TWI358917B - A smart antenna solution for mobile handset - Google Patents

A smart antenna solution for mobile handset Download PDF

Info

Publication number
TWI358917B
TWI358917B TW92134427A TW92134427A TWI358917B TW I358917 B TWI358917 B TW I358917B TW 92134427 A TW92134427 A TW 92134427A TW 92134427 A TW92134427 A TW 92134427A TW I358917 B TWI358917 B TW I358917B
Authority
TW
Taiwan
Prior art keywords
signal
baseband
data
smart antenna
control information
Prior art date
Application number
TW92134427A
Other languages
Chinese (zh)
Inventor
Yanzhong Dai
Luzhou Xu
Original Assignee
St Ericsson Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by St Ericsson Sa filed Critical St Ericsson Sa
Priority to TW92134427A priority Critical patent/TWI358917B/en
Application granted granted Critical
Publication of TWI358917B publication Critical patent/TWI358917B/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Description

1358917 玖、發明說明: 【發明所屬之技術領域】 本發明係關於一種行動終端中的接收裝置及其接收方 法’尤其係關於一種具有智慧天線之行動终端中的接收裝 置及其接收方法。 【先前技術】 著行動用戶數量的增加’在增大業務容量的前提下仍 然保持較高的通話品質業已成爲人們對現代行動通信系統 的種而求。智慧天線技術恰好於此種關注中成爲現代行 動通信技術令的引領技術。 智慧天線技術(亦稱作陣列天線技術)通常採用兩個或兩 個以上的單天線陣元組成天線陣列,針對每個陣元接收到 的七號藉申採用適當的權值實施加權來調整接收信號之 相位和幅度,從而使得接收信號在經過加權求和後,所需 信號得到加強,幹擾信號得到削弱。加權實質上爲一種空 間濾波。 研究表.明,採用智慧天線技術可有效提高信號之訊雜 2,從而顯著提高通信過程中的通話品質。然而,現有通 2系統之行動終端普遍採料對單天線系統之處理模組, 若將智慧天線技術應用於現有行動終端上,則處理模組中 的更體和軟體部分皆需重新設計,此花費將非常昂貴。如 可在見有行動終端基礎上實施改良以有效利用單天線系統 之處理模財的硬體和軟體資源,成騎慧天線應用於行 動終端的一個關鍵問題。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a receiving apparatus in a mobile terminal and a receiving method thereof, and more particularly to a receiving apparatus in a mobile terminal having a smart antenna and a receiving method thereof. [Prior Art] The increase in the number of mobile users has maintained a high call quality while increasing the capacity of the service, which has become a demand for modern mobile communication systems. Smart antenna technology is just the leading technology for modern mobile communication technology orders. Smart antenna technology (also known as array antenna technology) usually uses two or more single antenna elements to form an antenna array. The weight of the number 7 received by each array element is adjusted by appropriate weights to adjust the reception. The phase and amplitude of the signal, such that after the weighted summation of the received signal, the desired signal is enhanced and the interfering signal is attenuated. The weighting is essentially a spatial filtering. According to the research table, smart antenna technology can effectively improve the signal noise 2, which can significantly improve the quality of the call during communication. However, the mobile terminal of the existing through 2 system generally adopts a processing module for the single antenna system. If the smart antenna technology is applied to the existing mobile terminal, the more flexible and soft parts of the processing module need to be redesigned. The cost will be very expensive. For example, it can be implemented on the basis of mobile terminals to effectively utilize the hardware and software resources of the single antenna system to process the model money. A key issue for the application of the antenna is applied to the mobile terminal.

O:\89\89801.DOC 1358917 下面將以採用td-SCDMA標準之行動終端爲例,說明現 有行動終端令單天線系統之組成及將智慧天線應用於該單 天線系統時所面臨的問題。 圖1係標準單天線行動電話之構成方塊圖,其中包括: 天線 100、RF(射頻)模組 1(n、ADC/DAC 模組 1〇2(ADc/DAc: 類比數位轉換器/數位類比轉換器)、I頻物理層處理模組 1〇3、基頻控制模組104和基頻高層處理模組ι〇5丨其中基 頻物理層處理模組1〇3可由Rake接收機、擴頻/解擴頻模 組、調變/解調變模組和Viterbi/Turb〇編碼/譯碼模組 (Vlterbi/Turb〇:維特比譯碼器/渦輪碼編碼器/譯碼器)組 成,而基頻咼層處理模組丨〇5可由源編碼/譯碼器組成。 在下行鏈路中,首先在RF模組1〇1中,放大和下變頻天 線100所接故的無線信號,將其轉換成中頻信號或類比基 頻信號;然後,在ADC/DAC模組102中經過抽樣和量化 後該中頻h號或類比基頻信號被轉換成數位基頻信號而 輸入至基頻物理層處理模組103;在基頻物理層處理模組 103中,根據來自基頻控制模組104之控制信號,數位基頻 L號先後經過Rake接收、解擴頻、解調、去交織、聯合偵 測(JD)、Viterbi/Turbo譯碼等作業,所得到的信號被提供至 基頻咼層處理模組105;在基頻高層處理模組1〇5中,再對 經過基頻物理層處理模組〗〇3處理後的資料實施資料鏈路 層網路層或更尚層處理,包括高層信令處理、系統控制 及源編碼/譯碼等。 目前,上述單天線行動電話技術已相當成熟。包括PhilipsO:\89\89801.DOC 1358917 The following takes the mobile terminal using the td-SCDMA standard as an example to illustrate the composition of the existing mobile terminal single antenna system and the problems faced when applying the smart antenna to the single antenna system. Figure 1 is a block diagram of a standard single-antenna mobile phone, including: Antenna 100, RF (Radio Frequency) Module 1 (n, ADC/DAC Module 1〇2 (ADc/DAc: Analog-to-Digital Converter/Digital Analog Conversion) , I-frequency physical layer processing module 1〇3, baseband control module 104 and baseband high-level processing module 〇〇5丨 where the fundamental frequency physical layer processing module 1〇3 can be Rake receiver, spread spectrum/ Despreading module, modulation/demodulation module and Viterbi/Turb encoding/decoding module (Vlterbi/Turb〇: Viterbi decoder/turbo code encoder/decoder) The frequency layer processing module 丨〇5 may be composed of a source code/decoder. In the downlink, first, in the RF module 101, the wireless signal received by the antenna 100 is amplified and down-converted, and converted. The intermediate frequency signal or the analog fundamental frequency signal; then, after being sampled and quantized in the ADC/DAC module 102, the intermediate frequency h or analog baseband signal is converted into a digital baseband signal and input to the fundamental frequency physical layer processing. The module 103; in the baseband physical layer processing module 103, according to the control signal from the baseband control module 104, the digital baseband L number After Rake reception, despreading, demodulation, deinterleaving, joint detection (JD), Viterbi/Turbo decoding, etc., the obtained signal is provided to the baseband layer processing module 105; In the processing module 1〇5, the data processed by the baseband physical layer processing module 〇3 is subjected to data link layer network layer or more layer processing, including high layer signaling processing, system control, and source coding. /decoding, etc. Currently, the above single-antenna mobile phone technology is quite mature, including Philips.

O:\89\S9801.DOC -6- 1358917 A司在内的許多製造商皆開發出成熟的晶片組方案。其 中,上述基頻物理層處理模組1〇3之功能通常係由應用專 用積體電路(ASI0構成的基頻數據機達成。 但是,若在現有行動電話中導人智慧天線技術,將完全 改變整個基頻物理層處理模組之設置,其硬體和相應軟 體’例如標準設計的Rake接收機和解擴頻等功能皆將難以 利用。 爲利用.不準基頻系統之設計,—CS公司(美國加利福 尼亞州洛杉磯市的一家電子設備公司)提供了 一種如圖2所 示的導入智慧天線之行動電話裝置。 如圖2所不,SA模組206由天線合倂器208和合倂控制 模組207構成,其中合倂控制模組207根據Rake接收機& 解擴頻模組209和Viterbi/Turb〇譯碼器模組21〇所輸出的 回饋信號來調節天線合倂器2〇8的兩組權值;而天線合倂 器208則根據合倂控制模組2〇7所提供的控制信號,藉由 分別乘以一組權值來合倂兩個通道的輸入信號。 在該方案中,智慧天線模組模組206)與Rake接收機 分開構建,即空間分集和時間分集係分別達成,因此標準 的基頻處理系統軟體可被重複利用。但由於SA模組206 中的合倂控制器207需使用來自Rake接收機&解擴頻模組 209和Viterbi/Turbo譯碼器模組21〇的動態回饋信號來控 制調節天線合倂器208之作業,而合倂控制器207與Rake 接收機&解擴頻模組209和Viterbi/Turbo釋碼器模組210 之間的介面與標準的基頻物理層處理模組不相容,致使標O:\89\S9801.DOC -6- 1358917 Many manufacturers, including Division A, have developed mature chipset solutions. Wherein, the function of the above-mentioned baseband physical layer processing module 1〇3 is usually achieved by a baseband data machine composed of an application-specific integrated circuit (ASI0). However, if the smart antenna technology is introduced in the existing mobile phone, it will be completely changed. The entire baseband physical layer processing module is set up, and its hardware and corresponding software 'such as standard design Rake receiver and despreading frequency will be difficult to use. To use. Not to know the design of the fundamental frequency system, - CS company ( An electronic device company in Los Angeles, California, USA provides a mobile phone device for introducing a smart antenna as shown in Fig. 2. As shown in Fig. 2, the SA module 206 is composed of an antenna combiner 208 and a combined control module 207. In the configuration, the merge control module 207 adjusts two sets of the antenna combiner 2〇8 according to the feedback signals output by the Rake receiver & despreading module 209 and the Viterbi/Turb〇 decoder module 21〇. The antenna combiner 208 combines the input signals of the two channels by multiplying the control signals provided by the merge control module 2〇7 by a set of weights. In this scheme, wisdom Building line module module 206) and Rake receiver are separated, i.e. space diversity and time diversity lines were reached, and therefore the standard baseband processing system software can be reused. However, since the merge controller 207 in the SA module 206 needs to use the dynamic feedback signal from the Rake receiver & despreading module 209 and the Viterbi/Turbo decoder module 21〇 to control the adjustment antenna combiner 208 The operation of the combined controller 207 and the Rake receiver & despreading module 209 and the Viterbi/Turbo intermodulation module 210 is incompatible with the standard baseband physical layer processing module, resulting in Standard

O:\89\8980I.DOC 1358917 準方案中的硬體(如基頻物理層處理模組l〇3等)不能被重 複利用。 因此,若採用上述Innovics公司之設計方案,須改變標 準系統之設計’即:重新設計基頻物理層處理模組1〇3,以 支持SA模組206,此甚爲困難。 综上所述’在重複利用現有行動終端設計方面,原有技 術僅達成了重複利用其軟體之設計,而尚不能同時重複利 用其軟體和硬體設計二者,因此,如何在現有行動終端基 礎上實施改進,以有效利用單天線系統之處理模組中的硬 籲 體和軟體資源,仍係將智慧天線應用於行動終端的一個尚 待解決的問題。 【發明内容】 本發明之一目的係提供一種具有智慧天線之行動終端中 的接收裝置及接收方法,該智慧天線接收裝置能夠重複利 用現有的標準基頻處理模組之軟體和硬體設計,而無需對 其實施重大改動。 本發明之另一目的係提供一種應用於TD_SCDMA系統之 ® 具有智慧天線之行動終端中的接收裝置及接收方法,採用 該智慧天線接收方法,可有效解決在智慧天線接收裝置中 執行SA模組的作業與重複利用基頻處理模組功能之間的 ’ 衝突。 本發明之再一目的係提供一種應用mTD_scdma系統之 具有智慧天線之行動終端中的接收裝置及其接收方法,使 用該接收裝置和接收方法,可顯著縮短輸入資料同步的時O:\89\8980I.DOC 1358917 The hardware in the quasi-plan (such as the baseband physical layer processing module l〇3, etc.) cannot be reused. Therefore, if the above-mentioned design of Innovations is adopted, it is necessary to change the design of the standard system, that is, to redesign the fundamental frequency physical layer processing module 1〇3 to support the SA module 206, which is very difficult. In summary, in terms of reusing the existing mobile terminal design, the original technology only achieved the design of reusing its software, but it is not possible to reuse both the software and the hardware design at the same time. Therefore, how to base the existing mobile terminal The implementation of the improvement to effectively utilize the hard-call and software resources in the processing module of the single-antenna system is still an unsolved problem of applying the smart antenna to the mobile terminal. SUMMARY OF THE INVENTION An object of the present invention is to provide a receiving apparatus and a receiving method in a mobile terminal having a smart antenna, which can reuse the software and hardware design of the existing standard baseband processing module. There is no need to make major changes to it. Another object of the present invention is to provide a receiving apparatus and a receiving method for use in a mobile terminal of a TD_SCDMA system with a smart antenna, and the smart antenna receiving method can effectively solve the problem of executing an SA module in a smart antenna receiving apparatus. The 'fault between the job and the reuse of the baseband processing module function. Still another object of the present invention is to provide a receiving apparatus in a mobile terminal having a smart antenna using the mTD_scdma system and a receiving method thereof, and using the receiving apparatus and the receiving method, the input data synchronization can be significantly shortened

O:\89\8980l.DOC 1358917 間’從而極大提高通信系統之效能。 爲達成上述目#,本發明提供一種具有%慧天線之行動 終端,該行動終端包括: 多組射頻信號處理模組,其用於將所接收的多路射頻信 號轉換爲多路基頻信號; 一智慧天線處理模組,纟用於根據在該%慧天線處理模 .且σ動時*性接收到的控制資訊,肖多組射頻信號處理 模纽所輪出的多路基頻信號實施智慧天線基頻處理,以將 多路基頻信號合倂爲單路基頻信號; 一基頻處理模組’其用於根據來自該智慧天線處理的資 料,向智慧天線處理模組提供控制資訊,並對智 理模组所輸出的單路基頻信號實施基頻處理。., 爲達成上述發明目的,本發明提供一種用於具有智慧天 線之行動終端中的方法,該方法包括下列步驟: 接收多路射頻信號,並將射頻信號轉換爲多路基頻信號; 根據多路基頻信號中的一路基頻信號,生成控制資訊,· 啓動智.慧天線基頻處理作業,並根據所—錄接收的控 制資訊將多路基頻信號合倂爲單路基頻信號; 對單路基頻信號實施基頻處理。 【實施方式】 面將結合附圖和具體實施例詳細描述本發明。 圖3係本發明具有智慧天線之行動終端中接收裝置之2 塊圖。如圖所示,該裝置包括··由兩個天線300、兩個釋 頻)模組3 0!、兩個ADC/DAC模組3〇2组成的兩組射頻信O:\89\8980l.DOC 1358917' thus greatly improves the performance of the communication system. In order to achieve the above object, the present invention provides a mobile terminal having a % Hui antenna, the mobile terminal comprising: a plurality of sets of radio frequency signal processing modules, configured to convert the received multiple radio frequency signals into multiple base frequency signals; The smart antenna processing module is used to implement the smart antenna base based on the control information received by the CMOS antenna and the σ 动 性 , , 肖 肖 肖 肖 肖 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频Frequency processing to combine multiple baseband signals into a single baseband signal; a baseband processing module' for providing control information to the smart antenna processing module based on data processed from the smart antenna, and for intelligent intelligence The single-channel baseband signal output by the module performs basic frequency processing. To achieve the above object, the present invention provides a method for use in a mobile terminal having a smart antenna, the method comprising the steps of: receiving a plurality of radio frequency signals and converting the radio frequency signals into multiple baseband signals; A fundamental frequency signal in the frequency signal generates control information, activates the base processing of the intelligent antenna, and combines the multiple baseband signals into a single fundamental frequency signal according to the received control information; The signal implements fundamental frequency processing. The present invention will be described in detail in conjunction with the drawings and specific embodiments. Figure 3 is a block diagram of a receiving device in a mobile terminal having a smart antenna of the present invention. As shown, the device includes two sets of RF signals consisting of two antennas 300, two frequency-receiving modules 3 0!, and two ADC/DAC modules 3〇2.

O:\89\i980I.DOC 1358917 號處理模組,一 SA模組306,及一由一基頻物理層處理模 組303、一基頻控制模組3〇4和一基頻高層處理模組3〇5 組成的基頻處理模組,具體而言:兩個天線3〇〇,其用於接 收射頻信號;分別與該兩個天線連接的RF(射頻)模組3〇1, 其用於放大和下變頻所接收射頻信號,將其轉換成中頻信 號或類比基頻信號;分別與RF模組3〇1之輸出端連接的 ADC/DAC模組302,其用於在對下行鏈路資料處理時,對 來自R F射頻模組3 〇!之中頻信號或類比基頻信㉟進行抽樣 和置化,以將其轉換成數位基頻信號;一連接至各 ADC/DAC I植302之輸出端的SA模组(智慧天線模 組)306 ’其用於對各路數位基頻信號實施智慧天線基頻處 理;一基頻物理層處理模組303’其用於對經過sa模組處 理的數位信號實施基頻信號處理,其中可包括:Rake接收、 解擴頻、解調變、去交織、聯合偵測_、Μ—。 譯@#;—基頻高層處理模組3G5’其用於對經基頻物理層 處理模組303處理後的資料實施鏈路層、網路層或更高層 處理’其中可包括:高層信令處理、源編譯碼#; 一基頻 控制模組304’其與基頻物理層處理模組3〇3連接並^由 一資料匯流排控制SA模組鳩、基頻物理層處理模組如 和基頻高層處理模組305之作業。 由圖3可見,SA模組306係一獨立模組,該模b需使 用來自基頻物理層處理模組303之動態回饋信號,而係根 據藉由資料匯流排傳遞的在SA帛組啓動時—次性提供的 SA控制命令來達成智慧天線之基頻處理作業。其中,經由O:\89\i980I.DOC 1358917 processing module, an SA module 306, and a baseband physical layer processing module 303, a fundamental frequency control module 3〇4, and a baseband high-level processing module 3〇5 The basic frequency processing module, specifically: two antennas 3〇〇 for receiving radio frequency signals; respectively, an RF (radio frequency) module 3〇1 connected to the two antennas, which is used for Amplifying and downconverting the received RF signal, converting it into an intermediate frequency signal or an analog baseband signal; respectively, an ADC/DAC module 302 connected to the output of the RF module 3.1, which is used in the downlink During data processing, the intermediate frequency signal or analog baseband signal 35 from the RF RF module is sampled and localized to convert it into a digital baseband signal; one is connected to each ADC/DAC I. The SA module (smart antenna module) 306 at the output end is used for implementing the smart antenna baseband processing for each digital baseband signal; and a baseband physical layer processing module 303' is used for processing by the sa module. The digital signal performs basic frequency signal processing, which may include: Rake reception, despreading, demodulation, deinterleaving Joint detection _, Μ-. Translation of the baseband high-level processing module 3G5' for implementing the link layer, network layer or higher layer processing on the data processed by the baseband physical layer processing module 303', which may include: high-level signaling Processing, source coding code #; a baseband control module 304' is connected with the baseband physical layer processing module 3〇3 and is controlled by a data bus bar SA module, a baseband physical layer processing module, and The operation of the baseband high-level processing module 305. As can be seen from FIG. 3, the SA module 306 is a separate module, and the modulo b needs to use the dynamic feedback signal from the baseband physical layer processing module 303, and is based on the SA 帛 group startup by the data bus. - Sub-provided SA control commands to achieve the baseband processing of the smart antenna. Among them, via

O:\89\89801.DOC -10· 1358917 資料匯流排傳送至SA模組306之SA控制命令可包括(但 不限於):啓動信號、演算法選擇信號、下行鏈路導頻時隙 資料(DwPTS)和訓練序列資料(Midamble)等,且SA控制命 令既可經由資料匯流排傳送至SA模組306,亦可藉由其他 介面傳送至SA模組306 » 倘若係採用TD-SCDMA之系統,在圖3所示智慧天線接 收裝置作業過程中,若欲使SA模組3〇6可重複利用基頻物 理層處理模組303之同步功能,則須在sA模組初始化時得 到基頻物理層處理模組3〇3之同步資訊。 下面將結合圖4詳細描述在採用TD-SCDMA之系統中 SA模組首先獲取該同步資訊爾後開始正常智慧天線基頻 處理的作業過程。 如圖4所示,該sa模組306包括:兩個緩衝器3〇8,其 輸入端分別與ADC/DAC模組3〇2之輸出端相連,在處理 下行鏈路資料時,用於緩衝經ADC得到的數位基頻信號; 兩個權值調節模組309、309,,其根據各自所接收的權值資 訊,對由兩個緩衝器308輸出的資料分別實施加權;一合 倂器(如加法器310),其用於合倂兩個權值調節模組3〇9、 彻,所輸出的加權後的資料,並將合倂後的資料輸出至基 頻物理層處理模組303中;-控制器(如合倂和同步控㈣ 3〇7),其接收上述ADC/DAC模組3〇2輸入至兩個緩衝器 綱之資料資訊,並根據來自資料匯流排之SA控制命令並 私用一種簡便的子訊框和時隙同步方法來達成輪入該Μ 模組306的資料流之同步,同時控制權值調節模系且跡則,O:\89\89801.DOC -10· 1358917 The SA control commands transmitted by the data bus to the SA module 306 may include, but are not limited to, an enable signal, an algorithm selection signal, and a downlink pilot time slot data ( DwPTS) and training sequence data (Midamble), etc., and the SA control command can be transmitted to the SA module 306 via the data bus, or can be transmitted to the SA module 306 through other interfaces. 3. If the system is TD-SCDMA, In the operation of the smart antenna receiving device shown in FIG. 3, if the SA module 3〇6 can reuse the synchronization function of the baseband physical layer processing module 303, the physical layer of the baseband must be obtained when the sA module is initialized. Processing the synchronization information of the module 3〇3. The operation process of the normal smart antenna baseband processing after the SA module first acquires the synchronization information in the system employing the TD-SCDMA will be described in detail below with reference to FIG. As shown in FIG. 4, the sa module 306 includes two buffers 3〇8 whose input terminals are respectively connected to the output ends of the ADC/DAC module 3〇2, and are used for buffering when processing downlink data. The digital baseband signal obtained by the ADC; two weight adjustment modules 309, 309, which respectively weight the data output by the two buffers 308 according to the weight information received by each; For example, the adder 310) is configured to combine the two weighting adjustment modules 3〇9, and the outputted weighted data, and output the merged data to the baseband physical layer processing module 303. ;-controller (such as merge and synchronous control (4) 3〇7), which receives the above ADC/DAC module 3〇2 input to the data information of the two buffers, and according to the SA control command from the data bus and Privately using a simple sub-frame and time slot synchronization method to achieve synchronization of the data stream that is rotated into the UI module 306, while controlling the weight adjustment mode and the trace,

O:\89\89801.DOC 1358917 之權值。 具體操作過程如下: 首先.使SA模組306林[•知拉 , π止智慧天線之基頻處理作業,此 時SA模組可接收單路 早路射頻传號處理模組傳送來的信號,即 對單路射頻信號處理模扭值,,,七 杈,,且傳达來的信號而言,可將該8八模 ,.且306看作-通路,在行動電話與基地台之間建立連接後, f頻物理層處理模組303將先獲得經由單路射頻信號處理 模組輸入的k號中之下杆絲_枚道也右士 下仃鏈路導頻時隙和用戶特定訓練序 列; …:後上述基頻處理模組將基頻物理層處理模組則得 到的下行鏈路導頻時隙和用戶特定訓練序列料SA控制 命令之一部分,、經由資料匯流排傳送SSA模組3〇6,並由 SA控制命令中的驅動信號啓動SA模組3〇6 ; 第三:在由資料驅動的SA模組3〇6中,該合倂和同步控 制器307中的同步控制器使用SA㈣命令中的下行鍵料 頻時隙來匹配輸入信號,以達成子訊框同步; 第四:·在完成子訊框同步後,該合倂和同步控制器3〇7 t的同步控制器使用SA控制命令中的用戶特定訓練序列 來匹配輸入信號,以使基地台所指定的下行鏈路時隙同步; 第五:在達成下行鏈路時隙同步後,可確定所接收時隙 之訓練序列之位置。根據自該所接收時隙中得到的訓練序 列和上述來自基頻物理層處理模組303之SA控制命令中所 包含的用戶特定訓練序列(作爲參考信號),該合倂和同步控 制器307中的合倂控制器按照SA控制命令中指定的權值演 O:\89\8980I.DOC •12· 1358917 算法計算相應權值,並將計算出的權值分別提供至兩個權 值調節模组309、309,; 第八在權值調節核組309、309’中,由兩個緩衝器308 輸出的緩衝資料分別乘以上述步驟五中所得到的相應權 值’並將加權後的資料輸入加法器310中; 第七:將在加法器310中合倂後的資料傳送至後續基頻 物理層處理模組3 〇 3。 第八.重複上述步驟三至步驟七,s A模矣且即以此種流水 線方式處理所輸入的信號。 在上述作業過程十,需特別說明以下各點: h由於在上述步驟1中,SA模組在開始時被禁止作業, 僅^步驟2中當SA模組接收到來自資料匯流排之SA控制 命7 (該SA叩令中包含用於使輸入信號同步之同步資訊: 下行鍵路導頻時隙和用戶特定訓練序列及啓動SA模組作 業的啓動信號和權值演算法選擇信號)時,SA |莫組方由資 料驅動開始作業’亦即SA模組係在其卫作之前獲取同步資 訊,因此SA模組可重複利用基頻物理層處理模組303之同 步功能,而不會發生衝突。 2·在上述步驟三和步驟四中’該sa模組採用一種簡化 的子訊框同步和時隙同步方法,之所以能夠採用此種簡便 ,5乂法乃係由TD_SCDMA系統之傳輸信號之訊框結 構所決;下將結合_5•卜5_2'5_3和5_4詳細說明 TD SCDMA系統中傳輸信號之訊框結構。 如圖5 1所不’ Td_Scdam系統中所使用訊框自上至下The weight of O:\89\89801.DOC 1358917. The specific operation process is as follows: First, the SA module 306 forest [• know pull, π stop smart antenna base frequency processing operation, at this time, the SA module can receive the signal transmitted by the single-channel early RF signal processing module, That is, for a single RF signal processing mode torsion value,,,,, and the transmitted signal, the 8 octave, and 306 can be regarded as a path, which is established between the mobile phone and the base station. After the connection, the f-frequency physical layer processing module 303 will first obtain the k-axis and the right-hand-down link pilot time slot and the user-specific training sequence of the k-number input through the single-channel radio frequency signal processing module. After the baseband processing module obtains one of the downlink pilot time slot and the user-specific training sequence SA control command obtained by the baseband physical layer processing module, the SSA module 3 is transmitted via the data bus. 〇6, and the SA module 3〇6 is activated by the driving signal in the SA control command; Third: in the SA module 3〇6 driven by the data, the synchronizing controller in the combining and synchronizing controller 307 is used. The downlink key frequency slot in the SA (four) command matches the input signal to achieve Frame synchronization; Fourth: After the completion of the subframe synchronization, the synchronization controller of the combination and synchronization controller 3〇7t uses the user-specific training sequence in the SA control command to match the input signal, so that the base station The specified downlink slot synchronization; Fifth: After the downlink slot synchronization is achieved, the location of the training sequence of the received slot can be determined. The merge and synchronization controller 307 is based on the training sequence obtained from the received time slot and the user-specific training sequence (as a reference signal) included in the SA control command from the baseband physical layer processing module 303. The combined controller performs the O:\89\8980I.DOC •12· 1358917 algorithm according to the weight specified in the SA control command, and calculates the corresponding weights, and provides the calculated weights to the two weight adjustment modules. 309, 309,; eighth, in the weight adjustment kernel group 309, 309', the buffer data output by the two buffers 308 are respectively multiplied by the corresponding weights obtained in the above step 5 and the weighted data is input. In the adder 310; seventh: the merged data in the adder 310 is transmitted to the subsequent baseband physical layer processing module 3 〇3. 8. Repeat steps 3 through 7 above, s A mode and process the input signal in such a pipeline manner. In the above operation process ten, the following points need to be specifically explained: h Since the SA module is prohibited from being operated at the beginning in the above step 1, only the SA module receives the SA control life from the data bus in step 2 7 (The SA command contains synchronization information for synchronizing the input signals: the downlink keyway time slot and the user-specific training sequence and the start signal and weight algorithm selection signal for starting the SA module job), SA The Mo group side starts the operation by the data driver's. That is, the SA module acquires the synchronization information before its security. Therefore, the SA module can reuse the synchronization function of the baseband physical layer processing module 303 without conflict. 2. In the above steps 3 and 4, 'the sa module adopts a simplified sub-frame synchronization and time slot synchronization method. The reason for this simplicity is that the 5乂 method is the transmission signal of the TD_SCDMA system. The frame structure is determined; the frame structure of the transmitted signal in the TD SCDMA system will be described in detail in conjunction with _5•Bu 5_2'5_3 and 5_4. As shown in Figure 51, the frame used in the Td_Scdam system is from top to bottom.

O:\89\89801.DOC -13- 由四層組成’其分別爲.超訊框(super-frame)、射頻訊框 (radio frame)、子訊框(sub-frame)和時隙(time sl〇t)。其中, 每一超訊框長度爲720毫秒’包括72個射頻訊框;每一射 頻訊框長度爲10¾秒’該射頻訊框又被分爲2個子气框. 每一子訊框長度爲5毫秒,在該長度爲1〇毫秒之射頻訊框 中,每一子訊框之訊框結構皆相同。採用5毫秒子訊框結 構有利於快速功率控制、上行鍵路同步和波束成型β由圖 5-1亦可看出,每一子訊框進一步包括7個業務時隙(traffic timeslot)和 3 個特定時隙(speciai timesi〇t)。圖 中的 TS0-TS6爲業務時隙,DwPTS(下行鏈路導頻時隙)、 UpPTS(上行鏈路導頻時隙)和GP(保護時段)爲3個特定時 隙。在圖5-2和圖5-3中進一步描述了下行鏈路導頻時隙 (DwPTS)和上行鏈路導頻時隙(UpPTS)之結構,其中圖5_2 中的SYNC-DL攔和圖5-3中的SYNC-UL欄分別在訊框同 步中用於下行鏈路或上行鏈路導頻。在圖5_4中進一步描 述了一業務時隙(T0-T6)之叢發結構,如圖所示,訓練序列 (training sequence,即:midamble)位於業務時隙令間部位, 其位置固定,訓練序列之長度爲144個碼片(chip),對於不 同的通信蜂巢(cell),該訓練序列之代碼互不相同(即:使用 不同的訓練序列集),在TD-SCDMA中,該訓練序列亦用 於智慧天線演算法。 如上結合附圖5_1至7·4之說明,由於在採用TD-SCDMA 之系統中每一射頻訊框中各子訊框之結構相同,因此在步 驟三中使用子訊框同步法可達成輸入射頻信號之同步;同O:\89\89801.DOC -13- consists of four layers: 'super-frame, radio frame, sub-frame, and time slot (time) Sl〇t). The length of each super frame is 720 milliseconds, including 72 RF frames; each RF frame is 103⁄4 seconds. The RF frame is divided into two sub-air frames. Each subframe is 5 in length. In milliseconds, in the RF frame with a length of 1 millisecond, the frame structure of each subframe is the same. The use of a 5 millisecond subframe structure facilitates fast power control, uplink key synchronization, and beamforming. β can also be seen in Figure 5-1. Each subframe further includes 7 traffic timeslots and 3 traffic slots. Specific time slot (speciai timesi〇t). TS0-TS6 in the figure are service slots, DwPTS (downlink pilot slot), UpPTS (uplink pilot slot), and GP (guard period) are three specific slots. The structure of the downlink pilot time slot (DwPTS) and the uplink pilot time slot (UpPTS) is further described in FIG. 5-2 and FIG. 5-3, wherein the SYNC-DL block in FIG. 5_2 and FIG. 5 The SYNC-UL column in -3 is used for frame downlink or uplink pilot in frame synchronization, respectively. A bursting structure of a service time slot (T0-T6) is further described in FIG. 5_4. As shown in the figure, a training sequence (ie, a midamble) is located between service time slots, and its position is fixed, and the training sequence is The length is 144 chips. For different communication cells, the codes of the training sequences are different from each other (ie, different training sequence sets are used). In TD-SCDMA, the training sequence is also used. In the smart antenna algorithm. As described above with reference to FIGS. 5_1 to 7·4, since the structure of each subframe in each RF frame is the same in the system using TD-SCDMA, the input RF can be achieved by using the subframe synchronization method in the third step. Signal synchronization; same

O:\89\89801.DOC • 14- 1358917 時由於在採用td-SCDMA之系、统中需使用輸入信號中的訓 練序列計算智慧天線之接收權值,而輸入信號中的訓練序 列之位置係固定,因此在步驟四中使用時隙同步法可進— 步得到輸入信號之訓練序列,以計算智慧天線之權值。 3.由於在上述步驟三和步驟四中,該SA模组採用了此 種簡化的子訊框同步和時隙同步方法,而該方法之 訊(亦即下行鏈路導頻時隙和用戶特定訓練序列)係由从模 組自基頻物理層處理模組3〇3獲得,因此,毋需執行下行 鏈路導頻時隙和用戶特定訓練序列之搜索作業,使用回饋 糾的該下行鏈路導頻時隙和用戶特定訓練序列匹配輪入 乜號即可達成輸入信號之子訊框和時隙同步。 與基頻物理層處理模組中所執行的整個同步過程相比, 採用本發明之此㈣構和同步方法的sa额在執行子訊 框同步過程t最多可節| 31/32㈣間,在執行時隙同步 過程中最多可節省1 5/1 6的時間。O:\89\89801.DOC • 14- 1358917. Because the training sequence in the input signal is used in the system using td-SCDMA, the receiving weight of the smart antenna is calculated, and the position of the training sequence in the input signal is Fixed, so in step four, using the slot synchronization method, the training sequence of the input signal can be further obtained to calculate the weight of the smart antenna. 3. Since in the above steps 3 and 4, the SA module adopts such a simplified subframe synchronization and slot synchronization method, and the method (ie, downlink pilot time slot and user specific) The training sequence is obtained by the slave module from the baseband physical layer processing module 3〇3. Therefore, it is not necessary to perform a search operation of the downlink pilot time slot and the user-specific training sequence, and the downlink is used for feedback correction. The pilot slot and the user-specific training sequence match the rounding apostrophe to achieve the sub-frame and slot synchronization of the input signal. Compared with the entire synchronization process performed in the baseband physical layer processing module, the sa amount of the (fourth) construction and the synchronization method of the present invention is executed during the execution of the sub-frame synchronization process t at most | 31/32 (four). Up to 1 5/16 of the time can be saved during time slot synchronization.

(如上所述,由於在TD_SCDMA系統中用作智慧天線 之訓練序列處於時隙中間位置(如圖5-4所示),因此’ SA 模組306中採用兩個緩衝器则來緩衝所接收之信號,即. =緩存所接故之信號,直至得到當前時隙之訓練序列後再 執行下一步處理。 在上述子訊框同步和時隙 信號的兩個智慧天線之間的距離非常小,因此,兩個通 中所接收的信號幾乎同時到達。假設兩個通道在同 相互同步,則可僅在—個通道甲執行上述子訊框同步和 O:\89V8980J.doc -15- 隙同步。 圖4所示SA模組結構同樣適用於上行鏈路模式中。 上述本發明智慧天線接收裝置和接收方法僅需在現有單 天線行動電話中插A SA模組而毋需對現有行動電話之硬 體和軟體設計實施很大改料可達成㈣天線技術與行動 電話之結合。然而,插入的SA模組必將對諸如基頻物理層 處理核組3〇3等已有部件產生一定影響,特別是SA模組中 緩衝器3G8所帶來的延時,此乃在實施本發明過程中須考 慮的個問題。在本發明設計過程中,在基頻物理層處理 03中久置了一些預定義參數來反映該緩衝器所帶來 的延時,該等延時主要會導致兩方面的問題: ⑴閉環控制,包括功率控制、自動增益控制(agc)、自 動頻率控制(八?(:)等。 功率控制係基地台與行動電話之間的閉環控制,最高頻 率爲赫兹’亦即至多每—子訊框執行—次功率控制, 處理功率控制的時間幾乎爲-個子訊框。若由SA模組鳩 引起的處理延時爲—ai P* ( 1 /-» 马個時隙(約1/7子訊框),則難以影響功 率控制。 AGC和 AFC係行動電話中的閉環控制。在td_scdma 標準中’未指明AGC和 WCDMA數據機之設計, 條件下’由SA模組3〇6引 AFC之響應時間❹但根據當前 該響應時間爲一個時隙。在此種 起的處理延時將會導致行動電話 效能下降。因此, 寸來減小該影響。 可藉由進一步減小兩個緩衝器 308之尺(As mentioned above, since the training sequence used as the smart antenna in the TD_SCDMA system is in the middle of the time slot (as shown in Figure 5-4), two buffers are used in the 'SA module 306 to buffer the received one. The signal, ie, = buffers the received signal until the training sequence of the current time slot is obtained, and then performs the next processing. The distance between the above-mentioned subframe synchronization and the two smart antennas of the time slot signal is very small, so The signals received by the two channels arrive almost simultaneously. Assuming that the two channels are synchronized with each other, the above-mentioned subframe synchronization and O:\89V8980J.doc -15-slot synchronization can be performed only in one channel A. The SA module structure shown in Fig. 4 is also applicable to the uplink mode. The above-mentioned smart antenna receiving apparatus and receiving method of the present invention only need to insert the A SA module in the existing single-antenna mobile phone without the need for the hardware of the existing mobile phone. And the software design implementation can be greatly improved to achieve (4) the combination of antenna technology and mobile phone. However, the inserted SA module will certainly have an impact on existing components such as the baseband physical layer processing core group 3〇3, especially It is the delay caused by the buffer 3G8 in the SA module, which is a problem to be considered in the implementation of the present invention. In the design process of the present invention, some predefined parameters are set in the fundamental frequency physical layer processing 03 for a long time. Reflecting the delay caused by the buffer, these delays mainly lead to two problems: (1) closed-loop control, including power control, automatic gain control (AGC), automatic frequency control (eight? (:), etc. power control system The closed-loop control between the base station and the mobile phone, the highest frequency is Hertz', that is, at most every sub-frame execution-time power control, the processing power control time is almost a sub-frame. If caused by the SA module The processing delay is -ai P* ( 1 /-» horse time slots (about 1/7 sub-frame), it is difficult to affect power control. AGC and AFC are closed-loop control in mobile phones. 'Unspecified in td_scdma standard' The design of the AGC and WCDMA data machines, under the condition 'the response time of the AFC by the SA module 3〇6, but according to the current response time is a time slot. The processing delay in this way will lead to the decline of the performance of the mobile phone. Therefore, the inch is used to reduce the effect. By further reducing the size of the two buffers 308

O:\89V89801.DOC -16· (2)上行鏈路同步。 j採用TD-SCDMA之系統中,在隨機接達過程之前需要 :仃鏈路同步’此要求基地台在接收不同用戶之信號時保 、同步。該過程和說明定義如下: y、 a.首先使下行鏈路同步;O:\89V89801.DOC -16· (2) Uplink synchronization. In a system using TD-SCDMA, it is necessary to: 仃 link synchronization before the random access procedure. This requires the base station to maintain and synchronize when receiving signals from different users. The process and description are defined as follows: y, a. First synchronize the downlink;

敕戶終端發送上行鏈路導頻時隙,然後基地台發送調 整資訊; 、D c •使用訓練序列來保持上行鏈路同步; d.同步精度爲1/8碼片。 +因SA杈組306和基頻物理層處理模組3〇3的處理延 需精確保持上行鍵路同步。假^ SA模組鄕之處理延時’ —個時隙’則兩個連續子訊框的情況如圖6所示。對於从 模組306之後的訊框,僅關心下行鏈路時隙。#中,加 表示子訊框的第;個時隙;PTS表示上行鍵路導頻時隙1 行鏈路導頻㈣:;丨和丨分別表示上行鏈路和下行鍵路。 由圖6可見,SA模組3〇6之後的資料訊框被延時—個 隙。上行鏈路時隙表示於从之前的訊框中。基頻物理層處 理模組303須同時處理下行鏈路和上行鏈路資料(如虛線所 丁)舉例而5 ’ t SA模組306正在處理時隙Ts〇並將 理後的資料送往基頻物理層處理模組3〇3時,基頻物理層 處理模組303亦正在處理TS1。此即要求基頻物理層處理 模組303必須支持上行鍵路和下行鍵路資料之並行處理。 根據WCDMA基頻數據機之設計,並行處理上行鍵路和下 行鍵路資料不會發生衝突。HD-SCDMA標準中基頻物理The set-end terminal transmits an uplink pilot time slot, and then the base station transmits adjustment information; Dc • uses a training sequence to maintain uplink synchronization; d. synchronization accuracy is 1/8 chip. + Due to the processing of the SA group 306 and the baseband physical layer processing module 3〇3, it is desirable to accurately maintain the uplink key synchronization. The case of the two consecutive sub-frames of the processing delay of the SA module is as shown in Fig. 6. For frames following the slave module 306, only the downlink time slots are of interest. #中,加 indicates the first time slot of the subframe; PTS indicates the uplink key pilot time slot 1 line pilot (4): 丨 and 丨 indicate the uplink and downlink links, respectively. As can be seen from Figure 6, the data frame after the SA module 3〇6 is delayed by a gap. The uplink time slot is indicated in the previous frame. The baseband physical layer processing module 303 is required to process both downlink and uplink data (as indicated by the dotted line) and the 5't SA module 306 is processing the time slot Ts and sending the corrected data to the baseband. When the physical layer processing module is 3〇3, the baseband physical layer processing module 303 is also processing TS1. Therefore, the baseband physical layer processing module 303 is required to support parallel processing of the uplink key and the downlink key data. According to the design of the WCDMA baseband data machine, parallel processing of the uplink and downlink data does not conflict. Fundamental frequency physics in the HD-SCDMA standard

O:\89\89SOI.DOC •17· 1358917 層處理模組303之設計類似於WCDMA,因此亦不會發生 衝突。 考慮到上述緩衝器所帶來的延時,本發明提供一種行動 電話之智慧天線接收裝置之實例。在該實例中,採用兩個 環行的先進先出(FIFO)記憶體作爲上述SA模組中的緩衝 器’其具體結構將闡釋於下文結合附圖7之說明中。 圖7係圖4所示S A模組之一實施例之結構圖。在該實施 例中,緩衝器308係兩個環形FIF〇緩衝器3〇8,,其大小爲 一個時隙。圖7所公開的其他模組與圖4所示對應模組相 同,因而此處不再贅述。應注意,SA模組3〇6可以此種方 式達成,但不應僅限於此種方式。 下文將結合附圖8、11和12來描述圖7所示SA模組之 處理步驟: (1)禁止SA模組306作業 在建立連接之前或當SA效能不能滿足要求時,需使用全 向波束。SA模組306被“基頻控制”模組禁止運行。此時, 通道1之信號通過’而通道2之信號受到抑制。所接收作 號先在兩個環形FIF0緩衝器308,中緩存,當該環形fifc 緩衝器3G8’存滿時送至下-模組。該資料流被延時一個時 隙。其結構如圖8所示。 (2)啓動SA模組306作業 在已建立連接並經由資料匯流排自基頻處理模組獲得下 行鏈路導頻時隙和訓練序列之後’基頻控制模組綱啓動 SA模組306,然後,利用下行鍵路導頻時隙實施匹_使 O:\89\8980I.DOC -18· 1358917 子訊框同步。其結構如圖9所示。 (3) 使子訊框同步 藉由將下行鏈路導頻時隙與通道i之接收信號相匹配來 使子訊框同步,然後,利用訓練序列實施匹配以使下行鏈 路時隙同步。 (4) 使下行鏈路時隙同步 在利用訓練序列使-下行鏈路時隙同步之後,利用所接 收的訓練序列及經由資料匯流排傳送的自基頻物理層處理 模組303獲得的訓練序列來計算兩個權值㈤,w2)。 · (5) 合倂 當處理完前一時隙(若有)時,在環形fif〇緩衝器3〇8, 中緩存當前時隙之所有資料。該等緩存資料藉由分別乘以 相應權值來合倂,合倂後的資料被送往下一模組。 (6) 重複步驟(3)-(5) SA模組即以此種流水線方式處理所接收之資料流。 圖10展不在SA模組306初始化時的時序。其中,子訊馨 框〇和1表示所接收的第一和第二子訊框;分別表 示上行鏈路和下行鏈路;办表示該時隙正在由每一通道的兩 個下行鏈路時隙合倂。 有利效果 藉由上文結合附圖對本發明所作說明,可清楚地看到: 由於插入現有行動電話中的獨立SA模組中之用於資料同 步和權值計算的下行鍵路導頻時隙、訓練序列和其他信號 係在SA模組啓動時—次性獲得,因此該獨立^模組可重O:\89\89SOI.DOC •17· 1358917 The layer processing module 303 is designed to be similar to WCDMA, so there is no conflict. In view of the delay caused by the above buffer, the present invention provides an example of a smart antenna receiving apparatus for a mobile phone. In this example, two looped first in first out (FIFO) memories are employed as buffers in the SA module described above. The specific structure thereof will be explained in the following description in conjunction with FIG. FIG. 7 is a structural diagram of an embodiment of the S A module shown in FIG. 4. In this embodiment, the buffer 308 is a two-ring FIF buffer 3〇8, which is one slot in size. The other modules disclosed in FIG. 7 are the same as the corresponding modules shown in FIG. 4, and thus are not described herein again. It should be noted that the SA module 3〇6 can be achieved in this manner, but should not be limited to this. The processing steps of the SA module shown in FIG. 7 will be described below with reference to FIGS. 8, 11, and 12. (1) The SA module 306 is prohibited from operating using an omnidirectional beam before establishing a connection or when the SA performance cannot meet the requirements. . The SA module 306 is disabled by the "fundamental frequency control" module. At this time, the signal of channel 1 passes 'and the signal of channel 2 is suppressed. The received signal is first buffered in two circular FIF0 buffers 308, and sent to the lower-module when the circular fifc buffer 3G8' is full. The data stream is delayed by a time slot. Its structure is shown in Figure 8. (2) starting the SA module 306 operation, after the connection has been established and obtaining the downlink pilot time slot and the training sequence from the baseband processing module via the data bus, the 'base frequency control module starts the SA module 306, and then The downlink keyway time slot is used to implement the synchronization of the O:\89\8980I.DOC -18·1358917 subframe. Its structure is shown in Figure 9. (3) Synchronizing the sub-frames The sub-frames are synchronized by matching the downlink pilot time slots with the received signals of channel i, and then matching is performed using the training sequence to synchronize the downlink time slots. (4) Synchronizing the downlink time slot after using the training sequence to synchronize the downlink time slot, using the received training sequence and the training sequence obtained from the baseband physical layer processing module 303 transmitted via the data bus. To calculate two weights (five), w2). (5) Combine All data of the current time slot is buffered in the ring fif buffer 3〇8 when the previous time slot (if any) is processed. The cached data is combined by multiplying the corresponding weights, and the merged data is sent to the next module. (6) Repeat steps (3)-(5) The SA module processes the received data stream in this pipeline mode. Figure 10 shows the timing when the SA module 306 is not initialized. Wherein, the sub-frames 〇 and 1 indicate the received first and second sub-frames; respectively indicating the uplink and the downlink; and indicating that the time slot is being used by the two downlink time slots of each channel Consolidation. Advantageous Effects As apparent from the above description of the present invention with reference to the accompanying drawings, it can be clearly seen that a downlink keyway pilot time slot for data synchronization and weight calculation in a separate SA module inserted in an existing mobile phone, The training sequence and other signal systems are acquired when the SA module is started, so the independent module can be heavy.

O:\89\89801.DOC -19· 1358917 複利用標準基頻物理層處理模組之軟體和硬體設計,而毋 需對其實施重大改動。 同時,在本發明SA模組中,由於採用首先禁止SA模組 作業'在已建立連接並經由資料匯流排將同步資訊等3八控 制命令傳送至SA模組後再啓動SA模組作業之方式,因而 巧妙避免了在執行該SA模組作業與重複利用基頻物理層 處理模組功能時發生衝突。 此外,在本發明SA模組中,由於採用了一種簡便的子訊 框同步和時隙同步方法,尤其是自SA控制命令中直接獲得 同步資訊而母需搜索下行鏈路導頻時隙和訓練序列,因而 顯著縮短了使輸入資料同步的時間,極大地提高了通信系 統效能。 當然,熟習此項技術者應知,本發明所提供行動電話之 智慧天線接收裝置和方法應當不僅僅限於行動電話系統 中,其亦可應用於某些其他無線行動通信終端、無線LAN 終端等β 同時’熟習此項技術者應知,本發明所提供行動電話之 智慧天線接收裝置和方法應當不僅僅限於採用TD-SCDMA 之系統中’其亦可應用於採用GSM(全球行動通信系統)、 GPRS(General Packet Radio Service :整合封包無線服務)、 EDGE(Enhanced Data rate for GSM Evolution :增強型資料 傳輸率GSM服務)、WCDMA(寬頻碼分多向近接)、CDMA IS95、CDMA 2000等標準之蜂巢式通信系統中。 熟習此項技術者應瞭解,亦可在不背離本發明内容基礎 O:\89\8980I.DOC -20- 1358917 上對上述本發明所公開行動電話之智慧天線接收裝置和方 法作出各種改動。因此,本發明之保護範圍應當由隨附申 請專利範圍内容界定。 【圖式簡單說明】 上文已結合附圖詳細說明了本發明,附圖中: 圖1係採用TD-SCDMA系統之標準單天線行動電話之方 塊圖; 圖2係現有的已植入智慧天線之行動電話之系統結構 圃, 圖3係本發明具有智慧天線之行動終端中接收裝置之方 塊圖; 圖4係在採用TD_SCDMA之系統令本發明具有智慧天線 之行動終端接收裝置中SA模組之結構圖; 圖5-丨係在採用TD_SCDMA之系統中的傳輸信號訊框之 結構圖; TD-SCDMA之系統中 TD-SCDMA之系統中 TD-SCDMA之系統中 圖5-2係在採用 隙之結構圖; 圖5 - 3係在採用 隙之結構圖; 圖5-4係在採用 結構圖; 的下行鏈路導頻時 的上行鏈路導頻時 的業務時隙叢發之 的兩個連續 圖6係在採用TD-SCDMA之系統中正在處理 子訊框之不意圖; 圖7係圖4所示SA模組之一實例之結構圖;O:\89\89801.DOC -19· 1358917 Reuse the software and hardware design of the standard baseband physical layer processing module without major changes. At the same time, in the SA module of the present invention, the SA module operation is first disabled, and the SA module operation is started after the connection is established and the synchronization information is transmitted to the SA module via the data bus. Therefore, the conflict between the execution of the SA module operation and the reuse of the baseband physical layer processing module function is ingeniously avoided. In addition, in the SA module of the present invention, since a simple sub-frame synchronization and slot synchronization method is adopted, especially the synchronization information is directly obtained from the SA control command, and the mother needs to search for the downlink pilot time slot and training. The sequence thus significantly reduces the time required to synchronize the input data, greatly improving the performance of the communication system. Of course, those skilled in the art should be aware that the smart antenna receiving apparatus and method for the mobile phone provided by the present invention should not only be limited to the mobile phone system, but also can be applied to some other wireless mobile communication terminals, wireless LAN terminals, etc. At the same time, those skilled in the art should be aware that the smart antenna receiving apparatus and method for the mobile phone provided by the present invention should not be limited to the system adopting TD-SCDMA, and it can also be applied to adopt GSM (Global System for Mobile Communications), GPRS. (General Packet Radio Service), EDGE (Enhanced Data Rate for GSM Evolution), WCDMA (Broadband Code Division and Multi-Direction), CDMA IS95, CDMA 2000, etc. In the communication system. It will be appreciated by those skilled in the art that various modifications can be made to the above-described smart antenna receiving apparatus and method of the mobile telephone of the present invention without departing from the basics of the invention, O:\89\8980I.DOC -20- 1358917. Therefore, the scope of protection of the present invention should be defined by the scope of the attached patent application. BRIEF DESCRIPTION OF THE DRAWINGS The invention has been described in detail above with reference to the accompanying drawings in which: Fig. 1 is a block diagram of a standard single antenna mobile phone using a TD-SCDMA system; Fig. 2 is a conventional embedded smart antenna FIG. 3 is a block diagram of a receiving device in a mobile terminal having a smart antenna according to the present invention; FIG. 4 is a system for receiving a mobile terminal in a mobile terminal having a smart antenna according to the system using the TD_SCDMA system; Figure 5 - Structure diagram of the transmission signal frame in the system using TD_SCDMA; TD-SCDMA system in the TD-SCDMA system, Figure 5-2 is in the system of TD-SCDMA Figure 5-3 is a structural diagram of the slot used; Figure 5-4 is a series of two consecutive bursts of traffic slots when the uplink pilot is used in the downlink pilot; 6 is a schematic diagram of a subframe being processed in a system employing TD-SCDMA; FIG. 7 is a structural diagram of an example of an SA module shown in FIG.

O:\89\89801.DOC -21 - 1358917 圖8係禁止圖7所示SA模組執行智能接收功能之示意 圖; 圖9係啓動圖7所示SA模組執行智能接收功能之示意 圖; 圖10係在採用TD-SCDMA的系統中初始化SA模組之時序 圖。 【圖式代表符號說明】 100 天線 101 RF(射頻)模組 102 ADC/DAC 模組 103 基頻物理層處理模組 104 基頻控制模組 105 基頻南層處理模組 206 SA模組 207 合倂控制模組 208 天線合倂器 209 Rake接收機&解擴頻模組 210 Viterbi/Turbo譯碼器模組 300 天線 301 RF(射頻)模組 302 ADC/DAC 模組 303 基頻物理層處理模組 304 基頻控制模組 305 基帶高層處理模組 O:\89\8980I.DOC -22- 1358917 306 SA模組 307 合倂控制器&同步控制器 308 緩衝器 308’ 環形FIFO緩衝器 309 權值調節模組 309’ 權值調節模組 310 加法器 O:\89\8980l.DOC •23 ·O:\89\89801.DOC -21 - 1358917 Figure 8 is a schematic diagram of prohibiting the SA module shown in Figure 7 from performing the intelligent receiving function; Figure 9 is a schematic diagram of starting the intelligent receiving function of the SA module shown in Figure 7; The timing diagram of the SA module is initialized in a system using TD-SCDMA. [Illustration of Symbols] 100 Antenna 101 RF (Radio Frequency) Module 102 ADC/DAC Module 103 Baseband Physical Layer Processing Module 104 Fundamental Frequency Control Module 105 Fundamental Frequency Southern Processing Module 206 SA Module 207倂Control Module 208 Antenna Combiner 209 Rake Receiver & Despreading Module 210 Viterbi/Turbo Decoder Module 300 Antenna 301 RF (Radio Frequency) Module 302 ADC/DAC Module 303 Fundamental Frequency Physical Layer Processing Module 304 Baseband Control Module 305 Baseband High Level Processing Module O:\89\8980I.DOC -22- 1358917 306 SA Module 307 Combined Controller & Synchronization Controller 308 Buffer 308' Ring FIFO Buffer 309 Weight adjustment module 309' weight adjustment module 310 adder O:\89\8980l.DOC •23 ·

Claims (1)

拾 \%1月<?日修正替換頁 申請專利範圍: ~種具有智慧天線之行動終端,其 多組射頻信號處理模組’其被組配來將所接收的多 Γ射頻信號轉換爲多路基頻信號;-智慧天線處理模 2 ’其被組配來根據在該智慧天線處理模組啓動時所 次性接收的控制資訊,對該等多組射頻信號處理模 組所輸出的多路基頻信號實施智慧天線基頻處理,以 將該等多路基頻信號合倂爲單路基頻信號;及一基頻 處理模組,其被組配來向該智慧天線處理模組提供該 控制資tfi,並對該㈣天線處理模組所輸出的翠路基 頻信號實施基頻處理; 土 其中該控制資訊至少包括智慧天線處理模組啓動信 號、下行鏈路導頻時隙資料和訓練序列資料。 如申請專利範圍第1項之行動終端,其中該智慧天線 處理模組包括: 被組配來快取所接收的資料資訊之多個緩衝器其 輸入端分別與該等多組射頻信號處理模組相連快取; 多個權值調節模組,其被組配以根據各自所接收到 的權值,對由該等緩衝器輸出的資料實施加權; 一合倂器,其被組配以合倂該等權值調節模組所輸 出的已加權資料,並輸出合倂後的資料;及 一控制器,其用於接收該等多組射頻信號處理模組 所輸出的資料資訊,並根據該等控制資訊使輸入該智 慧天線處理模組之資料流同步,並向該等權值調節模 CAX作夾、修正⑽⑽“删-隱讣·110708·000 1358917 組提供權值。 jgl唇.,換頁 3. 如申請專利範圍第2項之行動終端,其中該等緩衝器 可爲環形FIFO緩衝器。 4. 如申請專利範圍第3項之行動終端,其中該等環形 FIF0緩衝器之延時長度爲1個時隙。 5_如申請專利範圍第2項之行動終端,其中: 該控制器包括··-同步控制器,其被組配以藉由將 多路輸入信號與該等控制資訊中的下行鍵路導頻時隙 相匹配來使該等多路輸入信號之子訊框同步,藉由將 該等多路輸入信號與該等控制資訊中的訓練序列相匹 配來使該等多路輸入信號之時隙同步;及 一合倂控制器,其被組配以用於根據該等多路輸入 信號之訓練序列和該等控制資訊令的訓練序列來計算 k供給該等權值調節模組之權值。 6.如申請專利範圍第i項之行動終端,其適用於採用以 下一種標準之蜂巢式通訊行動終端中或其它某些行動 無線通信終端、無線LAN終端中:TD-SCDMA、GSM、GPRS、 EDGE 、 WCDMA 、 CDMA IS95 、 CDMA 2000 。 7. 一種用於具有智慧天線之行動終端中的方法,其包括 下列步驟: (a)接收多路射頻信號,並將該等射頻信號轉換爲多 路基頻信號; .(b)根據該等多路基頻信號中的一路基頻信號生成 控制資訊; 丁作麻\^+ίΚ\:;〇η)\Ρ1·41063-ΑΜ4Ρ-100917.ΡΓΜ^ίί·τρ^士,μ 1358917 〒修正替換頁 一· I , ⑷㈣㈣天線㈣處理作業’並根據一次性接收 到的該等控制資訊將該等多路基頻信號合倂爲單路基 頻信號;及 (d)對該單路基頻信號實施基頻處理, 其中步驟(c)更包括: (cl)在啓動智慧夭線基頻處理作聿 F耒 < 刖,快取該 輸入多路基頻信號; (c2)在啓動智慧天線基頻處理作業之後,依據該 控制資訊來使得該輸入多路基頻信號與包括在該控籲 制資訊中之同步化信號同步; (c3 )依據該輸入多路基頻信號與該控制資訊來計 算權值; (c 4 )依據计舁出之该權值分別加權該快取資料 以及 (c5)合併該加權資料來實施該基頻處理。 8.如申請專利範圍第7項之方法,其中步驟(b)係在一個 基頻處理模組中完成。 9·如申請專利範圍第7項之方法,其中步驟(c2)係在一 智慧型天線處理模組中完成。 I 〇.如申請專利範圍第7項之方法其中該等控制資訊至 少包括:該智慧天線基頻處理操作啓動信號、下行鏈 路導頻時隙資料和訓練序列資料。 II _如申請專利範圍第7項之方法,其中該等控制資訊至 少包括:該智慧天線基頻處理操作啓動信號、權值演 1358917 年月日修正替換頁 |QQ Q I 7 - 鼻法選擇信號、T^ 下仃鏈路導頻時隙資料和訓練序列資 - 料。 如申請專利範圍第1〇項之方法,其中步驟(c2)進一步 包括下列步驟: )藉由將4專控制資訊中的下行鏈路導頻時隙 資料與所輸入的該等多路基頻信號相匹配,使所輸入 的該等多路基頻信號之子訊框同步之步驟;以及 (2 2)藉由將該等控制資訊中的訓練序列與所輸入 的胃等多路基頻信號相匹配’使所輸入的該等多路基馨 頻信號之下行鏈路時隙同步之步驟。 13. 如申請專利範圍第11JS之方法,其中步驟(c3)中所用 的該等控制資訊爲訓練序列資料。 14. 如申請專利範圍第7項之方法,其適用於採用以下一 種標準的蜂巢式通訊行動終端中或其它某些行動無線 通信終端、無線LAN終端中:TD-SCDMA、GSM、GPRS、 EDGE、WCDMA、CDMA IS95、CDMA 2000。 15· -種用於處理智慧天線所接收的多路信號之跋置,該 · 裝置包括: 多個緩衝器,其被組配來分別快取所輸入的該等多 路信號; 多個權值調節模組,其被組配來根據各自接收到的 權值對自該等緩衝器輸出之資料實施加權; 一合倂器,其被組配來合倂該等權值調節模組所輸 出的加權後的資料’以將所輸入的該等多路信號合併 舄單路信號;及 一控制器’其被組配來接收該等多組信號,並根據 一次性輸入的控制資訊,在使輸入該裝置的該等多路 信號同步之同時,向該等權值調節模組提供權值。 ^如申請專利範圍第15項之裝置,其中該等緩衝器可係 環形FIFO緩衝器。 如申請專利範圍第16項之裝置,其中該等環形η叩 緩衝器之延時長度爲1個時隙。 —種行動終端,其包括: 被組配來藉由下行鏈路接收來自基地台之射頻信號 之接收器,其中該接收器被組配來可根據其一次性獲 得的控制資訊將該接收器中智慧天線所接收的多路信 號轉換爲單路信號以實施基頻處理; 其中3亥控制資訊係根據在啟動被該智慧型天線處理 之前自多個群組之射頻信號處理模組中之一組輸出的 資料;以及 其中該控制資訊至少包括:該智慧天線基頻處理操 作啓動信號、下行鏈路導頻時隙資料和訓練序列資料。 19. 一種具有智慧型天線之行動終端,其包含: 夕組射頻信號處理模組,其被組配來將多路射頻信 號轉換成多路基頻信號; 智慧型天線處理模組,其被組配來對輸出自該等 多組射頻信號處理模組之該等多路基頻信號進行智慧 型天線基頻處理,以在該智慧型天線處理模組被啟動 .|99年9月?寧正替換頁’ 時依擄一次性獲得的控制資訊將該等多路基頻信號合 併成單路基頻信號;以及 一基頻處理模組,其被組配來提供該控制資訊給該 g慧型天線處理模組,並基頻處理自該智慧型天線處 理模組輸出之該單路基頻信號; 、 其中該智慧型天線處理模組包括: 被組配來快取所接收資料資訊之多個緩衝器,該等 夕個緩衝器之輸入端係分別與多組射頻信號處理模組 相連接; ' ’ 开分曰殂配依據個別接收權$ ^ 1回權值調整模 來加權自各緩衝器輸出的資料; 被組配來合併自各權值調整模組輸出之經加權資1 並輸出該經合併資料之一合併器;以及 被組配來接收自該等多組射頻信號處理模組輸出白 資料資訊的-控制器,依據該控制資訊來同步化㈣ =該智慧型天線處理模組之資料流,並提供該㈣ 給母一加權調整模組。 其中該等緩 2〇.如申請專利範圍第19項之行動終端 器可爲環形FIFO緩衝器。 其中該等環 21. 如申請專利範圍第2〇項之行動終端 FIFO緩衝器之延時長度爲丨個時隙。 22. 如申請專利範圍第19項之行動終端,並 ::少,括智慧天線處理模組啓動信號號 法選擇6號、下行鏈路導頻時@資 、 細Μ·祕 日緣正替換頁 99. 23.如申請專利範圍第22項之行動终端,其中 該控制器包括—同步化控制器,其被組配來藉由將 該輸入多路信號與該控制信號之該下行鏈路導頻時隙 資料相匹配來同步化該輸入多路信號之子訊框,且藉 由將該輸入多路信號與該控制信號之該訓練序列資料 相匹配來同部化該輸入多路信號之時隙;以及 該控制ϋ包括被組配來依據該等輸入多路信號之一 或更多訓練序列資料以及該控制資料之該訓㈣列資 料來計算提供給該權值調整模組之該等權值的一合併 控制器。 α 24. 如申請專利範圍第19項之行動終端,其中該等控制資 讯至少包括智慧天線處理模組啓動信號、下行鏈路導 頻時隙資料和訓練序列資料。 25. —種用於具有智慧型天線之行動終端之方法,其包含 下列步驟: (a) 接收多路射頻信號,並將該等射頻信號轉換爲多 路基頻信號; (b) 根據該等多路基頻信號中的一路基頻信號生成 控制資訊; (c) 啓動智慧天線基頻處理作業,並根據一次性接收 到的δ玄等控制資訊將該等多路基頻信號合倂爲單路基 頻信號;及 (d) 對該單路基頻信號實施基頻處理, 其中該控制資訊至少包括:智慧天線處理模組啓動 1358917 [年月日彦正替換頁 to. 9. if J 信號、下行鏈路導頻時隙資料和訓練序列資料。 26. 如申請專利範圍第25項之方法,其中步驟(b)係在一 基頻處理模組中完成。 27. 如申請專利範圍第25項之方法,其中該方法適用於蜂 巢式通訊行動終端或其它行動無線通訊系統、運用下 列標準其中之一的無線LAN終端:TD-SCDMA、GSM、 GPRS 、 EDGE 、 WCDMA 、 CDMA IS95 、 CDMA2000 。 C:\工作亦•倏 iB20U)_\PI41063-AM-SP-1009n.DOCG!\.T 你Picking up the \%1 month<? day correction replacement page application patent scope: ~ a mobile terminal with a smart antenna, its multiple sets of RF signal processing modules 'is configured to convert the received multi-turn RF signals into multiple The baseband frequency signal; the smart antenna processing module 2' is configured to output the multiple fundamental frequencies of the plurality of sets of radio frequency signal processing modules according to the control information received by the smart antenna processing module at the time of startup The signal implements a smart antenna baseband processing to combine the multiple baseband signals into a single baseband signal; and a baseband processing module that is configured to provide the control resource tfi to the smart antenna processing module, and Performing a fundamental frequency processing on the Cuilu baseband signal output by the (4) antenna processing module; wherein the control information includes at least a smart antenna processing module start signal, a downlink pilot time slot data, and a training sequence data. For example, in the mobile terminal of claim 1, the smart antenna processing module includes: a plurality of buffers configured to cache the received data information, and the input ends thereof and the plurality of sets of radio frequency signal processing modules respectively Connected caches; a plurality of weight adjustment modules configured to weight the data output by the buffers according to respective received weights; a combiner that is configured to merge The weighted data output by the weight adjustment module outputs the combined data; and a controller for receiving data information output by the plurality of sets of RF signal processing modules, and according to the data The control information synchronizes the data stream input to the smart antenna processing module, and clips to the weight adjustment mode CAX, and corrects (10) (10) "deletion-concealment 110708·000 1358917 group provides weights. jgl lip., form page 3 The mobile terminal of claim 2, wherein the buffers are circular FIFO buffers. 4. The mobile terminal of claim 3, wherein the delay length of the circular FIF0 buffers is one. Time slot 5_ The mobile terminal of claim 2, wherein: the controller comprises a synchronization controller that is configured to pilot the multiple input signals and the downlink keys in the control information The time slots are matched to synchronize the sub-frames of the plurality of input signals, and the time slots of the plurality of input signals are synchronized by matching the plurality of input signals with the training sequence in the control information; And a combined controller, configured to calculate a weight of the supply of the weight adjustment module according to the training sequence of the multiple input signals and the training sequence of the control information commands. For example, the mobile terminal of the patent application scope i is applicable to a cellular communication mobile terminal or some other mobile wireless communication terminal or wireless LAN terminal adopting one of the following standards: TD-SCDMA, GSM, GPRS, EDGE, WCDMA CDMA IS95, CDMA 2000. 7. A method for use in a mobile terminal with a smart antenna, comprising the steps of: (a) receiving multiple radio frequency signals and converting the radio frequency signals into multiple fundamental frequencies Signal; (b) generate control information based on one of the multi-channel baseband signals; Ding Zuoma\^+ίΚ\:;〇η)\Ρ1·41063-ΑΜ4Ρ-100917.ΡΓΜ^ίί·τρ ^士,μ 1358917 〒Revision replacement page I·I, (4)(4)(4) Antenna (4) Processing operation' and combining the multiple baseband signals into a single baseband signal based on the received control information; and (d) The single-channel baseband signal is subjected to a fundamental frequency processing, wherein the step (c) further comprises: (cl) starting the smart-wired fundamental frequency processing as 聿F耒< 刖, quickly fetching the input multiplexed baseband signal; (c2) After the smart antenna baseband processing operation is started, the input multi-channel baseband signal is synchronized with the synchronization signal included in the control information according to the control information; (c3) according to the input multiplexed baseband signal and the control information To calculate the weight; (c4) weighting the cache data according to the weighted value and (c5) combining the weighted data to implement the baseband processing. 8. The method of claim 7, wherein step (b) is performed in a baseband processing module. 9. The method of claim 7, wherein the step (c2) is performed in a smart antenna processing module. I. The method of claim 7, wherein the control information comprises at least: the smart antenna baseband processing operation start signal, downlink pilot time slot data, and training sequence data. II _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ T^ downlink link pilot time slot data and training sequence resources. The method of claim 1, wherein the step (c2) further comprises the step of: (3) by comparing the downlink pilot time slot data in the 4 dedicated control information with the input of the plurality of base frequency signals; a step of synchronizing the input sub-frames of the plurality of baseband signals; and (2) matching the training sequence in the control information with the multi-channel baseband signal of the input stomach The step of synchronizing the downlink time slots of the input of the multiple base signals. 13. The method of claim 11JS, wherein the control information used in step (c3) is training sequence data. 14. The method of claim 7 is applicable to a cellular communication mobile terminal using one of the following standards or some other mobile wireless communication terminal, wireless LAN terminal: TD-SCDMA, GSM, GPRS, EDGE, WCDMA, CDMA IS95, CDMA 2000. a device for processing a multi-channel signal received by a smart antenna, the device comprising: a plurality of buffers configured to respectively cache the input multiplexed signals; a plurality of weights An adjustment module configured to weight the data output from the buffers according to respective received weights; a combination of the components configured to combine the outputs of the weight adjustment modules The weighted data 'consolidates the input multiplexed signals into a single signal; and a controller' is configured to receive the plurality of sets of signals and to make an input based on the control information input at one time The plurality of signals of the device are synchronized while providing weights to the weight adjustment modules. ^ The device of claim 15 wherein the buffers are ring FIFO buffers. The apparatus of claim 16, wherein the ring η buffer has a delay length of one time slot. a mobile terminal, comprising: a receiver configured to receive a radio frequency signal from a base station by a downlink, wherein the receiver is configured to be available in the receiver according to control information obtained at one time The multi-channel signal received by the smart antenna is converted into a single signal to implement a baseband processing; wherein the 3H control information is based on a group of radio frequency signal processing modules from a plurality of groups before starting the processing by the smart antenna. The output data; and the control information includes at least: the smart antenna baseband processing operation start signal, downlink pilot time slot data, and training sequence data. 19. A mobile terminal having a smart antenna, comprising: an evening radio frequency signal processing module configured to convert a plurality of radio frequency signals into a plurality of baseband signals; a smart antenna processing module, which is assembled The smart antenna baseband processing is performed on the multi-channel baseband signals output from the plurality of sets of radio frequency signal processing modules to be activated in the smart antenna processing module. | September 1999? Ningzheng replaces the page's control information that is obtained at one time and combines the multiple baseband signals into a single baseband signal; and a baseband processing module that is configured to provide the control information to the g-type An antenna processing module, and the baseband processes the single baseband signal output from the smart antenna processing module; wherein the smart antenna processing module comprises: a plurality of buffers configured to cache the received data information The input ends of the eve buffers are respectively connected to the plurality of sets of RF signal processing modules; the ''open branch 加权 is weighted from each buffer according to the individual receiving weight $^1 weighting adjustment mode Data; a combination of the weighted assets 1 outputted from each weight adjustment module and outputting the merged data; and being configured to receive white data from the plurality of sets of RF signal processing modules The controller is synchronized according to the control information (4) = the data stream of the smart antenna processing module, and the (4) weighting adjustment module is provided. The action terminal can be a ring FIFO buffer as claimed in claim 19. Wherein the loops 21. The delay length of the mobile terminal FIFO buffer as claimed in the second paragraph of the patent application is one time slot. 22. For the mobile terminal of the 19th patent application, and:: Less, including the smart antenna processing module start signal number method to select No. 6, downlink pilot when @资, 细Μ·秘日缘正换页99. The mobile terminal of claim 22, wherein the controller comprises a synchronization controller configured to pass the input multiplex signal to the downlink pilot of the control signal The time slot data is matched to synchronize the subframe of the input multiplex signal, and the time slot of the input multiplex signal is homogenized by matching the input multiplex signal with the training sequence data of the control signal; And the control unit is configured to calculate the weights provided to the weight adjustment module based on one or more training sequence data of the input multiplex signals and the training (four) column data of the control data. A merge controller. α 24. The mobile terminal of claim 19, wherein the control information includes at least a smart antenna processing module enable signal, downlink pilot time slot data, and training sequence data. 25. A method for a mobile terminal having a smart antenna, comprising the steps of: (a) receiving a plurality of radio frequency signals and converting the radio frequency signals into a plurality of baseband signals; (b) according to the plurality of A primary frequency signal in the fundamental frequency signal generates control information; (c) starting the smart antenna baseband processing operation, and combining the multiple baseband signals into a single fundamental frequency signal according to the one-time received control information such as δ Xuan And (d) performing a fundamental frequency processing on the single fundamental frequency signal, wherein the control information includes at least: the smart antenna processing module is activated 1358917 [Yueyue Yoshihiko is replacing the page to. 9. if J signal, downlink guide Frequency slot data and training sequence data. 26. The method of claim 25, wherein step (b) is performed in a baseband processing module. 27. The method of claim 25, wherein the method is applicable to a cellular communication terminal or other mobile wireless communication system, using one of the following standards: TD-SCDMA, GSM, GPRS, EDGE, WCDMA, CDMA IS95, CDMA2000. C:\工作也•倏 iB20U)_\PI41063-AM-SP-1009n.DOCG!\.T you
TW92134427A 2003-12-05 2003-12-05 A smart antenna solution for mobile handset TWI358917B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92134427A TWI358917B (en) 2003-12-05 2003-12-05 A smart antenna solution for mobile handset

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92134427A TWI358917B (en) 2003-12-05 2003-12-05 A smart antenna solution for mobile handset

Publications (1)

Publication Number Publication Date
TWI358917B true TWI358917B (en) 2012-02-21

Family

ID=46728198

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92134427A TWI358917B (en) 2003-12-05 2003-12-05 A smart antenna solution for mobile handset

Country Status (1)

Country Link
TW (1) TWI358917B (en)

Similar Documents

Publication Publication Date Title
US8467485B2 (en) Smart antenna solution for mobile handset
JP4892676B2 (en) Multi-antenna solution for mobile handsets
CN1197271C (en) Receiving station with interference signal suppression
WO2002033989A2 (en) Technique for reducing average power consumption in a wireless communications device
WO2005099154A1 (en) Method to enable open loop antenna transmit diversity on channels having dedicated pilots
US8208856B2 (en) Method and system for a programmable interference suppression module
KR101046691B1 (en) Receiving device and method of multiple input multiple output system
KR100902298B1 (en) Base station, radio line control station, and radio communication method
US20080232438A1 (en) 2D Rake Receiver For Use in Wireless Communication Systems
US20060171491A1 (en) Diversity-mode delay lock loop circuit and associated method for a radio receiver
JP4700053B2 (en) Method and apparatus for selectively processing information replicas
US20040092235A1 (en) Processing diversity signals using a delay
TWI358917B (en) A smart antenna solution for mobile handset
CN101015138A (en) Wireless communication apparatus with multiple antennas and method thereof
US20090262851A1 (en) Radio transmitting apparatus and radio transmitting method
CN100426691C (en) RAKE receiving method and RAKE receiver using the method
JP2002111570A (en) Method for demodulating signal and receiver
KR100390398B1 (en) Apparatus and method for controlling power in code division multiple access system
JPH10178415A (en) Direct spread code division communication system
JP2001358614A (en) Cdma signal receiver and telephone
KR20140110371A (en) Antenna swtiching apparatus of spatial modulation
JPH11163766A (en) Cdma communication system
KR20030020574A (en) Rake receiver
JP2004088628A (en) Composite transmission apparatus and radio base station
JP2004064242A (en) Cdma receiver system and cdma receiving method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees