TWI394417B - Method and apparatus for communicating in multiple modes - Google Patents
Method and apparatus for communicating in multiple modes Download PDFInfo
- Publication number
- TWI394417B TWI394417B TW097126501A TW97126501A TWI394417B TW I394417 B TWI394417 B TW I394417B TW 097126501 A TW097126501 A TW 097126501A TW 97126501 A TW97126501 A TW 97126501A TW I394417 B TWI394417 B TW I394417B
- Authority
- TW
- Taiwan
- Prior art keywords
- tdf
- data
- polling
- frame
- communication
- Prior art date
Links
Landscapes
- Mobile Radio Communication Systems (AREA)
Description
此揭示內容一般解決通信系統之各種態樣。This disclosure generally addresses various aspects of a communication system.
通信系統為連接使用者至資訊而存在。此類系統可使用同軸電纜以及無線網路。現有系統展現各種限制。The communication system exists to connect the user to the information. Such systems can use coaxial cable as well as wireless networks. Existing systems exhibit various limitations.
依據一般態樣,將一訊框結構用於通信。該訊框結構支援至少二通信模。該等通信模包括其中該訊框結構中的一槽係保存用於一器件之一分時模以及其中該訊框結構中的一輪詢槽係由多器件用於資料通信之一輪詢模。According to the general aspect, a frame structure is used for communication. The frame structure supports at least two communication modes. The communication modules include a slot in the frame structure for storing a time division mode for a device and wherein a polling slot in the frame structure is used by a multi-device for one of the polling modes of data communication.
依據另一一般態樣,構造一信號以依據支援多通信模之一格式而承載資料。該信號包括為一分時通信模而構造於時槽中的一第一部分。該第一部分包括保存用於個別器件的一或多個時槽並承載用於該等個別器件的資料。該信號包括一第二部分,其係構造於用於其中沒有器件保存輪詢時槽之一輪詢通信模之一輪詢槽中。該第二部分承載用於至少一器件之輪詢時槽中的資料。According to another general aspect, a signal is constructed to carry data in accordance with a format that supports multiple communication modes. The signal includes a first portion that is constructed in the time slot for a time sharing mode. The first portion includes storing one or more time slots for individual devices and carrying data for the individual devices. The signal includes a second portion that is configured in one of the polling slots for polling the communication mode in one of the slots in which no device saves the poll. The second portion carries data for use in the polling slot of at least one device.
在附圖及以下說明中提出一或多個實施方案之細節。即使採用一個特定方式說明,仍應該清楚可採用各種方式組態或具體化實施方案。例如,一實施方案可實行為一方法,或具體化為經組態用以實行一組操作之一裝置或儲存用於實行一組操作的指令之一裝置。從結合附圖所考量的下列詳細說明及申請專利範圍中將明白其他態樣及特徵。The details of one or more embodiments are set forth in the drawings and the description below. Even with a specific description, it should be clear that the implementation can be configured or embodied in a variety of ways. For example, an embodiment can be implemented as a method, or as a device configured to perform one of a set of operations or to store one of the instructions for performing a set of operations. Other aspects and features will be apparent from the following detailed description and claims.
至少圖1至8之說明呈現包括一或多個新穎及發明態樣或特徵的各種實施方案。此等實施方案的至少一個提供使用一無線系統之典型特徵在一電纜中傳輸資料的一系統。特定言之,至少一個實施方案使用一同軸電纜中的分時多工。此系統允許(例如)一電纜電視操作者提供一頻譜之部分中的電視信號並提供該頻譜之另一部分中的額外服務。額外服務可以包括(例如)網際網路存取,包括存取以搜尋網際網路並檢視網際網路上的網頁,而且在網際網路中接收服務(例如,隨選視訊)。At least the description of Figures 1 through 8 presents various embodiments including one or more novel and inventive aspects or features. At least one of these embodiments provides a system for transmitting data in a cable using typical features of a wireless system. In particular, at least one embodiment uses time division multiplexing in a coaxial cable. This system allows, for example, a cable television operator to provide television signals in a portion of the spectrum and provide additional services in another portion of the spectrum. Additional services may include, for example, Internet access, including access to search the Internet and view web pages on the Internet, and receive services over the Internet (eg, video on demand).
至少圖9至20之說明呈現額外實施方案,並且該等額外實施方案的至少一個藉由說明封包之新穎及發明使用而擴大圖1至8之說明。一個特定實施方案包括一數據機,其從多個主機接收乙太網路訊包。每一主機可能嘗試透過一路由器與一不同網站通信。該數據機封包此等訊包成依據用於無線傳輸之一格式結構或協定所格式化的單一訊包。然而,封包訊息係在一同軸電纜中傳送以藉由該路由器接收。該路由器在一個實施方案中依次傳送該等訊包至該等主機之每一者嘗試與其通信的不同網站。At least the description of Figures 9 through 20 presents additional embodiments, and at least one of the additional embodiments expands the description of Figures 1 through 8 by illustrating the novelty and inventive use of the package. A particular implementation includes a data machine that receives an Ethernet packet from a plurality of hosts. Each host may attempt to communicate with a different website through a router. The data packet encapsulates the packets into a single packet formatted for use in one of the format structures or protocols for wireless transmission. However, the packet message is transmitted in a coaxial cable for reception by the router. The router, in one embodiment, sequentially transmits the packets to different websites with which each of the hosts attempts to communicate.
與一次僅封包一個訊包的系統相比較,藉由以上說明的實施方案所使用的封包提供輸出中的增加。因此,無線格式結構之工作負擔係在多個乙太網路訊包中展開。此與(例如)允許額外特徵藉由另一通信層加以提供的封包之傳統使用形成對比,或藉由保存封包資料中的舊有訊框結構而確保反向相容性。此外,以上說明的實施方案之封包亦根據系統設計而允許自待封包在一起之多個來源的資料以及預計用於不同終端使用者(例如,不同網站,或不同主機)的資料封包在一起。The packets used by the embodiments described above provide an increase in output compared to a system that only encapsulates one packet at a time. Therefore, the work load of the wireless format structure is deployed in multiple Ethernet packets. This contrasts with, for example, the traditional use of packets that allow additional features to be provided by another communication layer, or to ensure backward compatibility by preserving the old framed structure in the packet data. In addition, the packets of the above-described embodiments are also allowed to encapsulate data from multiple sources to be packaged together with data intended for different end users (eg, different websites, or different hosts) depending on the system design.
至少圖21至34之說明呈現另外的實施方案。此等實施方案之一些解決該訊框結構及與以輪詢及競爭為基礎的存取相關聯之新穎及發明態樣。另外的實施方案解決雙模組態。At least the description of Figures 21 through 34 presents additional embodiments. Some of these implementations address the framework and novel and inventive aspects associated with polling and contention based access. A further embodiment addresses the dual mode configuration.
此應用現在提供圖1至8之說明。應注意標頭係用於圖1至8之說明的各章節。一給定章節之標頭並非視為將該章節之揭示內容限於該標頭之主題,也不將其他章節之揭示內容限於除該標頭之主題以外的主題。標頭係範例性的,而且係預計為對讀者的一般協助。該等標頭並非預計包含該揭示內容之流,也不限制該揭示內容之適用性或一般性。This application now provides an illustration of Figures 1-8. It should be noted that the headers are used in the various sections of the description of Figures 1-8. The header of a given chapter is not to be construed as limiting the disclosure of the section to the subject matter of the header, nor the disclosure of the other sections is limited to the subject matter other than the subject matter of the header. The headers are exemplary and are expected to be general assistance to the reader. The listings are not intended to be a limitation of the disclosure, nor the applicability or generality of the disclosure.
應用方案application solution
為了提供現有同軸電纜TV系統(CATV)中的資料服務,至少一個實施方案在該電纜存取網路中佈置分時功能(TDF)協定順應存取點(AP)及台(STA)。經由階層式樹結構中的分離器連接AP及STA。採用此方式,在家裏的使用者能經由該電纜存取網路存取遠端IP核心網路。如在圖1中解說一樣來解說詳細網路佈局。In order to provide data services in existing coaxial cable TV systems (CATV), at least one embodiment places a time sharing function (TDF) protocol compliant access point (AP) and station (STA) in the cable access network. The AP and the STA are connected via a splitter in the hierarchical tree structure. In this way, users at home can access the remote IP core network via the cable access network. The detailed network layout is illustrated as illustrated in Figure 1.
能從圖1看出,在此典型存取網路基礎結構中,存在一TDF協定順應AP,其具有與該IP核心網路連接的一乙太網路介面,以及與該電纜存取網路連接的一同軸電纜介面。在該電纜存取網路之另一端上,存在TDF協定順應STA,即端子,其經由該同軸電纜介面與該電纜存取網路連接並經由該乙太網路介面與家庭LAN(區域網路)連接。As can be seen from Figure 1, in this typical access network infrastructure, there is a TDF protocol compliant AP with an Ethernet interface to the IP core network and the cable access network. A coaxial cable interface that is connected. On the other end of the cable access network, there is a TDF protocol compliant STA, ie a terminal, which is connected to the cable access network via the coaxial cable interface and via the Ethernet interface to the home LAN (regional network) )connection.
依據至少一實施方案,TDF AP及STA兩者依據802.11系列規格在邏輯連結控制子層、MAC子層以及實體層中分離地實施協定堆疊。然而,在MAC子層中,TDP AP及STA以TDF訊框傳輸實體取代802.11訊框傳輸實體。因此,用於TDF AP及STA的MAC子層係由802.11訊框封包/去封包實體以及TDF訊框傳輸實體組成,而用於802.11順應AP及STA的MAC子層由802.11訊框封包/去封包實體及802.11訊框傳輸實體組成。對於整合式AP及STA,TDF訊框傳輸實體及802.11訊框傳輸實體可同時共存,以提供802.11及TDF功能兩者。能藉由手動或動態組態實現二個模之間的切換。In accordance with at least one embodiment, both the TDF AP and the STA implement the protocol stack separately in the logical link control sublayer, the MAC sublayer, and the physical layer in accordance with the 802.11 family of specifications. However, in the MAC sublayer, the TDP AP and the STA replace the 802.11 frame transmission entity with the TDF frame transmission entity. Therefore, the MAC sublayer for the TDF AP and the STA is composed of the 802.11 frame packet/decapsulation entity and the TDF frame transmission entity, and the MAC sublayer for the 802.11 compliant AP and the STA is encapsulated/decapsulated by the 802.11 frame. The entity and the 802.11 frame transmission entity. For integrated APs and STAs, TDF frame transmission entities and 802.11 frame transmission entities can coexist simultaneously to provide both 802.11 and TDF functions. Switching between the two modes can be achieved by manual or dynamic configuration.
基本方法basic method
TDF協定的主要想法係在同軸電纜媒體中而非空中傳輸IEEE 802.11訊框。利用IEEE 802.11機制的目的係利用802.11協定堆疊的成熟硬體及軟體實施方案。The main idea of the TDF protocol is to transmit IEEE 802.11 frames over coaxial cable media rather than over the air. The purpose of utilizing the IEEE 802.11 mechanism is to utilize mature hardware and software implementations of the 802.11 protocol stack.
TDF的主要特徵係其有於傳輸IEEE 802.11資料訊框之獨特媒體存取控制方法。即,其並不利用傳統IEEE 802.11 DCF(分佈式協調功能)或PCF(點協調功能)機制以交換MAC訊框,其包括MSDU(MAC服務資料單元)及MMPDU(MAC管理協定資料單元)。相反,其使用分時近接方法以傳輸MAC訊框。因此TDF係一存取方法,其定義定位在MAC子層中的訊框傳輸實體之詳細實施方案。The main feature of TDF is its unique media access control method for transmitting IEEE 802.11 data frames. That is, it does not utilize a legacy IEEE 802.11 DCF (Distributed Coordination Function) or PCF (Point Coordination Function) mechanism to exchange MAC frames, including MSDU (MAC Service Data Unit) and MMPDU (MAC Management Protocol Data Unit). Instead, it uses a time-sharing proximity method to transmit MAC frames. Thus TDF is an access method that defines a detailed implementation of a frame transport entity located in the MAC sublayer.
基於比較之目的,此處解說如圖2中所示之OSI參考模型中的IEEE 802.11 MAC子層協定。雖然在圖3中解說用於OSI參考模型中的TDF協定之準確位置。For purposes of comparison, the IEEE 802.11 MAC sublayer protocol in the OSI reference model as shown in FIG. 2 is illustrated herein. Although the exact location of the TDF protocol for use in the OSI reference model is illustrated in FIG.
通信模進入程序Communication mode entry procedure
目前,存在建議用於TDF順應台的二個通信模,如以下所說明。一個係標準IEEE 802.11操作模,其服從IEEE 802.11系列標準中定義的訊框結構及傳輸機制;另一個係在TDF操作模中,關於其的詳細資訊將在下列段落中加以說明。圖4中指示當啟動一TDF STA時決定進入何操作模的策略。一旦一TDF STA從一AP接收一同步訊框,則致能其進入TDF模,若在一預設超時內未接收同步訊框,則該TDF STA保持或偏移至IEEE 802.11模。Currently, there are two communication modes suggested for the TDF compliant station, as explained below. One is the standard IEEE 802.11 operating mode, which is subject to the frame structure and transmission mechanism defined in the IEEE 802.11 series of standards; the other is in the TDF operating mode, and detailed information about it will be described in the following paragraphs. Figure 4 indicates the strategy for deciding which mode of operation to enter when a TDF STA is activated. Once a TDF STA receives a synchronization frame from an AP, it is enabled to enter the TDF mode. If the synchronization frame is not received within a preset timeout, the TDF STA remains or offsets to the IEEE 802.11 mode.
存取方法Access method
TDF台中的實體層可具有多個資料傳送速率能力,其允許實施方案以改良效能及器件維護之目標而實行動態速率切換。目前,TDF台可支援三個類型的資料速率:54 Mbps、18 Mbps及6 Mbps。主要以54 Mbps資料速率提供資料服務。當一台支援54 Mbps資料傳輸存在一些問題時,其可暫時切換至18 Mbps資料速率。基於網路維護及台除錯之目的而設計6 Mbps資料速率操作模。The physical layer in the TDF station can have multiple data transfer rate capabilities that allow the implementation to implement dynamic rate switching with improved performance and device maintenance goals. Currently, the TDF station supports three types of data rates: 54 Mbps, 18 Mbps, and 6 Mbps. Data services are provided primarily at 54 Mbps data rates. When there is some problem with supporting 54 Mbps data transmission, it can temporarily switch to the 18 Mbps data rate. Design a 6 Mbps data rate operating mode based on network maintenance and desk debugging.
資料速率可在一TDF台進入TDF通信程序之前靜態地加以組態,並在整個通信程序期間保持相同。另一方面,TDF台亦可在服務期間支援動態資料速率切換。用於資料速率的準則可基於頻道信號品質及其他因素。The data rate can be statically configured before a TDF station enters the TDF communication program and remains the same throughout the communication procedure. On the other hand, the TDF station can also support dynamic data rate switching during service. The criteria for data rate can be based on channel signal quality and other factors.
TDF協定之基本存取方法係分時多向近接(TDMA),其允許多個使用者藉由將同一頻道劃分成不同時槽而共享同一頻道。該等TDF STA迅速接連地相繼傳輸上行鏈路訊務,每一STA在藉由該TDF AP指派之TDF超訊框中使用其自己的時槽。對於下行鏈路訊務,該等STA共享頻道,並藉由將訊框中的目的地位址資訊與其位址比較而選擇以其為目標的資料或管理訊框。圖5解說當存在同時競爭上行鏈路傳輸機會的m個STA時,TDF超訊框結構之一範例以及用於一典型TDF超訊框的時槽分配。The basic access method of the TDF protocol is Time Division Multi-Direction (TDMA), which allows multiple users to share the same channel by dividing the same channel into different time slots. The TDF STAs successively transmit uplink traffic in succession, and each STA uses its own time slot in the TDF hyperframe assigned by the TDF AP. For downlink traffic, the STAs share the channel and select the data or management frame targeted by comparing the destination address information of the frame with its address. 5 illustrates an example of a TDF hyperframe structure and time slot allocation for a typical TDF hyperframe when there are m STAs competing for uplink transmission opportunities simultaneously.
如圖5中所示,存在每TDF超訊框固定數目(tdfTotalTimeSlotNumber)的時槽,該超訊框係由以下各項組成:用以從TDF AP傳送時脈同步資訊至TDF STA的一個同步時槽;用以傳送對上行鏈路時槽分配之註冊請求的一競爭時槽;藉由註冊TDF STA用以相繼傳送資料及一些管理訊框至TDF AP的tdfUplinkTimeSlotNumber個上行鏈路時槽;以及藉由TDF AP用以傳輸資料及註冊回應管理訊框至數據機的tdfDownlinkTimeSlotNumber個下行鏈路時槽。除同步時槽以外,稱為共同時槽的所有其他時槽具有同一持續時間,其長度等於tdfCommonTimeSlotDuration。tdfCommonTimeSlotDuration之數值經定義用以允許傳輸用於最高速率資料模之一正常時槽中的至少一最大IEEE 802.11 PLCP(實體層會聚協定)協定資料單元(PPDU)。同步時槽之持續時間tdfSyncTimeSlotDuration係短於該共同時槽之持續時間,因為在此時槽中從TDF AP傳輸至TDF STA的時脈同步訊框係短於802.11資料訊框。As shown in FIG. 5, there is a time slot of a fixed number of TDF frames (tdfTotalTimeSlotNumber), which is composed of: a synchronization time for transmitting clock synchronization information from the TDF AP to the TDF STA. a slot for transmitting a registration request for uplink time slot allocation; by registering a TDF STA for successively transmitting data and some management frames to the TDF AP's tdfUplinkTimeSlotNumber uplink time slots; The tdfDownlinkTimeSlotNumber downlink time slot used by the TDF AP to transmit data and register the response management frame to the data machine. Except for the sync slot, all other slots known as the common slot have the same duration and have a length equal to tdfCommonTimeSlotDuration. The value of tdfCommonTimeSlotDuration is defined to allow transmission of at least one maximum IEEE 802.11 PLCP (Physical Layer Convergence Protocol) Protocol Data Unit (PPDU) for use in one of the highest rate data modules. The duration of the synchronization slot tdfSyncTimeSlotDuration is shorter than the duration of the common time slot because the clock synchronization frame transmitted from the TDF AP to the TDF STA in the slot is shorter than the 802.11 data frame.
因此,定義為tdfSuperframeDuration的一TDF超訊框之持續時間能藉由下列等式加以計算:Therefore, the duration of a TDF hyperframe defined as tdfSuperframeDuration can be calculated by the following equation:
tdfSuperframeDuration=tdfSyncTimeSlotDuration+tdfCommonTimeSlotDuration*(tdfTotalTimeSlotNumber-1)tdfSuperframeDuration=tdfSyncTimeSlotDuration+tdfCommonTimeSlotDuration*(tdfTotalTimeSlotNumber-1)
tdfTotalTimeSlotNumber、tdfUplinkTimeSlotNumber與tdfDownlinkTimeSlotNumber之間的關係滿足下列等式:The relationship between tdfTotalTimeSlotNumber, tdfUplinkTimeSlotNumber, and tdfDownlinkTimeSlotNumber satisfies the following equation:
tdfTotalTimeSlotNumber=tdfUplinkTimeSlotNumber+tdfDownlinkTimeSlotNumber+2tdfTotalTimeSlotNumber=tdfUplinkTimeSlotNumber+tdfDownlinkTimeSlotNumber+2
此外,一TDF超訊框中TDF STA的分配上行鏈路時槽之數目可從一改變為tdfUplinkTimeSlotThreshold。因此,一TDF超訊框中的可用下行鏈路時槽可從(tdfTotalTimeSlotNumber-2)改變為(tdfTotalTimeSlotNumber-2-tdfMaximumUplinkTimeSlotNumber)。每次存在請求一上行鏈路時槽的一TDF STA時,該TDF AP將從該等可用下行鏈路時槽推斷一或多個時槽,並接著分配此等時槽給該TDF STA,只要上行鏈路時槽數目在其之後將不超過tdfMaximumUplinkTimeSlotNumber。tdfMaximumUplinkTimeSlotNumber之數值可在不同實施方案中變化。但是其必須仔細地加以選擇以便存在可用於一相關聯TDF STA的至少一下行鏈路時槽以便保證資料服務之QoS。此外,將藉由用於同一方向傳輸之同一TDF STA或AP使用的所有連續時槽能經合併用以連續地傳送MAC訊框以避免由不必要的轉換及保護所引起的此等時槽之邊緣處的浪費。In addition, the number of allocated uplink time slots of the TDF STA in a TDF hyperframe can be changed from one to tdfUplinkTimeSlotThreshold. Therefore, the available downlink time slot in a TDF hyperframe can be changed from (tdfTotalTimeSlotNumber-2) to (tdfTotalTimeSlotNumber-2-tdfMaximumUplinkTimeSlotNumber). Each time there is a TDF STA requesting an uplink time slot, the TDF AP will infer one or more time slots from the available downlink time slots, and then assign the time slot to the TDF STA as long as The number of uplink time slots will not exceed tdfMaximumUplinkTimeSlotNumber after it. The value of tdfMaximumUplinkTimeSlotNumber can vary in different implementations. But it must be carefully chosen so that there is at least a downlink time slot available for an associated TDF STA in order to guarantee the QoS of the data service. In addition, all consecutive time slots used by the same TDF STA or AP for transmission in the same direction can be combined to continuously transmit MAC frames to avoid such time slots caused by unnecessary conversion and protection. Waste at the edge.
在目前實施方案中,tdfCommonTimeSlotDuration係約300us,其係足以使TDF STA傳輸用於54M模之一個共同時槽中的至少一最大802.11 PPDU,而且存在每TDF超訊框總共62個時槽。在此等時槽中,以此方式存在20個上行鏈路時槽以及40個下行鏈路時槽。當存在20個STA時,能保證每一TDF STA具有對680 kbps上行鏈路資料速率的存取並共享30 Mbps(40個連續時槽)下行鏈路資料速率;當存在30個STA時,能保證每一TDF STA具有對680 kbps上行鏈路資料速率的存取並共享22.5 Mbps(30個連續時槽)下行鏈路速率。tdfMaximumUplinkTimeSlotNumber係30。最終,為61個共同時槽與一個同步時槽之總持續時間的tdfSuperframeDuration之數值係約18.6 ms而且其能加以定義為用於不同使用的不同數值。例如,若存在僅1個TDF STA,則能保證其具有4個時槽以達到約18 Mbps上行鏈路資料速率及自己的18 Mbps(4個連續時槽)下行鏈路資料速率。以此方式,為九個資料時槽與一個同步時槽之總持續時間的tdfSuperframeDuration之數量係約4 ms。In the current embodiment, the tdfCommonTimeSlotDuration is about 300 us, which is sufficient for the TDF STA to transmit at least one maximum 802.11 PPDU for use in a common time slot of the 54M mode, and there are a total of 62 time slots per TDF frame. In this time slot, there are 20 uplink time slots and 40 downlink time slots in this way. When there are 20 STAs, it can guarantee that each TDF STA has access to the 680 kbps uplink data rate and share 30 Mbps (40 consecutive time slots) downlink data rate; when there are 30 STAs, Each TDF STA is guaranteed to have access to the 680 kbps uplink data rate and share a 22.5 Mbps (30 consecutive time slot) downlink rate. tdfMaximumUplinkTimeSlotNumber is 30. Finally, the value of tdfSuperframeDuration, which is the total duration of 61 common time slots and a synchronized time slot, is about 18.6 ms and can be defined as different values for different uses. For example, if there is only one TDF STA, it can be guaranteed to have 4 time slots to achieve an uplink data rate of approximately 18 Mbps and its own 18 Mbps (4 consecutive time slots) downlink data rate. In this way, the number of tdfSuperframeDurations for the total duration of the nine data time slots and one synchronization time slot is about 4 ms.
訊框格式Frame format
在802.11規格中,存在三個主要訊框類型。將資料訊框用以交換台之間的資料。根據網路,能出現數個不同種類的資料訊框。控制訊框係結合資料訊框用以實行區域清理操作、頻道獲取以及載波感測維護功能與接收資料之肯定確認。控制及資料訊框聯合作業以在台之間可靠地遞送資料。更明確而言,資料訊框交換的一重要特徵係存在一確認機制,而且因此存在用於每一下行鏈路單播訊框之一確認(ACK)訊框,以便減小藉由不可靠無線頻道引起資料損失的可能性。最終,管理訊框實行監督功能:其係用以接合並離開無線網路而且在存取點之間移動相關聯物。In the 802.11 specification, there are three main frame types. Use the data frame to exchange data between stations. Depending on the network, several different types of data frames can appear. The control frame is combined with the data frame for performing the regional cleaning operation, the channel acquisition, and the carrier sensing maintenance function and the positive confirmation of the received data. Control and data frame joint operations to reliably deliver data between stations. More specifically, an important feature of data frame exchange is the existence of an acknowledgment mechanism, and therefore there is an acknowledgment (ACK) frame for each downlink unicast frame to reduce unreliable wireless The possibility of data loss caused by the channel. Finally, the management frame performs a supervisory function: it is used to engage and leave the wireless network and move the associated links between access points.
然而,在TDF系統中,因為TDF STA被動地等待自TDF AP的同步訊框找到目標TDF AP,所以不需要經典探測請求及探測回應訊框。此外,在同軸電纜而非空中交換該等訊框,以便不必定義RTS及CTS訊框以清理一區域並預防隱藏節點問題,而且定義ACK訊框以確保資料訊框之遞送的可靠性。However, in the TDF system, since the TDF STA passively waits for the target TDF AP to be found from the sync frame of the TDF AP, the classic probe request and the probe response frame are not required. In addition, the frames are exchanged over the coaxial cable rather than over the air so that RTS and CTS frames do not have to be defined to clean up an area and prevent hidden node problems, and an ACK frame is defined to ensure the reliability of the delivery of the data frame.
因此,在TDF協定中,僅將一些有用的802.11 MSDU及MMPDU類型用於同軸電纜方案中的資料。例如,利用資料訊框類型中的資料子類型,其係用以封包上層資料並將其從一個台傳輸至另一個台。此外,為了配合TDF系統中的時脈同步要求,定義一種新的管理訊框(同步訊框);而且為了實現上行鏈路時槽請求、分配及釋放之功能,定義另外四種管理訊框,其係註冊請求、註冊回應、非註冊請求以及活躍通知。Therefore, in the TDF protocol, only some useful 802.11 MSDU and MMPDU types are used for the data in the coaxial cable scheme. For example, the data subtype in the data frame type is used to encapsulate the upper data and transfer it from one station to another. In addition, in order to meet the clock synchronization requirements in the TDF system, a new management frame (synchronization frame) is defined; and in order to implement the function of uplink time slot request, allocation and release, four other management frames are defined. It is a registration request, registration response, non-registration request, and active notification.
為了概述其,已定義TDF協定之管理訊框類型中的四個新子類型。下列表格定義TDF協定中添加的類型及子類型之有效組合。表格1顯示用於TDF協定中添加的TDF訊框之有效類型及子類型。To outline this, four new subtypes in the management frame type of the TDF agreement have been defined. The following table defines the valid combinations of types and subtypes added to the TDF contract. Table 1 shows the valid types and subtypes of TDF frames added for use in the TDF protocol.
TDFTDF AP找到及時脈同步程序AP finds timely pulse synchronization program
TDF協定在很大程度上取決於至所有節點的時序資訊之分佈。首先,TDF STA聽取同步訊框以決定是否存在一可用TDF AP。一旦其進入TDF通信程序,其使用同步訊框以調適區域定時器,TDF STA根據該定時器決定其是否改為傳送上行鏈路訊框。任何時間,在同步程序中TDF AP係主要的而且TDF STA係從屬的。此外,若其在定義為tdfSynchronizationCycle的預定義臨界週期內未從相關聯AP接收任何同步訊框,則TDF STA將認為該AP已放棄該服務,並接著其停止TDF通信程序而且開始藉由再次聽取同步訊框而尋找任何TDF AP。The TDF agreement largely depends on the distribution of timing information to all nodes. First, the TDF STA listens to the sync frame to determine if there is an available TDF AP. Once it enters the TDF communication procedure, it uses the sync frame to adapt the area timer, and the TDF STA determines whether it will transmit the uplink frame according to the timer. At any time, the TDF AP is primarily in the synchronization process and the TDF STA is dependent. Furthermore, if it does not receive any synchronization frame from the associated AP within a predefined critical period defined as tdfSynchronizationCycle, the TDF STA will consider that the AP has abandoned the service and then it stops the TDF communication procedure and begins listening again. Synchronize the frame and look for any TDF AP.
在TDF系統中,與同一TDF AP相關聯的所有STA將與一共同時脈同步。該TDF AP將週期性地傳輸包含其時脈資訊的特殊訊框被呼叫同步以使其區域網路中的數據機同步。每一個TDF STA將維護一區域時序同步功能(TSF)定時器,以確保其係與相關聯TDF AP同步。在接收一同步訊框之後,一TDF STA始終接受該訊框中的時序資訊。若其TSF定時器係不同於接收的同步訊框中的時戳,則接收TDF STA依據接收的時戳值而設定其區域定時器。此外,其可添加較小偏移至接收的時序值以藉由收發器解決區域處理。In a TDF system, all STAs associated with the same TDF AP will be synchronized with a common clock. The TDF AP will periodically transmit a special frame containing its clock information to be synchronized by the call to synchronize the modems in its regional network. Each TDF STA will maintain an Area Timing Synchronization Function (TSF) timer to ensure that it is synchronized with the associated TDF AP. After receiving a synchronization frame, a TDF STA always accepts timing information in the frame. If the TSF timer is different from the timestamp of the received synchronization frame, the receiving TDF STA sets its regional timer according to the received timestamp value. In addition, it can add a small offset to the received timing value to resolve the region processing by the transceiver.
同步訊框將得以產生以在每一個TDF超訊框時間單元藉由該TDF AP傳輸一次並且在每一個TDF超訊框之同步時槽中傳送。The sync frame will be generated for transmission in each TDF frame time unit by the TDF AP and in the sync slot of each TDF frame.
註冊程序Registration procedure
圖6解說性地說明整個註冊程序。一旦一TDF STA已從同步訊框獲得定時器同步資訊,則其將瞭解時槽0何時開始。若一TDF STA並不與任何TDF AP相關聯,則其將設法採用特定TDF AP註冊,該特定TDF AP藉由在為一TDF超訊框中的第二時槽之競爭時槽期間傳送註冊請求訊框至TDF AP而傳送同步訊框。等於tdfCommonTimeSlotDuration的競爭時槽之持續時間,以及註冊請求訊框結構應該加以仔細設計以允許在一競爭時槽中傳送至少tdfMaximumUplinkTimeSlotNumber個註冊請求訊框。根據設計,將競爭時槽劃分成tdfMaximumUplinkTimeSlotNumber個相同長度的子時槽。Figure 6 illustratively illustrates the entire registration process. Once a TDF STA has obtained timer synchronization information from the sync frame, it will know when time slot 0 begins. If a TDF STA is not associated with any TDF AP, it will try to register with a particular TDF AP that transmits the registration request during the contention slot of the second time slot for a TDF frame. The frame is transmitted to the TDF AP and the synchronization frame is transmitted. The duration of the contention time slot equal to tdfCommonTimeSlotDuration, and the registration request frame structure should be carefully designed to allow at least tdfMaximumUplinkTimeSlotNumber registration request frames to be transmitted in a contention slot. According to the design, the contention time slot is divided into tdfMaximumUplinkTimeSlotNumber sub-time slots of the same length.
其一找到目標TDF AP,一TDF STA將選擇該競爭時槽中的一個子時槽以依據下列方法傳送註冊請求訊框至該TDF AP:As soon as the target TDF AP is found, a TDF STA will select a sub-time slot in the contention time slot to transmit a registration request frame to the TDF AP according to the following method:
A.每次分配一上行鏈路時槽時,一TDF STA將儲存定義為tdfAllocatedUplinkTimeSlot之分配上行鏈路時槽數目,其指示該等時槽在整個上行鏈路時槽集區中的位置以及從1至tdfMaximumUplinkTimeSlotNumber的範圍。A. Each time an uplink time slot is allocated, a TDF STA will store the number of allocated uplink time slots defined as tdfAllocatedUplinkTimeSlot, which indicates the location and the location of the time slots in the slot set area throughout the uplink. 1 to the range of tdfMaximumUplinkTimeSlotNumber.
B.該TDF AP應該在每次其請求一上行鏈路時槽時盡其最大能力分配同一上行鏈路時槽給同一TDF STA。B. The TDF AP should allocate the same uplink time slot to the same TDF STA every time it requests an uplink time slot.
C.當到了決定選擇何子時槽傳送註冊請求訊框的時間時,若存在一儲存的tdfAllocatedUplinkTimeSlot數值,則TDF STA將設定與tdfAllocatedUplinkTimeSlot相同的子時槽數目;若不存在此數值,則TDF STA將隨機地選擇tdfMaximumUplinkTimeSlotNumber可用子時槽中的一子時槽。其將在隨機選擇的子時槽中傳送註冊請求訊框至該TDF AP。C. When it is time to decide when to select the slot to transmit the registration request frame, if there is a stored tdfAllocatedUplinkTimeSlot value, the TDF STA will set the same number of sub-time slots as tdfAllocatedUplinkTimeSlot; if there is no such value, the TDF STA A sub-time slot in the available sub-time slot of tdfMaximumUplinkTimeSlotNumber will be randomly selected. It will transmit a registration request frame to the TDF AP in a randomly selected sub-time slot.
此種操作之目的係減小當存在同時啟動的許多STA並設法同時採用同一TDF AP註冊時發生衝突的機會。The purpose of such an operation is to reduce the chance of collisions when there are many STAs that are simultaneously activated and try to register with the same TDF AP at the same time.
該TDF STA將列舉其當時支援的所有資料速率並亦承載一些有用的資訊,例如註冊請求訊框中的接收信號載波/雜訊比率。其可從最高資料速率開始,採用不同支援資料速率傳送數個連續註冊請求訊框。在傳送出訊框之後,該TDF STA將從該TDF AP傾聽註冊回應訊框。The TDF STA will enumerate all the data rates it supports at the time and also carry some useful information, such as the received signal carrier/noise ratio in the registration request frame. It can start with the highest data rate and transmit several consecutive registration request frames with different support data rates. After transmitting the frame, the TDF STA will listen to the registration response frame from the TDF AP.
在從一TDF STA接收一註冊請求訊框之後,根據下列方法,該TDF AP將在下行鏈路時槽中傳送不同種類的註冊回應訊框回至該TDF STA:After receiving a registration request frame from a TDF STA, the TDF AP will transmit a different kind of registration response frame to the TDF STA in the downlink time slot according to the following method:
A.若已經分配的上行鏈路時槽等於tdfMaximumUplinkTimeSlotNumber,則該TDF AP將uplinkTimeSlotUnavailable指示符置於該訊框主體中。A. If the allocated uplink time slot is equal to tdfMaximumUplinkTimeSlotNumber, the TDF AP places the uplinkTimeSlotUnavailable indicator in the frame body.
B.若該TDF AP並不支援在註冊請求管理訊框之supportedDataratesSet中列舉的任何資料速率,則該TDF AP將unsupportedDatarates指示符置於該訊框主體中。B. If the TDF AP does not support any of the data rates listed in the supportedDataratesSet of the registration request management frame, the TDF AP places the unsupportedDatarates indicator in the frame body.
C.若存在可用以分配的上行鏈路時槽以及TDF AP與TDF STA兩者皆能支援的共同資料速率,則該AP將分配一個上行鏈路時槽並依據某資訊(例如該STA之註冊請求訊框中的載波/雜訊比率)選擇一適當的共同資料速率,而且接著傳送一註冊回應訊框至該TDF STA。在該訊框主體中將包含關於分配的上行鏈路時槽以及選擇的資料速率之資訊。C. If there is an uplink time slot available for allocation and a common data rate that both TDF AP and TDF STA can support, the AP will allocate an uplink time slot and base information (eg, registration of the STA) The carrier/noise ratio in the request frame is selected to an appropriate common data rate, and then a registration response frame is transmitted to the TDF STA. Information about the assigned uplink time slot and the selected data rate will be included in the frame body.
在一成功註冊程序之後,該TDF STA及該TDF AP將達成關於使用何上行鏈路時槽及資料速率的協議。After a successful registration procedure, the TDF STA and the TDF AP will reach agreement on what uplink time slot and data rate to use.
分段/重組程序Segmentation/reorganization procedure
在TDF協定中,用於MSDU之傳輸的時槽持續時間係固定為tdfCommonTimeSlotDuration。在一些資料速率中,當MSDU之長度係大於一臨界值時,不可能在單一時槽中傳輸。因此當用於上行鏈路傳輸的一資料速率係長於定義為tdfFragmentationThreshold的臨界值並根據不同資料速率而變化時,其在加以排程以傳輸之前進行分段。對於除可以為較小之最後分段以外的所有分段,一分段訊框之長度將為八位元組之相等數目(tdfFragmentationThreshold八位元組)。在分段之後,將分段訊框置於外送佇列中以傳輸至該TDF AP。此分段程序可藉由使用在TDF訊框傳輸實體中動態設定的tdfFragmentationThreshold而在TDF訊框傳輸實體或上層中運行。In the TDF protocol, the time slot duration for the transmission of the MSDU is fixed to tdfCommonTimeSlotDuration. In some data rates, when the length of the MSDU is greater than a threshold, it is not possible to transmit in a single time slot. Thus, when a data rate for uplink transmission is longer than a threshold defined as tdfFragmentationThreshold and varies according to different data rates, it is segmented before being scheduled for transmission. For all segments except for the smaller last segment, the length of a segment frame will be an equal number of octets (tdfFragmentationThreshold octet). After segmentation, the segmentation frame is placed in the delivery queue for transmission to the TDF AP. The segmentation procedure can be run in the TDF frame transport entity or upper layer by using the tdfFragmentationThreshold dynamically set in the TDF frame transport entity.
在該TDF AP結束時,每一接收的分段包含用以允許完整訊框從其組成分段加以重新裝配的資訊。每一分段之標頭包含藉由該TDF AP用以重新裝配該訊框的下列資訊:At the end of the TDF AP, each received segment contains information to allow the full frame to be reassembled from its constituent segments. The header of each segment contains the following information used by the TDF AP to reassemble the frame:
A.訊框類型A. Frame type
B.從位址2欄位獲得的傳送者之位址B. The address of the sender obtained from the address 2 field
C.目的地位址C. Destination address
D.序列控制欄位:此欄位允許該TDF AP檢查所有項目分段均屬於同一MSDU,以及應該重新裝配該等分段所用的序列。序列控制欄位內的序列號對於一MSDU之所有分段保持相同;序列控制欄位內的序列號對於每一分段增量。D. Sequence Control Field: This field allows the TDF AP to check that all project segments belong to the same MSDU and that the sequence used for the segments should be reassembled. The sequence number within the sequence control field remains the same for all segments of an MSDU; the sequence number within the sequence control field is incremented for each segment.
E.多個分段指示符:向TDF AP指示此並非該資料訊框的最後分段。該MSDU之僅最後或唯一分段使此位元設定為零。該MSDU之所有其他分段使此位元設定為一。E. Multiple Segment Indicators: Indicate to the TDF AP that this is not the last segment of the data frame. Only the last or only segment of the MSDU sets this bit to zero. All other segments of the MSDU set this bit to one.
該TDF AP藉由以序列控制欄位之分段號子欄位的順序組合該等分段而重新構造該MSDU。若尚未接收具有設定為零的多分段位元之分段,則該TDF AP將瞭解該訊框尚未完成。該TDF AP一接收具有設定為零的多分段位元之分段,其就瞭解沒有更多的分段可接收用於該訊框。The TDF AP reconstructs the MSDU by combining the segments in the order of the segment number subfields of the sequence control field. If a segment with a multi-segment bit set to zero has not been received, the TDF AP will know that the frame has not been completed. As soon as the TDF AP receives a segment with multi-segment bits set to zero, it knows that no more segments are available for the frame.
該TDF AP維護用於所接收的每一訊框之一接收定時器。亦存在一屬性tdfMaxReceiveLifetime,其指定經允許用以接收一訊框的最大量時間。該接收定時器在接收該MSDU之第一分段之後啟動。若該接收定時器超過tdfMaxReceiveLifetime,則藉由該TDF AP丟棄此MSDU之所有接收分段。若一定向MSDU之額外分段係在其tdfMaxReceiveLifetime超過之後接收,則該等分段加以丟棄。The TDF AP maintains a receive timer for each of the received frames. There is also an attribute tdfMaxReceiveLifetime that specifies the maximum amount of time allowed to receive a frame. The receiving timer is started after receiving the first segment of the MSDU. If the receiving timer exceeds tdfMaxReceiveLifetime, all receiving segments of the MSDU are discarded by the TDF AP. If additional segments that must be sent to the MSDU are received after their tdfMaxReceiveLifetime has expired, the segments are discarded.
上行鏈路傳輸程序Uplink transmission procedure
在從該TDF AP接收註冊回應訊框之後,該TDF STA將分析該訊框主體以瞭解其是否係頒予一上行鏈路時槽。若並非頒予,則其將停止一會兒並稍後申請上行鏈路時槽。若頒予,則其將開始使用註冊回應訊框中指示的資料速率在指派時槽期間傳輸上行鏈路訊務。After receiving the registration response frame from the TDF AP, the TDF STA will analyze the frame body to see if it is granted an uplink time slot. If it is not granted, it will stop for a while and apply for an uplink time slot later. If granted, it will begin transmitting uplink traffic during the assigned time slot using the data rate indicated in the registration response frame.
在指派時槽期間開始上行鏈路傳輸時,若在該TDF STA之外送佇列中存在至少一個外送訊框,則該TDF STA將在該外送佇列中傳送第一訊框至該TDF AP。其後,該TDF STA將檢查第二上行鏈路訊框之長度而且評估是否可以在指派時槽中的其餘持續時間期間傳送第二上行訊框。若不可以,則其將停止上行鏈路傳輸程序並等待在下一TDF超訊框期間在指派時槽中傳送第二上行訊框。若可以,則其將立即傳送第二訊框至目的地TDF AP。傳送程序將繼續以此方式運行,直至指派時槽已結束,或不存在任何上行鏈路訊框欲傳輸。When the uplink transmission is started during the assignment time slot, if there is at least one external transmission frame in the transmission queue outside the TDF STA, the TDF STA will transmit the first frame to the external transmission queue to the TDF AP. Thereafter, the TDF STA will check the length of the second uplink frame and evaluate whether the second uplink frame can be transmitted during the remaining duration in the assigned time slot. If not, it will stop the uplink transmission procedure and wait for the second uplink frame to be transmitted in the assigned time slot during the next TDF frame. If so, it will immediately transmit the second frame to the destination TDF AP. The transfer program will continue to run in this manner until the time slot has been assigned, or there are no uplink frames to transmit.
下行鏈路傳輸程序Downlink transmission procedure
在整個TDF通信程序中,總下行鏈路時槽數目可能會由於改變相關聯STA數目而動態地改變。當該TDF AP製備傳送訊框至相關聯STA時,其將其餘下行鏈路時槽中留下的時間與使用協議資料速率傳輸特定下行鏈路訊框所需要的持續時間比較。因此根據結果,其將決定是否在此TDF超訊框期間採用特定資料速率傳輸該訊框。此外,TDF AP並不需要分段任何下行鏈路訊框。In the entire TDF communication procedure, the total number of downlink time slots may change dynamically due to changing the number of associated STAs. When the TDF AP prepares the transmit frame to the associated STA, it compares the time left in the remaining downlink time slots with the duration required to transmit the particular downlink frame using the protocol data rate. Therefore, depending on the result, it will decide whether to transmit the frame at a specific data rate during this TDF frame. In addition, the TDF AP does not need to segment any downlink frames.
當未到相關聯STA傳送上行鏈路訊務的時間時,該STA始終聽取用於以其為目標的可行下行鏈路訊框之頻道。When the time of the uplink message is not transmitted to the associated STA, the STA always listens to the channel for the feasible downlink frame targeted for it.
非註冊程序Non-registered procedure
如圖7中所示,若該TDF STA決定放棄TDF通信程序,則其在其上行鏈路時槽期間傳送一非註冊請求訊框至相關聯TDF AP,以便通知該TDF AP釋放用於其的分配上行鏈路時槽資源。在接收非註冊請求訊框之後,該TDF AP將使指派用於該TDF STA的上行鏈路時槽自由並將其置於自由時槽集區中以備將來使用。As shown in FIG. 7, if the TDF STA decides to abandon the TDF communication procedure, it transmits a non-registration request frame to the associated TDF AP during its uplink time slot to inform the TDF AP to release the TDF AP for use therein. Allocate slot time resources. After receiving the non-registration request frame, the TDF AP will freely assign the uplink time slot assigned to the TDF STA and place it in the free time slot pool for future use.
活躍通知程序Active notifier
現在參考圖8,為了當一TDF STA意外地墜毀或關閉時儘快釋放資源,該TDF STA必須藉由在其上行鏈路時槽週期期間週期性地傳送一活躍通知訊框至TDF AP而報告其活躍性。若在稱為tdfAliveNotificationCycle的預定義臨界週期內不存在任何活躍通知訊框,則相關聯TDF AP將認為該TDF STA已放棄該服務,並因此釋放分配用於該TDF STA的上行鏈路時槽,就像從該TDF STA接收非註冊請求訊框一樣。Referring now to Figure 8, in order to release resources as soon as a TDF STA accidentally crashes or shuts down, the TDF STA must report its active notification frame to the TDF AP periodically during its uplink time slot period. Active. If there is no active notification frame within a predefined critical period called tdfAliveNotificationCycle, the associated TDF AP will consider that the TDF STA has abandoned the service and thus release the uplink time slot allocated for the TDF STA, Just like receiving a non-registration request frame from the TDF STA.
為了確保多速率能力TDF STA上的共存及互用性,此規格定義將藉由所有台遵循的一組規則:To ensure coexistence and interoperability on multi-rate capable TDF STAs, this specification defines a set of rules to be followed by all stations:
A.同步訊框將以TDF基本速率集中的最低速率加以傳輸以便其將藉由所有STA瞭解。A. The sync frame will be transmitted at the lowest rate of the TDF base rate set so that it will be known by all STAs.
B.以藉由註冊機制選擇的支援資料速率傳送具有目的地單播位址的所有訊框。沒有台以藉由接收器台所支援的一速率而傳輸一單播訊框。B. All frames with the destination unicast address are transmitted at the supported data rate selected by the registration mechanism. No station transmits a single frame at a rate supported by the receiver station.
C.以TDF基地速率集中的最高速率傳輸具有目的地多播位址的所有訊框。C. All frames with destination multicast addresses are transmitted at the highest rate of TDF base rate concentration.
圖9至20之說明如下。至少圖9至20說明可用於(例如)由圖1至8所說明的一或多個系統之實施方案。當然,圖9至20之實施方案的特徵及態樣可用於其他系統。9 to 20 are explained as follows. At least Figures 9 through 20 illustrate embodiments that may be used, for example, in one or more of the systems illustrated by Figures 1-8. Of course, the features and aspects of the embodiments of Figures 9 through 20 can be used in other systems.
如以上所說明,一TDF協定能取代傳統802.11 DCF(分佈協調功能)或PCF(點協調功能)機制。此系統能利用WLAN(802.11)網路之寬佈置,以及可能會變得越來越成熟且便宜之一無線區域網路(WLAN)晶片集。此系統藉由在電纜網路中發射WLAN信號而提供用於CATV網路之雙向通信的具成本效益解決方法,即使建立WLAN協定以在空中環境而非電纜網路中傳輸/接收。在此系統中,TDF協定之基本存取方法係TDMA,其允許多個使用者藉由將同一頻道劃分成不同時槽而共享同一頻道。該等TDF台迅速接連地相繼傳輸上行鏈路訊務,每一台在藉由該TDF AP(存取點)指派之一TDF超訊框中使用其自己的時槽。對於下行鏈路訊務,該等台共享頻道(例如如所示,在圖5之TDF超訊框中),並且藉由將該等訊框中的目的地位址資訊與其位址比較而選擇以其為目標的訊框。As explained above, a TDF protocol can replace the traditional 802.11 DCF (Distributed Coordination Function) or PCF (Point Coordination Function) mechanism. This system can take advantage of the wide layout of WLAN (802.11) networks and one of the wireless local area network (WLAN) chipsets that may become more mature and cheaper. This system provides a cost-effective solution for two-way communication of CATV networks by transmitting WLAN signals in a cable network, even if a WLAN protocol is established to transmit/receive in an air environment rather than a cable network. In this system, the basic access method of the TDF protocol is TDMA, which allows multiple users to share the same channel by dividing the same channel into different time slots. The TDF stations rapidly transmit uplink traffic in succession, each using its own time slot in one of the TDF super-frames assigned by the TDF AP (access point). For downlink traffic, the stations share channels (eg, as shown in the TDF hyperframe of Figure 5) and are selected by comparing the destination address information of the frames to their addresses. It is the target frame.
參考圖9,其顯示一典型TDF網路900。網路900提供從使用者家910及920至網際網路(或另一資源或網路)930的連接。使用者家910及920在電纜系統950中透過一存取點(AP)940而連接。AP 940可定位(例如)在家910及920之鄰居中,或在包括家(在此情況下為公寓)910及920的公寓建築物中。AP 940可由(例如)一電纜操作者所擁有。AP 940係在乙太網路970中進一步耦合至一路由器960。路由器960係亦耦合至網際網路930。Referring to Figure 9, a typical TDF network 900 is shown. Network 900 provides connectivity from user premises 910 and 920 to the Internet (or another resource or network) 930. User homes 910 and 920 are connected in cable system 950 via an access point (AP) 940. The AP 940 can be located, for example, in neighbors at homes 910 and 920, or in apartment buildings including homes (in this case, apartments) 910 and 920. The AP 940 can be owned by, for example, a cable operator. The AP 940 is further coupled to a router 960 in the Ethernet 970. Router 960 is also coupled to Internet 930.
應該清楚,術語「耦合」指直接連接(無中間組件或單元)及間接連接(一或多個中間組件及/或單元)兩者。此類連接可以係(例如)有線或無線的,以及永久或瞬時的。It should be clear that the term "coupled" refers to both a direct connection (without intermediate components or units) and an indirect connection (one or more intermediate components and/or units). Such connections may be, for example, wired or wireless, as well as permanent or transient.
使用者家910及920可具有各種不同組態,而且每一家可加以不同地組態。然而,如網路900中所示,使用者家910及920各分別包括一台(稱為數據機)912及922。數據機912及922係分別在一乙太網路918、928中耦合至第一主機(主機1)914、924,以及第二主機(主機2)916。每一主機914、916、924及926可以為(例如)一電腦或另一處理器件或通信器件。User homes 910 and 920 can have a variety of different configurations, and each can be configured differently. However, as shown in network 900, user homes 910 and 920 each include one (referred to as a data machine) 912 and 922, respectively. Data machines 912 and 922 are coupled to a first host (host 1) 914, 924, and a second host (host 2) 916, respectively, in an Ethernet 918, 928. Each host 914, 916, 924, and 926 can be, for example, a computer or another processing device or communication device.
存在各種方式,其中網路900可允許多個主機(例如,914、916、924及926)連接至路由器960。基於簡單,以下僅考量數據機912及主機914與916而說明四個實施方案。There are various ways in which network 900 can allow multiple hosts (e.g., 914, 916, 924, and 926) to connect to router 960. Based on simplicity, four embodiments are described below with reference to only data machine 912 and hosts 914 and 916.
在一第一方法中,數據機912擔當另一路由器。主機914及916係藉由其IP位址所識別,而且數據器912將IP訊包從主機914及916發送至路由器960。此方法1通常需要數據器912運行路由器軟體,其需要額外的記憶體及增加的處理功率。In a first method, data engine 912 acts as another router. Hosts 914 and 916 are identified by their IP addresses, and data 912 sends IP packets from hosts 914 and 916 to router 960. This method 1 typically requires the data processor 912 to run a router software that requires additional memory and increased processing power.
在一第二方法中,數據機912擔當一橋接器。數據機912及AP 940使用標準無線分佈系統(WDS)機制以傳達層2訊包至路由器960。主機914及916係藉由其媒體存取控制(MAC)位址所識別。此方法2係802.11標準之部分並能同時伺服多個主機。然而,並非所有AP及數據機均支援WDS,而且確實支援WDS的AP及數據機通常僅具有有限的支援。例如,採用一些AP及數據機,無法將Wi-Fi保護存取(WPA)用於WDS,而且此可能會引入安全問題。In a second method, the data engine 912 acts as a bridge. Data machine 912 and AP 940 use a standard wireless distribution system (WDS) mechanism to convey layer 2 packets to router 960. Hosts 914 and 916 are identified by their Media Access Control (MAC) address. This method 2 is part of the 802.11 standard and can simultaneously serve multiple hosts. However, not all APs and modems support WDS, and APs and modems that do support WDS usually have limited support. For example, with some APs and modems, Wi-Fi Protected Access (WPA) cannot be used for WDS, and this can introduce security issues.
在一第三方法中,數據機912使用MAC冒充物以改變乙太網路訊包之來源MAC位址(來源係主機914及916之一)為其自己的MAC位址。因此從路由器960的觀點看,路由器960僅看見數據機912。數據機912採用此方法僅能每次伺服一個主機。In a third method, the data engine 912 uses the MAC priming to change the source MAC address of the Ethernet packet (one of the source hosts 914 and 916) as its own MAC address. Thus, from the perspective of router 960, router 960 only sees data machine 912. The data machine 912 can only serve one host at a time using this method.
在一另外方法中,數據機912使用封包,如以下更詳細地說明。以上方法之每一者具有優點及缺點,而且此等優點及缺點可根據實施方案而變化。然而,封包方法提供特定優點,其一般不需要數據機運行路由器軟體而允許該等數據機較簡單,其通常並不引入安全問題,而且其一次能伺服多個主機。In an alternate method, data machine 912 uses a packet, as explained in more detail below. Each of the above methods has advantages and disadvantages, and such advantages and disadvantages may vary depending on the embodiment. However, the packetization method provides certain advantages, which generally do not require the data machine to run the router software and allow the data machines to be simpler, which typically does not introduce security issues, and which can serve multiple hosts at a time.
另外,封包方法避免與藉由使用單一WLAN訊包傳送來自一主機之每一訊包之前三個方法相關聯之大的工作負擔。因此,前三個方法招致從一主機傳送之每一個訊包之WLAN訊包的工作負擔,而且對應地減小輸出。此類無效率通常係在TDF環境中惡化。在TDF環境中,該時槽的持續時間係固定的,而且該時槽經設計以允許僅一WLAN訊包在一槽中傳輸。因此,在每一時槽中僅能傳輸一個主機訊包。In addition, the packetization method avoids the large workload associated with the three methods prior to transmitting each packet from a host using a single WLAN packet. Therefore, the first three methods incur the workload of the WLAN packets of each packet transmitted from a host, and correspondingly reduce the output. Such inefficiencies are usually exacerbated in the TDF environment. In a TDF environment, the duration of the time slot is fixed and the time slot is designed to allow only one WLAN packet to be transmitted in one slot. Therefore, only one host packet can be transmitted in each slot.
因此,封包方法通常提供各種優點之一或多個。此類優點包括(例如)較簡單的路由器設計及操作、增加的安全性、伺服多個主機,以及增加的效率及輸出。Therefore, the packet method generally provides one or more of various advantages. Such advantages include, for example, simpler router design and operation, increased security, servoing multiple hosts, and increased efficiency and output.
概述而言,封包方法之至少一實施方案包括將多個乙太網路訊包封包成一個WLAN訊包。該WLAN訊包將是與TDF時槽所允許的最大長度一樣大。該AP(例如,另一數據機)將去封包該WLAN訊包成個別乙太網路訊包,並將其傳送至該路由器。對於反方向上的通信,一數據機將去封包一WLAN訊包,並傳送個別乙太網路訊包至該(等)主機。In summary, at least one embodiment of the packetization method includes packetizing a plurality of Ethernet packets into one WLAN packet. The WLAN packet will be as large as the maximum length allowed by the TDF time slot. The AP (eg, another modem) will decapsulate the WLAN packet into individual Ethernet packets and transmit it to the router. For communication in the reverse direction, a modem will decapsulate a WLAN packet and transmit an individual Ethernet packet to the host.
參考圖10,一解說1000包括多個數據機,該等數據機之二個加以明確地顯示;以及一AP。該解說包括一數據機#1 1010、一數據機#N 1020以及一AP 1030,其中該等數據機1010及1020之每一者係在一電纜網路1040中耦合至AP 1030。其他實施方案將分離的電纜網路用於該等數據機之每一者。Referring to Figure 10, a diagram 1000 includes a plurality of data machines, two of which are explicitly shown; and an AP. The commentary includes a data machine #1 1010, a data machine #N 1020, and an AP 1030, wherein each of the data machines 1010 and 1020 is coupled to the AP 1030 in a cable network 1040. Other embodiments use a separate cable network for each of the data machines.
數據機1010及1020與AP 1030包括同一名稱之功能組件,儘管外部連接之一些係不同的而且該等組件本身對一數據機及一AP實行不同功能。因此,提供用作一數據機及一AP兩者的一共同單元。然而,應該清楚能為一數據機及一AP設計不同單元,其中不同單元僅分別實行一數據機或一AP所需要的功能。The data machines 1010 and 1020 and the AP 1030 include functional components of the same name, although some of the external connections are different and the components themselves perform different functions on a data machine and an AP. Therefore, a common unit is provided for use as both a data machine and an AP. However, it should be clear that different units can be designed for a data machine and an AP, wherein different units only implement the functions required by a data machine or an AP, respectively.
數據機1010包括一區域應用層1011,其後隨一TCP/IP層1012,其後隨一橋接器1014。橋接器1014係耦合至一乙太網路介面1015、一訊包集合/去集合模組(PADM)1016以及一WLAN介面1017。PADM 1016係亦耦合至WLAN介面1017。乙太網路介面1015係耦合至乙太網路1052,其係耦合至一第一主機(主機1)1054及一第二主機(主機2)1056。The modem 1010 includes a zone application layer 1011 followed by a TCP/IP layer 1012 followed by a bridge 1014. The bridge 1014 is coupled to an Ethernet interface 1015, a packet aggregation/de-collection module (PADM) 1016, and a WLAN interface 1017. The PADM 1016 is also coupled to the WLAN interface 1017. The Ethernet interface 1015 is coupled to the Ethernet 1052, which is coupled to a first host (host 1) 1054 and a second host (host 2) 1056.
數據機1020係類似於數據機1010。然而,數據機1020係耦合至乙太網路1062,而且乙太網路1062係耦合至一第一主機(主機1)1064及一第二主機(主機2)1066。數據機1020的組件係顯示為與數據機1010的組件相同。然而,應該清楚當數據機1010及1020得以設定並操作時,各種組態參數(例如)將係不同的。Data machine 1020 is similar to data machine 1010. However, data machine 1020 is coupled to Ethernet 1062, and Ethernet 1062 is coupled to a first host (host 1) 1064 and a second host (host 2) 1066. The components of data machine 1020 are shown as being identical to the components of data machine 1010. However, it should be clear that various configuration parameters (for example) will be different when the data machines 1010 and 1020 are set up and operating.
AP 1030包括一區域應用層1071,其後隨一TCP/IP層1072,其後隨一橋接器1074。橋接器1074係耦合至一乙太網路介面1077、一PADM 1076以及一WLAN介面1075。PADM 1076係亦耦合至WLAN介面1075。乙太網路介面1077係耦合至一乙太網路1082,其依次係耦合至一路由器1090。WLAN介面1017及1075係在電纜網路1040中以通信方式彼此耦合。The AP 1030 includes an area application layer 1071 followed by a TCP/IP layer 1072 followed by a bridge 1074. The bridge 1074 is coupled to an Ethernet interface 1077, a PADM 1076, and a WLAN interface 1075. The PADM 1076 is also coupled to the WLAN interface 1075. The Ethernet interface 1077 is coupled to an Ethernet 1082, which in turn is coupled to a router 1090. The WLAN interfaces 1017 and 1075 are communicatively coupled to each other in the cable network 1040.
路由器1090係進一步耦合至網際網路1095。因此,主機1054、1056、1064、1066與網際網路1095之間存在一連接。Router 1090 is further coupled to Internet 1095. Therefore, there is a connection between the hosts 1054, 1056, 1064, 1066 and the Internet 1095.
各種區域應用層(1011、1071)係用於運行區域應用並與該架構中的其他層介接的標準層。各種TCP/IP層(1012、1072)係用於運行TCP/IP並提供通常由此類層提供的服務(包括與該架構中的其他層介接)之標準層。各種乙太網路介面(1015、1077)係用於介接至乙太網路/從其介接的標準單元。此類介面1015、1077傳輸並接收乙太網路訊包並依據乙太網協定而操作。The various regional application layers (1011, 1071) are standard layers for running regional applications and interfacing with other layers in the architecture. The various TCP/IP layers (1012, 1072) are standard layers for running TCP/IP and providing services typically provided by such layers, including interfacing with other layers in the architecture. Various Ethernet interfaces (1015, 1077) are used to interface to/from the standard unit of the Ethernet. Such interfaces 1015, 1077 transmit and receive Ethernet packets and operate in accordance with the Ethernet protocol.
各種WLAN介面(1017、1075)係用於介接至WLAN網路/從其介接的單元。此類介面1017、1075傳輸並接收WLAN訊包並依據WLAN協定而操作。然而,該等WLAN介面1017、1075係實際上在解說1000中耦合至一電纜網路1040而非使用無線通信。Various WLAN interfaces (1017, 1075) are used to interface to/from the WLAN network. Such interfaces 1017, 1075 transmit and receive WLAN packets and operate in accordance with the WLAN protocol. However, the WLAN interfaces 1017, 1075 are actually coupled to a cable network 1040 in the narration 1000 rather than using wireless communication.
可在(例如)諸如用於電腦的插入卡之硬體中實施乙太網及WLAN介面1015、1017、1075及1077。亦可在很大程度上在諸如一程式之軟體中實施該等介面,該程式使用藉由一處理器件所實施的指令而實行介面之功能。此介面一般包括用於接收實際信號(例如,一連接器)並緩衝接收信號(例如,一傳輸/接收緩衝器)的一部分,並通常包括用於處理信號的一部分(例如,一信號處理晶片之全部或部分)。The Ethernet and WLAN interfaces 1015, 1017, 1075, and 1077 can be implemented in, for example, a hardware such as an add-in card for a computer. The interfaces can also be implemented to a large extent in software such as a program that performs the functions of the interface using instructions implemented by a processing device. The interface typically includes a portion for receiving an actual signal (eg, a connector) and buffering the received signal (eg, a transmit/receive buffer) and typically includes a portion for processing the signal (eg, a signal processing chip) All or part).
各種橋接器(1014、1074)係在一乙太網路介面與一WLAN介面之間轉遞訊包的單元。一橋接器可以進行軟體或硬體實施,或可以僅為一邏輯實體。用於一橋接器的標準實施方案包括一處理器件(例如積體電路)或在一處理器件(例如運行橋接器軟體之一處理器)上運行的一指令集。The various bridges (1014, 1074) are units that forward packets between an Ethernet interface and a WLAN interface. A bridge can be implemented in software or hardware, or can be just a logical entity. A standard implementation for a bridge includes a processing device (e.g., an integrated circuit) or a set of instructions running on a processing device (e.g., one of the processors running the bridge software).
PADM 1016及1076實行各種功能,包括訊包封包以及去封包,其在以下進一步加以說明。可在(例如)軟體、硬體、韌體或某組合中實施PADM 1016及1076。軟體實施方案包括(例如)一指令集,例如用於在一處理器件上運行的一程式。硬體實施方案包括(例如)一專用晶片,例如特殊應用IC(ASIC)。PADMs 1016 and 1076 perform various functions, including packet encapsulation and decapsulation, which are further described below. PADMs 1016 and 1076 can be implemented, for example, in software, hardware, firmware, or some combination. Software implementations include, for example, a set of instructions, such as a program for running on a processing device. Hardware implementations include, for example, a dedicated wafer, such as an application specific IC (ASIC).
參考圖11,一程序1100描述用於將訊包從一主機傳送至一數據機的程序。該等訊包係進一步從該數據機傳輸以藉由一AP接收,而且最後遞送至一路由器並接著至一最終目的地。此程序1100係亦稱為上行鏈路傳輸程序。Referring to Figure 11, a routine 1100 describes a procedure for transmitting a packet from a host to a modem. The packets are further transmitted from the modem for reception by an AP and finally delivered to a router and then to a final destination. This program 1100 is also referred to as an uplink transmission procedure.
程序1100包括使用(例如)在此申請案中較早說明的程序將該數據機連接至該AP(1110)。此類程序可包括(例如)包含鑑別及相關聯操作的標準WLAN協定。Program 1100 includes connecting the data machine to the AP (1110) using, for example, a procedure as described earlier in this application. Such programs may include, for example, standard WLAN protocols including authentication and associated operations.
程序1100因此包括一或多個主機傳送一或多個訊包(1120)至該數據機,以及該數據機接收該(等)傳送訊包(1130)。應注意該等傳送訊包係藉由一路由器接收,該路由器將該(等)訊包遞送至該(等)最終目的地。在圖10之實施方案中,數據機1010在乙太網路1052上透過乙太網路介面1015從主機1054及1056之一或多個接收該等傳送訊包。The program 1100 thus includes one or more hosts transmitting one or more packets (1120) to the data machine, and the data machine receiving the (etc.) transmission packets (1130). It should be noted that the transport packets are received by a router that delivers the packets to the final destination. In the embodiment of FIG. 10, the data machine 1010 receives the transport packets from one or more of the hosts 1054 and 1056 over the Ethernet interface 1015 over the Ethernet 1052.
該數據機因此決定該(等)訊包將在一WLAN介面上傳送(1140)。該數據機藉由下列方式做出此決定(1140):辨識該路由器係在該WLAN介面上存取,與在另一介面(未顯示)上存取相反。在圖10之實施方案中,數據機1010傳送該(等)接收訊包至橋接器1014,而且橋接器1014做出此決定(1140)。The modem therefore determines that the (etc.) packet will be transmitted on a WLAN interface (1140). The modem makes this decision (1140) by identifying that the router is accessing the WLAN interface as opposed to accessing it on another interface (not shown). In the embodiment of FIG. 10, data machine 1010 transmits the (etc.) receive packet to bridge 1014, and bridge 1014 makes this decision (1140).
該數據機因此封包用於該路由器的多個訊包,包括一或多個接收訊包(1150)。封包(1150)可包括從多個主機,例如從圖10之實施方案中的主機1054及1056接收的訊包。此外,封包可包括在操作1130中接收的該(等)訊包以及較早接收並儲存在佇列中的訊包。The modem thus encapsulates a plurality of packets for the router, including one or more received packets (1150). The packet (1150) may include packets received from a plurality of hosts, such as hosts 1054 and 1056 in the embodiment of FIG. In addition, the packet can include the (etc.) packets received in operation 1130 and the packets received earlier and stored in the queue.
在並不封包多個訊包的一實施方案中,該實施方案可使用一橋接器以映射乙太網路訊包至個別WLAN訊包,從而個別地去封包每一乙太網路訊包。此封包可(例如)包括整個乙太網路訊包為一WLAN訊包之一資料部分並添加一額外WLAN標頭。In an embodiment that does not packetize multiple packets, the implementation may use a bridge to map Ethernet packets to individual WLAN packets to individually packetize each Ethernet packet. The packet may, for example, include the entire Ethernet packet as part of a WLAN packet and add an additional WLAN header.
此外,並不封包多個訊包的實施方案甚至不需要封包個別乙太網路訊包。相反,此類實施方案可藉由(例如)採用一WLAN標頭取代該乙太網路標頭並藉由視需要地添加一或多個額外欄位而轉化個別乙太網路訊包成個別WLAN訊包。In addition, implementations that do not encapsulate multiple packets do not even need to encapsulate individual Ethernet packets. Rather, such an implementation may convert individual Ethernet packets into individual WLANs by, for example, replacing the Ethernet header with a WLAN header and adding one or more additional fields as needed. Packet.
例如,參考圖12,其顯示一轉化1200,其接收包括一乙太網路標頭1220及一資料部分1230的一乙太網路訊包1210。轉化1200產生一WLAN訊包1240,其包括一WLAN標頭1250、一資料部分1230以及一訊框檢查序列(FCS)1260。For example, referring to FIG. 12, a conversion 1200 is shown that receives an Ethernet packet 1210 that includes an Ethernet header 1220 and a data portion 1230. The translation 1200 generates a WLAN packet 1240 that includes a WLAN header 1250, a data portion 1230, and a frame check sequence (FCS) 1260.
然而,實施操作1150包括封包多個乙太網路訊包成單一WLAN訊包。圖13解說操作1150之一實施方案。However, implementing operation 1150 includes packetizing a plurality of Ethernet packets into a single WLAN packet. FIG. 13 illustrates one embodiment of operation 1150.
參考圖13,一轉化1300接收多個乙太網路訊包,包括乙太網路訊包1310、1312及1314,並產生單一WLAN訊包1318。乙太網路訊包1310、1312及1314各分別包括一乙太網路標頭1320、1322及1324,並分別包括一資料部分1326、1328及1329。Referring to Figure 13, a conversion 1300 receives a plurality of Ethernet packets, including Ethernet packets 1310, 1312, and 1314, and generates a single WLAN packet 1318. Each of the Ethernet packets 1310, 1312, and 1314 includes an Ethernet header 1320, 1322, and 1324, and includes a data portion 1326, 1328, and 1329, respectively.
乙太網路訊包1310、1312及1314可源自同一主機或不同主機。此外,儘管乙太網路訊包1310、1312及1314經封包以傳送至一路由器,但是乙太網路訊包1310、1312及1314之最終目的地可以為不同。例如,乙太網路訊包1310、1312及1314之每一者可以係一或多個主機與其通信(或嘗試與其通信)的不同網際網路地點的目的地。Ethernet packets 1310, 1312, and 1314 may originate from the same host or different hosts. In addition, although the Ethernet packets 1310, 1312, and 1314 are packetized for transmission to a router, the final destinations of the Ethernet packets 1310, 1312, and 1314 may be different. For example, each of the Ethernet packets 1310, 1312, and 1314 can be a destination of a different internet location with which one or more hosts communicate (or attempt to communicate).
轉化1300係顯示為包括二個中間操作。然而,其他實施方案並不實行任何中間操作,而且其他實施方案實行多個中間操作。The transformation 1300 series is shown to include two intermediate operations. However, other embodiments do not implement any intermediate operations, and other embodiments implement multiple intermediate operations.
第一中間操作係將該等乙太網路訊包轉化成擴大乙太網路訊包。乙太網路訊包1310、1312及1314係分別轉化成擴大乙太網路訊包1330、1332及1334。在轉化1300中,全部乙太網路訊包1310、1312及1314係分別包括為擴大乙太網路訊包1330、1332及1334的資料部分1336、1338及1340。擴大乙太網路訊包1330、1332及1334亦分別包括可選標頭1342、1343及1344,以及可選結尾1346、1347及1348。標頭1342、1343及1344與結尾1346、1347及1348可包括各種不同資訊件,無論其對於標頭/結尾是否係典型的,例如訊包數目、確認及重新傳輸資訊、用於來源及/或目的地之位址、以及錯誤檢查資訊。The first intermediate operation converts the Ethernet packets into extended Ethernet packets. The Ethernet packets 1310, 1312, and 1314 are converted into extended Ethernet packets 1330, 1332, and 1334, respectively. In the conversion 1300, all Ethernet packets 1310, 1312, and 1314 are included to expand the data portions 1336, 1338, and 1340 of the Ethernet packets 1330, 1332, and 1334, respectively. The extended Ethernet packets 1330, 1332, and 1334 also include optional headers 1342, 1343, and 1344, respectively, and optional endings 1346, 1347, and 1348. Headers 1342, 1343, and 1344 and endings 1346, 1347, and 1348 may include a variety of different pieces of information, whether or not they are typical for the header/end, such as the number of packets, confirmation and retransmission information, for source and/or The address of the destination, as well as error checking information.
第二中間操作包括轉化該等擴大乙太網路訊包成單一「WLAN中乙太網」(EIW)訊包1350。EIW訊包1350包括用於該等擴大乙太網路訊包之每一者的資料部分。顯示二個可行轉化。第一個轉化係藉由實線箭頭1370解說而且第二個轉化係藉由虛線箭頭1375解說。The second intermediate operation includes converting the extended Ethernet packets into a single "WLAN In Ethernet" (EIW) packet 1350. The EIW Packet 1350 includes a data portion for each of these extended Ethernet packets. Show two possible conversions. The first transformation is illustrated by the solid arrow 1370 and the second transformation is illustrated by the dashed arrow 1375.
如由轉化1300中的實線箭頭1370所示,資料部分1352、1353及1354分別對應於包括的擴大乙太網路訊包1330、1332及1334。EIW訊包1350進一步包括一可選標頭1356(亦稱為一EIW標頭)以及一可選結尾1358,其可包括(例如)先前說明用於標頭/結尾的資料之任一者。As indicated by the solid arrow 1370 in the conversion 1300, the data portions 1352, 1353, and 1354 correspond to the included extended Ethernet packets 1330, 1332, and 1334, respectively. The EIW packet 1350 further includes an optional header 1356 (also referred to as an EIW header) and an optional ending 1358, which may include, for example, any of the materials previously described for header/end.
若未將標頭或結尾插入於一擴大乙太網路訊包中,則該擴大乙太網路訊包的資料部分(例如,資料部分1336)會變為該EIW訊包的資料部分(例如,資料部分1352)。此外,即使將一標頭或結尾插入於該擴大乙太網路訊包中,一實施方案仍可在形成該EIW訊包時放棄/忽略該標頭或結尾。在此等情況之任一者中,該擴大乙太網路訊包以及該EIW訊包之該等資料部分具有相同資料。If the header or the end is not inserted in an extended Ethernet packet, the data portion of the extended Ethernet packet (eg, data portion 1336) becomes the data portion of the EIW packet (eg, , data section 1352). Moreover, even if a header or trailer is inserted into the extended Ethernet packet, an embodiment can discard/ignore the header or end when forming the EIW packet. In either of these cases, the expanded Ethernet packet and the portion of the data of the EIW packet have the same information.
如由轉化1300中的虛線箭頭1375所示,資料部分1352、1353及1354不必分別對應於擴大乙太網路訊包1330、1332及1334。即,一EIW訊包之一資料部分不必包含一整個擴大乙太網路訊包。如藉由虛線箭頭1375所指示,一擴大乙太網路訊包可劃分成二個EIW訊包的資料部分。As indicated by the dashed arrow 1375 in the transformation 1300, the data portions 1352, 1353, and 1354 do not have to correspond to the extended Ethernet packets 1330, 1332, and 1334, respectively. That is, one of the data portions of an EIW packet does not have to include an entire extended Ethernet packet. As indicated by the dashed arrow 1375, an extended Ethernet packet can be divided into data portions of two EIW packets.
更明確而言,藉由虛線箭頭1375解說的實施方案顯示(1)將擴大乙太網路訊包1330之一第二部分置於EIW訊包1350的資料部分1352中,(2)將整個擴大乙太網路訊包1332置於EIW訊包1350的資料部分1353中,以及(3)將擴大乙太網路訊包1334之一第一部分置於EIW訊包1350的資料部分1354中。因此,在用於EIW訊包1350的一個方案中,(1)第一資料部分1352包含一部分擴大乙太網路訊包,而且(2)最後資料部分1354包括一部分擴大乙太網路訊包,而(3)中間資料部分(1353及未明確顯示的任何其他資料部分)包含全部擴大乙太網路訊包。儘管未顯示,但是應該清楚擴大乙太網路訊包1330之第一部分可放在一先前EIW訊包之一資料部分中,而且(2)擴大乙太網路訊包1334之一第二部分可放在一隨後EIW訊包之一資料部分中。More specifically, the embodiment illustrated by the dashed arrow 1375 shows (1) that the second portion of the extended Ethernet packet 1330 is placed in the data portion 1352 of the EIW packet 1350, and (2) the entire expansion is expanded. The Ethernet packet 1332 is placed in the data portion 1353 of the EIW packet 1350, and (3) the first portion of the extended Ethernet packet 1334 is placed in the data portion 1354 of the EIW packet 1350. Therefore, in one scheme for the EIW packet 1350, (1) the first data portion 1352 includes a portion of the extended Ethernet packet, and (2) the last data portion 1354 includes a portion of the extended Ethernet packet. And (3) the intermediate data section (1353 and any other data sections not explicitly shown) contains all of the extended Ethernet packets. Although not shown, it should be clear that the first part of the extended Ethernet packet 1330 can be placed in one of the data sections of a previous EIW packet, and (2) the second part of the Ethernet packet 1334 can be expanded. Place it in a data section of a subsequent EIW packet.
在轉化1300的最後階段中,EIW訊包1350係包括為WLAN訊包1318中的一資料部分1360。WLAN訊包1318亦包括一WLAN MAC標頭1362以及一FCS 1364。In the final phase of the conversion 1300, the EIW packet 1350 is included as a data portion 1360 in the WLAN packet 1318. The WLAN packet 1318 also includes a WLAN MAC header 1362 and an FCS 1364.
應該清楚,並非所有實施方案均使用該等可選標頭及結尾之全部,甚至也不使用可選中間操作(亦稱為階段)之全部(或任一者)。例如,其他實施方案僅複製該等擴大乙太網路訊包之部分成該EIW訊包,以便使較多原始資料(例如,資料部分1326、1328及1329)擬合固定持續時間時槽。應該清楚,使用哪些標頭及結尾,以及包括多少中間操作之決定可因每一實施方案並根據設計目標及約束而變化。It should be clear that not all embodiments use all of the optional headers and endings, or even all (or any) of the optional intermediate operations (also referred to as stages). For example, other embodiments only copy portions of the extended Ethernet packets into the EIW packets to fit more of the original data (eg, data portions 1326, 1328, and 1329) to a fixed duration time slot. It should be clear that which headers and endings are used, and how many intermediate operations are included, may vary for each implementation and depending on design goals and constraints.
參考圖14,一圖1400顯示一PADM之一個實施方案如何封包乙太網路訊包。該PADM維護將每一項目乙太網路訊包放於其中的一進入佇列1410。該PADM連鎖該等乙太網路訊包成一串1420,而且添加一EIW標頭1430及一WLAN標頭1440。根據包括在標頭1430及1440中的資訊,此等標頭1430及1440可提早或在連鎖該等乙太網路訊包之後加以構造。例如,至少一實施方案在EIW標頭1430中包括表示串1420中的乙太網路訊包之數目的一數目。若該等乙太網路訊包可具有一可變長度,則此數目通常直至已將該等乙太網路訊包裝配成串1420之後才可用。應該清楚,標頭1430及1440可定義為順應一特定實施方案之需求。Referring to Figure 14, a diagram 1400 shows how an embodiment of a PADM encapsulates an Ethernet packet. The PADM maintains an entry queue 1410 in which each item of the Ethernet packet is placed. The PADM chained the Ethernet packets into a string 1420 and adds an EIW header 1430 and a WLAN header 1440. Based on the information included in headers 1430 and 1440, such headers 1430 and 1440 can be constructed early or after chaining the Ethernet packets. For example, at least one embodiment includes a number in the EIW header 1430 indicating the number of Ethernet packets in the string 1420. If the Ethernet packets can have a variable length, then the number is typically not available until the Ethernet packets have been packaged into strings 1420. It should be clear that headers 1430 and 1440 can be defined to meet the needs of a particular implementation.
參考圖15,其顯示一EIW標頭之一實施方案的一格式1500。格式1500包括用於序列及確認號的一欄位1510、一總訊包數目1520、以及一系列訊包描述符,包括用於封包在該WLAN訊包中的每一乙太網路訊包之一描述符。因此,預想訊包描述符之一可變數目,如藉由圖15中的省略號所指示。顯示訊包描述符1530及1540,其中訊包描述符1530及1540之每一者包括一訊包旗標(分別為1550及1555)以及一訊包長度(分別為1560及1565)。Referring to Figure 15, a format 1500 of one embodiment of an EIW header is shown. The format 1500 includes a field 1510 for the sequence and the confirmation number, a total number of packets 1520, and a series of packet descriptors, including each Ethernet packet for packetization in the WLAN packet. A descriptor. Therefore, one of the expected packet descriptors is variable in number, as indicated by the ellipses in FIG. Packet descriptors 1530 and 1540 are displayed, wherein each of the packet descriptors 1530 and 1540 includes a packet flag (1550 and 1555, respectively) and a packet length (1560 and 1565, respectively).
序號(1510)提供用於封包資料的一序列識別符,其允許接受者確認傳輸之接收。確認號提供對先前接收資料的確認。總訊包數目係封包在該WLAN訊包中的乙太網路訊包之數目。The sequence number (1510) provides a sequence identifier for the packet material that allows the recipient to confirm receipt of the transmission. The confirmation number provides confirmation of previously received material. The number of total packets is the number of Ethernet packets encapsulated in the WLAN packet.
訊包旗標(1550、1555)指示相關聯乙太網路訊包是否係一完全訊包。若該時槽具有一固定持續時間,則可能的係整個乙太網路訊包可能並不擬合一給定WLAN訊包。因此,在特定實施方案中預期第一及最後乙太網路訊包通常在任何給定WLAN訊包中係不完全的。訊包長度(1560、1565)指示該特定乙太網路訊包之長度。The packet flag (1550, 1555) indicates whether the associated Ethernet packet is a complete packet. If the time slot has a fixed duration, it is possible that the entire Ethernet packet may not fit a given WLAN packet. Therefore, it is contemplated in certain embodiments that the first and last Ethernet packets are typically incomplete in any given WLAN packet. The packet length (1560, 1565) indicates the length of the particular Ethernet packet.
繼續程序1100,在圖10之實施方案中,可藉由(例如)數據機1010之PADM 1016實行操作1150。其他實施方案可在(例如)該橋接器、該乙太網路介面、該WLAN介面、除該PADM以外的另一中間組件、該橋接器之上的一組件、或組件之組合中實行操作1150。應該清楚,可在(例如)軟體(例如指令之一程式)、硬體(例如一IC)、韌體(例如嵌入於一處理器件中的韌體)或一組合中實施操作1150之該(等)組件。Continuing with program 1100, in the embodiment of FIG. 10, operation 1150 can be performed by, for example, PADM 1016 of data machine 1010. Other embodiments may perform operation 1150 in, for example, the bridge, the Ethernet interface, the WLAN interface, another intermediate component other than the PADM, a component over the bridge, or a combination of components. . It will be appreciated that the operation 1150 can be implemented in, for example, a software (eg, a program of instructions), a hardware (eg, an IC), a firmware (eg, a firmware embedded in a processing device), or a combination (etc.) ) components.
另外,該PADM可定位於該數據機內的不同位置(例如,在該橋接器之上或在該乙太網路介面與該橋接器之間),在該等介面之一或該橋接器內,及/或分佈在多個組件當中。Additionally, the PADM can be located at a different location within the modem (eg, over the bridge or between the Ethernet interface and the bridge), in one of the interfaces or within the bridge And/or distributed among multiple components.
程序1100進一步包括在電纜中傳送封包訊包至該AP的該數據機(1160)。傳送訊包係預計由該路由器接收。該電纜可包括(例如)一同軸電纜、一光纖電纜或其他有線傳輸媒體。The program 1100 further includes transmitting the packet to the data machine (1160) of the AP in the cable. The transmission packet is expected to be received by the router. The cable can include, for example, a coaxial cable, a fiber optic cable, or other wired transmission medium.
在一特定實施方案中,當一數據機之上行鏈路時槽到達時,該數據機將搜集自進入佇列的訊包並將其置於一個大WLAN訊包中。該WLAN訊包並非大於該時槽所允許的最大訊包。相反地,當該時槽到達時,若該WLAN訊包並非大到足以填充固定時槽的持續時間,則一實施方案將傳送(較小)WLAN訊包,而另一實施方案傳送空值資料(NULL data)。In a particular embodiment, when the uplink time slot of a data machine arrives, the data machine will collect the packets from the incoming queue and place them in a large WLAN packet. The WLAN packet is not larger than the maximum packet allowed by the time slot. Conversely, when the time slot arrives, if the WLAN packet is not large enough to fill the duration of the fixed time slot, then one embodiment will transmit a (smaller) WLAN packet, while another embodiment transmits null data. (NULL data).
參考圖16,一程序1600描述用於接收封包訊包、去封包該等訊包以及遞送組成訊包之一程序。此程序1600係亦稱為上行鏈路接收程序。Referring to Figure 16, a routine 1600 depicts a procedure for receiving a packet, decapsulating the packet, and delivering a packet. This procedure 1600 is also referred to as an uplink receiving procedure.
程序1600包括一AP在一WLAN介面上從一數據機接收一封包訊包(1620)。在圖10之實施方案中,AP 1030從數據機1010接收封包訊包。在WLAN介面1075上於電纜網路1040(例如一同軸電纜網路)中接收該訊包。The program 1600 includes an AP receiving a packet (1620) from a modem on a WLAN interface. In the embodiment of FIG. 10, AP 1030 receives the packet from data machine 1010. The packet is received on cable network 1040 (e.g., a coaxial cable network) over WLAN interface 1075.
該AP去封包接收訊包以擷取構成封包訊包的組成訊包(1630)。在圖10之實施方案中,WLAN介面1075傳送接收(封包)訊包至PADM 1076。PADM 1076實行去封包並提供組成乙太網路訊包至橋接器1074。藉由檢查(例如)總訊包數目1520,以及每一訊包描述符(例如,訊包描述符1530)之訊包旗標(例如,訊包旗標1550)與訊包長度(例如,訊包長度1560)而實行去封包。藉由檢查此資料,PADM 1076能夠決定組成訊包之每一者在何處開啟及結束。The AP decapsulates the received packet to retrieve the constituent packet (1630) constituting the packet. In the embodiment of FIG. 10, the WLAN interface 1075 transmits a receive (packet) packet to the PADM 1076. The PADM 1076 performs decapsulation and provides the composition of the Ethernet packet to the bridge 1074. By checking, for example, the number of total packets 1520, and the packet flag (e.g., packet flag 1550) of each packet descriptor (e.g., packet descriptor 1530) and the packet length (e.g., The packet length is 1560) and the decapsulation is carried out. By examining this information, PADM 1076 can determine where each of the constituent packets is opened and closed.
特定言之,PADM 1076檢查每一組成訊包以確保組成訊包係一完全乙太網路訊包。若組成訊包並非完全,則PADM 1076保留不完全的訊包並等待,直至接收該乙太網路訊包之其餘部分(推測地在隨後封包訊包中)。當接收該乙太網路訊包之其餘部分時,PADM 1076裝配完全乙太網路訊包並轉遞完全乙太網路訊包至橋接器1074。In particular, PADM 1076 checks each component packet to ensure that the packet is a complete Ethernet packet. If the constituent packet is not complete, the PADM 1076 retains the incomplete packet and waits until it receives the rest of the Ethernet packet (presumably in the subsequent packet). When receiving the rest of the Ethernet packet, the PADM 1076 assembles the full Ethernet packet and forwards the full Ethernet packet to the bridge 1074.
參考圖17,在用於一接收封包訊包1710之圖1700中描述操作1630之以上實施方案。基於簡單,接收封包訊包1710係假定與參考圖14說明的傳輸訊包相同。然而,應瞭解實務上可能會出現一傳輸訊包與一接收訊包之間的變化。接收訊包1710包括WLAN標頭1440、EIW標頭1430、以及組成乙太網路訊包之串1420。Referring to Figure 17, the above embodiment of operation 1630 is described in Figure 1700 for receiving a packet 1710. Based on the simplicity, the received packet packet 1710 is assumed to be identical to the transport packet described with reference to FIG. However, it should be understood that there may be a change between a transmission packet and a reception packet. Receive packet 1710 includes a WLAN header 1440, an EIW header 1430, and a string 1420 that forms an Ethernet packet.
隨著PADM 1076處理接收訊包1710,若一組成乙太網路訊包係完全的,則將該訊包(例如,訊包1720)提供給橋接器1074。若一組成乙太網路訊包係不完全的,則將該不完全訊包儲存在一等待佇列1730中(其不必定位在PADM 1076中),直至該訊包之其餘部分到達。圖1700顯示儲存在等待佇列1730中的一不完全訊包1740。此可(例如)在一乙太網路訊包跨越二個WLAN訊包的情況下出現。當該訊包係完全的,則將該訊包傳送至橋接器1074。應注意,一WLAN可包括(例如)一個完全乙太網路訊包以及一個部分乙太網路訊包。As the PADM 1076 processes the received packet 1710, if a component of the Ethernet packet is complete, the packet (e.g., packet 1720) is provided to the bridge 1074. If a component of the Ethernet packet is incomplete, the incomplete packet is stored in a waiting queue 1730 (which does not have to be located in the PADM 1076) until the remainder of the packet arrives. FIG. 1700 shows an incomplete packet 1740 stored in the waiting queue 1730. This can occur, for example, in the case of an Ethernet packet spanning two WLAN packets. When the packet is complete, the packet is transmitted to the bridge 1074. It should be noted that a WLAN may include, for example, a full Ethernet packet and a partial Ethernet packet.
參考圖18,為了進一步說明去封包程序1130,描述一PADM 1750,其提供PADM 1016或1076之任一者的一實施方案。PADM 1750包括一封包器1760及一去封包器1770。封包器1760及去封包器1770係在以通信方式耦合至一橋接器及一WLAN介面。在提供PADM 1750之組件的情況下,PADM 1750可更明確地稱為訊包封包/去封包模組。Referring to Figure 18, to further illustrate the decapsulation process 1130, a PADM 1750 is described that provides an embodiment of any of the PADMs 1016 or 1076. The PADM 1750 includes a packetizer 1760 and a depacketer 1770. Packetizer 1760 and depacketizer 1770 are communicatively coupled to a bridge and a WLAN interface. In the case of providing components of the PADM 1750, the PADM 1750 may be more specifically referred to as a packet encapsulation/decapsulation module.
在操作中,封包器1760從該橋接器接收乙太網路訊包並封包該等乙太網路訊包,如以上所說明。接著將封包資料提供給該WLAN介面。In operation, the packetizer 1760 receives the Ethernet packets from the bridge and encapsulates the Ethernet packets, as explained above. The packet data is then provided to the WLAN interface.
在操作中,去封包器1770從該WLAN介面接收封包資料。去封包器1770去封包如以上說明的接收資料,並提供去封包資料給該橋接器。In operation, the depacketer 1770 receives the packet data from the WLAN interface. The packetizer 1770 is decapsulated to receive the data as described above, and provides decapsulation information to the bridge.
清楚地,其他實施方案係可行並預想。例如,另一實施方案組合一封包器及一去封包器。另一實施方案使用Linux之虛擬乙太網路介面特徵。Clearly, other embodiments are possible and envisioned. For example, another embodiment combines a packer and a depacker. Another embodiment uses the virtual Ethernet interface feature of Linux.
應注意一AP或一數據機之其他實施方案從一WLAN介面直接傳送一封包訊包至一橋接器。該橋接器決定該訊包得以封包並傳送該訊包至一PADM。It should be noted that an AP or other embodiment of a modem directly transmits a packet from a WLAN interface to a bridge. The bridge determines that the packet can be packetized and transmitted to a PADM.
繼續程序1600,該AP決定該等組成訊包將傳送至一路由器(1640)。可隨許多操作在程序1600中的一不同點處實行此操作(1640)。在圖10之實施方案中,橋接器1074決定該等訊包將傳送至路由器1090。Continuing with process 1600, the AP determines that the component packets will be transmitted to a router (1640). This operation can be performed at a different point in the program 1600 with a number of operations (1640). In the embodiment of FIG. 10, bridge 1074 determines that the packets will be transmitted to router 1090.
該AP接著在一乙太網路介面上傳送該等組成訊包至該路由器(1650)。在圖10之實施方案中,橋接器1074傳送該等組成訊包至乙太網路介面1077,其在乙太網路1082上傳送該等訊包至路由器1090。The AP then transmits the component packets to the router (1650) on an Ethernet interface. In the embodiment of FIG. 10, the bridge 1074 transmits the component packets to the Ethernet interface 1077, which transmits the packets to the router 1090 over the Ethernet 1082.
該路由器接收(1060)並處理(1070)該等訊包。處理可包括(例如)傳送該等訊包或其一部分至另一目的地,例如一主機與其通信或嘗試與其通信的一網站。此外,在其中一封包訊包包括自多個主機之乙太網路訊包的實施方案中,該路由器可傳送底層資訊至多個網站。The router receives (1060) and processes (1070) the packets. Processing may include, for example, transmitting the packets or portions thereof to another destination, such as a website with which the host communicates or attempts to communicate. In addition, in an implementation in which one packet includes an Ethernet packet from multiple hosts, the router can transmit the underlying information to multiple websites.
參考圖19,一程序1800描述用於將在一AP處從一路由器接收訊包的程序。封包該等訊包,並且從該AP傳輸封包訊包。傳輸封包訊包係預計由一數據機接收,而且組成訊包係預計最後從該數據機遞送至一或多個主機。此程序1800係亦稱為下行鏈路傳輸程序。Referring to Figure 19, a procedure 1800 depicts a procedure for receiving a packet from a router at an AP. The packets are encapsulated and the packet is transmitted from the AP. The transport packet is expected to be received by a modem, and the packet is expected to be finally delivered from the modem to one or more hosts. This program 1800 is also referred to as a downlink transmission procedure.
程序1800包括一路由器接收預計用於一或多個主機的一或多個訊包(1820),而且該路由器傳送該(等)接收訊包至一AP(1830)。該路由器可從(例如)嘗試與一或多個主機通信的一或多個網站接收訊包。在圖10之實施方案中,路由器1090從網際網路1095接收訊包。路由器1090接著在乙太網路1082上傳送接收訊包至AP 1030之乙太網路介面1077。The program 1800 includes a router receiving one or more packets intended for one or more hosts (1820), and the router transmits the (etc.) received packets to an AP (1830). The router can receive packets from, for example, one or more websites that attempt to communicate with one or more hosts. In the embodiment of FIG. 10, router 1090 receives packets from Internet 1095. Router 1090 then transmits an incoming packet to Ethernet 1077 of AP 1030 over Ethernet 1082.
該AP決定至少一接收訊包將在一WLAN介面上傳送至該數據器(1840)。在圖10之實施方案中,乙太網路介面1077發送接收訊包(其為乙太網路訊包)至橋接器1074。橋接器1074決定一訊包將在WLAN介面1075上傳送至(例如)數據機1010。The AP determines that at least one of the received packets will be transmitted to the data device on a WLAN interface (1840). In the embodiment of FIG. 10, the Ethernet interface 1077 sends a receive packet (which is an Ethernet packet) to the bridge 1074. Bridge 1074 determines that a packet will be transmitted on WLAN interface 1075 to, for example, data machine 1010.
該AP封包包括一或多個接收訊包的多個訊包以傳輸至該數據機(1850)。應注意從該路由器接收所有多個訊包,但是可能已在該路由器處從一或多個不同來源(例如,不同網站)接收該等訊包。此外,封包可包括在操作1820中接收的訊包以及較早接收並儲存在一佇列中的訊包。The AP packet includes one or more packets that receive the packet for transmission to the modem (1850). It should be noted that all of the packets are received from the router, but may have been received at the router from one or more different sources (e.g., different websites). In addition, the packet can include packets received in operation 1820 and packets received earlier and stored in a queue.
關於操作1850,在圖10之實施方案中,橋接器1074轉遞該(等)接收訊包至PADM 1076。PADM 1076連同預計用於(例如)數據機1010的其他訊包而排列該(等)接收訊包並形成用於數據機1010之可用下行鏈路時槽的一封包WLAN訊包。PADM 1076維護用於每一數據機(亦稱為一台)的一分離佇列,包括用於數據機1010的一第一佇列以及用於數據機1020的一第二佇列。如較早結合圖11至15說明PADM 1016一樣來說明該封包。Regarding operation 1850, in the embodiment of FIG. 10, bridge 1074 forwards the (etc.) receive packet to PADM 1076. The PADM 1076, in conjunction with other packets intended for, for example, the data machine 1010, arranges the (sequential) received packets and forms a packet WLAN packet for the available downlink time slot of the data machine 1010. The PADM 1076 maintains a separate queue for each data machine (also referred to as a single), including a first queue for the data machine 1010 and a second queue for the data machine 1020. The packet is illustrated as described earlier with reference to Figures 11 through 15 of the PADM 1016.
該AP在一電纜連接中傳送封包訊包至該數據機,該訊包係預計最後遞送至一或多個主機(1860)。在圖10之實施方案中,PADM 1076以圓頻格方式製備用於數據機1010及1020之每一者的一WLAN訊包。PADM 1076接著供應製備WLAN訊包至WLAN介面1075以插入於TDF超訊框結構中的對應下行鏈路時槽中。WLAN介面1075接著使用TDF超訊框結構傳輸WLAN封包訊包至數據機1010及1020。The AP transmits a packet to the modem in a cable connection, the packet being expected to be finally delivered to one or more hosts (1860). In the embodiment of FIG. 10, PADM 1076 prepares a WLAN packet for each of data machines 1010 and 1020 in a circular frequency format. The PADM 1076 then supplies the WLAN packets to the WLAN interface 1075 for insertion into the corresponding downlink time slots in the TDF hyperframe structure. The WLAN interface 1075 then transmits the WLAN packet to the data machines 1010 and 1020 using the TDF hyperframe structure.
參考圖20,一程序1900描述用於接收封包訊包、去封包該等訊包以及遞送組成訊包之一程序。此程序1900係亦稱為下行鏈路接收程序。Referring to Figure 20, a procedure 1900 depicts a procedure for receiving a packet, decapsulating the packet, and delivering a packet. This program 1900 is also referred to as a downlink receiving procedure.
程序1900包括一數據機在一WLAN介面上從一AP接收一封包訊包(1920)。在圖10之實施方案中,數據機1010在一電纜網路1040(例如同軸電纜網路)中於WLAN介面1017上接收封包訊包。The program 1900 includes a data machine receiving a packet (1920) from an AP on a WLAN interface. In the embodiment of FIG. 10, the data machine 1010 receives the packet on the WLAN interface 1017 in a cable network 1040 (eg, a coaxial cable network).
該數據機接著去封包接收訊包以擷取構成封包訊包的組成訊包(1930)。在圖10之實施方案中,PADM 1016實行WLAN訊包之去封包並提供組成乙太網路訊包至橋接器1014。可如較早在圖16至18之說明中說明PADM 1076一樣實行該去封包。The data machine then proceeds to the packet receiving packet to retrieve the constituent packets constituting the packet (1930). In the embodiment of FIG. 10, the PADM 1016 performs de-encapsulation of the WLAN packets and provides an Ethernet packet to the bridge 1014. The decapsulation can be performed as described earlier in the description of Figures 16 through 18 of PADM 1076.
該數據機決定該等組成封包將傳送至一或多個預計主機接受者(1940)。可隨許多操作在程序1900中的一不同點處實行此操作(1940)。例如,可結合操作1930或1950之任一者實行操作1940。在圖10之實施方案中,橋接器1014決定該等訊包將傳送至該(等)主機。The modem determines that the component packets are to be delivered to one or more intended host recipients (1940). This operation can be performed at a different point in the program 1900 with a number of operations (1940). For example, operation 1940 can be performed in conjunction with any of operations 1930 or 1950. In the embodiment of Figure 10, bridge 1014 determines that the packets will be delivered to the host.
該數據機接著在一乙太網路介面上傳送該等組成訊包至該(等)主機(1950)。在圖10之實施方案中,橋接器1014傳送該等組成訊包至乙太網路介面1015,其在乙太網路1052上傳送該等訊包至主機1 1054及主機2 1056之一或多個。The modem then transmits the component packets to the host (1950) on an Ethernet interface. In the embodiment of FIG. 10, the bridge 1014 transmits the component packets to the Ethernet interface 1015, which transmits the packets to one or more of the host 1 1054 and the host 2 1056 on the Ethernet 1052. One.
一或多個主機接收(1960)並處理(1970)該等訊包。處理可包括(例如):一個人電腦,其儲存在網際網路上接收的多媒體檔案;一個人數位助理(PDA),其顯示一電子訊息(亦在網際網路上接收)以藉由一使用者檢視並互動。One or more hosts receive (1960) and process (1970) the packets. Processing may include, for example, a personal computer that stores multimedia files received on the Internet; a PDA that displays an electronic message (also received over the Internet) for viewing and interacting with a user .
現在說明圖21至34。然而,由圖21至34所表示的實施方案之說明並不限於以下的說明。21 to 34 will now be explained. However, the description of the embodiments represented by FIGS. 21 to 34 is not limited to the following description.
為了利用802.11協定堆疊之成熟硬體及軟體實施方案,已建議採用具有修改WLAN(無線區域網路)晶片集的WLAN以不同頻帶傳輸同軸電纜媒體中的802.11訊框之概念。因此,建立一TDF(分時功能)協定以取代用於此應用方案之MAC(媒體存取控制)層中的傳統802.11 DCF(分佈協調功能)或PCF(點協調功能)機制。如以上所提到,此TDF協定係基於TDMA(分時多向近接),其允許多使用者藉由將同一頻道劃分成不同時槽而共享同一頻道。該等TDF STA(台)迅速接連地相繼傳輸上行鏈路訊務,每一台在藉由該TDF AP(存取點)指派之一TDF超訊框中使用其自己的時槽。對於下行鏈路訊務,該等STA共享頻道,並藉由將訊框中的目的地位址資訊與其感興趣的位址比較而選擇以其為目標的訊框。圖5解說當存在欲同時競爭上行鏈路傳輸機會的m(=tdfUplinkTimeSlotNumber)個STA時用於一典型TDF超訊框的時槽分配。In order to take advantage of the mature hardware and software implementation of the 802.11 protocol stack, the concept of transmitting 802.11 frames in coaxial cable media with different frequency bands using WLANs with modified WLAN (Wireless Local Area Network) chip sets has been proposed. Therefore, a TDF (Time Sharing Function) protocol is established to replace the traditional 802.11 DCF (Distributed Coordination Function) or PCF (Point Coordination Function) mechanism in the MAC (Media Access Control) layer for this application. As mentioned above, this TDF protocol is based on TDMA (Time Division Multi-Direction), which allows multiple users to share the same channel by dividing the same channel into different time slots. The TDF STAs quickly and successively transmit uplink traffic, each of which uses its own time slot in one of the TDF super-frames assigned by the TDF AP (access point). For downlink traffic, the STAs share the channel and select the frame to target by comparing the destination address information in the frame with the address of interest. Figure 5 illustrates time slot allocation for a typical TDF hyperframe when there are m (= tdfUplinkTimeSlotNumber) STAs that are simultaneously competing for uplink transmission opportunities.
如相對於圖5所顯示及說明,存在每TDF超訊框固定數目(tdfTotalTimeSlotNumber)的時槽,其係由以下各項組成:用以從TDF AP傳送時脈步同資訊至TDF STA的一個(1)同步時槽、用以傳輸用於上行鏈路時槽分配的註冊請求之一個(1)競爭時槽、由註冊TDF STA用以相繼傳送資料及一些管理訊框至TDF AP的tdfUplinkTimeSlotNumber個上行鏈路時槽、以及由TDF AP用以傳輸資料及一些管理訊框至STA的tdfDownlinkTimeSlotNumber個下行鏈路時槽。除同步時槽以外,稱為共同時槽的所有其他時槽具有同一持續時間,其長度等於tdfCommonTimeSlotDuration。As shown and described with respect to FIG. 5, there is a time slot of a fixed number of TDF frames (tdfTotalTimeSlotNumber), which is composed of: one for transmitting the clock step information from the TDF AP to the TDF STA ( 1) Synchronous time slot, one of the registration requests for transmitting the time slot allocation for the uplink (1) the competition time slot, the tdfUplinkTimeSlotNumber uplink used by the registered TDF STA to transmit data and some management frames to the TDF AP. The link time slot, and the tdfDownlinkTimeSlotNumber downlink time slot used by the TDF AP to transmit data and some management frames to the STA. Except for the sync slot, all other slots known as the common slot have the same duration and have a length equal to tdfCommonTimeSlotDuration.
tdfCommonTimeSlotDuration之持續時間數值經定義用以允許傳輸用於最高速率資料模之一正常時槽中的至少一最大802.11PLCP(實體層會聚協定)協定資料單元(PPDU)。同步時槽之持續時間tdfSyncTimeSlotDuration係短於該共同時槽之持續時間,因為在此時槽中從TDF AP傳輸至TDF STA的時脈同步訊框係短於802.11資料訊框。The duration value of tdfCommonTimeSlotDuration is defined to allow transmission of at least one maximum 802.11 PLCP (Physical Layer Convergence Protocol) Protocol Data Unit (PPDU) for use in one of the highest rate data patterns. The duration of the synchronization slot tdfSyncTimeSlotDuration is shorter than the duration of the common time slot because the clock synchronization frame transmitted from the TDF AP to the TDF STA in the slot is shorter than the 802.11 data frame.
因此,定義為tdfSuperframeDuration的一TDF超訊框之持續時間能藉由下列等式加以計算:Therefore, the duration of a TDF hyperframe defined as tdfSuperframeDuration can be calculated by the following equation:
tdfSuperframeDuration=tdfSyncTimeSlotDuration+tdfCommonTimeSlotDuration*(tdfTotalTimeSlotNumber-1)tdfSuperframeDuration=tdfSyncTimeSlotDuration+tdfCommonTimeSlotDuration*(tdfTotalTimeSlotNumber-1)
tdfTotalTimeSlotNumber、tdfUplinkTimeSlotNumber與tdfDownlinkTimeSlotNumber之間的關係滿足下列等式:The relationship between tdfTotalTimeSlotNumber, tdfUplinkTimeSlotNumber, and tdfDownlinkTimeSlotNumber satisfies the following equation:
tdfTotalTimeSlotNumber=tdfUplinkTimeSlotNumber+tdfDownlinkTimeSlotNumber+2tdfTotalTimeSlotNumber=tdfUplinkTimeSlotNumber+tdfDownlinkTimeSlotNumber+2
在使用具有減小頻帶的WLAN晶片集以透過CATV存取網路提供資料傳輸之實務應用方案中,通常存在二種應用。一個應用係採用此解決方式提供網際網路存取,因此必須為用戶分配保障時槽以獲得恆定資料速率及QoS(服務品質)。另一應用係使用此解決方式以將偶發上行鏈路訊務從用戶側傳輸至頭端,例如數位TV服務之VoD(隨選視訊)應用中的使用者控制訊息。In practical applications where a WLAN chipset with reduced frequency bands is used to provide data transmission over a CATV access network, there are typically two applications. An application uses this solution to provide Internet access, so users must be assigned a guaranteed time slot to achieve constant data rate and QoS (quality of service). Another application uses this solution to transmit sporadic uplink traffic from the user side to the headend, such as user control messages in a VoD (Video on Demand) application of a digital TV service.
採用以上建議的MAC層機制,該STA採用一AP註冊以首先獲取一上行鏈路時槽,並接著傳輸每超訊框分配時槽中的此種控制訊息。然而,因為用於此種應用的訊務係極低,所以該STA需要將極小部分的時槽用於資料傳輸,而且甚至,相當可能即使在用於用以支援具有偶發訊務的此種應用之TDF STA的數個連續超訊框期間仍沒有訊務要傳輸。因此,熟習技術人士應明白在某些方案中可能相當浪費的係採用TDF協定中先前建立並已知的純分時媒體存取方法而支援此第二種應用。Using the above proposed MAC layer mechanism, the STA uses an AP registration to first acquire an uplink time slot, and then transmits such control information in each slot allocation time slot. However, because the traffic for such applications is extremely low, the STA needs to use a very small portion of the time slot for data transmission, and even, even if it is used to support such applications with sporadic traffic. There are still no traffic to be transmitted during the number of consecutive hyperframes of the TDF STA. Therefore, those skilled in the art will appreciate that in some scenarios, it may be quite wasteful to support this second application using a purely time-sharing media access method previously established and known in the TDF protocol.
依據其他已知實施方案,在以競爭為基礎的上行鏈路時槽期間,具有偶發上行鏈路訊務要傳輸而且未採用用於上行鏈路時槽分配之TDF AP註冊的TDF STA將使用DCF機制傳送上行鏈路訊務至TDF AP。According to other known embodiments, TDF STAs with sporadic uplink traffic to be transmitted and TDF AP registrations for uplink time slot allocation will use DCF during the contention-based uplink time slot. The mechanism transmits uplink traffic to the TDF AP.
然而,由於DCF機制的內在特性,可能的係一TDF STA在其始終使用較小競爭視窗以獲取傳輸機會的情況下將具有較大機會存取用於上行鏈路訊務傳輸的頻道而非STA。而且因此,不能在將以競爭為基礎的媒體存取方法用於上行鏈路訊務的此等TDF STA當中達到公平的傳輸機會分佈。However, due to the inherent nature of the DCF mechanism, it is possible that a TDF STA will have a greater chance of accessing the channel for uplink traffic transmission than the STA if it always uses a smaller contention window to obtain transmission opportunities. . Moreover, a fair distribution of transmission opportunities cannot be achieved among such TDF STAs that use a contention based media access method for uplink traffic.
此揭示內容建議至少二種TDF以便在電纜存取網路上支援資料服務及偶發使用者控制訊息。第一種TDF使用輪詢及分時媒體存取兩者,而且第二種TDF使用混合機制以獲得上行頻道。變化及另外組合(例如輪詢及以競爭為基礎的混合機制之使用)係想像並視為此揭示內容之一部分。This disclosure suggests at least two TDFs to support data services and sporadic user control messages over the cable access network. The first type of TDF uses both polling and time-sharing media access, and the second type of TDF uses a hybrid mechanism to obtain the upstream channel. Variations and other combinations, such as the use of polling and a competition-based hybrid mechanism, are imaginary and part of this disclosure.
參考圖21,為了提供對具有QoS支援的高資料速率服務以及具有偶發資料訊務及潛時公差特性的其他服務兩者之支援,顯示一先進技術TDF,其包括且於上行鏈路頻道存取的輪詢及分時媒體存取機制兩者。Referring to Figure 21, in order to provide support for both high data rate services with QoS support and other services with sporadic data traffic and latency tolerance characteristics, an advanced technology TDF is shown that includes and accesses uplink channels. Both polling and time-sharing media access mechanisms.
具有輪詢及分時媒體存取的建議TDF添加一時槽(例如,一輪詢槽)至先前實施TDF程序中使用的時槽之一TDF超訊框。The suggested TDF with polling and time-sharing media access adds a time slot (eg, a polling slot) to one of the time slots used in the TDF program previously implemented in the TDF hyperframe.
如圖21中所示,存在每TDF超訊框固定數目(tdfTotalTimeSlotNumber)的時槽,而且用於包含在其中的每一種時槽之詳細功能係列舉如下:As shown in FIG. 21, there is a time slot of a fixed number of TDF frames (tdfTotalTimeSlotNumber), and the detailed function series for each of the time slots included therein is as follows:
一個(1)同步槽。意指同步時槽的該同步槽係用以從TDF AP傳送時脈同步資訊至TDF STA。 One (1) sync slot. This synchronization slot of the synchronization time slot is used to transmit clock synchronization information from the TDF AP to the TDF STA.
一個(1)註冊槽。該註冊槽(即,註冊時槽)係由TDF STA用以傳送註冊請求至TDF AP。在註冊請求訊框主體中,TDF STA將通知AP其操作模、輪詢模或分時模以獲得上行鏈路傳輸請求。 One (1) registration slot. The registration slot (ie, the registration slot) is used by the TDF STA to transmit a registration request to the TDF AP. In the registration request frame body, the TDF STA will inform the AP of its operation mode, polling mode or time-sharing mode to obtain an uplink transmission request.
一個(1)輪詢時槽。在此時槽期間,具有偶發上行鏈路訊務要傳輸並且未採用用於上行鏈路時槽分配的TDF AP註冊的TDF STA將使用以下詳細說明的特定PCF(點協調功能)機制而傳送上行鏈路訊務至TDF AP。 One (1) polling slot. During this time slot, TDF STAs with occasional uplink traffic to transmit and not using TDF AP registration for uplink time slot allocation will transmit uplinks using the specific PCF (Point Coordination Function) mechanism detailed below. Link traffic to the TDF AP.
下行鏈路時槽。此等槽包含tdfDownlinkTimeSlotNumber個下行鏈路時槽,其係由TDF AP用以傳輸資料及一些管理訊框至該等TDF STA。 Downlink time slot. The slots include tdfDownlinkTimeSlotNumber downlink time slots, which are used by the TDF AP to transmit data and some management frames to the TDF STAs.
分時上行鏈路時槽。此等槽包含tdfUplinkTimeSlotNumber個上行鏈路時槽,其係由註冊TDF STA用以相繼傳送資料及一些管理訊框至具有高資料速率及QoS支援的TDF AP。 Time-sharing uplink time slot. These slots contain tdfUplinkTimeSlotNumber uplink time slots, which are used by the registered TDF STA to successively transmit data and some management frames to TDF APs with high data rate and QoS support.
根據特定實務應用的要求,用於同步時槽、註冊時槽、輪詢時槽、下行鏈路時槽以及分時上行鏈路時槽的持續時間在大多數情況下係彼此不同的。然而,tdfUplinkTimeSlotNumber個分時時槽中稱為共同時槽的每一上行鏈路時槽具有等於tdfCommonTimeSlotDuration的相同持續時間。The durations for the synchronization time slot, the registration time slot, the polling time slot, the downlink time slot, and the time-sharing uplink time slot are, in most cases, different from each other, depending on the requirements of the particular application. However, each uplink time slot referred to as a common time slot in the tdfUplinkTimeSlotNumber time slot has the same duration equal to tdfCommonTimeSlotDuration.
因此,定義為tdfSuperframeDuration的一TDF超訊框之持續時間能藉由下列等式加以計算:Therefore, the duration of a TDF hyperframe defined as tdfSuperframeDuration can be calculated by the following equation:
tdfSuperframeDuration=tdfSyncTimeSlotDuration+tdfRegTimeSlotDuration+tdfPollingTimeSlotDuration+tdfCOmmonTimeSlotDuration*(tdfTotalTimeSlotNumber-3)tdfSuperframeDuration=tdfSyncTimeSlotDuration+tdfRegTimeSlotDuration+tdfPollingTimeSlotDuration+tdfCOmmonTimeSlotDuration*(tdfTotalTimeSlotNumber-3)
tdfTotalTimeSlotNumber、tdfUplinkTimeSlotNumber與tdfDownlinkTimeSlotNumber之間的關係滿足下列等式:The relationship between tdfTotalTimeSlotNumber, tdfUplinkTimeSlotNumber, and tdfDownlinkTimeSlotNumber satisfies the following equation:
tdfTotalTimeSlotNumber=tdfUplinkTimeSlotNumber+tdfDownlinkTimeSlotNumber+3。tdfTotalTimeSlotNumber=tdfUplinkTimeSlotNumber+tdfDownlinkTimeSlotNumber+3.
對於具有輪詢及分時媒體存取機制兩者之此TDF中的STA,各種實施方案包括二操作模:一為輪詢模;而且另一為分時模。For STAs in this TDF having both polling and time-sharing media access mechanisms, various implementations include two modes of operation: one is a polling mode; and the other is a time-sharing mode.
用於在用於上行鏈路訊務傳輸之輪詢模中操作的STA之基本媒體存取方法係PCF。然而,由於對固定線上的資料傳輸之特定環境,已進行對此經典PCF機制的數個改良。The basic media access method for the STA operating in the polling mode for uplink traffic transmission is the PCF. However, several improvements to this classical PCF mechanism have been made due to the specific environment for data transmission on the fixed line.
輪詢時槽中的PCF機制提供無競爭訊框傳送。參考圖23,PC(點協調器)2302常駐於TDF AP 2300中。在從該等AP傳送的信標訊框之能力資訊欄位中識別藉由AP 2300提供的輪詢模支援之形式。需要以輪詢為基礎的媒體存取之TDF STA 2304應該能夠回應於從一AP 2300接收的無競爭輪詢(CF輪詢),並因此係稱為可CF輪詢。當藉由PC 2302輪詢時,可CF輪詢的STA將傳輸僅一MPDU(MAC協定資料單元),其將加以傳送至該AP而且並不需要該MPDU由該AP確認。一AP決不輪詢未在此AP之輪詢清單中的STA。The PCF mechanism in the slot provides poll-free frame transmission. Referring to FIG. 23, a PC (Point Coordinator) 2302 is resident in the TDF AP 2300. The form of the polling mode support provided by the AP 2300 is identified in the capability information field of the beacon frame transmitted from the APs. The TDF STA 2304, which requires poll-based media access, should be able to respond to the contention-free polling (CF polling) received from an AP 2300, and is therefore referred to as CF-capable polling. When polled by PC 2302, the CF pollable STA will transmit only one MPDU (MAC Protocol Data Unit), which will be transmitted to the AP and does not need to be acknowledged by the AP. An AP never polls STAs that are not in the polling list of this AP.
在輪詢時槽期間由一AP或STA傳送的訊框將根據下列使用規則來使用適當訊框類型:Frames transmitted by an AP or STA during the polling slot will use the appropriate frame type according to the following usage rules:
1-CF輪詢,其係僅由一AP傳送至可CF輪詢STA。在此訊框中,該AP並非在傳送資料至定址接受者,而定址接受者係准允在此輪詢時槽期間傳送的下一STA;以及2-資料及空值訊框可由任何可CF輪詢STA傳送。1-CF polling, which is transmitted by only one AP to the CF-capable STA. In this frame, the AP is not transmitting data to the address recipient, and the address recipient is allowed to transmit the next STA during the polling time slot; and 2-data and null frames can be any CF Poll the STA transmission.
該AP在輪詢時槽開始時得到媒體的控制並嘗試維護對整個輪詢時槽的控制。其並不需要輪詢時槽之開始及結束藉由分別由該AP傳輸一信標及CF結束而發信,如經典PCF協定中所需要。The AP gets media control at the beginning of the polling slot and attempts to maintain control of the entire polling slot. It does not require the start and end of the polling slot to be signaled by the end of each AP transmitting a beacon and CF, as required in the classic PCF protocol.
當在輪詢清單中存在實體時,該AP將在每一輪詢時槽期間傳送一CF輪詢至至少一STA。在每一輪詢時槽期間,該AP將以從頭至尾的順序發佈輪詢至輪詢清單上的STA之一子集。When there is an entity in the polling list, the AP will transmit a CF poll to at least one STA during each polling slot. During each polling slot, the AP will issue a poll to a subset of the STAs on the polling list in order from beginning to end.
參考圖24及25,一旦每一輪詢時槽開始,該AP將傳輸(2506)一CF輪詢訊框至輪詢清單中的一STA。若在輪詢清單中不存在實體(2502),則該AP將在此輪詢時槽期間立即傳輸下行鏈路訊務(2504),直至下行鏈路時槽之結束。Referring to Figures 24 and 25, once each polling slot begins, the AP will transmit (2506) a CF round interrogation frame to a STA in the polling list. If there is no entity in the polling list (2502), the AP will immediately transmit downlink traffic (2504) during this polling time slot until the end of the downlink time slot.
在從特定可CF輪詢STA接收資料或空值訊框(2508),或緊接於該AP傳輸之後在預定義週期內未從特定STA得到對CF輪詢的回應之後,該AP接著恢復控制並可傳輸其下一CF輪詢訊框至輪詢清單中的下一實體,除非在此當前輪詢時槽期間保持不足夠的時間。若在此時,其已達到輪詢清單中的最後項目,則該AP下一次將從輪詢清單中的第一項目開始設法傳送CF輪詢訊框至該STA。若當前輪詢時槽中保持不足夠時間(2510)以准允輪詢的STA傳輸包含最小長度MPDU的資料訊框,則該AP將不發佈一CF輪詢訊框。相反地,若在下一超訊框期間於輪詢時槽剛開始時,已經輪詢STA係清單中的最後項目,則該AP開始發佈一CF輪詢訊框至輪詢清單之已經輪詢STA中的下一項目,或輪詢清單中的第一項目。The AP then resumes control after receiving a data or null frame from the particular CF-capable STA (2508), or after receiving a response to the CF poll from a particular STA within a predefined period immediately following the AP transmission. The next CF round inquiry frame can be transmitted to the next entity in the polling list, unless there is insufficient time during the current polling period. If at this time, it has reached the last item in the polling list, the AP will try to transmit the CF round inquiry frame to the STA from the first item in the polling list next time. If the current polling period does not hold enough time (2510) to allow the polling STA to transmit the data frame containing the minimum length MPDU, the AP will not issue a CF round inquiry frame. Conversely, if the last item in the STA list has been polled at the beginning of the polling time slot during the next hyperframe, the AP begins to issue a CF round inquiry frame to the polled STA of the polling list. The next item in the box, or the first item in the polling list.
參考圖24,與此AP相關聯之輪詢模中的所有可CF輪詢STA不應該傳輸任何上行鏈路訊務,除非其係在此輪詢時槽期間由該AP所輪詢。輪詢模中之一可CF輪詢STA始終回應於引導至其MAC位址並且無錯誤接收的CF輪詢。其將在接收該CF輪詢之後立即傳輸一個資料訊框。若該STA輪詢時沒有訊框要傳送,則回應將為一空值訊框。在傳送其排列資料訊框之輪詢時槽結束前具有不夠時間之一輪詢可CF輪詢STA將藉由傳輸一空值訊框來回應。Referring to Figure 24, all CF-capable STAs in the polling mode associated with this AP should not transmit any uplink traffic unless it is polled by the AP during this polling slot. One of the polling modulo CF polling STAs always responds to a CF poll that is directed to its MAC address and received without error. It will transmit a data frame immediately after receiving the CF poll. If there is no frame to be transmitted when the STA polls, the response will be a null frame. The polling STA will respond by transmitting a null frame before polling the polling sequence.
該AP將維護一「輪詢清單」以用於選擇STA,其符合在輪詢時槽期間接收CF輪詢,並促使可CF輪詢STA之輪詢的條件。輪詢清單可用以控制用於傳輸由該AP傳送至可CF輪詢STA之資料訊框之CF輪詢類型的使用。The AP will maintain a "Polling List" for selecting STAs that meet the conditions for receiving CF polls during the polling slot and for the CF to poll the STA for polling. The polling list can be used to control the use of the CF polling type for transmitting the data frame transmitted by the AP to the CF-capable STA.
一旦一AP從一STA接收一註冊請求訊框,其中該STA需要使用輪詢機制存取頻道,而且該AP決定根據該AP中的設定策略而向該STA授權此種傳輸機制,則該AP將添加一個項目至輪詢清單的結束,其包括STA的MAC位址及資料速率。另一方面,一旦一AP從一STA接收一非註冊訊框,其中該STA指示其將不使用輪詢機制存取頻道,該AP將刪除輪詢清單中用於此STA的對應項目。若一STA需要從分時模改變為輪詢模,則該STA將藉由傳送一非註冊以放棄分時模,並接著傳送具有輪詢模指示的註冊請求至該AP而通知該AP。Once an AP receives a registration request frame from a STA, where the STA needs to access the channel using a polling mechanism, and the AP decides to authorize the STA to transmit the mechanism according to the setting policy in the AP, the AP will Add an item to the end of the polling list, which includes the STA's MAC address and data rate. On the other hand, once an AP receives an unregistered frame from a STA indicating that it will not access the channel using the polling mechanism, the AP will delete the corresponding entry in the polling list for this STA. If a STA needs to change from a time-sharing mode to a polling mode, the STA will notify the AP by transmitting a non-registration to abandon the time-sharing mode and then transmitting a registration request with a polling mode indication to the AP.
參考圖22,為了享受由DCF提供的靈活性及由PCF提供的公平性,亦說明用於上行鏈路訊務的一混合媒體存取機制,其將DCF及PCF兩者用於STA以得到用於偶發訊務的傳輸機會,並將專用時槽用於STA以傳輸高資料速率訊務。圖22中解說用於此增強TDF超訊框之詳細時槽分配。Referring to FIG. 22, in order to enjoy the flexibility provided by the DCF and the fairness provided by the PCF, a hybrid medium access mechanism for uplink traffic is also described, which uses both DCF and PCF for the STA to obtain For sporadic traffic transmission opportunities, and dedicated time slots for STAs to transmit high data rate traffic. A detailed time slot allocation for this enhanced TDF hyperframe is illustrated in FIG.
如所示,存在每TDF超訊框固定tdfTotalTimeSlotNumber個時槽,而且用於包含在其中的每一種時槽之詳細功能係列舉如下:As shown, there are fixed tdfTotalTimeSlotNumber time slots per TDF hyperframe, and the detailed functional series for each of the time slots contained therein are as follows:
一個(1)同步槽。意指同步時槽的該同步槽係用以從TDF AP傳送時脈同步資訊至TDF STA。 One (1) sync slot. This synchronization slot of the synchronization time slot is used to transmit clock synchronization information from the TDF AP to the TDF STA.
一個(1)以競爭為基礎的上行鏈路槽。在此槽期間,TDF STA可傳送註冊請求至TDF AP。在註冊請求訊框主體中,TDF STA將通知AP其操作模、輪詢、以競爭為基礎或分時模以獲得上行鏈路傳輸請求。同時,具有偶發上行鏈路訊務要傳輸而且未採用用於上行鏈路時槽分配的TDF AP註冊的TDF STA將使用特定DCF機制傳送上行鏈路訊務至該TDF AP。 A (1) contention-based uplink slot. During this slot, the TDF STA can transmit a registration request to the TDF AP. In the registration request frame body, the TDF STA will inform the AP of its operation mode, polling, contention-based or time-sharing mode to obtain an uplink transmission request. At the same time, TDF STAs with occasional uplink traffic to transmit and not using TDF AP registration for uplink time slot allocation will use the specific DCF mechanism to transmit uplink traffic to the TDF AP.
一個(1)輪詢時槽。在此時槽期間,具有偶發上行鏈路訊務要傳輸而且未採用用於上行鏈路時槽分配的TDF AP註冊的TDF STA將使用先前說明的特定DCF機制傳送上行鏈路訊務至該TDF AP。一般而言,該TDF STA能藉由設定由TDF STA傳送至TDF AP之相關聯請求訊框中的對應旗標而通知TDF AP其操作模(即,DCF或PCF)。 One (1) polling slot. During this time slot, a TDF STA with occasional uplink traffic to transmit and no TDF AP registration for uplink time slot allocation will transmit uplink traffic to the TDF using the specific DCF mechanism previously described. AP. In general, the TDF STA can inform the TDF AP of its mode of operation (ie, DCF or PCF) by setting a corresponding flag transmitted by the TDF STA to the associated request frame of the TDF AP.
下行鏈路時槽。此等槽包含tdfDownlinkTimeSlotNumber個下行鏈路時槽,其係由TDF AP用以傳輸資料及一些管理訊框至該等TDF STA。 Downlink time slot. The slots include tdfDownlinkTimeSlotNumber downlink time slots, which are used by the TDF AP to transmit data and some management frames to the TDF STAs.
分時上行鏈路時槽。此等槽包含tdfUplinkTimeSlotNumber個上行鏈路時槽,其係由註冊TDF STA用以相繼傳送資料及一些管理訊框至具有高資料速率及QoS支援的TDF AP。 Time-sharing uplink time slot. These slots contain tdfUplinkTimeSlotNumber uplink time slots, which are used by the registered TDF STA to successively transmit data and some management frames to TDF APs with high data rate and QoS support.
根據特定實務應用的要求,用於同步時槽、競爭基礎時槽、輪詢時槽、下行鏈路時槽以及分時上行鏈路時槽的持續時間在大多數情況下係彼此不同的。The durations for the synchronization time slot, the contention base time slot, the polling time slot, the downlink time slot, and the time-sharing uplink time slot are, in most cases, different from each other, depending on the requirements of the particular application.
因此,定義為tdfSuperframeDuration的一TDF超訊框之持續時間能藉由下列等式加以計算:Therefore, the duration of a TDF hyperframe defined as tdfSuperframeDuration can be calculated by the following equation:
tdfSuperframeDuration=tdfSyncTimeSlotDuration +tdfContentionTimeSlotDuration+tdfPollingTimeSlotDuration+tdfCommonTimeSlotDuration*(tdfTotalTimeSlotNumber-3)。tdfSuperframeDuration=tdfSyncTimeSlotDuration +tdfContentionTimeSlotDuration+tdfPollingTimeSlotDuration+tdfCommonTimeSlotDuration*(tdfTotalTimeSlotNumber-3).
tdfTotalTimeSlotNumber、tdfUplinkTimeSlotNumber與tdfDownlinkTimeSlotNumber之間的關係滿足下列等式:The relationship between tdfTotalTimeSlotNumber, tdfUplinkTimeSlotNumber, and tdfDownlinkTimeSlotNumber satisfies the following equation:
tdfTotalTimeSlotNumber=tdfUplinkTimeSlotNumber+tdfDownlinkTimeSlotNumber+3。tdfTotalTimeSlotNumber=tdfUplinkTimeSlotNumber+tdfDownlinkTimeSlotNumber+3.
本原理建議一TDF,其使用以競爭為基礎及分時媒體存取兩者以獲取上行鏈路頻道,以便支援電纜存取網路上的資料服務及偶發使用者控制訊息。The present principles suggest a TDF that uses both contention-based and time-sharing media access to obtain uplink channels to support data services on the cable access network and occasional user control messages.
為了提供對具有QoS支援的高資料速率服務以及具有偶發資料訊務及潛時公差特性的其他服務兩者之支援,顯示一先進技術TDF,其包括用於上行鏈路頻道存取的以競爭為基礎及分時媒體存取機制。如下詳細說明採用混合媒體存取方法之此TDF協定的功能說明。In order to provide support for both high data rate services with QoS support and other services with sporadic data traffic and latency tolerance characteristics, an advanced technology TDF is shown that includes competition for uplink channel access. Basic and time-sharing media access mechanisms. The functional description of this TDF protocol using the mixed media access method is described in detail below.
採用本原理之以競爭為基礎及分時媒體存取兩者的TDF添加一時槽(例如,一註冊槽)至先前揭示TDF程序。圖26中解說用於此增強TDF超訊框之詳細時槽分配。A TDF that uses both the competition-based and time-sharing media access of the present principles adds a time slot (e.g., a registration slot) to the previously disclosed TDF procedure. A detailed time slot allocation for this enhanced TDF hyperframe is illustrated in FIG.
如圖26中所示,存在每TDF超訊框固定數目(tdfTotalTimeSlotNumber)的時槽,而且用於包含在其中的每一種時槽之詳細功能能加以列舉如下:As shown in Fig. 26, there is a time slot of a fixed number of TDF frames (tdfTotalTimeSlotNumber), and the detailed functions for each of the time slots included therein can be enumerated as follows:
-一個()同步槽。意指同步時槽的該同步槽係用以從TDF AP傳送時脈同步資訊至TDF STA。- One () sync slot. This synchronization slot of the synchronization time slot is used to transmit clock synchronization information from the TDF AP to the TDF STA.
-一個(1)註冊槽。可與圖5中說明之超訊框結構中的競爭時槽比較的註冊槽(即,註冊時槽)係由TDF STA用以傳送註冊請求至用於上行鏈路時槽分配的TDF AP。- One (1) registration slot. The registration slot (i.e., the registration time slot) that can be compared to the contention time slot in the hyperframe structure illustrated in Figure 5 is used by the TDF STA to transmit a registration request to the TDF AP for uplink time slot allocation.
-一個(1)以競爭為基礎的上行鏈路時槽。在此時槽期間,具有偶發上行鏈路訊務要傳輸而且未採用用於上行鏈路時槽分配的TDF AP註冊的TDF STA將使用以下詳細說明的特定DCF機制傳送上行鏈路訊務至該TDF AP。- One (1) contention based uplink time slot. During this time slot, TDF STAs with occasional uplink traffic to transmit and not using TDF AP registration for uplink time slot allocation will transmit uplink traffic to the specific DCF mechanism as described in detail below. TDF AP.
-分時上行鏈路時槽。此等槽包含tdfUplinkTimeSlotNumber個上行鏈路時槽,其係由註冊TDF STA用以相繼傳送資料及一些管理訊框至具有高資料速率及QoS支援的TDF AP。- Time-sharing uplink time slot. These slots contain tdfUplinkTimeSlotNumber uplink time slots, which are used by the registered TDF STA to successively transmit data and some management frames to TDF APs with high data rate and QoS support.
-下行鏈路時槽。此等槽包含tdfDownlinkTimeSlotNumber個下行鏈路時槽,其係由TDF AP用以傳輸資料及一些管理訊框至該等TDF STA。- Downlink time slot. The slots include tdfDownlinkTimeSlotNumber downlink time slots, which are used by the TDF AP to transmit data and some management frames to the TDF STAs.
在一個實施方案中,註冊槽及以競爭為基礎的上行鏈路時槽能組成成一個混合時槽以改良系統效能。此改良將係由於兩個槽皆將以競爭為基礎的後退方法用於頻道存取而且在大多數情況下可能在註冊槽期間存在很少訊務的事實。此外,用於註冊請求的競爭視窗之CWmin及CWmax能加以定義為小於分別用於資料訊框的競爭視窗之CWmin及CWmax,以便為註冊請求訊框之傳輸提供比資料訊框之傳輸高的優先權。In one embodiment, the registration slot and the contention-based uplink time slot can be combined into a mixed time slot to improve system performance. This improvement will be due to the fact that both slots use a contention-based fallback method for channel access and in most cases there may be few traffic during the registration slot. In addition, the CWmin and CWmax of the contention window for the registration request can be defined as less than the CWmin and CWmax of the contention window for the data frame respectively, so as to provide a higher priority for the transmission of the registration request frame than the transmission of the data frame. right.
熟習技術人士應認識到「競爭視窗」係用於802.11標準,而且表示在設法存取無線媒體並接著決定該媒體是否可供使用者用以傳輸資料之前STA將等待多少小時槽(例如為9us)經由範例,最初藉由選擇0與CWmin之間的隨機退後數目而決定準確的競爭視窗。每次退後週期過期,從而指示該頻道係仍在忙,該STA將採用遞增方式隨機地選擇0與[CWmin、CWmax]中的一數目之間的另一退後週期,直至選擇0與CWmax之間的最後後退週期。Those skilled in the art should recognize that "competition window" is for the 802.11 standard and indicates how many hours the STA will wait (eg, 9us) before attempting to access the wireless medium and then decide whether the medium is available to the user for transmission of data. By way of example, an accurate competition window is initially determined by selecting a random number of backoffs between 0 and CWmin. Each time the back-off period expires, indicating that the channel is still busy, the STA will randomly select another back-off period between 0 and a number of [CWmin, CWmax] in an incremental manner until 0 and CWmax are selected. The last back cycle between.
藉由定義用於註冊請求訊框的競爭視窗之CWmin及CWmax為小於分別用於資料訊框的競爭視窗之CWmin及CWmax,即(用於註冊的CWmin)<(用於資料訊框的CWmin)以及(用於註冊的CWmax)<(用於資料訊框的CWmin),確保高於資料訊框之傳輸的註冊請求訊框之傳輸的優先權。如以下所解釋,此較高優先權係由於在較小競爭視窗期間較小數目的退後週期可用。CWmin and CWmax defined by the competition window for the registration request frame are smaller than CWmin and CWmax for the competition window respectively used for the data frame, ie (CWmin for registration) <(CWmin for data frame) And (CWmax for registration) < (CWmin for data frame), ensuring priority over the transmission of the registration request frame of the transmission of the data frame. As explained below, this higher priority is due to the smaller number of backoff periods available during the smaller contention window.
根據特定實務應用的要求,用於同步時槽、註冊時槽、以競爭為基礎的時槽、分時上行鏈路時槽及下行鏈路時槽的持續時間在大多數情況下係彼此不同的。然而,tdfUplinkTimeSlotNumber個分時時槽中稱為共同時槽的每一個上行鏈路時槽具有其長度等於tdfCommonTimeSlotDuration的相同持續時間。The durations for synchronization time slots, registration time slots, contention-based time slots, time-sharing uplink time slots, and downlink time slots are, in most cases, different from each other, depending on the requirements of the particular application. . However, each uplink time slot referred to as a common time slot in the tdfUplinkTimeSlotNumber time slot has the same duration whose length is equal to tdfCommonTimeSlotDuration.
因此,定義為tdfSuperframeDuration的一TDF超訊框之持續時間能藉由下列等式加以計算:Therefore, the duration of a TDF hyperframe defined as tdfSuperframeDuration can be calculated by the following equation:
tdfSuperframeDuration=tdfSyncTimeSlotDuration+tdfRegTimeSlotDuration+tdfContentionTimeSlotDuration+tdfCommonTimeSlotDuration*(tdfTotalTimeSlotNumber-3)。tdfSuperframeDuration=tdfSyncTimeSlotDuration+tdfRegTimeSlotDuration+tdfContentionTimeSlotDuration+tdfCommonTimeSlotDuration*(tdfTotalTimeSlotNumber-3).
tdfTotalTimeSlotNumber、tdfUplinkTimeSlotNumber與tdfDownlinkTimeSlotNumber之間的關係滿足下列等式:The relationship between tdfTotalTimeSlotNumber, tdfUplinkTimeSlotNumber, and tdfDownlinkTimeSlotNumber satisfies the following equation:
tdfTotalTimeSlotNumber=tdfUplinkTimeSlotNumber+tdfDownlinkTimeSlotNumber+3。tdfTotalTimeSlotNumber=tdfUplinkTimeSlotNumber+tdfDownlinkTimeSlotNumber+3.
此外,一TDF超訊框中TDF STA的分配上行鏈路時槽之數目可從0改變為tdfMaximumUplinkTimeSlotNumber。因此,一TDF超訊框中的下行鏈路時槽之可用持續時間可從In addition, the number of allocated uplink time slots of the TDF STA in a TDF hyperframe can be changed from 0 to tdfMaximumUplinkTimeSlotNumber. Therefore, the available duration of the downlink time slot in a TDF hyperframe can be
(tdfCommOnTimeSlotDuration*(tdfTotalTimeSlotNumber-3))改變為(tdfCommOnTimeSlotDuration*(tdfTotalTimeSlotNumber-3)) changed to
tdfCommonTimeSlotDuratiOn*(tdfTotalTimeSlotNumber-3-dfMaximumUplinkTimeSlotNumber))。tdfCommonTimeSlotDuratiOn*(tdfTotalTimeSlotNumber-3-dfMaximumUplinkTimeSlotNumber)).
每次存在要求上行鏈路時槽的一個TDF STA時,TDF AP將從該等可用下行鏈路時槽推斷一或多個共同時槽,並接著分配此等時槽給該TDF STA,只要上行鏈路時槽在其之後將不超過tdfMaximumUplinkTimeSlotNumber。Each time there is a TDF STA that requires an uplink time slot, the TDF AP will infer one or more common time slots from the available downlink time slots, and then assign the time slots to the TDF STA as long as the uplink The link time slot will not exceed tdfMaximumUplinkTimeSlotNumber after it.
此外,儘管用於下行鏈路時槽的持續時間等於(tdfCommonTimeSlotDuration tdfDownlinkTimeSlotNumber),但是不必具有此等共同時槽的邊界之間的保護時間,因為此等下行鏈路時槽係連續的而且從一個獨立AP傳送訊務。採用此方式,將為此協定中的下行鏈路傳輸高度改良效率及頻道利用率。Furthermore, although the duration of the slot for the downlink is equal to (tdfCommonTimeSlotDuration tdfDownlinkTimeSlotNumber), it is not necessary to have the guard time between the boundaries of such common time slots, since the downlink is stable and independent from each other. The AP transmits the traffic. In this way, the downlink transmissions in this protocol will be highly efficient and channel efficient.
對於具有以競爭為基礎及分時媒體存取機制兩者之此TDF中的STA,數個實施方案具有二個操作模:一個係以競爭為基礎模,另一個係分時模。For STAs in this TDF with both contention-based and time-sharing media access mechanisms, several implementations have two modes of operation: one is based on competition and the other is time-sharing.
用於在上行鏈路訊務傳輸之以競爭為基礎模中操作的STA之基本媒體存取方法係在802.11規格中定義的DCF,其允許透過使用CSMA/CA(避免碰撞的載波檢測多重近接)及隨忙碌媒體條件之後的隨機退後時間而進行自動媒體共享。然而,由於固定線上的資料傳輸之特定環境,已進行對此經典DCF機制的數個改良。The basic media access method for STAs operating in a contention-based mode of uplink traffic transmission is a DCF defined in the 802.11 specification, which allows for the use of CSMA/CA (Carrier Detect Multiple Collision Avoidance) And automatic media sharing with random back-off times after busy media conditions. However, several improvements to this classical DCF mechanism have been made due to the specific environment of data transmission on the fixed line.
需要啟動訊框之傳送的一TDF STA調用載波檢測機制(大多數情況下為實體載波檢測)以決定媒體之忙碌/閒置狀態。若該媒體係忙碌,則該STA推遲直至該媒體係決定為閒置而不在定義時間之週期內中斷。在此媒體閒置時間之後,該STA為傳輸之前的額外延期時間產生一隨機退後週期,除非退後定時器已經包含非零值,在此情況下一亂數之選擇沒有必要而且不加以實行。此程序在一直在延期至同一事件的多STA之間的競爭期間最小化碰撞。A TDF STA that needs to initiate transmission of the frame invokes a carrier detection mechanism (in most cases, physical carrier detection) to determine the busy/idle state of the media. If the media is busy, the STA is deferred until the media system decides to be idle and not interrupted during the defined time period. After this media idle time, the STA generates a random backoff period for the additional delay time before transmission, unless the back-off timer already contains a non-zero value, in which case the selection of the random number is unnecessary and not implemented. This procedure minimizes collisions during competition between multiple STAs that have been deferred to the same event.
退後時間=Random()*aSlotTimeBack time = Random()*aSlotTime
其中among them
Random()=從間隔[0、CW]內的一均勻分佈擷取的偽隨機整數,其中CW係在aCWmin與aCWmax之數值範圍內的一整數,aCWmin<=CW<=aCWmax。Random() = a pseudo-random integer drawn from a uniform distribution within the interval [0, CW], where CW is an integer in the range of values aCWmin and aCWmax, aCWmin <= CW <= aCWmax.
該組CW數值將為2之序列遞升整數冪減1,其從特殊應用aCWmin數值開始,而且繼續向上至並包括一特殊應用aCWmax數值。更明確而言,對於此協定之應用環境的大部分,以競爭為基礎的模中的STA之最大數目(其係tdfMaximumContentionStationNumber)係預先瞭解,而且能藉由手動組態及/或從TDF AP廣播的管理訊框而通知給TDF STA,因此數值能設定為tdfMaximumContentionStationNumber或tdfMaximumContentionStationNumber的倍數。因此,當與其中盲目設定aCWmax數值的條件比較時,該STA能在相對較短退後時間之後存取實體媒體。The set of CW values will be a sequence of 2 increments of the integer power minus 1, starting with the special application aCWmin value and continuing upwards and including a special application aCWmax value. More specifically, for most of the application environment for this agreement, the maximum number of STAs in the competition-based model (which is tdfMaximumContentionStationNumber) is known in advance and can be manually configured and/or broadcast from TDF APs. The management frame is notified to the TDF STA, so the value can be set to a multiple of tdfMaximumContentionStationNumber or tdfMaximumContentionStationNumber. Therefore, the STA can access the physical medium after a relatively short back-off time when compared to the condition in which the aCWmax value is blindly set.
藉由減小用於註冊訊框的競爭視窗大小,可用退後週期的數目將係小於可用於資料訊框的退後週期之數目,從而產生具有較高優先權的註冊訊框。By reducing the size of the contention window for the registration frame, the number of available backoff periods will be less than the number of backoff periods available for the data frame, resulting in a higher priority registration frame.
對於在分時模中操作的TDF STA,源於STA的訊框係在分配用於此特定STA之上行鏈路時槽期間在有線環境而非空中交換,因此其係採用具有極佳信號品質的無競爭方式而傳輸。因此,不必定義確認(ACK)訊框以確保MAC訊框之遞送的可靠性。For TDF STAs operating in time-sharing mode, the STA-derived frame is switched in a wired environment rather than over the air during the uplink time slot allocated for this particular STA, so it is based on excellent signal quality. Transfer without competition. Therefore, it is not necessary to define an acknowledgment (ACK) frame to ensure the reliability of the delivery of the MAC frame.
然而,對於在以競爭為基礎的模中操作的TDF STA,因為有線環境與無線頻道之間的差異,所以實體載波感測機制在固定線中並不極佳地作業,因此隱藏台問題將在競爭模中引起不同TDF STA當中的許多碰撞。作為抗擊此種故障的方式,本原理建議使用肯定確認機制。However, for TDF STAs operating in a competition-based mode, because of the difference between the wired environment and the wireless channel, the physical carrier sensing mechanism does not work extremely well in the fixed line, so the hidden table problem will be Many collisions among different TDF STAs are caused in the competition mode. As a way to combat such failures, this principle recommends the use of a positive confirmation mechanism.
因此,存在可用於配置的二種確認:Therefore, there are two types of confirmations that can be used for configuration:
1.此AP一在競爭模中接收源自一TDF STA的一上行鏈路訊框,就立即自TDF AP的確認,而且因此,若未接收ACK,則藉由該TDF STA排程再傳輸。1. When the AP receives an uplink frame originating from a TDF STA in the contention mode, it immediately acknowledges from the TDF AP, and therefore, if the ACK is not received, it is retransmitted by the TDF STA schedule.
2.區塊ACK機制,其藉由將數個確認集合成一個訊框而改良頻道效率。存在二個類型的區塊ACK機制:立即及延遲。2. Block ACK mechanism that improves channel efficiency by grouping several acknowledgments into one frame. There are two types of block ACK mechanisms: immediate and delayed.
立即區塊ACK係在從競爭模中的一TDF STA為數個上行鏈路訊框之後由該TDF AP立即傳送,而且係適合於高頻寬及低潛時訊務。The immediate block ACK is immediately transmitted by the TDF AP after being a number of uplink frames from a TDF STA in the contention mode, and is suitable for high frequency wide and low latency traffic.
延遲區塊ACK係在與以競爭為基礎的上行鏈路時槽相同之超訊框內在下行鏈路時槽剛開始時由TDF AP傳送,以回應在以特定競爭為基礎的時槽期間從TDF STA傳送的數個成功接收上行鏈路訊框。其對於容忍適度潛時的應用係合適的而且將用於具有以競爭為基礎及分時媒體存取控制之此TDF協定中的大部分情況。區塊ACK訊框可以為競爭模中至一個特定TDF STA的單播訊框,以便通知其自其的上行鏈路訊框之成功接收,而且亦可以為一廣播或多播訊框,以便通知自此等STA的上行鏈路訊框之成功接收之競爭模中的TDF STA之數目。The delay block ACK is transmitted by the TDF AP at the beginning of the downlink time slot in the same hyperframe as the contention-based uplink time slot in response to the TDF during the time slot based on the specific contention. Several successfully transmitted uplink frames transmitted by the STA. It is appropriate for applications that tolerate moderate latency and will be used for most of this TDF protocol with contention-based and time-sharing media access control. The block ACK frame may be a unicast frame in a competition mode to a specific TDF STA to notify it of successful reception of its uplink frame, and may also be a broadcast or multicast frame for notification. The number of TDF STAs in the contention mode successfully received from the uplink frames of the STAs.
一旦啟動(例如,在初始化之後)一TDF STA,其藉由預設進入以競爭為基礎的模。接著根據其應用要求、組態及/或與服務提供者的服務位準協議,其可在傳送註冊訊框至TDF AP並接收具有存取准允的註冊回應之後進入分時模。Once a TDF STA is initiated (eg, after initialization), it enters a competition-based mode by default. Then, depending on its application requirements, configuration, and/or service provider's service level agreement, it can enter the time-sharing mode after transmitting the registration frame to the TDF AP and receiving the registration response with access permission.
圖27中解說從以競爭為基礎的模至分時模的轉換。如圖所示,當在以競爭為基礎的模2710中時,決定(2712)是否需要進入分時模。當回答為是時,隨後決定(2714)在TDF STA已傳送一註冊請求至該TDF AP之後是否已接收一肯定回應。若已接收一肯定回應,則進入分時模2716。若決定2712或2714產生否定回應,則該系統保持在以競爭為基礎的模2710中。The transition from a competition-based mode to a time-sharing mode is illustrated in FIG. As shown, when in the competition-based modulo 2710, it is decided (2712) whether or not it is necessary to enter the time-sharing mode. When the answer is yes, then it is determined (2714) whether a positive response has been received after the TDF STA has transmitted a registration request to the TDF AP. If a positive response has been received, then the time sharing mode 2716 is entered. If the decision 2712 or 2714 produces a negative response, the system remains in the competition-based modulo 2710.
與圖27中所示的實施方案形成對比,一TDF STA能在其操作期間從分時模進入以競爭為基礎的模。圖28中解說此概念。如圖所示,當在分時模2802中時,決定(2804)是否需要進入以競爭為基礎的模。若需要,則傳送一非註冊請求(2806),並且進入以競爭為基礎的模2808。若不需要進入以競爭為基礎的模(2804),則該系統保持在分時模中2802。In contrast to the embodiment shown in Figure 27, a TDF STA can enter a competition-based mode from a time-sharing mode during its operation. This concept is illustrated in FIG. As shown, when in time-sharing mode 2802, it is determined (2804) whether a competition-based mode is required. If necessary, a non-registration request is transmitted (2806) and a competition-based modulo 2808 is entered. If it is not necessary to enter a competition-based mode (2804), the system remains in the time-sharing mode 2802.
應注意類似程序可應用於輪詢實施方案。例如,實施方案可按需要在輪詢模與分時模之間切換。It should be noted that similar procedures can be applied to the polling implementation. For example, an embodiment can switch between polling mode and time-sharing mode as needed.
如以上所說明,為了在現有同軸電纜存取網路上提供有成本效率的雙向資料傳輸解決方式,已建立一方法,其將具有外部頻率轉換電路的成熟商品WiFi晶片集用於訊框遞送。使用此方法的該系統係稱為ADoC(不對稱同軸電纜資料)系統,其中必須在電纜存取網路中配置TDF(分時功能)協定順應ADoC存取點(AP)及台(STA)。本文中所用的術語「ADoC系統」及「TDF系統」係可互換的。經由階層式樹結構中的分離器連接AP及STA(參見圖1)。採用此方式,在家裏的使用者能經由電纜存取網路存取遠端IP核心網路。圖1中解說詳細網路佈局。As explained above, in order to provide a cost effective two-way data transmission solution over existing coaxial cable access networks, a method has been established that uses a mature commodity WiFi wafer set with external frequency conversion circuitry for frame delivery. The system using this method is called an ADoC (Asymmetric Coaxial Cable Data) system in which a TDF (Time Sharing Function) protocol must be configured in the cable access network to comply with ADoC Access Points (APs) and Stations (STAs). The terms "ADoC system" and "TDF system" as used herein are interchangeable. APs and STAs are connected via a splitter in a hierarchical tree structure (see Figure 1). In this way, users at home can access the remote IP core network via a cable access network. The detailed network layout is illustrated in Figure 1.
在此典型基礎結構存取網路架構中,存在一TDF協定適應ADoC(TDF)存取點(AP),其具有一個乙太網路介面,藉由該介面該AP與該IP核心網路連接;以及一個同軸電纜介面,藉由該介面該AP與該電纜存取網路連接。在該存取網路之另一端,存在TDF協定適應ADoC(TDF)STA,其經由同軸電纜介面與該電纜存取網路連接,而且經由一無線介面(如WLAN(無線區域網路)介面)或一有線介面(例如乙太網路介面)與常駐LAN(區域網路)連接。In this typical infrastructure access network architecture, there is a TDF protocol adaptation ADoC (TDF) access point (AP) with an Ethernet interface through which the AP is connected to the IP core network. And a coaxial cable interface through which the AP is connected to the cable access network. At the other end of the access network, there is a TDF protocol-adaptive ADoC (TDF) STA that is connected to the cable access network via a coaxial cable interface and via a wireless interface (such as a WLAN (Wireless Local Area Network) interface). Or a wired interface (such as an Ethernet interface) to connect to a resident LAN (local area network).
參考圖29,用於一ADoC STA 2900之硬體實施方案的發明實施方案係將二個器件(一ADoC器件2903及一WLAN器件2904)整合成一綜合STA。ADoC器件2903將與一同軸電纜介面2906連接以支援電纜網路中的雙向資料通信,而WLAN器件2904將與一天線2908連接以支援WLAN網路中的雙向資料通信。STA 2900將在需要時交換ADoC器件2903與WLAN器件2904之間的資料訊框,以便致能WLAN網路中的PC經由該ADoC STA存取網際網路。Referring to Figure 29, an inventive embodiment of a hardware implementation for an ADoC STA 2900 integrates two devices (an ADoC device 2903 and a WLAN device 2904) into an integrated STA. The ADoC device 2903 will interface with a coaxial cable interface 2906 to support bidirectional data communication in the cable network, while the WLAN device 2904 will interface with an antenna 2908 to support bidirectional data communication in the WLAN network. The STA 2900 will exchange the data frame between the ADoC device 2903 and the WLAN device 2904 as needed to enable the PC in the WLAN network to access the Internet via the ADoC STA.
圖29中呈現的STA需要用於頻道編碼器/解編碼器及資料處理的二個獨立器件以為家庭WLAN中的個人電腦提供網際網路存取功能。本原理提供一解決方式,其利用一個獨立雙模器件,而且能夠週期性地在ADoC模與WLAN模之間切換,以為區域網路提供相同存取功能。The STA presented in Figure 29 requires two separate devices for channel encoder/decoder and data processing to provide Internet access for personal computers in a home WLAN. The present principles provide a solution that utilizes a separate dual mode device and can periodically switch between the ADoC mode and the WLAN mode to provide the same access functionality for the regional network.
本原理之雙模ADoC器件能支援ADoC模與WLAN模兩者並週期性在在此二個模之間切換。在ADoC模中,該雙模器件操作為一ADoC STA;而在WLAN模中,其操作為一WLAN AP。The dual mode ADoC device of the present principle can support both the ADoC mode and the WLAN mode and periodically switch between the two modes. In the ADoC mode, the dual mode device operates as an ADoC STA; and in the WLAN mode, it operates as a WLAN AP.
藉由使用本原理之單一雙模器件解決方式,而非圖29中所示的經典解決方式中的二個器件,嵌入此雙模ADoC器件的ADoC STA能為區域網路提供網際網路存取功能。因此,與圖29中所示的二個器件之經典解決方式比較,具有經由電纜存取網路之網際網路存取支援的一ADoC STA之製造成本能減少幾乎原先成本的一半。By using a single dual-mode device solution of the present principles, rather than two of the classic solutions shown in Figure 29, the ADoC STA embedded in the dual-mode ADoC device can provide Internet access to the local area network. Features. Thus, the manufacturing cost of an ADoC STA with Internet access support via a cable access network can be reduced by almost half of the original cost compared to the classic solution of the two devices shown in FIG.
為了實現本原理之雙模器件2902,根據成熟WLAN器件修改並發展標準ADoC器件2903。其主要在二個態樣中不同於WLAN器件2904:1)在實體實施方案態樣,其RF以ADoC頻帶(約1GHz)而非標準802.11頻帶(約2.4GHz)操作;以及2)在MAC(媒體存取控制)層中,其並不利用傳統802.11 DCF(分佈協調功能)或PCF(點協調功能)機制以交換MAC訊框。相反,其使用TDF協定,其係基於分時多向近接(TDMA)方法以傳輸MAC訊框。To implement the dual mode device 2902 of the present principles, a standard ADoC device 2903 is modified and developed in accordance with a mature WLAN device. It differs primarily from the WLAN device 2904 in two aspects: 1) in a physical implementation, the RF operates in the ADoC band (about 1 GHz) instead of the standard 802.11 band (about 2.4 GHz); and 2) in the MAC ( In the Media Access Control layer, it does not utilize traditional 802.11 DCF (Distributed Coordination Function) or PCF (Point Coordination Function) mechanisms to exchange MAC frames. Instead, it uses the TDF protocol, which is based on a Time Division Multi-Direction Near (TDMA) method to transmit MAC frames.
如圖30中所示,雙模ADoC器件2902將與一同軸電纜介面2906連接以與電纜存取網路互連,而且同時與一天線2908連接以支援WLAN網路中的雙向資料通信。ADoC STA 2900將在需要時交換在此二個模期間從此雙模ADoC器件2902接收的資料訊框。As shown in FIG. 30, dual mode ADoC device 2902 will be coupled to a coaxial cable interface 2906 for interconnection with a cable access network and simultaneously coupled to an antenna 2908 to support bidirectional data communication in a WLAN network. The ADoC STA 2900 will exchange data frames received from this dual mode ADoC device 2902 during the two modes as needed.
依據圖31中所示的雙模ADoC器件2902之一硬體實施方案,提供一開關3102,其係經組態用以在WLAN RF電路3104與ADoC RF電路3106之間切換的一電路。能藉由MAC層軟體控制開關3102。此實施方案需要修改WLAN晶片集並且將開關3102添加至修改晶片集。In accordance with one of the hardware implementations of dual mode ADoC device 2902 shown in FIG. 31, a switch 3102 is provided that is configured to switch between WLAN RF circuit 3104 and ADoC RF circuit 3106. The switch 3102 can be controlled by the MAC layer software. This embodiment requires modifying the WLAN wafer set and adding switch 3102 to the modified wafer set.
依據圖32中所示的另一硬體實施方案,能按按照與該器件之MAC基頻部分3100的鄰近而改變開關3102之位置。在此實施方案中,轉換器3108減少WLAN頻帶(其係WLAN RF 3104之輸出並且係約2.4GHz)至ADoC頻譜(其係約1GHz)並且能達到同軸電纜中的相對較長距離。應注意MAC基頻部分3100的特徵可以為經組態用以致能一使用者器件與雙模ADoC器件2902通信的一通信器件。According to another hardware embodiment shown in Figure 32, the position of switch 3102 can be changed in proximity to the MAC baseband portion 3100 of the device. In this embodiment, converter 3108 reduces the WLAN band (which is the output of WLAN RF 3104 and is about 2.4 GHz) to the ADoC spectrum (which is about 1 GHz) and can reach a relatively long distance in the coaxial cable. It should be noted that the MAC baseband portion 3100 can be characterized as a communication device configured to enable a user device to communicate with the dual mode ADoC device 2902.
與圖31之實施方案形成對比,圖32之實施方案係在現有WLAN晶片集外部,而且同樣地並不需要修改該WLAN晶片集。In contrast to the embodiment of Figure 31, the embodiment of Figure 32 is external to the existing WLAN chip set, and as such does not require modification of the WLAN chip set.
在雙模ADoC器件2902中,基本存取方法係TDF協定,其係與ADoC器件2903中的MAC層協定相同。In the dual mode ADoC device 2902, the basic access method is the TDF protocol, which is the same as the MAC layer protocol in the ADoC device 2903.
如圖34所示,存在每TDF超訊框固定數目(tdfTotalTimeSlotNumber)的時槽,其係由下列各項組成:用以從ADoC AP傳送時脈同步資訊至ADoC STA的1個同步時槽、用以傳輸用於上行鏈路時槽分配的註冊請求之1個競爭時槽、由註冊ADoC STA用以相繼傳送資料及一些管理訊框至ADoC AP的tdfUplinkTimeSlotNumber個上行鏈路時槽、以及由ADoC AP用以傳輸資料及一些管理訊框至STA的tdfDownlinkTimeSlotNumber個下行鏈路時槽。As shown in FIG. 34, there is a time slot of a fixed number of TDF frames (tdfTotalTimeSlotNumber), which is composed of the following items: one synchronization time slot for transmitting clock synchronization information from the ADoC AP to the ADoC STA, a competing time slot for transmitting a registration request for uplink time slot allocation, tdfUplinkTimeSlotNumber uplink time slots used by the registered ADoC STA for successive transmission of data and some management frames to the ADoC AP, and by the ADoC AP The tdfDownlinkTimeSlotNumber downlink time slot used to transmit data and some management frames to the STA.
採用此TDF協定,STA模中的雙模ADoC器件2902將僅在同步槽、競爭時槽、分配上行鏈路時槽(例如時槽k)以及下行鏈路時槽期間係活動的。在其餘時槽中(即,從時槽2至時槽k;以及從時槽k至時槽m),STA模中的雙模ADoC器件在ADoC介面部分中將係不活動的,並因此能在存在可經控制用以將操作RF從ADoC頻帶改變為WLAN頻帶的一開關之情況下切換至WLAN AP模。With this TDF protocol, the dual mode ADoC device 2902 in the STA mode will be active only during the synchronization slot, the contention time slot, the allocation uplink time slot (e.g., time slot k), and the downlink time slot. In the remaining time slots (ie, from time slot 2 to time slot k; and from time slot k to time slot m), the dual mode ADoC device in the STA mode will be inactive in the ADoC interface portion and thus Switching to the WLAN AP mode is present in the presence of a switch that can be controlled to change the operational RF from the ADoC band to the WLAN band.
雙模ADoC器件中的詳細MAC層程序係如下:The detailed MAC layer procedure in the dual-mode ADoC device is as follows:
1.一旦一ADoC STA得以啟動並成功地分配用於上行鏈路訊務傳輸的一上行鏈路時槽,例如時槽k,則該雙模器件將計算是否k>(m+2)/2。若,則由T[time slot 2,time slot k) 指示的[時槽2、時槽k)之持續時間係至少等於由T(time slot k,time slot m ]指示的(時槽k、時槽m]之持續時間。因此,雙模ADoC器件將選擇在[時槽2、時槽k)週期期間在WLAN模中操作。另一方面,若k<(m+2)/2,則其意指T[time slot 2,time slot k )係短於T(time slot k,time slot m] 。因此,雙模ADoC器件將選擇在[時槽k、時槽m)週期期間在WLAN模中操作。1. Once an ADoC STA is enabled and successfully allocates an uplink time slot for uplink traffic transmission, such as time slot k, the dual mode device will calculate whether k>(m+2)/2 . If , the duration of [time slot 2, time slot k) indicated by T [time slot 2, time slot k) is at least equal to that indicated by T (time slot k, time slot m ] (time slot k, time slot ) m] duration. Therefore, the dual-mode ADoC device will choose to operate in the WLAN mode during the [time slot 2, time slot k) period. On the other hand, if k < (m + 2) / 2, then its meaning It means that T[ time slot 2, time slot k ) is shorter than T (time slot k, time slot m) . Therefore, the dual-mode ADoC device will choose to operate in the WLAN mode during the [time slot k, time slot m) period. .
應注意決定是否週期[槽2、槽k)>週期(槽k、槽m]會產生準則(k-2)>(m-k),其依次產生準則k>(m+2)/2。此外,在說明的實施方案中,該WLAN模係選擇用於較長週期。然而,其他實施方案在較短週期期間在WLAN模中操作,或在超訊框中在模之間改變多次。It should be noted that determining whether the period [slot 2, slot k) > period (slot k, slot m) yields a criterion (k-2) > (mk), which in turn produces a criterion k > (m + 2)/2. In the illustrated embodiment, the WLAN model is selected for longer periods. However, other embodiments operate in the WLAN mode during shorter periods or multiple times between modes in the hyperframe.
2.對於一TDF超訊框中的其他時槽,在雙模ADoC器件決定在[時槽2、時槽k)週期期間在WLAN模中操作的情況下,雙模ADoC器件將在ADoC模中操作為ADOC STA並且以依據標準ADoC TDF協定之方式而行動。因此,當雙模ADoC器件進入ADoC模中的時槽2時,其將組態RF開關3102以改變操作頻率至WLAN頻譜,並擔當一WLAN AP。因此此雙模STA能依據標準WLAN程序與常駐WLAN網路中的WLAN STA通信。2. For other time slots in a TDF frame, in the case where the dual mode ADoC device decides to operate in the WLAN mode during the [Time slot 2, time slot k) period, the dual mode ADoC device will be in the ADoC mode. The operation is an ADOC STA and acts in a manner consistent with the standard ADoC TDF protocol. Therefore, when the dual mode ADoC device enters the time slot 2 in the ADoC mode, it will configure the RF switch 3102 to change the operating frequency to the WLAN spectrum and act as a WLAN AP. Therefore, the dual mode STA can communicate with the WLAN STA in the resident WLAN network according to a standard WLAN procedure.
隨著時間的推移而且係接近時槽k,並且在時槽k開始之前示未留下用於至少一WLAN訊框的時間,雙模器件2902將傳送CTS(清除傳送)信號至常駐WLAN中的所有STA。CTS訊框中的持續時間欄位將等於從此超訊框中的時槽k至下一超訊框中的時槽2之持續時間。在接收CTS訊息之後,所有STA將更新其NAV並制止在藉由CTS訊息報告的持續時間內存取該WLAN媒體。採用此方式,雙模器件將藉由假裝存在另一實體用以在持續時間內保存WLAN媒體而使所有STA在從此超訊框中的時槽k至下一超訊框中的時槽2之週期內保持安靜。其後,該器件將控制該開關以將操作頻譜改變回至ADoC頻帶並依據TDF程序而操作。Over time and closer to slot k, and before time slot k begins to show no time for at least one WLAN frame, dual mode device 2902 will transmit a CTS (clear transmission) signal to the resident WLAN. All STAs. The duration field in the CTS frame will be equal to the duration from time slot k in the superframe to time slot 2 in the next hyperframe. After receiving the CTS message, all STAs will update their NAV and stop accessing the WLAN media for the duration reported by the CTS message. In this way, the dual mode device will cause all STAs to move from the time slot k in the superframe to the time slot 2 in the next superframe by pretending another entity to save the WLAN media for the duration. Keep quiet during the cycle. Thereafter, the device will control the switch to change the operational spectrum back to the ADoC band and operate in accordance with the TDF procedure.
當到了雙模器件2902進入下一超訊框中的時槽2之時間時,器件2902將重複相同模開關程序並且常駐WLAN中的STA亦將開始使用此可用基礎結構WLAN以再次進行通信,因為由CTS指示的安靜持續時間同時過期。When the dual mode device 2902 enters the time slot 2 of the next hyperframe, the device 2902 will repeat the same mode switch procedure and the STAs resident in the WLAN will also begin to use this available infrastructure WLAN to communicate again because The quiet duration indicated by the CTS expires at the same time.
相反,對於該雙模ADoC器件決定在用於一TDF超訊框中的其他時槽之(時槽k、時槽m)週期期間在WLAN模中操作的情況,該雙模ADoC器件將在ADoC模中操作為一STA。當雙模ADoC器件2902進入ADoC模中的時槽(k+1)時,其將組態開關3102以改變操作頻率至WLAN頻譜,並擔當一AP。一旦其係在隨著時間的推移而傳遞時槽(m-1),則該雙模器件將設法在時槽m期間傳送CST信號,持續時間欄位係等於從此超訊框中的下行鏈路時槽之開始至下一超訊框中的時槽(k+1)之持續時間。其後,雙模器件2902將控制開關2002以將操作頻譜改變至ADoC頻帶並依據ADoCTDF程序而操作。因此,當該雙模器件進入下一超訊框中的時槽(k+1)時,其將再次實行相同的模開關程序,如以上所說明。Conversely, for the dual mode ADoC device to determine operation in the WLAN mode during other time slots (time slot k, time slot m) periods for use in a TDF superframe, the dual mode ADoC device will be in the ADoC The operation in the modulo is a STA. When the dual mode ADoC device 2902 enters the time slot (k+1) in the ADoC mode, it will configure the switch 3102 to change the operating frequency to the WLAN spectrum and act as an AP. Once it is passed over time slot (m-1), the dual mode device will try to transmit the CST signal during time slot m, the duration field is equal to the downlink from this superframe The duration from the start of the time slot to the time slot (k+1) in the next superframe. Thereafter, dual mode device 2902 will control switch 2002 to change the operational spectrum to the ADoC band and operate in accordance with the ADoCTDF procedure. Therefore, when the dual mode device enters the time slot (k+1) in the next superframe, it will again perform the same mode switching procedure, as explained above.
依據一個實施方案,將本原理之一實施方案的雙模器件2902整合於自圖10的一數據機(例如1010、1020等)中。圖33顯示此實施方案之一範例。同樣地,當雙模器件2902係在操作或實行標準WLAN通信時(即,當在適當時間週期內操作時),該器件允許使用者PC連接至網際網路。在此實施方案中,PC使用者將藉由透過一WLAN介面在無線媒體上傳送對網際網路位址的一請求至一數據機而請求一網際網路位址(例如,一網頁),而且2)該數據機經由ADoC介面在電纜網路上轉播該請求至ADoC AP,接著至該路由器,並接著至網際網路。According to one embodiment, the dual mode device 2902 of one embodiment of the present principles is integrated into a data machine (e.g., 1010, 1020, etc.) from FIG. Figure 33 shows an example of this embodiment. Likewise, when the dual mode device 2902 is operating or performing standard WLAN communications (i.e., when operating during an appropriate time period), the device allows the user PC to connect to the Internet. In this embodiment, the PC user will request an internet address (eg, a web page) by transmitting a request for the internet address to the data machine over the wireless medium via a WLAN interface, and 2) The modem relays the request over the cable network over the cable network to the ADoC AP, then to the router, and then to the Internet.
在此實施方案中,雙模器件2902包括一ADoC介面或器件1018而非一乙太網路介面。In this embodiment, dual mode device 2902 includes an ADoC interface or device 1018 rather than an Ethernet interface.
當該數據機的雙模器件在WLAN(即,無線模)中操作時,該器件擔當一WLAN AP,而且個人電腦擔當WLAN台,其中該雙模器件經由該數據機與個人電腦之間的無線鏈路從個人電腦接收該請求。該雙模器件轉播接收請求至該橋接器,並且該橋接器決定該雙模器件是否需要經由該雙模器件中的ADoC介面在該電纜中傳送該請求,或根據用於此請求之IP訊包中的目的地位址資訊而傳送該請求至該常駐網路中的其他PC。該橋接器接著向下傳送該請求回至該雙模器件。When the dual mode device of the data machine operates in a WLAN (ie, wireless mode), the device acts as a WLAN AP, and the personal computer acts as a WLAN station, wherein the dual mode device wirelessly communicates with the personal computer through the data machine The link receives the request from the personal computer. The dual mode device relays a request to the bridge, and the bridge determines whether the dual mode device needs to transmit the request in the cable via an ADoC interface in the dual mode device, or according to an IP packet for the request The destination address information in the middle transmits the request to other PCs in the resident network. The bridge then passes the request down to the dual mode device.
為了使該請求建立一外部連接,該雙模器件保持該請求直至該雙模器件進入ADoC模(即,有線模),此時該雙模器件擔當一ADoC台並經由ADoC介面在有線網路上傳送出該請求至ADoC AP。In order for the request to establish an external connection, the dual mode device maintains the request until the dual mode device enters the ADoC mode (ie, the wired mode), at which time the dual mode device acts as an ADoC station and transmits over the wired network via the ADoC interface. The request is sent to the ADoC AP.
為了使該請求建立與常駐網路中的其他PC之一內部連接,該雙模器件保持該請求直至該雙模器件進入WLAN模(即,無線模),此時其擔當一WLAN AP並經由WLAN介在在無線媒體上傳送出該請求至目的地PC。In order for the request to be established internally with one of the other PCs in the resident network, the dual mode device maintains the request until the dual mode device enters the WLAN mode (ie, the wireless mode), at which point it acts as a WLAN AP and via the WLAN. The request is transmitted to the destination PC on the wireless medium.
當該雙模器件從電纜網路中的相關聯ADoC AP或區域網路中的其他PC接收任何回應時,將實行反程序。The reverse program is implemented when the dual mode device receives any response from an associated ADoC AP in the cable network or other PC in the regional network.
從上述說明可清楚看出,在至少一些實施方案中,共同電路或軟體(例如)可用以實行與WLAN模及ADoC模相關聯的處理之大部分。例如,可藉由一共同電路實行自兩個模的資料之接收及去訊包化,以及二個模之間的轉換。可能需要此轉換的各種應用包括(1)從一電腦接收一WLAN模項目(例如對網際網路存取的請求)並使用ADoC模傳送出該項目的一數據機,以及(2)其接收ADoC模中的請求網際網路資料並使用WLAN模傳送該資料至一電腦的一數據機。此等方案將通常涉及不同協定之間的轉換。As is apparent from the above description, in at least some embodiments, a common circuit or software (for example) can be used to perform most of the processing associated with the WLAN mode and the ADoC mode. For example, the reception and de-packetization of data from two modes and the conversion between two modes can be performed by a common circuit. Various applications that may require this conversion include (1) receiving a WLAN mode item from a computer (eg, a request for Internet access) and transmitting the data machine using the ADoC module, and (2) receiving the ADoC The modem requests the internet data and uses the WLAN module to transmit the data to a modem of a computer. These scenarios will typically involve conversions between different agreements.
一雙模器件之各種實施方案使用一通信單元以致能一或多個模中的通信。一通信單元可包括(例如)雙模ADoC器件2902,或其部分,例如MAC基頻3100、WLAN RF 3104以及ADoC RF 3106。Various embodiments of a dual mode device use a communication unit to enable communication in one or more modes. A communication unit can include, for example, a dual mode ADoC device 2902, or portions thereof, such as MAC baseband 3100, WLAN RF 3104, and ADoC RF 3106.
應注意一數據機可不僅包括如以上說明的一雙模器件,而且可包括用以致能橫跨其他網路(除WLAN及ADoC以外)的通信之介面。此類其他網路可包括(例如一乙太網路)。因此,一數據機可包括(例如)雙模器件2902,其致能橫跨WLAN及ADoC網路以及乙太網路介面1015的通信。It should be noted that a modem may include not only a dual mode device as described above, but also an interface to enable communication across other networks (other than WLAN and ADoC). Such other networks may include (eg, an Ethernet). Thus, a modem can include, for example, a dual mode device 2902 that enables communication across the WLAN and ADoC networks as well as the Ethernet interface 1015.
各種實施方案(例如)以一形式或另一形式存取資料。術語「存取」係用作一廣義術語,其包括(例如)以某方式獲得、擷取、接收、操縱或處理。因此,存取資料之說明(例如)係可行實施方案之廣義說明。Various embodiments, for example, access data in one form or another. The term "access" is used as a broad term to include, for example, obtain, capture, receive, manipulate, or process in a manner. Accordingly, the description of the access data (for example) is a broad description of a possible implementation.
說明的實施方案之特徵及態樣可應用於各種應用。應用包括(例如)個人在其家中使用主機器件以使用一電纜上乙太網路通信框架與網際網路通信,如以上所說明然而,本文中說明的特徵及態機可經調適用於其他應用區域,並因此其他應用係可行並預想。例如,使用者可定位在其家外面,例如,在公共空間或其工作中。另外,可使用除乙太網路及電纜以外的協定及通信媒體。例如,可在光纖電纜、萬用串列匯流排(USB)電纜、小電腦系統介面(SCSI)電纜、電話線、數位用戶線/迴路(DSL)線、衛星連接、視線連接以及蜂巢式連接上(並使用與其相關聯的協定)傳送並接收資料。The features and aspects of the illustrated embodiments can be applied to a variety of applications. Applications include, for example, an individual using a host device in their home to communicate with the Internet using an on-board Ethernet communication framework, as explained above. However, the features and states described herein can be adapted for other applications. Areas, and therefore other applications are feasible and envisioned. For example, a user can be positioned outside of their home, for example, in a public space or in their work. In addition, protocols and communication media other than Ethernet and cable can be used. For example, on fiber optic cables, universal serial bus (USB) cables, small computer system interface (SCSI) cables, telephone lines, digital subscriber line/loop (DSL) lines, satellite connections, line-of-sight connections, and cellular connections. (and use the agreement associated with it) to transmit and receive data.
可在(例如)一方法或程序、一裝置或一軟體程式中實施本文中說明的實施方案。即使僅在實施方案之單一形式的內容中說明(例如,僅說明為方法),但是說明的特徵之實施方案亦可在其他形式(例如,一裝置或程式)中加以實施。可在(例如)適當硬體、軟體及韌體中實施一裝置。可在(例如)一裝置中實施該方法,該裝置如一般指處理器件的一處理器,包括(例如)一電腦、一微處理器、一積體電路、或一可程式邏輯器件。處理器件亦包括通信器件,例如電腦、行動電話、可攜式/個人數位助理(「PDA」)、以及促進終端使用者之間的資訊通信之其他器件。The embodiments described herein may be implemented, for example, in a method or program, a device, or a software program. Even if only described in the context of a single form of the embodiments (e.g., only as a method), embodiments of the described features may be implemented in other forms (e.g., a device or program). A device can be implemented, for example, in a suitable hardware, software, and firmware. The method can be implemented, for example, in a device, such as a processor generally referred to as a processing device, including, for example, a computer, a microprocessor, an integrated circuit, or a programmable logic device. Processing devices also include communication devices such as computers, mobile phones, portable/personal digital assistants ("PDAs"), and other devices that facilitate communication of information between end users.
可在各種不同設備或應用,尤其係(例如)與資料傳輸及接收相關聯的設備或應用中具體化本文中說明的各種程序及特徵之實施方案。設備之範例包括視訊編碼器、視訊解碼器、視訊編解碼器、網頁伺服器、轉頻器、膝上型電腦、個人電腦以及其他通信器件。應該清楚,該設備可以係行動的並且甚至安裝在汽車上。Embodiments of the various programs and features described herein can be embodied in a variety of different devices or applications, particularly in devices or applications associated with, for example, data transmission and reception. Examples of devices include video encoders, video decoders, video codecs, web servers, transponders, laptops, personal computers, and other communication devices. It should be clear that the device can be mobile and even installed in a car.
另外,可由藉由一處理器所實行的指令實施該方法,而且可將此類指令儲存在一處理器可讀取媒體中,該媒體如一積體電路、一軟體載波或其他儲存器件,例如一硬碟機、一光碟、一隨機存取記憶體(「RAM」)或一唯讀記憶體(「ROM」)。該指令可形成可觸知地具體化於處理器可讀取媒體中的一應用程式。應該清楚,一處理器可包括具有(例如)用於實現一程序的指令之一處理器可讀取媒體。In addition, the method can be implemented by instructions executed by a processor, and such instructions can be stored in a processor readable medium, such as an integrated circuit, a software carrier or other storage device, such as a A hard disk drive, a compact disc, a random access memory ("RAM") or a read-only memory ("ROM"). The instructions can form an application that is tangibly embodied in the processor readable medium. It should be clear that a processor can include a processor readable medium having, for example, instructions for implementing a program.
關於儲存器件,應注意整個說明之實施方案中的各種器件通常包括一或多個儲存器件。例如,儘管未清楚地指示,但是數據機1010及1020與以及AP 1030(以及各種其他元件)通常包括用於儲存資料的一或多個儲存單元。儲存可以係(例如)電子、磁性或光學的。With regard to storage devices, it should be noted that the various devices in the overall illustrated embodiment typically include one or more storage devices. For example, although not explicitly indicated, data machines 1010 and 1020 and AP 1030 (and various other components) typically include one or more storage units for storing material. Storage can be, for example, electronic, magnetic or optical.
從上述揭示內容應明白,實施方案亦可產生經格式化用以承載可(例如)加以儲存或傳輸的資訊之一信號。該資訊可包括(例如)用於實行一方法的指令,或藉由說明的實施方案之一所產生的資料。此信號可經格式化為(例如)一電磁波(例如,使用頻譜之一射頻部分)或一基頻信號。該格式化可包括(例如)編碼一資料流,依據各種訊框結構之任一者訊包化編碼流,以及採用訊包化流來調變一載波。該信號承載的資訊可以為(例如)類比或數位資訊。可以在各種不同有線或無線鏈路上傳輸該信號,此已為人所知。It will be apparent from the above disclosure that embodiments can also produce signals that are formatted to carry information that can be stored or transmitted, for example. The information may include, for example, instructions for implementing a method, or data generated by one of the illustrated embodiments. This signal can be formatted as, for example, an electromagnetic wave (e.g., using one of the radio frequency portions of the spectrum) or a baseband signal. The formatting can include, for example, encoding a data stream, packetizing the encoded stream according to any of the various frame structures, and employing a packetized stream to modulate a carrier. The information carried by the signal can be, for example, analog or digital information. This signal can be transmitted over a variety of different wired or wireless links, as is known.
900...網路900. . . network
910...使用者家910. . . User home
912...數據機912. . . Data machine
914...主機1914. . . Host 1
916...主機2916. . . Host 2
918...乙太網路918. . . Ethernet
920...使用者家920. . . User home
922...數據機922. . . Data machine
924...主機1924. . . Host 1
926...主機2926. . . Host 2
928...乙太網路928. . . Ethernet
930...網際網路930. . . Internet
940...AP940. . . AP
950...電纜系統950. . . Cable system
960...路由器960. . . router
970...乙太網路970. . . Ethernet
1010...數據機#11010. . . Data machine #1
1011...區域應用層1011. . . Regional application layer
1012...TCP/IP層1012. . . TCP/IP layer
1014...橋接器1014. . . Bridge
1015...乙太網路介面1015. . . Ethernet interface
1016...PADM1016. . . PADM
1017...WLAN介面1017. . . WLAN interface
1018...器件1018. . . Device
1020...數據機#N1020. . . Data machine #N
1030...AP1030. . . AP
1040...電纜網路1040. . . Cable network
1052...乙太網路1052. . . Ethernet
1054...第一主機1054. . . First host
1056...第二主機1056. . . Second host
1062...乙太網路1062. . . Ethernet
1064...第一主機1064. . . First host
1066...第二主機1066. . . Second host
1071...區域應用層1071. . . Regional application layer
1072...TCP/IP層1072. . . TCP/IP layer
1074...橋接器1074. . . Bridge
1075...WLAN介面1075. . . WLAN interface
1076...PADM1076. . . PADM
1077...乙太網路介面1077. . . Ethernet interface
1082...乙太網路1082. . . Ethernet
1090...路由器1090. . . router
1095...網際網路1095. . . Internet
1210...乙太網路訊包1210. . . Ethernet packet
1220...乙太網路標頭1220. . . Ethernet network road sign
1230...資料部分1230. . . Data section
1240...WLAN訊包1240. . . WLAN packet
1250...WLAN標頭1250. . . WLAN header
1260...訊框檢查序列(FCS)1260. . . Frame check sequence (FCS)
1310...乙太網路訊包1310. . . Ethernet packet
1312...乙太網路訊包1312. . . Ethernet packet
1314...乙太網路訊包1314. . . Ethernet packet
1318...WLAN訊包1318. . . WLAN packet
1320...乙太網路標頭1320. . . Ethernet network road sign
1322...乙太網路標頭1322. . . Ethernet network road sign
1324...乙太網路標頭1324. . . Ethernet network road sign
1326...資料部分1326. . . Data section
1328...資料部分1328. . . Data section
1329...資料部分1329. . . Data section
1330...擴大乙太網路訊包1330. . . Expand the Ethernet packet
1332...擴大乙太網路訊包1332. . . Expand the Ethernet packet
1334...擴大乙太網路訊包1334. . . Expand the Ethernet packet
1336...資料部分1336. . . Data section
1338...資料部分1338. . . Data section
1340...資料部分1340. . . Data section
1342...標頭1342. . . Header
1343...標頭1343. . . Header
1344...標頭1344. . . Header
1346...結尾1346. . . end
1347...結尾1347. . . end
1348...結尾1348. . . end
1350...EIW訊包1350. . . EIW package
1352...資料部分1352. . . Data section
1353...資料部分1353. . . Data section
1354...資料部分1354. . . Data section
1356...標頭1356. . . Header
1358...結尾1358. . . end
1360...資料部分1360. . . Data section
1362...WLAN MAC標頭1362. . . WLAN MAC header
1364...FCS1364. . . FCS
1410...進入佇列1410. . . Enter queue
1420...串1420. . . string
1430...EIW標頭1430. . . EIW header
1440...WLAN標頭1440. . . WLAN header
1530...訊包描述符1530. . . Packet descriptor
1540...訊包描述符1540. . . Packet descriptor
1550...訊包旗標1550. . . Packet flag
1555...訊包旗標1555. . . Packet flag
1560...訊包長度1560. . . Packet length
1565...訊包長度1565. . . Packet length
1710...訊包1710. . . Packet
1720...訊包1720. . . Packet
1730...等待佇列1730. . . Waiting queue
1740...不完全訊包1740. . . Incomplete packet
1750...PADM1750. . . PADM
1760...封包器1760. . . Packetizer
1770...去封包器1770. . . Depacker
2002...開關2002. . . switch
2100...訊框結構2100. . . Frame structure
2110...輪詢時槽2110. . . Polling slot
2120...時槽2120. . . Time slot
2300...TDF AP2300. . . TDF AP
2302...PC2302. . . PC
2304...TDF STA2304. . . TDF STA
2600...訊框結構2600. . . Frame structure
2610...競爭時槽2610. . . Competitive time slot
2620...時槽2620. . . Time slot
2900...STA2900. . . STA
2902...雙模器件2902. . . Dual mode device
2903...ADoC器件2903. . . ADoC device
2904...WLAN器件2904. . . WLAN device
2906...同軸電纜介面2906. . . Coaxial cable interface
2908...天線2908. . . antenna
3100...MAC基頻部分3100. . . MAC baseband part
3102...開關3102. . . switch
3104...WLAN RF電路3104. . . WLAN RF circuit
3106...ADoC RF電路3106. . . ADoC RF circuit
3108...轉換器3108. . . converter
圖1解說一簡化範例性TDF存取網路架構。Figure 1 illustrates a simplified exemplary TDF access network architecture.
圖2解說OSI參考模型中的802.11MAC子層。Figure 2 illustrates the 802.11 MAC sublayer in the OSI reference model.
圖3解說OSI參考模型中的一TDF傳輸實體之一實施方案。3 illustrates one implementation of a TDF transport entity in an OSI reference model.
圖4解說一通信模進入程序之一實施方案。Figure 4 illustrates one embodiment of a communication mode entry procedure.
圖5解說一TDF超訊框結構之一實施方案。Figure 5 illustrates one embodiment of a TDF hyperframe structure.
圖6解說一註冊程序之一實施方案。Figure 6 illustrates one implementation of a registration procedure.
圖7解說一非註冊程序之一實施方案。Figure 7 illustrates one implementation of a non-registration procedure.
圖8解說一活躍通知程序之一實施方案。Figure 8 illustrates one implementation of an active notification procedure.
圖9包括描述一TDF網路之一實施方案的一系統圖。Figure 9 includes a system diagram depicting one embodiment of a TDF network.
圖10包括自圖9的一AP及一數據機之一實施方案的方塊圖。Figure 10 includes a block diagram of one embodiment of an AP and a data machine from Figure 9.
圖11包括一上行鏈路傳輸程序之一實施方案的流程圖。Figure 11 includes a flow diagram of one embodiment of an uplink transmission procedure.
圖12包括一乙太網路訊包與一WLAN訊包之間的一對一映射之一實施方案的圖。Figure 12 includes a diagram of one embodiment of a one-to-one mapping between an Ethernet packet and a WLAN packet.
圖13包括多個乙太網路訊包與單一WLAN訊包之間的轉化之一實施方案的圖。Figure 13 includes a diagram of one implementation of a transition between multiple Ethernet packets and a single WLAN packet.
圖14包括描述圖13之轉化中的訊包流之圖。Figure 14 includes a diagram depicting the packet flow in the conversion of Figure 13.
圖15包括自圖14的EIW標頭之一實施方案的圖。Figure 15 includes a diagram of one embodiment of the EIW header from Figure 14.
圖16包括一上行鏈路接收程序之一實施方案的流程圖。Figure 16 includes a flow diagram of one embodiment of an uplink receiving procedure.
圖17包括用於去封包訊包的一實施方案之圖。Figure 17 includes a diagram of an embodiment for decapsulating packets.
圖18包括描述自圖10的一PADM之一實施方案的圖。Figure 18 includes a diagram depicting one embodiment of a PADM from Figure 10.
圖19包括一下行鏈路傳輸程序之一實施方案的流程圖。Figure 19 includes a flow diagram of one embodiment of a downlink transmission procedure.
圖20包括一下行鏈路接收程序之一實施方案的流程圖。Figure 20 includes a flow diagram of one embodiment of a downlink receive procedure.
圖21解說採用輪詢及分時媒體存取兩者的一TDF超訊框結構之一實施方案。Figure 21 illustrates one embodiment of a TDF hyperframe structure employing both polling and time-sharing media access.
圖22解說具有混合媒體存取機制的一TDF超訊框結構之一實施方案。Figure 22 illustrates one embodiment of a TDF hyperframe structure with a hybrid media access mechanism.
圖23解說一方塊圖及一TDF網路中的SP與台。Figure 23 illustrates a block diagram and SP and stations in a TDF network.
圖24解說輪詢通知程序之一實施方案。Figure 24 illustrates one embodiment of a polling notification procedure.
圖25解說一輪詢程序之流程圖。Figure 25 illustrates a flow chart of a polling procedure.
圖26解說具有混合媒體存取機制的一TDF超訊框結構之一實施方案。Figure 26 illustrates one embodiment of a TDF hyperframe structure with a hybrid media access mechanism.
圖27解說用於從以競爭為基礎的模切換至分時模的程序之流程圖。Figure 27 illustrates a flow chart for a procedure for switching from a competition based mode to a time sharing mode.
圖28解說用於從分時模切換至以競爭為基礎的模的程序之流程圖。28 illustrates a flow diagram of a procedure for switching from a time-sharing mode to a contention-based mode.
圖29係一TDF(ADoC)STA之方塊圖。Figure 29 is a block diagram of a TDF (ADoC) STA.
圖30係具有依據一實施方案之一雙模器件的一TDF(ADoC)STA之方塊圖。Figure 30 is a block diagram of a TDF (ADoC) STA having a dual mode device in accordance with an embodiment.
圖31係TDF(ADoC)STA雙模器件之一硬體實施方案之方塊圖。Figure 31 is a block diagram of one of the hardware implementations of a TDF (ADoC) STA dual mode device.
圖32係TDF(ADoC)STA雙模器件之另一硬體實施方案之方塊圖。32 is a block diagram of another hardware implementation of a TDF (ADoC) STA dual mode device.
圖33係於圖10之數據機中的本原理之雙模器件的實施方案之方塊圖。Figure 33 is a block diagram of an embodiment of the dual mode device of the present principles in the data engine of Figure 10.
圖34解說一TDF超訊框結構之另一方案。Figure 34 illustrates another aspect of a TDF hyperframe structure.
(無元件符號說明)(no component symbol description)
Claims (22)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2007/002146 WO2009009918A1 (en) | 2007-07-13 | 2007-07-13 | Data transmission and encapsulation |
PCT/CN2007/002613 WO2009026745A1 (en) | 2007-08-31 | 2007-08-31 | Method and apparatus for communicating in multiple modes |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200922250A TW200922250A (en) | 2009-05-16 |
TWI394417B true TWI394417B (en) | 2013-04-21 |
Family
ID=44728109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW097126501A TWI394417B (en) | 2007-07-13 | 2008-07-11 | Method and apparatus for communicating in multiple modes |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI394417B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4882730A (en) * | 1986-11-28 | 1989-11-21 | Nec Corporation | TDMA communication system having common time slots for system maintenance |
CN1333968A (en) * | 1998-11-24 | 2002-01-30 | 艾利森电话股份有限公司 | Multi-media protocol for slot-based communication systems |
TW200625897A (en) * | 2004-10-29 | 2006-07-16 | Research In Motion Ltd | Secure peer-to-peer messaging invitation architecture |
-
2008
- 2008-07-11 TW TW097126501A patent/TWI394417B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4882730A (en) * | 1986-11-28 | 1989-11-21 | Nec Corporation | TDMA communication system having common time slots for system maintenance |
CN1333968A (en) * | 1998-11-24 | 2002-01-30 | 艾利森电话股份有限公司 | Multi-media protocol for slot-based communication systems |
TW200625897A (en) * | 2004-10-29 | 2006-07-16 | Research In Motion Ltd | Secure peer-to-peer messaging invitation architecture |
Also Published As
Publication number | Publication date |
---|---|
TW200922250A (en) | 2009-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI431977B (en) | A method to improve channel utilization in a time division multiple access based protocol | |
JP5677307B2 (en) | Data rate adaptation method for multicast communication | |
JP4740759B2 (en) | Wireless communication system | |
US7920497B2 (en) | System and method for multicast/broadcast reliability enhancement over wireless LANs | |
US9130662B2 (en) | Systems and methods for management of wireless clients | |
US20050185629A1 (en) | Terminal apparatus for enabling a plurality of different communication systems to coexist | |
TW200529619A (en) | High speed media access control | |
CN101843070B (en) | Method and apparatus for communicating over multiple networks | |
EP2178230A1 (en) | Performance improvement of dual mode devices for data over cable applications | |
Kaur et al. | Qos in wlan using ieee802. 11e: Survey of qos in mac layer protocols | |
TWI416903B (en) | Method and apparatus for communicating over multiple networks | |
TWI434556B (en) | Data transmission and encapsulation | |
TWI394417B (en) | Method and apparatus for communicating in multiple modes | |
TW202325085A (en) | Wireless communication method using multi-link and wireless communication terminal using same | |
TWI379568B (en) | Method and apparatus for communicating in multiple modes | |
TW200926708A (en) | Method and apparatus for communicating over multiple networks | |
WO2009026745A1 (en) | Method and apparatus for communicating in multiple modes | |
WO2009026746A1 (en) | Method and apparatus for communicating in multiple modes |