽 中的一個子時槽以依據下列方法傳送註冊請求訊框至該 TDF AP : A. 每次分配一上行鏈路時槽時,一TDF STA將儲存定 義為tdfAllocatedUplinkTimeSlot之分配上行鏈路時槽數 目,其指示該等時槽在整個上行鏈路時槽集區中的位置以 及從 1 至 tdfMaximumUplinkTimeSlotNumber的範圍。 B. 該TDF AP應該在每次其請求一上行鏈路時槽時盡其 最大能力分配同一上行鏈路時槽給同一 TDF STA。 C'當到了決定選擇何子時槽傳送註冊請求訊框的時間 時,若存在一儲存的tdfAllocatedUplinkTimeSlot數值,則 TDF STA將設定與 tdfAllocatedUplinkTimeSlot相同的子時 槽數目;若不存在此數值,則TDF STA將隨機地選擇 tdfMaximumUplinkTimeSlotNumber 可用子時槽中的一子時 槽。其將在隨機選擇的子時槽中傳送註冊請求訊框至該 TDF AP。 此種操作之目的係減小當存在同時啟動的許多STA並設 法同時採用同一TDF AP註冊時發生衝突的機會。 該TDF STA將列舉其當時支援的所有資料速率並亦承載 一些有用的資訊,例如註冊請求訊框中的接收信號載波/ 雜訊比率。其可從最高資料速率開始,採用不同支援資料 132610.doc 17 1363488 速率傳送數個連續註冊請求訊框。在傳送出訊框之後,該 TDF STA將從該TDF AP傾聽註冊回應訊框。 在從一 TDF STA接收一註冊請求訊框之後,根據下列方 法,該TDF AP將在下行鏈路時槽中傳送不同種類的註冊 回應訊框回至該TDF STA : A. 若已經分配的上行鏈路時槽等於 tdfMaximumUplinkTimeSlotNumber ,貝1J 該 TDF AP 將 uplinkTimeSlotUnavailable指示符置於該訊框主體中。 B. 若該TDF AP並不支援在註冊請求管理訊框之 supportedDataratesSet中列舉的任何資料速率,貝1J該TDF AP將unsupportedDatarates指示符置於該訊框主體中。 C. 若存在可用以分配的上行鏈路時槽以及TDF AP與 TDF STA兩者皆能支援的共同資料速率,則該AP將分配一 個上行鏈路時槽並依據某資訊(例如該STA之註冊請求訊框 中的載波/雜訊比率)選擇一適當的共同資料速率,而且接 著傳送一註冊回應訊框至該TDF STA。在該訊框主體中將 包含關於分配的上行鏈路時槽以及選擇的資料速率之資 訊。 在一成功註冊程序之後,該TDF STA及該TDF AP將達 成關於使用何上行鏈路時槽及資料速率的協議。 分段/重組程序 在TDF協定中,用於MSDU之傳輸的時槽持續時間係固 定為tdfCommonTimeSlotDuration。在一些資料速率中,當 MSDU之長度係大於一臨界值時,不可能在單一時槽中傳 132610.doc •18· 1363488 輸。因此當用於上行鏈路傳輸的一資料速率係長於定義為 tdfFragmentationThreshold的臨界值並根據不同資料速率 而變化時,其在加以排程以傳輸之前進行分段。對於除可 以為較小之最後分段以外的所有分段,一分段訊框之長度 將為八位元組之相等數目(tdfFragmentationThreshold八 位元組)。在分段之後,將分段訊框置於外送佇列中以傳 輸至該TDF AP。此分段程序可藉由使用在TDF訊框傳輸實 體中動態設定的tdfFragmentationThreshold而在TDF訊框傳 輸實體或上層中運行。 在該TDF AP結束時,每一接收的分段包含用以允許完 整訊框從其組成分段加以重新裝配的資訊。每一分段之標 頭包含藉由該TDF AP用以重新裝配該訊框的下列資訊: A. 訊框類型 B. 從位址2欄位獲得的傳送者之位址 C. 目的地位址 D. 序列控制欄位:此欄位允許該TDF AP檢查所有輸入 分段均屬於同一 MSDU,以及應該重新裝配該等分段所用 的序列。序列控制欄位内的序列號對於一 MSDU之所有分 段保持相同;序列控制欄位内的序列號對於每一分段增 量。 E. 多個分段指示符:向TDF AP指示此並非該資料訊框 的最後分段。該MSDU之僅最後或唯一分段使此位元設定 為零。該MSDU之所有其他分段使此位元設定為一。 該TDF AP藉由以序列控制欄位之分段號子欄位的順序 132610.doc -19· 1363488 組合該等分段而重新構造該MSDU。若尚未接收具有設定 為零的多分段位元之分段,則該TDF AP將瞭解該訊框尚 未完成。該TDF AP —接收具有設定為零的多分段位元之 分段,其就瞭解沒有更多的分段可接收用於該訊框。 該TDF AP保持用於所接收的每一訊框之一接收定時 器。亦存在一屬性tdfMaxReceiveLifetime,其指定經允許 用以接收一訊框的最大量時間。該接收定時器在接收該 MSDU之第一分段之後啟動。若該接收定時器超過 tdfMaxReceiveLifetime,則藉由該TDF AP丟棄此 MSDU之 所有接收分段。若一定向MSDU之額外分段係在其 tdfMaxReceiveLifetime超過之後接收,則該等分段加以丟 棄。 上行鏈路傳輪程序 在從該TDF AP接收註冊回應訊框之後’該TDF STA將 分析該訊框主體以瞭解其是否係頒予一上行鏈路時槽。若 並非頒予,則其將停止一會兒並稍後申請上行鏈路時槽。 若頒予,則其將開始使用註冊回應訊框中指示的資料速率 在指派時槽期間傳輸上行鏈路訊務。 在指派時槽期間開始上行鏈路傳輸時,若在該TDF STA 之外送佇列令存在至少一個外送訊框,則該TDF STA將在 該外送佇列中傳送第一訊框至該TDF AP。其後,該TDF STA將檢查第二上行鏈路訊框之長度而且評估是否可以在 指派時槽中的其餘持續時間期間傳送第二上行訊框。若不 可以,則其將停止上行鏈路傳輸程序並等待在下一 TDF超 132610.doc -20· 1363488 訊框期間在指派時槽中傳送第二上行訊框。若可以,則其 將立即傳送第二訊框至目的地TDF ΛΡ。傳送程序將繼續 以此方式運行,直至指派時槽已結束或不存在任何上行 ' 鏈路訊框欲傳輸。 下行鏈路傳輸程序 在整個TDF通信程序中,總下行鏈路時槽數目可能會由 於改變相關聯STA數目而動態地改變。當該TDF Αρ製備傳 • 送訊框至相關聯STA時,其將其餘下行鏈路時槽中留下的 時間與使用協議資料速率傳輸特定下行鏈路訊框所需要的 . 持續時間比較。因此根據結果,其將決定是否在此TDF超 訊框期間採用特定資料速率傳輸該訊框。此外,TDF Ap 並不需要分段任何下行鏈路訊框β 當未到相關聯STA傳送上行鏈路訊務的時間時,該STA 始終聽取用於以其為目標的可行下行鏈路訊框之頻道。 非註冊程序 φ 如圖7中所示,若該TDF STA決定放棄TDF通信程序, 則其在其上行鏈路時槽期間傳送一非註冊請求訊框至相關 / 聯TDF AP,以便通知該TDF AP釋放用於其的分配上行鏈 - 路時槽資源。在接收非註冊請求訊框之後,該TDF AP將 使指派用於該TDF AP的上行鏈路時槽自由並將其置於自 由時槽集區中以備將來使用。 活躍通知程序 現在參考圖8,為了當一 TDF STA意外地墜毀或關閉時 儘快釋放資源,該TDF STA必須藉由在其上行鏈路時槽週 132610.doc 21 1363488 期期間週期性地傳送一活躍通知訊框至TDF AP而報告其 活躍性。若在稱為tdfAliveNotificationCycle的預定義臨界 週期内不存在任何活躍通知訊框,則相關聯TDF AP將認 為該TDF STA已放棄該服務,並因此釋放分配用於該TDF STA的上行鏈路時槽,就像從該TDF STA接收非註冊請求 訊框一樣。 為了確保多速率能力TDF STA上的共存及互用性,此規 格定義將藉由所有台遵循的一組規則: A. 同步訊框將以TDF基本速率集中的最低速率加以傳 輸以便其將藉由所有STA瞭解。 B. 以藉由註冊機制選擇的支援資料速率傳送具有目的 地單播位址的所有訊框。沒有台以藉由接收器台所支援的 一速率而傳输一單播訊框。 C. 以TDF基地速率集中的最高速率傳輸具有目的地多 播位址的所有訊框。 如以上所說明,一TDF協定能取代傳統802.1 1 DCF (分 佈協調功能)或PCF (點協調功能)機制。此系統能利用 WLAN(802.1 1)網路之寬佈置,以及可能會變得越來越成 熟且便宜之一無線區域網路(WLAN)晶片集。此系統藉由 在電纜網路中發射WLAN信號而提供用於CATV網路之雙 向通信的具成本效益解決方法,即使建立WLAN協定以在 空中環境而非電纜網路中傳輸/接收。在此系統中,TDF協 定之基本存取方法係TDMA,其允許多個使用者藉由將同 一頻道劃分成不同時槽而共享同一頻道。該等TDF台迅速 132610.doc -22- 1363488 接連地相繼傳輸上行鏈路訊務,每一台在藉由該tdf Ap (存取點)指派之一 TDF超訊框中使用其自己的時槽。對於 下行鏈路訊務,該等台共享頻道(例如如所示,在圖5之 TDF超訊框中),並且藉由將該等訊框中的目的地位址資訊 與其位址比較而選擇以其為目標的訊框。 參考圖9 〃顯示典型TDF網路。網路则提供從 使用者家91〇及920至網際網路(或另一資源或網路)㈣的 連接。使用者家91〇及920在電镜系統95〇中透過一存取點 (AP) 940而連接。AP 940可定位(例如)在家91〇及92〇之鄰 居中,或在包括家(在此情況下為公寓)91〇及92〇的公寓建 築物中AP 940可由(例如)一電镜操作者所擁有。Ap 係在乙太網路970中逸一牛知人r T ^ 步耦合至一路由器960。路由器 960係亦耦合至網際網路93〇。 應該/月楚術輕合」指直接連接(無中間組件或單 元)及間接連接(一或多個中間組件及/或單元)兩者。此類 連接可以係(例如)有線或無線的,以及永久或瞻時的。 使用者豕910及920可具有各種不同組態,而且每—家可 加以不同地组態。然而’如網路_中所示,使用者家91〇 及920各分別包括一台(稱為數據機)⑽922。數據機912 及似係分別在-乙太網路918、928中麵合至第一主^ 機”9“、924,以及第二主機(主機2) 916 92 一( 機 914、916、924及 9%-Γ、.仏 可以為(例如)一電腦或另一處理器 件或通信器件。 &理0 存在各種方式’其中網路_可允許多個主機(例如, 132610.doc •23· 1363488 914、916、924及926)連接至路由器960。基於簡單’以下 僅考量數據機912及主機914與916而說明四個實施方案。 在一第一方法中,數據機912擔當另一路由器,主機914 及916係藉由其IP位址所識別,而且數據器912將1?訊包從 主機914及916發送至路由器960。此方法1通常需要數據5| 912運行路由器軟體,其需要額外的記憶體及增加的處理 功率。 在一第二方法中,數據機912擔當一橋接器。數據機912 及AP 940使用標準無線分佈系統(WDS)機制以傳達層2訊 包至路由器960。主機914及916係藉由其媒體存取控制 (MAC)位址所識別。此方法2係8〇2 η標準之部分並能同時 词服多個主機。然而’並非所有ΑΡ及數據機均支援 WDS’而且確實支援WDS的αρ及數據機通常僅具有有限 的支援。例如,採用一些ΑΡ及數據機,無法將Wi_Fi保護 存取(WPA)用於WDS,而且此可能會引入安全問題。 在一第三方法中,數據機912使用MAC冒充物以改變乙 太網路訊包之來源MAC位址(來源係主機914及916之一)為 其自己的MAC位址。因此從路由器960的觀點看,路由器 960僅看見數據機912 ^數據機912採用此方法僅能每次伺 服一個主機。 在一另一方法中,數據機912使用封包,如以上更詳細 地說明。以上方法之每一者具有優點及缺點’而且此等優 點及缺點可根據實施方案而變化。然而,封包方法提供特 定優點,因為其一般允許該等數據機藉由不需要數據機運 132610.doc -24- 1363488 行路由器軟體而為較簡單,Α 且苴吨… 〃通常並不引入安全問題,而 且其旎母次伺服多個主機。 一另外,封包方法避免與藉由使用單 — WLAN訊包傳送自 =主機之每—訊包的前三個方法相關聯之大負擔。因此, 則二個方法招致用於從-主機傳送的每一個訊包之1频 訊包的負擔,而且對應地減小輸出。此類無效率 卿環境中惡化。在TDF環境中,該時槽的持續時間係固 定的’而且該時槽經設計用以允許僅— wlan訊包在一槽 中傳輸。因此,能在每一時槽中僅傳輸一個主機訊包/ 因此,封包方法通常提供各種優點之一或多個。此類優 點包括(例如)較簡單的路由器設計及操作、增加的安全 性、伺服多個主機,以及增加的效率及輸出。 概述而言’封包方法的至少一實施方案包括將多個乙太 網路訊包封包成一個WLAN訊包。該机⑽訊包將係與由 TDF時槽所允許的最大長度一樣A。該Ap (例#,另二數 據機)將去封包該WLAN訊包成個別乙太網路訊包並將其傳 送至該路由器。對於反方向上的通信,一數據機將去封包 一 WLAN訊包並傳送個別乙太網路訊包至該(等)主機。 參考圖10, 一解說1000包括多個數據機,該等數據機之 二個加以明確地顯示;以及一ΑΡβ該解說包括一數據機“ 1010、一數據機#>1 1020以及一ΑΡ 1030,其中該等數據機 1010及1020之每一者係在一電纜網路丨〇4〇中耦合至 1030。其他實施方案將分離的電纜網路用於該等數據機之 每一者》 132610.doc -25- 數據機1010及1020與AP 1030包括同一名稱之功能组 件,儘管外部連接之一些係不同的而且該等組件本身對一 數據機及一 AP實行不同功能。因此,提供用作一數據機及 —AP兩者的一共同單元。然而,應該清楚能為一數據機及 一 AP設計不同單元,其中不同單元僅分別實行一數據機或 —AP所需要的功能。 數據機1010包括一區域應用層1011,其後隨一Tcp/Ip層 1012’其後隨一橋接器1〇14。橋接器1〇14係耦合至一乙太 網路介面1015、一訊包集合/去集合模組(PADM) 1〇16,以 0 及一 WLAN介面1017。PADM 1016係亦耦合至WLAN介面 iOl?。乙太網路介面1015係耦合至乙太網路1〇52,其係耗 合至一第一主機(主機1) 1054及一第二主機(主機2) 1056。 數據機1 020係類似於數據機1 〇 1 〇。然而,數據機丨〇2〇係 輕合至乙太網路1062,而乙太網路1〇62係耦合至一第一主 機(主機1) 1064及一第二主機(主機2) 1066»數據機1020的 組件係顯示成與數據機1010的組件相同。然而,應該清 楚,當數據機1010及1020經設定與操作時,各種組態參數 (例如)將係不同的。 AP 1030包括一區域應用層1〇71,其後隨一 TCP/IP層 1 〇72,其後隨一橋接器1074。橋接器1074係耦合至一乙太 網路介面1077、一 PADM 1076以及一 WLAN介面1075。 PADM 1076亦係耦合至WLAN介面1075。乙太網路介面 1 〇77係耦合至一乙太網路1082,然後係耦合至一路由器 1090。WLAN介面1017及1075在電纜網路1040中係以通信 132610.doc • 26· 1363488 方式彼此耦合。 路由器1090係進一步耦合至網際網路1〇95。因此,主機 1054、1056、1064、1〇66與網際網路1〇95之間存在一連 接》 各種區域應用層(1011、1071)係用於運行區域應用並與 該架構中之其他層介接的標準層。各種TCP/IP層(1012、 1 072)係用於運行TCP/IP並提供通常由此類層提供之服務 (包括與該架構中之其他層介接)的標準層。各種乙太網路 介面(1015、1077)係用於介接至乙太網路/從其介接的標準 單元。此類介面1015、1077傳輸與接收乙太網路訊包,並 且依據乙太網協定來操作。 各種WLAN介面(1017 ' 1075)係用於介接至WLAN網路/ 自其/1接的單元。此類介面1017、1〇7 5傳輸與接收WLAN 訊包,並且依據WLAN協定來操作。然而,在解說looo 中,該等WLAN介面1017、1075實際上係耦合至一電纜網 路1040而非使用無線通信。 了在(例如)諸如用於電腦之插入卡的硬體中實施乙太網 路及WLAN介面1015、1017、1075及1077。亦可很大程度 地在諸如一程式之軟體中實施該等介面,該程式使用由一 處理器件實施的指令來實行介面的功能。此介面一般包括 用於接收實際信號(例如,一連接器)並緩衝接收信號(例 如,一傳輸/接收緩衝器)的一部分,並通常包括用於處理 信號的一部分(例如,一信號處理晶片之全部或部分广 各種橋接器(1014、1074)係在一乙太網路介面與一 132610.doc -27· WLAN介面之間轉遞訊包的單元…橋接器可以進行軟體 或硬體實施,或可以僅為一邏輯實體。用於一橋接器之標 [。方案包括—處理器件(例如積體電路)或一在一處理 W件(例如運行橋接器軟體之-處理器)上運行的指令集。 勹 Μ 1016及1〇76實行各種功能,包括訊包封包及去封 、下文申進一步說明。可在(例如)軟體、硬體、韌 體或某組合令實施PADM 1〇16及1〇76。軟體實施方案包括 (例如)私令集’例如一用於在一處理器件上運行的程 式。硬體實施方案包括(例如)一專用晶片,例如特殊應用 IC (ASIC)。 現有電纜網路之A多數係以電㈣基礎的雙向分時雙工 (TDD)系統並利用雙向放大器、然而此等放大器具有數個 限制第一,上行鏈路及下行鏈路功率位準無法係相同或 接^相同的。第二,雙向迴路具有在較差隔離情形下振盈 的可能。第三’其由於當嘗試在將M〇CA或其他d〇ca協 定(例如,先進同軸電纜資料_AD〇c)應用於現有電纜網路 清況下旁通CATV幹線放大器時遇到的問題而無法用於新 近開發的電纜網路。 本原理之一雙向功率放大器的使用係用於在具有TDD模 之以電纜為基礎的系統(例WM0CA及其他d〇ca系統)中實 施的一個可行解決方式。本原理之雙向放大器能藉由提供 優於已知實施方案的下列優點而解決上述問題·· 率雙向放大’· 2)減小的振盪;3)適合於新近開發的電境網 路,4)簡單偵測;以及5)快速回應而無故障操作。 132610.doc •28· 1363488 中電壓的增加而翻轉或改變狀況。此將使開關12i〇將該雙 向放大器切換至「發射」狀態》當完成下行鏈路信號發射 時’反相輸入中的電壓減少至0 (或實質上為零)而且比較 器1208藉由往回翻轉並使開關1210將該雙向放大器切換至 「接收」狀態而回應。 本文中所用的相等功率雙向放大意指在兩個方向上獲得 相同功率輸入(〜0 dBm)及相同增益(〜26-30 dB)的能力。熟 習技術人士應認識到,保持相同功率輸出雙向放大由於功 率偵測器之方向性(例如,〜20)而不容易在TDD模中實現雙 向通信系統。 依據本原理之一態樣,而且為了達到相等功率雙向放 大,將功率偵測器1204佈置在該放大器之存取點(Ap)側 上,而且在比較器12〇8之非反相輸入處施加自分壓網路 1206的低預偏壓電壓(例如,〜〇 1 透過此設計,即使 當使用具有較差方向性的功率偵測器時,能達到相同功率 放大在》 疋向耗合器1202之此組態的主要原因係,當將該等定向 耦合器放置在該AP側或數據機側或就在該雙向放大器之數 據機側上時,該系統通常並不始終適當地作業。存在關於 定向耦合器12〇2之放置的三個情況或方案:丨)藉由將該等 定向耦合器放置在該雙向放大器之分離/相對側上,該放 =器信號至該等定向耦合器的洩漏能引起故障;2)將兩個 疋向耦合器放置在該雙向放大器之數據機側上。依據Μη 協定,右在該放大器之任一側上沒有信號(即,上行鏈路 1326I0.doc •33· 1363488 或下行鏈路),則該雙向放大器應該係在接收狀態中。當 該等定向耦合器係在該數據機側上時,若發射一下行鏈路 信號’則其由於該雙向放大器之隔離而無法到達該等定向 麵合器。因此’該雙向放大器保持在接收狀態並且該系統 將出現故障,以及3)藉由將該等定向耦合器放置在該Ap側 上’該系統如由本原理所說明而作業。 如以上提到的洩漏可出現在(例如)其中該等耦合器及/或 偵測器係在該放大器之相對側上的一系統中。該洩漏可由 於下列事實而出現:當發射一上行鏈路信號(即,從數據 機至AP)時,從一AP側(正向)功率偵測器偵測的信號將係 大於從數據機側(反向)偵測器偵測的信號,因為放大功率 之些會洩漏至該AP側功率偵測器中。此將使該電壓比較 器從一接收模切換至一發射模。一類比結果保持一下行鏈 路信號。 其他實施方案將該等功率偵測器放置在該放大器之數據 機側上,及/或預偏壓反相輸入。 依據另一態樣,本原理提供減少的碰撞。此係由於僅存 在一個實體仏號路徑,因此沒有迴路振盪能出現的事實。 此外’不需要高靈敏度帶通濾波器(BPF) » 作為本原理之實施方案的結果,沒有對定向耦合器12〇2 的嚴格要求。同樣地,能在本原理之一實施方案中使用共 同可用的定向耦合器。此係由於下列事實:若實施一 Ap側 及數據機側定向耦合器(功率偵測器),則從該數據機侧偵 測器信號減去該AP側偵測器信號將決定開關121〇之操作狀 132610.doc •34- 1363488 態,並因此決定雙向放大器1212之狀態。藉由將兩個定向 搞合器放置在雙向放大器丨212之該AP側上,下行鍵路及上 行鏈路信號在其穿過定向耦合器1202時將係幾乎相同的功 率位準。因此’即使採用具有較差方向性(例如,2〇 0]8隔 離)的定向耦合器’ 20 dB邊限仍能保證減法值將係適當的 並因此保證開關1210之操作狀態。 依據本原理之一實施方案,所有組件提供奈秒位準操作 回應。因此’總延遲時間係<3〇〇 ns (例如,定向轉合器 1202 - <10 ns,功率偵測器1204 · 85 ns,電壓比較器12〇8 -40 ns。SPDT 1210 - 12 ns 以及功率放大器 1212 _ ι〇〇 ns),其係小於對TDD模通信系統的要求,其一般為數微 秒。 按照故障的可能,能將其劃分成數個情況: 情況1 :當兩側上沒有信號輸入(即,沒有發射或接收功 率)時,放大器1212將係在接收狀態中(即,從數據機至Ap 的路徑係斷開的); 情況2 :當從AP發射信號至數據機時,正向偵測功率(例 如,0.2至0.5V)將係甚大於反向偵測功率(<〇 1 v),因此電 壓比較器1208將翻轉並且放大器1212將切換至發射狀態 (即,從AP至數據機的路徑係斷開的);以及 情況3 :當從數據機發射信號至AP時,反向偵測功率(例 如,0.6至0.8V)將係甚大小於正向偵測功率(<〇 1 v)。因為 在功率比較器1208之非反相輸入蜂中存在預偏塵電阻電慶 (例如,0.1 V) ’所以放大器1212將保持在「接收」狀態。 132610.doc -35- 1363488 如’ 26-30 dB)給雙向ADOC信號,該補償係與提供給τν信 號的CATV幹線放大器補償(例如26 dB)相同(或實質上相 同)。增益補償可補償(例如)路徑損失。熟習技術人士應認 識到使用濾波器(例如頻帶分離器)以便將TV信號與ADOC 信號分離。同樣地,在一個實施方案中,將一或多個濾波 器佈置在CATV幹線放大器1410及雙向放大器1212之輸入 及輸出處。在此模中’該放大器能用於Tdd模而且與當前The TDF agreement is highly dependent on the distribution of timing information to all nodes. First, the TDF STA listens to the sync frame to determine if there is an available TDF AP. Once it enters the TDF communication procedure, it uses the sync frame to adapt the area timer, and the TDF STA determines whether it will instead transmit the uplink frame based on the timer. At any time, the TDF AP is dominant in the synchronization process, while the TDF STA is dependent. In addition, if it does not receive any synchronization frame from the associated AP within a predefined critical period defined as tdfSynchronizationCycle, the TDF STA will consider that the AP has abandoned the 132610.doc -15· 1363488 service and then stops the TDF communication. Program, and begin to look for any TDF AP by listening to the sync frame again. In a TDF system, all STAs associated with the same TDF AP will be synchronized with a common clock. The TDF AP will periodically transmit a special frame containing its clock information to be synchronized by the call to synchronize the data machines in its regional network. Each TDF STA will maintain a zone timing synchronization function (TSF) timer to Ensuring that it is synchronized with the associated TDF AP. After receiving a synchronization frame, a TDF STA always accepts the timing information in the frame. If the TSF timer is different from the timestamp of the received synchronization frame, the receiving TDF STA sets its regional timer according to the received timestamp value. In addition, it can add a small offset to the received timing value to resolve the area processing by the transceiver. The sync frame will be generated to be transmitted by the TDF AP once per TDF frame time unit and transmitted in the sync slot of each TDF frame. , Registration Procedure Figure 6 illustrates the entire registration process illustratively. Once a TDF STA has obtained timer synchronization information from the sync frame, it will know when the time slot has started. If a TDF STA is not associated with any TDF AP, it will try to register with a particular TDF AP. The particular TDF AP transmits a registration request during the contention slot of the second time slot for a TDF frame. The frame is transmitted to the TDF AP and the synchronization frame is transmitted. The duration of the contention time slot equal to tdfCommonTimeSlotDuration and the registration request frame structure should be carefully designed to allow at least 132610.doc • 16· 1363488 tdfMaximumUplinkTimeSlotNumber registration request frames to be transmitted in a contention slot. According to the design, the contention time slot is divided into tdfMaximumUplinkTimeSlotNumber sub-time slots of the same length. As soon as the target TDF AP is found, a TDF STA will select a sub-time slot in the contention time slot to transmit a registration request frame to the TDF AP according to the following method: A. Each time an uplink time slot is allocated, one The TDF STA will store the number of allocated uplink time slots defined as tdfAllocatedUplinkTimeSlot, which indicates the location of the time slots in the slot set area over the entire uplink and the range from 1 to tdfMaximumUplinkTimeSlotNumber. B. The TDF AP shall allocate the same uplink time slot to the same TDF STA at its maximum capacity each time it requests an uplink time slot. C' When it is time to decide when to select the slot to transmit the registration request frame, if there is a stored tdfAllocatedUplinkTimeSlot value, the TDF STA will set the same number of sub-time slots as tdfAllocatedUplinkTimeSlot; if there is no such value, then TDF STA A sub-time slot in the available sub-time slot of tdfMaximumUplinkTimeSlotNumber will be randomly selected. It will transmit a registration request frame to the TDF AP in a randomly selected sub-time slot. The purpose of such an operation is to reduce the chance of collisions when there are many STAs that are simultaneously activated and that the same TDF AP is registered at the same time. The TDF STA will enumerate all the data rates it supports at the time and also carry some useful information, such as the received signal carrier/noise ratio in the registration request frame. It can start with the highest data rate and transmit several consecutive registration request frames with different support data 132610.doc 17 1363488. After transmitting the frame, the TDF STA will listen to the registration response frame from the TDF AP. After receiving a registration request frame from a TDF STA, the TDF AP will transmit a different kind of registration response frame to the TDF STA in the downlink time slot according to the following method: A. If the uplink has been allocated The time slot is equal to tdfMaximumUplinkTimeSlotNumber, and the TDF AP places the uplinkTimeSlotUnavailable indicator in the frame body. B. If the TDF AP does not support any of the data rates listed in the supportedDataratesSet of the registration request management box, the TDF AP places the unsupportedDatarates indicator in the frame body. C. If there is an uplink time slot available for allocation and a common data rate that can be supported by both the TDF AP and the TDF STA, the AP will allocate an uplink time slot and base information (eg, registration of the STA) The carrier/noise ratio in the request frame is selected to an appropriate common data rate, and then a registration response frame is transmitted to the TDF STA. Information about the assigned uplink time slot and the selected data rate will be included in the frame body. After a successful registration procedure, the TDF STA and the TDF AP will reach an agreement on what uplink time slot and data rate to use. Segmentation/Reassembly Procedure In the TDF protocol, the time slot duration for the transmission of the MSDU is fixed to tdfCommonTimeSlotDuration. In some data rates, when the length of the MSDU is greater than a threshold, it is not possible to transmit 132610.doc • 18· 1363488 in a single time slot. Thus, when a data rate for uplink transmission is longer than a threshold defined as tdfFragmentationThreshold and varies according to different data rates, it is segmented before being scheduled for transmission. For all segments except the last segment that can be smaller, the length of a segment frame will be an equal number of octets (tdfFragmentationThreshold octet). After segmentation, the segmentation frame is placed in the delivery queue for transmission to the TDF AP. The segmentation procedure can be run in the TDF frame transport entity or upper layer by using the tdfFragmentationThreshold dynamically set in the TDF frame transport entity. At the end of the TDF AP, each received segment contains information to allow the complete frame to be reassembled from its constituent segments. The header of each segment contains the following information used by the TDF AP to reassemble the frame: A. Frame type B. Address of the sender obtained from address 2 field C. Destination address D Sequence Control Field: This field allows the TDF AP to check that all input segments belong to the same MSDU and that the sequence used for the segments should be reassembled. The sequence number in the sequence control field remains the same for all segments of an MSDU; the sequence number within the sequence control field is incremented for each segment. E. Multiple Segment Indicators: Indicate to the TDF AP that this is not the last segment of the data frame. Only the last or only segment of the MSDU sets this bit to zero. All other segments of the MSDU set this bit to one. The TDF AP reconstructs the MSDU by combining the segments in the order of the segment number subfield of the sequence control field 132610.doc -19. 1363488. If a segment with a multi-segment bit set to zero has not been received, the TDF AP will know that the frame has not yet completed. The TDF AP - receives a segment with multi-segment bits set to zero, which knows that no more segments are available for the frame. The TDF AP remains for one of the receive timers for each frame received. There is also an attribute tdfMaxReceiveLifetime that specifies the maximum amount of time allowed to receive a frame. The receiving timer is started after receiving the first segment of the MSDU. If the receiving timer exceeds tdfMaxReceiveLifetime, all receiving segments of the MSDU are discarded by the TDF AP. If additional segments that must be sent to the MSDU are received after their tdfMaxReceiveLifetime has passed, then the segments are discarded. The uplink pass procedure After receiving the registration response frame from the TDF AP, the TDF STA will analyze the frame body to see if it is granted an uplink time slot. If it is not granted, it will stop for a while and apply for an uplink time slot later. If granted, it will begin transmitting uplink traffic during the assigned time slot using the data rate indicated in the registration response frame. When the uplink transmission is started during the assignment time slot, if at least one external transmission frame exists in the TDF STA, the TDF STA will transmit the first frame to the external transmission queue to the TDF AP. Thereafter, the TDF STA will check the length of the second uplink frame and evaluate if the second uplink frame can be transmitted during the remaining duration in the assigned time slot. If not, it will stop the uplink transmission procedure and wait for the second upstream frame to be transmitted in the assigned time slot during the next TDF super 132610.doc -20· 1363488 frame. If it is possible, it will immediately transmit the second frame to the destination TDF. The transfer program will continue to run in this manner until the assigned time slot has ended or there are no upstream 'link frames to transmit. Downlink Transmission Procedure In the entire TDF communication procedure, the total number of downlink time slots may change dynamically due to changing the number of associated STAs. When the TDF Αρ prepares a transmit frame to the associated STA, it compares the time left in the remaining downlink time slots with the duration required to transmit the particular downlink frame using the protocol data rate. Therefore, depending on the result, it will decide whether to transmit the frame at a specific data rate during this TDF frame. In addition, TDF Ap does not need to segment any downlink frame β. When it is not time for the associated STA to transmit uplink traffic, the STA always listens to the feasible downlink frame for which it is targeted. Channel. The non-registered procedure φ, as shown in Figure 7, if the TDF STA decides to abandon the TDF communication procedure, it transmits a non-registration request frame to the associated/linked TDF AP during its uplink time slot to notify the TDF AP Release the allocated uplink-way slot resource for it. After receiving the unregistered request frame, the TDF AP will freely assign the uplink time slot assigned to the TDF AP and place it in the free time slot pool for future use. Active Notification Procedure Referring now to Figure 8, in order to release resources as soon as a TDF STA accidentally crashes or shuts down, the TDF STA must periodically transmit an active during its uplink time slot period 132610.doc 21 1363488 Notify the frame to the TDF AP and report its activity. If there is no active notification frame within a predefined critical period called tdfAliveNotificationCycle, the associated TDF AP will consider that the TDF STA has abandoned the service and thus release the uplink time slot allocated for the TDF STA, Just like receiving a non-registration request frame from the TDF STA. To ensure coexistence and interoperability on multi-rate capable TDF STAs, this specification defines a set of rules to be followed by all stations: A. The sync frame will be transmitted at the lowest rate of the TDF base rate set so that it will be used by All STAs understand. B. All frames with destination unicast addresses are transmitted at the supported data rate selected by the registration mechanism. No station transmits a single frame at a rate supported by the receiver station. C. All frames with destination multicast addresses are transmitted at the highest rate of TDF base rate concentration. As explained above, a TDF protocol can replace the traditional 802.1 1 DCF (distribution coordination function) or PCF (point coordination function) mechanism. This system can take advantage of the wide layout of WLAN (802.1 1) networks and one of the wireless local area network (WLAN) chipsets that may become more mature and cheaper. This system provides a cost-effective solution for two-way communication of CATV networks by transmitting WLAN signals in a cable network, even if WLAN protocols are established for transmission/reception in the air environment rather than in the cable network. In this system, the basic access method of the TDF protocol is TDMA, which allows multiple users to share the same channel by dividing the same channel into different time slots. The TDF stations rapidly transmit uplink traffic in succession 132610.doc -22- 1363488, each of which uses its own time slot in one of the TDF hypertext frames assigned by the tdf Ap (access point). . For downlink traffic, the stations share channels (eg, as shown in the TDF hyperframe of Figure 5) and are selected by comparing the destination address information of the frames to their addresses. It is the target frame. Refer to Figure 9 for a typical TDF network. The network provides connectivity from the user's home 91 and 920 to the Internet (or another resource or network) (4). User homes 91A and 920 are connected by an access point (AP) 940 in the EM system 95A. The AP 940 can be located, for example, at home 91〇 and 92〇 neighbors, or in an apartment building including homes (in this case, apartments) 91〇 and 92〇, the AP 940 can be, for example, an electron microscope operator. Owned. The Ap is coupled to a router 960 in the Ethernet 970. The router 960 is also coupled to the Internet 93. It should be a direct connection (without intermediate components or units) and an indirect connection (one or more intermediate components and/or units). Such connections may be, for example, wired or wireless, as well as permanent or retrospective. Users 豕 910 and 920 can have a variety of different configurations, and each can be configured differently. However, as shown in the network _, the user homes 91 and 920 each include one (referred to as a data machine) (10) 922. The data machine 912 and the like are respectively connected to the first main machine "9", 924, and the second host (host 2) 916 92 in the - Ethernet 918, 928 (machines 914, 916, 924 and 9% - Γ, 仏 can be, for example, a computer or another processing device or communication device. & 0 There are various ways 'where the network _ can allow multiple hosts (for example, 132610.doc • 23· 1363488 914, 916, 924, and 926) are connected to the router 960. Four embodiments are described based on the following simply considering the data machine 912 and the hosts 914 and 916. In a first method, the data machine 912 acts as another router, the host 914 and 916 are identified by their IP addresses, and data 912 sends 1 packets from hosts 914 and 916 to router 960. This method 1 typically requires data 5|912 to run the router software, which requires additional memory. In a second method, the data machine 912 acts as a bridge. The data machine 912 and the AP 940 use a standard wireless distribution system (WDS) mechanism to convey the layer 2 packets to the router 960. The host 914 and 916 is identified by its Media Access Control (MAC) address No. This method is part of the 8〇2 η standard and can be used to convince multiple hosts at the same time. However, 'not all ports and data machines support WDS' and the αρ and data machines that do support WDS usually have limited support. For example, with some data and data machines, Wi-Fi Protected Access (WPA) cannot be used for WDS, and this may introduce security issues. In a third method, the data machine 912 uses MAC impersonation to change the Ethernet. The source MAC address of the packet (the source is one of the hosts 914 and 916) is its own MAC address. Therefore, from the perspective of the router 960, the router 960 only sees the data machine 912. The data machine 912 uses this method only for each In a further method, the data machine 912 uses a packet, as explained in more detail above. Each of the above methods has advantages and disadvantages' and such advantages and disadvantages may vary depending on the implementation. The packet method provides certain advantages because it generally allows the data machines to be simpler by not requiring the data machine to run the 132610.doc -24-1363488 router software. 〃 usually does not introduce security issues, and its primary and secondary servos are multiple hosts. In addition, the packet method is associated with the first three methods of transmitting each packet from the host by using a single-WLAN packet. A large burden. Therefore, the two methods incur the burden of 1 frequency packet for each packet transmitted from the host, and correspondingly reduce the output. Such inefficiency deteriorates in the environment. In the TDF environment, The duration of the time slot is fixed 'and the time slot is designed to allow only the wlan packet to be transmitted in one slot. Therefore, only one master packet can be transmitted in each slot; therefore, the packet method generally provides one or more of various advantages. Such advantages include, for example, simpler router design and operation, increased security, servoing multiple hosts, and increased efficiency and output. In summary, at least one embodiment of the packet method includes packetizing a plurality of Ethernet packets into a WLAN packet. The machine (10) packet will be the same as the maximum length allowed by the TDF time slot. The Ap (example #, the other two data machines) will packet the WLAN packet into individual Ethernet packets and transmit them to the router. For communication in the reverse direction, a modem will decapsulate a WLAN packet and transmit an individual Ethernet packet to the host. Referring to FIG. 10, an illustration 1000 includes a plurality of data machines, two of which are explicitly displayed; and a ΑΡβ narration includes a data machine "1010, a data machine #> 1 1020, and a 1030, Each of the data machines 1010 and 1020 is coupled to 1030 in a cable network. Other embodiments use a separate cable network for each of the data machines. 132610.doc -25- The data machines 1010 and 1020 and the AP 1030 include functional components of the same name, although some of the external connections are different and the components themselves perform different functions on a data machine and an AP. Therefore, it is provided as a data machine. And a common unit of both APs. However, it should be clear that different units can be designed for a data machine and an AP, wherein different units only implement the functions required by a data machine or an AP respectively. The data machine 1010 includes a regional application. Layer 1011, followed by a Tcp/Ip layer 1012' followed by a bridge 1 〇 14. Bridge 1 〇 14 is coupled to an Ethernet interface 1015, a packet collection/de-collection module (PADM) ) 1〇16, with 0 and one The WLAN interface 1017. The PADM 1016 is also coupled to the WLAN interface iO1. The Ethernet interface 1015 is coupled to the Ethernet 1〇52, which is coupled to a first host (host 1) 1054 and a second. Host (Host 2) 1056. The Data Unit 1 020 is similar to the Data Machine 1 〇1 〇. However, the Data Machine 轻2 is lightly coupled to the Ethernet 1062, and the Ethernet 1〇62 is coupled to The components of a first host (host 1) 1064 and a second host (host 2) 1066»data machine 1020 are shown as being identical to the components of the data machine 1010. However, it should be clear that when the data machines 1010 and 1020 are configured and In operation, various configuration parameters (for example) will be different. AP 1030 includes an area application layer 1〇71 followed by a TCP/IP layer 1 〇 72 followed by a bridge 1074. Bridge 1074 It is coupled to an Ethernet interface 1077, a PADM 1076, and a WLAN interface 1075. The PADM 1076 is also coupled to the WLAN interface 1075. The Ethernet interface 1 〇 77 is coupled to an Ethernet 1082 and then coupled. To a router 1090. The WLAN interfaces 1017 and 1075 are in communication over the cable network 1040. • 26· 1363488 modes are coupled to each other. Router 1090 is further coupled to the Internet 1〇95. Therefore, there is a connection between the hosts 1054, 1056, 1064, 1〇66 and the Internet 1〇95” (1011, 1071) is a standard layer used to run regional applications and interface with other layers in the architecture. The various TCP/IP layers (1012, 1 072) are standard layers for running TCP/IP and providing services typically provided by such layers, including interfacing with other layers in the architecture. Various Ethernet interfaces (1015, 1077) are used to interface to/from the standard unit of the Ethernet. Such interfaces 1015, 1077 transmit and receive Ethernet packets and operate in accordance with the Ethernet protocol. Various WLAN interfaces (1017 '1075) are used to interface to the WLAN network/units connected to it. Such interfaces 1017, 1 〇 7 5 transmit and receive WLAN packets and operate in accordance with the WLAN protocol. However, in clarifying the looo, the WLAN interfaces 1017, 1075 are actually coupled to a cable network 1040 rather than using wireless communication. The Ethernet network and WLAN interfaces 1015, 1017, 1075, and 1077 are implemented in, for example, a hardware such as a plug-in card for a computer. The interfaces can also be implemented to a large extent in a software such as a program that uses the instructions implemented by a processing device to perform the functions of the interface. The interface typically includes a portion for receiving an actual signal (eg, a connector) and buffering the received signal (eg, a transmit/receive buffer) and typically includes a portion for processing the signal (eg, a signal processing chip) All or part of the various bridges (1014, 1074) are units that forward packets between an Ethernet interface and a 132610.doc -27. WLAN interface... the bridge can be implemented in software or hardware, or It can be just a logical entity. It is used for a bridge. The scheme includes a processing device (such as an integrated circuit) or an instruction set running on a W device (such as a processor running a bridge software).勹Μ 1016 and 1〇76 perform various functions, including packet encapsulation and decapsulation, and further instructions are given below. PADMs 1〇16 and 1〇76 can be implemented in, for example, software, hardware, firmware or a combination of orders. Software implementations include, for example, a privacy set, such as a program for running on a processing device. The hardware implementation includes, for example, a dedicated chip, such as an application specific IC (ASIC). Most of the cable networks A are based on the electric (four) basic two-way time division duplex (TDD) system and utilize bidirectional amplifiers. However, these amplifiers have several limitations first, and the uplink and downlink power levels cannot be the same. Or the same. Second, the bidirectional loop has the possibility of vibration in the case of poor isolation. The third 'its due to the attempt to be in the M〇CA or other d〇ca agreement (for example, advanced coaxial cable information_AD〇 c) It is not applicable to the newly developed cable network when it is used to bypass the CATV trunk amplifier under the existing cable network condition. One of the principles of the bidirectional power amplifier is used in the TDD mode. A possible solution implemented in cable-based systems (such as WM0CA and other d〇ca systems). The bidirectional amplifier of the present principle can solve the above problems by providing the following advantages over known embodiments. '· 2) reduced oscillation; 3) suitable for newly developed electrical network, 4) simple detection; and 5) fast response without trouble operation. 132610.doc • 28· 1363488 The voltage is increased or flipped or changed. This will cause the switch 12i to switch the bi-directional amplifier to the "transmit" state. When the downlink signal transmission is completed, the voltage in the inverting input is reduced to zero (or substantially zero) and the comparator 1208 is returned. Turning over and causing switch 1210 to switch the bidirectional amplifier to the "receive" state responds. Equal power bi-directional amplification as used herein refers to the ability to obtain the same power input (~0 dBm) and the same gain (~26-30 dB) in both directions. Those skilled in the art will recognize that maintaining the same power output bi-directional amplification is not easy to implement a two-way communication system in a TDD mode due to the directionality of the power detector (e.g., ~20). In accordance with one aspect of the present principles, and in order to achieve equal power bi-directional amplification, power detector 1204 is placed on the access point (Ap) side of the amplifier and applied at the non-inverting input of comparator 12〇8. The low pre-bias voltage of the self-voltage divider network 1206 (for example, ~〇1 through this design, even when using a power detector with poor directivity, can achieve the same power amplification in the direction of the directional charger 1202) The main reason for the configuration is that when the directional couplers are placed on the AP side or the data machine side or on the data machine side of the bidirectional amplifier, the system usually does not always operate properly. There is directional coupling. Three cases or scenarios in which the device 12〇2 is placed: 丨) by placing the directional couplers on the separated/opposite side of the bidirectional amplifier, the leakage of the discharge signal to the directional couplers can cause Fault; 2) Place two directional couplers on the data machine side of the bidirectional amplifier. According to the Μη protocol, there is no signal on either side of the amplifier (ie, uplink 1326I0.doc • 33· 1363488 or downlink), then the bidirectional amplifier should be in the receive state. When the directional couplers are on the modem side, if the downlink signal is transmitted, it is unable to reach the directional combiners due to the isolation of the bidirectional amplifier. Thus, the bidirectional amplifier remains in the receiving state and the system will malfunction, and 3) by placing the directional couplers on the Ap side. The system operates as explained by the present principles. Leakage as mentioned above may occur, for example, in a system in which the couplers and/or detectors are on opposite sides of the amplifier. The leakage can occur due to the fact that when an uplink signal is transmitted (ie, from the modem to the AP), the signal detected from an AP side (forward) power detector will be greater than the slave side. (reverse) the signal detected by the detector, because some of the amplification power will leak into the AP side power detector. This will cause the voltage comparator to switch from a receive mode to an transmit mode. A class of results keeps the line signal. Other embodiments place the power detectors on the data side of the amplifier and/or pre-bias the inverting inputs. According to another aspect, the present principles provide reduced collisions. This is due to the fact that there is only one physical nickname path, so there is no fact that loop oscillations can occur. Furthermore, no high sensitivity bandpass filter (BPF) is required. As a result of the implementation of the present principles, there is no strict requirement for the directional coupler 12〇2. Likewise, a commonly available directional coupler can be used in one embodiment of the present principles. This is due to the fact that if an Ap side and a data plane side directional coupler (power detector) are implemented, subtracting the AP side detector signal from the data machine side detector signal will determine the switch 121. Operation 132610.doc • 34-1363488 state, and thus determines the state of the bidirectional amplifier 1212. By placing two directional combiners on the AP side of the bidirectional amplifier 丨 212, the downlink and uplink signals will have nearly the same power level as they pass through the directional coupler 1202. Thus, even with a directional coupler '20 dB margin with poor directivity (e.g., 2 〇 0] 8 isolation), the subtraction value is guaranteed to be appropriate and thus the operational state of the switch 1210 is guaranteed. In accordance with one embodiment of the present principles, all components provide a nanosecond level of operational response. Therefore, the total delay time is <3〇〇ns (for example, directional coupler 1202 - < 10 ns, power detector 1204 · 85 ns, voltage comparator 12 〇 8 -40 ns. SPDT 1210 - 12 ns And power amplifier 1212_ι〇〇ns), which is less than the requirement for a TDD mode communication system, which is typically a few microseconds. According to the possibility of failure, it can be divided into several cases: Case 1: When there is no signal input on both sides (ie, no transmit or receive power), the amplifier 1212 will be in the receiving state (ie, from the data machine to the Ap) The path is broken); Case 2: When transmitting signals from the AP to the modem, the forward detection power (for example, 0.2 to 0.5V) will be much greater than the reverse detection power (<〇1 v) Thus, the voltage comparator 1208 will flip and the amplifier 1212 will switch to the transmit state (ie, the path from the AP to the modem is disconnected); and Case 3: when the signal is transmitted from the modem to the AP, the reverse detect Power (e.g., 0.6 to 0.8V) will be much larger than the forward detection power (<〇1 v). Since there is a pre-dusting resistor (e.g., 0.1 V) in the non-inverting input bee of the power comparator 1208, the amplifier 1212 will remain in the "received" state. 132610.doc -35- 1363488 For a two-way ADOC signal, as '26-30 dB', the compensation is the same (or substantially the same) as the CATV trunk amplifier compensation (eg 26 dB) supplied to the τν signal. Gain compensation compensates for, for example, path loss. Those skilled in the art will recognize the use of filters (e.g., band splitters) to separate the TV signal from the ADOC signal. Similarly, in one embodiment, one or more filters are placed at the inputs and outputs of the CATV trunk amplifier 1410 and the bidirectional amplifier 1212. In this mode, the amplifier can be used in the Tdd mode and is currently

WiFi及WiMax系統相符,尤其與以電纜為基礎的m〇Ca系 統相符。 圖15顯示依據本原理之一實施方案的方法15〇〇。初始WiFi and WiMax systems match, especially with the cable-based m〇Ca system. Figure 15 shows a method 15A in accordance with an embodiment of the present principles. initial

地,監視一上行鏈路或下行鏈路信號的存在(丨5〇2)❶當僅 偵測到一下行鏈路信號時,將該雙向放大器電路内的該雙 向放大器從一接收狀態切換至發射狀態(15〇4) ^該方法進 一步包括(如圖16中所示)當僅偵測到一上行鏈路信號 (1506)以及幻貞測到—上行鏈路或下行鏈路信號(1州)時 將該又向放大器保持在一接收狀態令之步驟。如以上所說 明:藉由將一預偏壓電壓施加於雙向放大器電路讓内的 電壓比較器12G8之非反相輸人而實行接收狀態的保持。 °在(例如)方法或程序、一裝置或一軟體程式中實施 本:中說明的實施方案。即使僅在實施方案之單-形式的 :容中說明(例如’僅說明為方法),但是說明的特徵之實 知方案亦可在其他形式(例 -裝置或程式)中加以實 施。可在(例如)適當硬體、軟體及動體中實施置 在(例如)一^ BEL _L 震置中實施該方法,該裝置如—般指處理器件 132610.doc •37· 1363488 的-處理器,包括(例如)一電腦、一微處理器、一積體電 路、或-可程式邏輯器件。處理器件亦包括通信器件,例 如電腦、行動電話、可攜式/個人數位助理(「pda」卜以 及促進終端使用者之間的資訊通信之其他器件。」1Monitoring the presence of an uplink or downlink signal (丨5〇2), switching the bidirectional amplifier in the bi-directional amplifier circuit from a receiving state to transmitting when only the downlink signal is detected State (15〇4) ^ The method further includes (as shown in Figure 16) when only one uplink signal (1506) is detected and the illusion is detected - an uplink or downlink signal (1 state) The step of again holding the amplifier in a receiving state order. As described above, the reception state is maintained by applying a pre-bias voltage to the bi-directional amplifier circuit to cause the non-inverting input of the internal voltage comparator 12G8. The embodiment described in this: is implemented, for example, in a method or program, a device, or a software program. Even if only the description of the single-form of the embodiment is described (e.g., as merely illustrated as a method), the described features of the features may be implemented in other forms (eg, devices or programs). The method can be implemented, for example, in a suitable hardware, software, and moving body, for example, in a BEL _L shock, the device being referred to as a processor of the processing device 132610.doc • 37· 1363488 Including, for example, a computer, a microprocessor, an integrated circuit, or a programmable logic device. Processing devices also include communication devices such as computers, mobile phones, portable/personal digital assistants ("pda" and other devices that facilitate information communication between end users." 1

可在各種不同設備或應用,尤其係(例如)與資料傳輸及 接收相關聯的設備或應用中具體化本文中說明的各種程序 及^徵之實施方案。設備之範例包括視訊編碼器、視訊解 碼器、視訊編解碼器、網頁伺服器、轉頻器、膝上型電 腦、個人電腦以及其他通信器件。應該清楚,該設備可以 係行動的並且甚至安裝在汽車上。 另外,可由藉由一處理器所實行的指令實施該方法,而 且可將此類指令儲存在一處理器可讀取媒體中,該媒體如 一積體電路、一軟體載波或其他儲存器件,例如一硬碟 機、一光碟、一隨機存取記憶體(「RAM」)或一唯讀記憶 體(R〇M」)。s亥指令可形成可觸知地具體化於處理器可 讀取媒體中的一應用程式。應該清楚,一處理器可包括具 有(例如)用於實現一程序的指令之一處理器可讀取媒體。 熟習技術人士應該明白,實施方案亦可產生經格式化用 以承載可(例如)加以儲存或傳輸的資訊之一信號。該資訊 可包括(例如)用於實行一方法的指令,或藉由說明的實施 方案之一所產生的資料。此信號可經格式化為(例如)一電 磁波(例如’使用頻譜之一射頻部分)或一基頻信號。該格 式化可包括(例如)編碼一資料流,訊包化編碼流,以及採 用包裝流來調變一載波。該信號承載的資訊可以為(例如) 132610.doc •38- 1363488 類比或數位資訊。可以在各種不同有線或無線鍵路上傳輸 該信號,此已為人所知。 已說明若干實施方案。不過,應瞭解可進行各種修改。 例如,可組合、補充、修改或移除不同實施方案之元件以 產生其他實施方案。另夕卜,熟習技術人士應瞭解其他結構 及程序可替代揭示的結構及程序而且所得實施方案將以至 少實質上相同的方式而實行至少實f上相同的特徵,以達 到與揭示的實施方案至少實質上相同的結果。因此’此等 及其他實施方案係由此應用所預期而且係、在以下中請專利 範圍之範疇内。 【圖式簡單說明】 圖1解說一簡化範例性TDF存取網路架構。 圖2解說OSI參考模型中的8〇2 u MAC子層。 圖3解說⑽參考模型中的一TDF傳輸實體之一實施方The various programs and implementations described herein can be embodied in a variety of different devices or applications, particularly in devices or applications associated with, for example, data transmission and reception. Examples of devices include video encoders, video decoders, video codecs, web servers, transponders, laptops, personal computers, and other communication devices. It should be clear that the device can be mobile and even installed in a car. In addition, the method can be implemented by instructions executed by a processor, and such instructions can be stored in a processor readable medium, such as an integrated circuit, a software carrier or other storage device, such as a A hard disk drive, a compact disc, a random access memory ("RAM") or a read-only memory (R〇M). The s command can form an application that is tangibly embodied in the processor readable medium. It should be clear that a processor can include a processor readable medium having, for example, one of the instructions for implementing a program. Those skilled in the art will appreciate that embodiments can also produce signals that are formatted to carry, for example, information that can be stored or transmitted. The information may include, for example, instructions for implementing a method, or data generated by one of the illustrated embodiments. This signal can be formatted, for example, as an electromagnetic wave (e.g., using one of the radio frequency portions of the spectrum) or a baseband signal. The formatting may include, for example, encoding a data stream, packetizing the encoded stream, and employing a packed stream to modulate a carrier. The information carried by this signal can be, for example, 132610.doc • 38-1363488 analog or digital information. This signal can be transmitted over a variety of different wired or wireless keyways, as is known. Several embodiments have been described. However, it should be understood that various modifications are possible. For example, elements of different embodiments may be combined, supplemented, modified or removed to produce other embodiments. In addition, those skilled in the art will appreciate that other structures and procedures may be substituted for the disclosed structures and procedures and that the resulting embodiments will perform at least substantially the same features in at least substantially the same. Substantially the same result. Accordingly, these and other embodiments are contemplated by the application and are within the scope of the following patents. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 illustrates a simplified exemplary TDF access network architecture. Figure 2 illustrates the 8〇2 u MAC sublayer in the OSI reference model. Figure 3 illustrates (10) one of the implementations of a TDF transport entity in the reference model

圖 圖4解說一通信模進入程序之一實施方案 圖5解說一 TDF超訊框結構之一實施方案。 圖6解說一註冊程序之一實施方案。 圖7解說一非註冊程序之一實施方案。 圖8解說一活躍通知程序之一實施方案 圖9包括描述-TDF網路之—實施方㈣m ㈣包括自圖9的-AP及一數據機之—實施方案的方塊 圖 11係其内可實施本原理的一 系統之一實施方案的高階 132610.doc -39- 工363488 圖。 圓12係依據本原理之一態樣的一雙向放大器之一實施方 案的方塊圖。 圖13顯示依據本原理之—實施方案的雙向放大器之詳細 方塊圖。 又向放大器之一實施方 圖14係依據本原理之一態樣的一 案的示意圖。Figure 4 illustrates an embodiment of a communication mode entry procedure. Figure 5 illustrates an embodiment of a TDF hyperframe structure. Figure 6 illustrates one implementation of a registration procedure. Figure 7 illustrates one implementation of a non-registration procedure. Figure 8 illustrates an implementation of an active notification procedure. Figure 9 includes a description of the -TDF network - the implementation of the (four) m (four) includes the -AP of Figure 9 and a data machine - an embodiment of the block diagram A high-order 132610.doc-39-gong 363488 diagram of one of the principles of a system. Circle 12 is a block diagram of one of the implementations of a bidirectional amplifier in accordance with one aspect of the present principles. Figure 13 shows a detailed block diagram of a bidirectional amplifier in accordance with an embodiment of the present principles. Yet another implementation of the amplifier. Figure 14 is a schematic illustration of one aspect of the present principles.

圖15係依據本原理之一實施方案的一 圖16係依據本原理之—實施㈣㈣方塊圖。 【主要元件符號說明】 之方塊圖。 網路 使用者家 數據機 主機1 主機2 乙太網路 使用者家 數據機 主機1 主機2 乙太網路 網際網路 ΑΡ 電纜系統 900 910 912 914 916 918 920 922 924 926 928 930 940 950 132610.doc -40. 1363488 960 路由器 970 乙太網路 1010 數據機#1 1011 區域應用層 1012 TCP/IP 層 1014 橋接器 1015 乙太網路介面 1016 PADM 1017 WLAN介面 1020 數據機 1030 AP 1040 電纜網路 1052 乙太網路 1054 第一主機 1056 第二主機 1062 乙太網路 1064 第一主機 1066 第二主機 1071 區域應用層 1072 TCP/IP 層 1074 橋接器 1075 WLAN介面 1076 PADM 1077 乙太網路介面 -41 - 132610.docFigure 15 is a block diagram of an embodiment (four) and (four) in accordance with the present principles. [Main component symbol description] Block diagram. Network User Home Data Host 1 Host 2 Ethernet User Home Data Host 1 Host 2 Ethernet Internet ΑΡ Cable System 900 910 912 914 916 918 920 922 924 926 928 930 940 950 132610. Doc -40. 1363488 960 Router 970 Ethernet 1010 Data Machine #1 1011 Area Application Layer 1012 TCP/IP Layer 1014 Bridge 1015 Ethernet Interface 1016 PADM 1017 WLAN Interface 1020 Data Machine 1030 AP 1040 Cable Network 1052 Ethernet 1054 First Host 1056 Second Host 1062 Ethernet 1064 First Host 1066 Second Host 1071 Area Application Layer 1072 TCP/IP Layer 1074 Bridge 1075 WLAN Interface 1076 PADM 1077 Ethernet Interface - 41 - 132610.doc

Claims (1)

1363488 ~鼻\胡日修正替換頁 第〇9:7126496號專利申請案 -— -1 中文申請專利範圍替換本(100年12月) 十、申請專利範圍: 1. 一種具有雙向放大器之裝置,其包含: 一雙向功率放大器單元(1212),其經組態以放大具有 一第一方向的信號,並放大具有與該第一方向相對之一 方向的信號;以及 一雙向功率偵測器單元(1202至1204),其係耦合至該 雙向放大器單元,以便⑴在由該雙向功率放大器單元放 大具有該第一方向之一信號之前,偵測具有該第一方向 之該信號中的功率,以及⑺在由該雙向功率放大器單元 放大具有該相對方向之一信號之後,偵測具有該相對方 向之該信號中的功率。 2.如。月求項1之裝置,丨中該雙向1力率谓測器單元係在— 通仏路#域合至該雙向功率放Α||單元,該通信路徑 經組態以承載具有該相對方向的放大信號及具有該第一 方向的非放大信號。 3·如請求们之裝置,其令該雙向功率谓測器單元係連接 至該雙向功率放大器之一存取點側。 4.如請求項1之裝置,進一步包含: 一開關’其係、與該雙向功率放大器單元通信,以在— 接收狀態與-發射狀態之間切換該雙向功率放大 元;以及 單元 該開 -電壓比較器,其具有連接至該雙向功率偵測器 之輸出之一反相輸入及一非反相輸入,以及連接至 關之—輸出。 1326I0-1001221.doc 1363488 ,碎刷日修正秦… · - ·'. 5.如明求項4之裝置,進一步包含一偏壓電壓電路其經 組I、以提供一預偏壓電壓給該電壓比較器之該非反相輸 入0 6.如明求項1之裝置,其中該雙向功率偵測器單元包含經 組態以偵測發射(上行鏈路)功率之一第一定向耦合器, 以及經組態以偵測接收(下行鏈路)功率之一第二定向耦 合器。 7. 如明求項6之裝f,其中該雙向功率伯測器單元進一步 包含-第-RF功率積測器及一第二以功率摘測器其分 別經組態以將RF功率轉換為直流電壓。 8. 如請求項4之裝1,其中當未债測到發射(上行鍵路)功率 及接收(下行鏈路)功率時,該電壓比較器使該開關將該 雙向功率放大器保持在一接收狀態。 T 9m項4之裝置’_ w】n(上行鏈路)功率 2時’該電壓比較器使該開關將該雙向功率放大器保 持在一接收狀態。 項4之裝置,其中㈣測到_接收(下行鍵路)功率 壓比較器使關關將該雙向功率放大器單 疋翻轉至一發射狀態。 11_如請求項1之裝置’其中該雙向功率放大 在一存取點器件與一數據機之間。 早疋係佈置 功率放大器單 元係佈置 12. 如請求項i之裝置,其中該雙向 在一分離器與一數據機之間。 13. —種放大器電路,其包含: 132610-1001221.doc1363488 ~ nose / Hu Ri correction replacement page No. 9:7126496 Patent Application - -1 Chinese patent application scope replacement (100 years December) X. Patent application scope: 1. A device with a bidirectional amplifier, The method includes: a bidirectional power amplifier unit (1212) configured to amplify a signal having a first direction and amplify a signal having a direction opposite the first direction; and a bidirectional power detector unit (1202) Up to 1204), coupled to the bidirectional amplifier unit, to (1) detect power in the signal having the first direction before the bidirectional power amplifier unit amplifies the signal having the first direction, and (7) After the bidirectional power amplifier unit amplifies the signal having one of the relative directions, the power in the signal having the relative direction is detected. 2. For example. In the device of claim 1, the bidirectional 1 force rate predator unit is coupled to the bidirectional power amplifier unit ||, and the communication path is configured to carry the relative direction Amplifying the signal and the non-amplified signal having the first direction. 3. A device as claimed, which connects the bidirectional power presensor unit to one of the access point sides of the bidirectional power amplifier. 4. The apparatus of claim 1, further comprising: a switch operative to communicate with the bidirectional power amplifier unit to switch the bidirectional power amplifying element between a receive state and a transmit state; and the unit open-voltage A comparator having an inverting input and a non-inverting input connected to the output of the bidirectional power detector, and a connection to the off-output. 1326I0-1001221.doc 1363488, the brushing day correction Qin... · -. '. 5. The device of claim 4, further comprising a bias voltage circuit group I, to provide a pre-bias voltage to the voltage The non-inverting input of the comparator. The device of claim 1, wherein the bidirectional power detector unit comprises a first directional coupler configured to detect one of transmit (uplink) power, and A second directional coupler configured to detect one of the received (downlink) power. 7. The apparatus of claim 6, wherein the bidirectional power detector unit further comprises a -RF power combiner and a second power meter configured to convert RF power to DC Voltage. 8. The apparatus of claim 4, wherein the voltage comparator causes the switch to maintain the bidirectional power amplifier in a receiving state when the transmit (uplink) power and the receive (downlink) power are not measured . The device of T 9m term 4 '_ w}n (uplink) power 2 o' the voltage comparator causes the switch to maintain the bidirectional power amplifier in a receiving state. The device of item 4, wherein (4) detecting the _receiving (downlink key) power voltage comparator turns off the bidirectional power amplifier unit to a transmitting state. 11_ The device of claim 1 wherein the bidirectional power is amplified between an access point device and a data machine. Early stage arrangement Power amplifier unit arrangement 12. The apparatus of claim i, wherein the two-way is between a splitter and a data machine. 13. An amplifier circuit comprising: 132610-1001221.doc 1363488 一疋向耦合器(1202),其具有一輸入及一輸出; 又向力率放大器(1212),其具有一旁通模並具有輕 口 i疋向輕合器之該輸出之一輸入以及經組態以連 接至-數據機之一輸出,其中該定向耦合器之該輸入經 ’且二X連接至一存取點,而且該定向耗合器係連接至該 雙向功率放大器之該存取點側; 功率偵測器(1204),其係連接至該定向耦合器並經 組態以偵測上行鏈路及下行鏈路功率; 一電壓比較器(1208),其具有分別連接至該功率偵測 器之一反相及非反相輸入; 一为壓網路(1206),其係連接至該電壓比較器之該非 反相輸入,並經組態以提供一預偏壓電壓至該電壓比較 器;以及 一開關(1210),其係連接至該電壓比較器及該雙向放 大器,該開關經組態以改變該雙向功率放大器之一操作 狀態’以回應從該電壓比較器接收的信號。 14. 如請求項13之放大器電路,其中該定向耦合器進一步包 含二個定向耦合器,一個經組態以偵測一上行鏈路信 號,而且一個經組態以偵測一下行鏈路信號。 15. 如請求項13之放大器電路,其中該功率偵測器包括二個 RF功率偵測器,該等RF功率偵測器經組態以將RF信號 轉換為直流電壓。 16_如請求項13之放大器電路,其中該開關包含一翠刀雙掷 開關,其經組態以在一活動模與一旁通模之間切換=雙 132610-1001221.doc 1363488 (畔W M曰修正替換頁 向放大器’以回應偵測的上行鏈路及/或下行鏈路信號。 17. 如請求項13之放大器電路,其中該定向耦合器、該雙向 放大器、該功率偵測器、該電壓比較器以及該開關全部 包含高速操作回應,使得該放大器電路之一總操作回應 時間係<300 ns。 18. —種用於一雙向放大器之方法,其包含: 監視一雙向放大器電路内之一雙向放大器之一存取點 側上之一上行鏈路或下行鍵路信號的存在;以及 當僅存在一下行鏈路信號時,將該雙向放大器切換至 一發射狀態。 19. 如請求項18之方法,進一步包含: 當存在一上行鏈路信號時,將該雙向放大器電路内的 該雙向放大器保持在一接收狀態;以及 當不存在上行鏈路或下行鏈路信號時,將該雙向放大 器電路内的該雙向放大器保持在一接收狀態。 20. 如請求項18之方法,其中藉由定位在該放大器之該存取 點側上之一定向耦合器來實行該監視。 21. 如請求項19之方法,其中該等保持步驟進一步包含將一 預偏壓電壓施加於該雙向放大器電路内之一電壓比較器 之一非反相輸入。 22. —種具有一雙向放大器之裝置,其包含: 監視構件(1202至1204),用於監視一雙向放大器電路 内之一雙向放大器之一存取點側上之一上行鏈路或下行 鏈路信號的存在;以及 132610-1001221.doc -4- 13634881363488 a directional coupler (1202) having an input and an output; and a force rate amplifier (1212) having a bypass mode and having a light port, one input of the output of the light coupler, and a group Connected to one of the output of the data machine, wherein the input of the directional coupler is coupled to an access point by 'and two X's, and the directional consuming coupler is coupled to the access point side of the bidirectional power amplifier a power detector (1204) coupled to the directional coupler and configured to detect uplink and downlink power; a voltage comparator (1208) having a respective connection to the power detection One of the inverting and non-inverting inputs; a voltage network (1206) coupled to the non-inverting input of the voltage comparator and configured to provide a pre-bias voltage to the voltage comparator And a switch (1210) coupled to the voltage comparator and the bi-directional amplifier, the switch configured to change an operational state of the bi-directional power amplifier to respond to a signal received from the voltage comparator. 14. The amplifier circuit of claim 13, wherein the directional coupler further comprises two directional couplers, one configured to detect an uplink signal and one configured to detect a downlink signal. 15. The amplifier circuit of claim 13, wherein the power detector comprises two RF power detectors configured to convert the RF signal to a DC voltage. 16_ The amplifier circuit of claim 13, wherein the switch comprises a green knife double throw switch configured to switch between a movable mode and a bypass mode = dual 132610-1001221.doc 1363488 (WM correction Replacing the page to the amplifier 'in response to the detected uplink and/or downlink signals. 17. The amplifier circuit of claim 13, wherein the directional coupler, the bidirectional amplifier, the power detector, the voltage comparison And the switch all include a high speed operational response such that one of the amplifier circuits has a total operational response time of <300 ns. 18. A method for a bidirectional amplifier comprising: monitoring a bidirectional one of the bidirectional amplifier circuits One of the amplifiers has one of the uplink or downlink signal signals on the access point side; and when there is only a downlink signal, the bidirectional amplifier is switched to a transmitting state. 19. The method of claim 18 Further comprising: maintaining the bidirectional amplifier in the bi-directional amplifier circuit in a receiving state when an uplink signal is present; and when not present The bidirectional amplifier in the bi-directional amplifier circuit is maintained in a receiving state when the link or downlink signal is received. 20. The method of claim 18, wherein the positioning is performed on the access point side of the amplifier 21. The method of claim 19, wherein the maintaining step further comprises applying a pre-bias voltage to one of the non-inverting inputs of one of the voltage comparators in the bi-directional amplifier circuit. A device having a bidirectional amplifier, comprising: a monitoring component (1202 to 1204) for monitoring an uplink or downlink signal on an access point side of one of the bidirectional amplifiers in a bidirectional amplifier circuit Existence; and 132610-1001221.doc -4- 1363488 切換構件(1210),用於當僅存在一下行鏈路信號時, 將該雙向放大器切換至一發射狀態。 23. 如請求項22之裝置,進一步包含: 保持構件(1208),用於當存在一上行鏈路信號時,將 該雙向放大器電路内之該雙向放大器保持在一接收狀 態;以及 另外的保持構件(1206),用於當不存在上行鏈路或下 行鏈路信號時,將該雙向放大器電路内之該雙向放大器 保持在一接收狀態。 24. 如請求項23之裝置,其中該另外的保持構件進一步包含 施加構件,用於施加一預偏壓電壓至連接至一開關之一 電壓比較器之一非反相輸入,該開關控制該雙向放大器 電路内之該雙向放大器之該操作模。 2 5. —種電纜系統,其包含: 至少一功率分離器(1406),其具有連接至一以catv電 窺為基礎之電視服務提供商的至少一輸入,以及連接至 一同軸電纜資料(DOCA)協定系統之至少一輸入,該功率 分離器具有至少一電纜分佈輸出; 一 CATV幹線放大器(141 〇),其係與該至少一電纜分佈 串聯連接;以及 一雙向放大器電路(1212),其係與該CATV幹線放大器 周圍之該至少一電纜分佈並聯連接, 其中該雙向放大器電路包含: 一定向耦合器,其具有一輸入及一輸出’該定向耦合 132610-1001221.doc 修正替额 器經組態以偵測一上行鏈路或下行鏈路信號發射之存 一雙向放大器,其係連接至該偵測器;以及 一開關,其係與該偵測器及該雙向放大器通信,以在 一接收狀態與一發射狀態之間切換該雙向放大器; 其中該定向耦合器係連接至該雙向放大器之一存取點 側。 " 6·如凊求項25之電纜系統,其中該雙向放大器電器進—+ 包含: V 其係連接至該定向耦合器;以及 其具有連接至該功率偵測器之輪出之 一功率偵測器 一電壓比較器 一反相輸入及一非反相輸入 出。 以及連接至該開關之一輸 27. 一種用於一雙向放大器之方法,其包含: 特定發射方向 偵測一功率放大器之一第一侧上具有一 之一信號; 使用 信號; 該功率放大器放大具有該特定發射 方向之該偵測 偵測該功率放大器之該第一側上星 ,、有與该特定發射方 向相對之一發射方向之一信號;以及 向之該偵測 使用該功率放大器放大具有該相對發射方 信號。 132610-1001221.doc 1363488The switching component (1210) is configured to switch the bidirectional amplifier to a transmitting state when there is only a downlink signal. 23. The apparatus of claim 22, further comprising: a holding member (1208) for maintaining the bi-directional amplifier in the bi-directional amplifier circuit in a receiving state when an uplink signal is present; and additional holding members (1206), for maintaining the bidirectional amplifier in the bi-directional amplifier circuit in a receiving state when there is no uplink or downlink signal. 24. The device of claim 23, wherein the additional retention member further comprises an application member for applying a pre-bias voltage to a non-inverting input coupled to one of the voltage comparators of the switch, the switch controlling the two-way The mode of operation of the bi-directional amplifier within the amplifier circuit. 2 5. A cable system comprising: at least one power splitter (1406) having at least one input connected to a catv Vision based television service provider and connected to a coaxial cable material (DOCA) At least one input to the protocol system, the power splitter having at least one cable distribution output; a CATV trunk amplifier (141 〇) connected in series with the at least one cable distribution; and a bidirectional amplifier circuit (1212) Parallelly connected to the at least one cable distribution around the CATV trunk amplifier, wherein the bidirectional amplifier circuit comprises: a directional coupler having an input and an output 'the directional coupling 132610-1001221.doc correction correction device configured a bidirectional amplifier for detecting an uplink or downlink signal transmission, which is connected to the detector; and a switch for communicating with the detector and the bidirectional amplifier for receiving state Switching the bidirectional amplifier to an emission state; wherein the directional coupler is connected to one of the access point sides of the bidirectional amplifier" 6] The cable system of claim 25, wherein the bidirectional amplifier electrical-+ comprises: V is connected to the directional coupler; and has a power detection connected to the power detector The detector-voltage comparator has an inverting input and a non-inverting input. And a method for connecting to one of the switches. 27. A method for a bidirectional amplifier, comprising: a specific transmit direction detecting one of a power amplifier having a signal on a first side; using a signal; the power amplifier amplifying The detecting of the specific emission direction detects the first side of the power amplifier, and has a signal in a direction opposite to the specific direction of the transmitting direction; and the detecting uses the power amplifier to amplify the Relative to the transmitter signal. 132610-1001221.doc 1363488 第097126496浼專利申請案 中文圖式替換頁(100玍12月> Ί Ί00 -音閘道 集區底部Patent No. 097126496浼 Patent application Chinese map replacement page (100玍12月] Ί Ί00 - Sound gateway bottom 1126B 1126A IPW7VOD 1116 1114 ^—11181126B 1126A IPW7VOD 1116 1114 ^—1118 1126 巳 义-11數據機1126 义 -11 data machine 1132- 1132 數據機1132- 1132 data machine 1126A 1132 光纖 圖11 乙太網路線路 同軸電纜 1326]〇-f]g-l〇()1221 doc1126A 1132 Fiber Figure 11 Ethernet Line Coaxial Cable 1326]〇-f]g-l〇()1221 doc
TW097126496A 2007-07-13 2008-07-11 Bi-directional amplifier for data over coax applications TWI363488B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2007/002146 WO2009009918A1 (en) 2007-07-13 2007-07-13 Data transmission and encapsulation
PCT/CN2007/002229 WO2009012614A1 (en) 2007-07-23 2007-07-23 Bi-directional amplifier for data over coax application

Publications (2)

Publication Number Publication Date
TW200934107A TW200934107A (en) 2009-08-01
TWI363488B true TWI363488B (en) 2012-05-01

Family

ID=44866155

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097126496A TWI363488B (en) 2007-07-13 2008-07-11 Bi-directional amplifier for data over coax applications

Country Status (1)

Country Link
TW (1) TWI363488B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2472747B1 (en) * 2009-08-24 2019-03-06 Mitsubishi Electric Corporation Light-emission error preventing circuit for optical transmitter

Also Published As

Publication number Publication date
TW200934107A (en) 2009-08-01

Similar Documents

Publication Publication Date Title
JP5536077B2 (en) Method for improving channel utilization in a TDMA-based protocol
JP5677307B2 (en) Data rate adaptation method for multicast communication
US7876704B1 (en) Tunneling protocols for wireless communications
US7236470B1 (en) Tracking multiple interface connections by mobile stations
JP4740759B2 (en) Wireless communication system
US20090161687A1 (en) Medium Access Control Method for Data Transmission Through CATV Access Network
US8027637B1 (en) Single frequency wireless communication system
US20220369403A1 (en) Multi-link communications of a wireless network with dynamic link configuration
US7689210B1 (en) Plug-n-playable wireless communication system
EP2178230A1 (en) Performance improvement of dual mode devices for data over cable applications
WO2009012614A1 (en) Bi-directional amplifier for data over coax application
US20210234729A1 (en) Methods, systems, and devices for steering packets across multiple access technologies
TWI363488B (en) Bi-directional amplifier for data over coax applications
Yoon et al. iDLS: Inter-BSS direct link setup in IEEE 802.11 WLANs
TWI416903B (en) Method and apparatus for communicating over multiple networks
TWI434556B (en) Data transmission and encapsulation
TW201025928A (en) A method of using power saving mode in a dual mode device to service client devices
TWI394417B (en) Method and apparatus for communicating in multiple modes
TW200922249A (en) Method and apparatus for communicating in multiple modes

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees