TWI358853B - Multi input multi output antenna - Google Patents

Multi input multi output antenna Download PDF

Info

Publication number
TWI358853B
TWI358853B TW97116255A TW97116255A TWI358853B TW I358853 B TWI358853 B TW I358853B TW 97116255 A TW97116255 A TW 97116255A TW 97116255 A TW97116255 A TW 97116255A TW I358853 B TWI358853 B TW I358853B
Authority
TW
Taiwan
Prior art keywords
antenna
radiator
substrate
horizontally polarized
printed
Prior art date
Application number
TW97116255A
Other languages
Chinese (zh)
Other versions
TW200947804A (en
Inventor
xiao-feng Liu
Cho Ju Chung
Teng Huei Chu
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97116255A priority Critical patent/TWI358853B/en
Publication of TW200947804A publication Critical patent/TW200947804A/en
Application granted granted Critical
Publication of TWI358853B publication Critical patent/TWI358853B/en

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Description

1358&53 . 六、發明說明: 【發明所屬之技術領域】 ⑽οι] 本發明涉及一種天線’尤其涉及一種多輪入多輸出天線 【先前技術】 [0002] 隨著通訊產業的快速發展’無線產品的種類越來越多, 例如廣受關注的無線區域網路(Wireless Local Area Network )產品,其應用範圍越來越廣泛。對於應用於無 線區域網路之接入點(Access Point)以及筆記变電腦 之MINI-PCI 'PCMCIA或USB介面之無線網卡,或應用於 個人通訊之行動電話等無線通訊設備,為了方便攜帶, 一般需要設計成較小體積。天線為上述無線通訊設備之 必備元件,故減小天線體積係減小無線通訊設備體積之 一種解決方案。現有技術往往採用長直形的單極天線( monopole )方式,但單極天線的尺寸較大。為了減小無 線通訊設備的體積,一種新的技術多輸入輸出(Multi input and Multiple Output,ΜΙΜΟ)天線便產生了 [0003] 此外,無線微波訊號(波長短於30cm的電磁波訊號)在 傳播時會受氣候及周圍障礙物等因素杉響而衰減較快, 因此訊號的品質和傳送距離大打折扣,所以除了考慮天 線是否具備多輸入輸出(Multi input and Multiple Output, ΜΙΜΟ)之特性外,更需要注意天線之增益是否 能夠提幵’確保在通訊工作過程中具有良好的訊號品質 097116255 表單編號Α0101 第3頁/共28頁 1003271238-0 [0004]1358853 100_07月 26 [0005] [0006] [0007] 【發明内容】 有鑒於此,需提供一種具有良好增益和較小面積的多輸 入多輪出天線。 還有必要提供一種具有良好增益和較小面積的印刷天線 一種多輸入多輸出天線,設置於基板上,該基板包括第 一表面及與第一表面平行之第二表面。該多輸入多輸出 天線包括一對第一天線及第二天線。該等第一天線係相 隔一定距離並平行設置。該等第一天線均為偶極天線並 印刷於基板的第一表面和第二表面。第二天線設置於該 等第一天線之間並與該等第一天線相間隔。第二天線為 偶極天線並印刷於基板的第一表面和第二表面。 一種印刷天線,印刷於一電路板上,該電路板包括第一 表面及與該第一表面平行之第二表面》該印刷天線包括 一對相隔一定距離並平行設置的垂直極化天線及水平極 化天線。該等垂直極化天線分別包括饋入部、第一輻射 體及第二輻射體,饋入部用於向垂直極化天線饋入電磁 波訊號。饋入部和第一輻射體設置於電路板的第一表面 ,第二輻射體設置於電路板的第二表面。水平極化天線 設置於該等垂直極化天線之間並與該等垂直極化天線相 間隔。水平極化天線包括饋入部、第一輻射體及第二輻 射體’饋入部用於向水平極化天線饋入電磁波訊號^饋 入部和第一輻射體設置於電路板的第一表面,第二輻射 體設置於電路板的第二表面。其中,該等垂直極化天線 和水平極化天線均為偶極天線。 097116255 表單編號A0101 1003271238-0 I358S53 [0008] [0009] [0010] [0011] [0012] 097116255 * ~100#,07^ 本發明實施方式所提供之多輸入多輸出天線,利用複數 天線不同的排列方式實現天線之間的極化分集,從而提 高天線的增益。同時利用天線設置於基板不同的表面而 減小天線的面積。 【實施方式】 請參閱圖1和圖2 ’本發明之多輸入多輸出天線20印刷於 基板10上。基板1〇為一印刷電路板,其包括第一表面12 和第二表面14,第一表面12和第二表面14係平行設置。 多輪入多輸出天線2〇包括一對第一天線3〇和一第二天線 4〇 ’該等第一天線30和第二天線4〇均為偶極天線。該等 第一天線30係相隔一定的距離並平行設置,並作為多輸 入多輸出天線20的垂直極化天線。第二天線4〇水平地設 置於該等第一天線30之間並與該等第一天線3〇相間隔, 其作為多輸入多輸出天線2〇的水平極化天線。 每個第一天線30包括饋入部32、功率分配器33、第一輻 射體34、一對接地部35、接地傳輸線36、連接體37及第 —輕射體38。饋入部32係具有5〇歐姆匹配阻抗的傳輸線 ,用於向第一天線30饋入電磁波訊號。其中饋入部32、 功率分配器33、第一輻射體34及該等接地部35設置於基 板1〇的第一表面12,接地傳輸線36、連接體37及第二輻 射體38設置於基板10的第二表面14。 第一輻射體34用於收發電磁波訊號。第一輻射體34相對 饋入部32的中心線320呈對稱設計,其包括一對平行的第 輕射邹344和一對平行的第二輻射部346。該等第一輻 = 和該等第二輻射部346分別分佈於功率分配器33 填戏 ΑΟίοι 第 5 頁/共 28 頁 1003271238-0 1358853 1 加_07允·26日後正替¥頁1 的兩側並彳目對饋⑽㈣巾,- ’輕射部344和第二輻射部346的長度均為四分之一波長 。兩平行的第—㈣部344與㈣行的第二㈣部346分 別位於同一直線上。 [0013] 功率分配器33與饋人部32電性連接並相對饋人㈣的中 心線320呈對稱設計。功率分配器咖於向第_輕射部 344和第二輕射部346饋入電磁波訊號。功率分配器33大 致呈Η型,其包括第-連接部饥和―對第二連接部334。 第一連接部332與饋入部32電性連接並相對饋入㈣的中 心線320呈對稱設計。該等第二連接部334大致呈c型並 對稱分佈於第一連接部332的兩側。第二連接部334分別 與第一賴射部344和第二輕射部346電性連接。 [0014] 該等接地部35相對饋入部32的中心線320呈對稱設計。接 地傳輸線36透過一對過孔39與該等接地部35電性連接, 其相對饋入部32的中心線320於基板1〇的第二表面14的 投影呈對稱設計。 [0015] 〇97i16255 第二輻射體38與第一輻射體34耦合,用於收發電磁波訊 號。第二輻射體38相對饋入部32的中心線320於基板1〇 的第二表面14的投影呈對稱設計,其包括一對平行的第 〜輻射部384和一對平行的第二輻射部386。該等第一輻 射部384和該等第二輻射部386分別分佈於連接體37的兩 側並相對饋入部32的中心線320於基板1〇的第二表面14 的投影呈對稱設計。每個第一輻射部384和第二輻射部 386的長度均為四分之**·波長。兩平行的第一輻射部384 和兩平行的第二輻射部386分別位於同一直線上。 表單碥號Α0101 第6頁/共28頁 1003271238-0 1358853 [0016] [0017] [0018] [0019] [0020] ί〇〇ϋΤ^~26日按正销问 在本實施方式中,第一輻射體34的兩第一輻射部344與第 二輻射體38的兩第二輻射部386分別耦合,且第_輻射體 34的兩第二輻射部346與第二輻射體38的兩第一輻射部 384分別耦合,相當於四個天線排列在一起,從而形成一 個由四個天線組成的微帶式偶極天線陣列。這不僅増加 了第一天線30的增益和輻射能力,而且減小了第一天線 3 0的尺寸。 在其它實施方式中,第一天線3〇的第一輻射體34和第二 辕射體38可以只有一個輕射部。 連接體37與接地傳輸線36電性連接並相對饋入部32的中 心線320於基板10的第二表面14的投影呈對稱設計。連接 體37大致呈Η型,其包括第一連接部372和一對第二連接 部374。第一連接部372與接地傳輸線36電性連接並相對 镇入部32的中心線320於基板1〇的第二表面14的投影呈 對稱設計。該等第二連接部374大致呈C型,並對稱分佈 於第一連接部372的兩側》 第二天線40包括饋入部42、功率分配器43、第一輻射體 44、接地部45、接地傳輸線46 '連接體47及第二輻射體 48 °饋入部42係具有5〇歐姆匹配阻抗的傳輸線,用於向 第二天線40饋入電磁波訊號。其中饋入部42、功率分配 益43、第一輻射體44及接地部45設置於基板1〇的第一表 面12 ’接地傳輸線46、連接體47及第二輻射體48設置於 基板10的第二表面14。 第一輻射體44用於收發電磁波訊號。第一輻射體44包括 097116255 表單編號Α0101 第7頁/共28頁 1003271238-0 1358853 [0021] 1100^:071 26Ϊ" 第一輻射部444和第二輻射部446 »第一輻射部444和第 二輻射部446的長度均為四分之一波長《第一輻射部484 和第二輻射部486位於同一直線上》 功率分配器43與饋入部42電性連接並相對饋入部42的中 心線420呈對稱設計。功率分配器43用於向第一輻射部 444和第二輻射部446饋入電磁波訊號。功率分配器43大 致呈C型,並分別與第一輕射部444和第二輻射部446電性 連接。 [0022] [0023] [0024] 功率分配器43位於饋入部42的一端,接地部45位於饋入 部42的另一端。接地部45相對饋入部42的中心線42〇呈 對稱設計。 接地傳輸線46透過一對過孔49與接地部铛電性連接,其 相對饋入部42的中心線420於基板1〇的第二表面14的投 影呈對稱設計。 第二輻射體48與第-輻射體44耦合,用於收發電磁波訊 號:第二賴射體48包括第一輻射部484和第二㈣部486 每個第1¾射部484和第二輕射部486的長度均為四分 之-波長。第-輕射部484和第二輻射部似位於同一直 [0025] 097116255 ^本實施方式中,第—_购的第-輕射部444與第 j射體48的第二輻射部486耦合, 轄射部446與第二轄射體μ的箆^ 拘町篮48的第—輻射部484耦合,相當 於兩個天線排列在—叙,從而形士 %從而心成—個由兩個天線組成 的微帶式偶極天線陣列。這不僅 1 I个值增加了第二天線40的增 且第一輻射體44的第 表單編號A0101 第8頁/共28頁 1003271238-0 [0026]1358.853 [0027] [0028] [0029] [0030] * · · · ·. ____________-r--1 100年07月:加:日修正 益和輻射能力,而具減小了第二天線4〇的尺寸。 在其它實施方式中,第二天線40的第一輻射體44和第二 輻射體48可以只有一個輻射部。 連接體47與接地傳輸線47電性連接並相對饋入部42的中 心線420於基板10的第二表面14的投影呈對稱設計。連接 體47大致呈C型,並分別與第一輻射部484和第二輻射部 486電性連接。 請參照圖3,所示係本發明之多輪入多輸出天線2〇於基板 10一水平面的投影示意圖。該等第一天線30的投影相對 第二天線40的投影的中心線呈對稱設計。第一天線30的 投影相對饋入部32的中心線320的投影呈對稱設計。第二 天線4 0的投影相對饋入部4 2的中心線4 2 0的投影呈對稱設 計。第一輻射部344、第二輻射部386、第二輻射部346 及第一輪射部384位於同一直線上。第一賴射部444、第 二輻射部486、第二輻射部446及第一輻射部484位於同 一直線上。 在本實施方式中’第一輻射體34、44及第二輻射體38、 48被疋義為輕射體。第一輕射部344、384、444、484及 第二輻射部346、386、446、486被定義為輻射部。 請參閱圖4,圖4揭示了本發明之多輸入多輸出天線2〇之 主要尺寸標示。在本實施方式中,多輸入多輸出天線2〇 之總長度D為15.1厘米,多輸入多輸出天線20之總寬度G 為8.35厘米。第一天線30的功率分配器33的長度A為二 分之一波長。第一天線30的兩第一輻射部344之間的距離 097116255 表單編號A0101 第9頁/共28頁 1003271238-0 1358853 100年.07月'26日修正替換頁 E為四分之一波長。第一天線30的輻射部的長度均為四分 之一波長。第一天線30的接地部35與第一連接部332之間 的距離F為4.7厘米。第二天線40的第一接地部46與第一 輻射部444之間的距離C為4.7厘米。第二天線40的輻射 部的長度均為四分之一波長。 [0031] 在本實施方式中,位於第二天線40右側的第一天線30被 定義為右側第一天線30,位於第二天線40左側的第一天 線30被定義為左侧第一天線30。 [0032] 請參閱圖5及6,所示為本發明之多輸入多輸出天線20的 左側第一天線30分別工作於2. 40GHz及2. 50GHz頻率之 垂直方向之輻射場型圖。由圖可知,本發明實施方式之 多輸入多輸出天線20的左側第一天線30在垂直方向各角 度之輻射符合應用要求。 [0033] 請參閱圖7及8,所示為本發明之多輸入多輸出天線20的 第二天線40分別工作於2. 40GHz及2. 50GHz頻率之水平 方向之輻射場型圖。由圖可知,本發明實施方式之多輸 入多輸出天線20的第二天線40在水平方向各角度之輻射 符合應用要求。 [0034] 請參閱圖9及10,所示為本發明之多輸入多輸出天線20的 右側第一天線30分別工作於2. 40GHz及2. 50GHz頻率之 垂直方向之輻射場型圖。由圖可知,本發明實施方式之 多輸入多輸出天線20的右側第一天線30在垂直方向各角 度之輻射符合應用要求。 [0035] 請參閱圖11、圖12及圖13,所示為本發明之多輸入多輸 097116255 表單编號A0101 第10頁/共28頁 1003271238-0 1358853 [0036] [0037] [0038] [0039] [0040] [0041] [0042] 097116255 ; .100年.07月2έ自修正_頁 出天線20之反射損耗(Return Loss)測試圖。本發明 實施方式之多輸入多輸出天線20係應用於2. 4和2. 5GHZ 。由圖示可知,其反射損耗均小於-10dB。 因該等第一天線30及第二天線40之間相互間隔,即本發 明的多輸入多輸出天線20具有空間分集性,從而本發明 的多輸入多輸出天線20可以有效對抗訊號衰落,進而改 善訊號品質。 本發明的多輸入多輸出天線20利用該等第一天線30及第 二天線40之間極化方向的差異,以達到提昇該等第一天 線30及第二天線40之間的隔離度,降低彼此間之訊號干 擾之目的,進而提高多輸入多輸出天線20的增益。 因該等第一天線30和第二天線40的第一輻射體34、44和 第二接地部38、48分別設置於基板10的不同表面,從而 減小了本發明的多輸入多輸出天線20的面積。 綜上所述,本發明符合發明專利要件,爰依法提出專利 申請。惟,以上所述者僅為本發明之較佳實施例,舉凡 熟悉本案技藝之人士,在爰依本案發明精神所作之等效 修飾或變化,皆應包含於以下之申請專利範圍内。 【圖式簡單說明】 圖1為本發明多輸入多輸出天線印刷於基板之第一表面之 示意圖。 圖2為本發明多輸入多輸出天線印刷於基板之第二表面之 示意圖。 圖3為本發明多輸入多輸出天線於基板一水平面的投影之 表單編號A0101 第11頁/共28頁 1003271238-0 1358853 [0043] [0044] ' 「100#.07月.26白修正_頁 示意圖。 圖4為本發明多輸入多輸出天線之尺寸示意圖。 圖5係本發明之多輸入輸出天線之左側第一天線工作於 2.40GHz頻率之垂直方向之輻射場型圖。 [0045] 圖6係本發明之多輸入輸出天線之左側第一天線工作於 2.50GHz頻率之垂直方向之輻射場型圖。 [0046] 圖7係本發明之多輸入輸出天線之第二天線工作於 2.40GHz頻率之水平方向之輻射場型圖。 [0047] 圖8係本發明之多輸入輸出天線之第二天線工作於 2.50GHz頻率之水平方向之輻射場型圖。 [0048] 圖9係本發明之多輸入輸出天線之右側第一天線工作於 2.40GHz頻率之垂直方向之輻射場型圖。 [0049] 圖10係本發明之多輸入輸出天線之右側第一天線工作於 2.50GHz頻率之垂直方向之輻射場型圖。 [0050] 圖11、圖12及圖13係本發明之多輸入輸出天線之反射損 耗測試圖。 【主要元件符號說明】 [0051] 基板 10 [0052] 第一表面 12 [0053] 第二表面 14 [0054] 多輸入多輸出天線 20 [0055] 097116255 第一天線 表單編號A0101 第 30 12頁/共28頁 1003271238-0 1358853 100年.07月26日核正^頁 [0056] 第二天線 40 [0057] 饋入部 32 ' 42 [0058] 功率分配器 33、43 [0059] 第一輻射體 34 ' 44 [0060] 接地部 35、45 [0061] 接地傳輸線 36 ' 46 [0062] 連接體 37 ' 47 [0063] 第二輻射體 38、48 [0064] 過孔 39 ' 49 [0065] 中心線 320 ' 420 [0066] 第一連接部 332 、 372 [0067] 第二連接部 334 、 374 [0068] 第一輻射部 344、444、384、484 [0069] 第二輻射部 346、446、386、486 097116255 表單編號A0101 第13頁/共28頁 1003271238-01358&53. VI. Description of the invention: [Technical field to which the invention pertains] (10) οι The present invention relates to an antenna 'particularly to a multi-wheeled multiple output antenna [Prior Art] [0002] With the rapid development of the communication industry 'Wireless products There are more and more types, such as the widely-received Wireless Local Area Network products, which are used more and more widely. For wireless access points for access points (Access Point) for wireless local area networks and MINI-PCI 'PCMCIA or USB interface for notebook computers, or for wireless communication devices such as mobile phones for personal communication, Need to be designed to be smaller. The antenna is an essential component of the above wireless communication device, so reducing the antenna volume is a solution for reducing the size of the wireless communication device. The prior art tends to use a long straight monopole approach, but the monopole antenna is larger in size. In order to reduce the size of the wireless communication device, a new technology multi-input and multiple output (ΜΙΜΟ) antenna is generated [0003] In addition, the wireless microwave signal (electromagnetic wave signal with a wavelength shorter than 30cm) will propagate Due to the climate and surrounding obstacles and other factors, the attenuation is faster, so the quality of the signal and the transmission distance are greatly reduced. Therefore, in addition to considering whether the antenna has the characteristics of multiple input and output (ΜΙΜΟ), it is more important to pay attention to Can the gain of the antenna be improved? Make sure that there is good signal quality during communication work. 097116255 Form No. 1010101 Page 3/Total 28 Page 1003271238-0 [0004]1358853 100_07月26 [0005] [0006] [0007] SUMMARY OF THE INVENTION In view of the above, it is desirable to provide a multiple input multiple wheeled antenna with good gain and small area. It is also desirable to provide a printed antenna having good gain and a small area. A multiple input multiple output antenna is disposed on a substrate including a first surface and a second surface that is parallel to the first surface. The multiple input multiple output antenna includes a pair of first antennas and second antennas. The first antennas are spaced apart and arranged in parallel. The first antennas are all dipole antennas and are printed on the first and second surfaces of the substrate. A second antenna is disposed between the first antennas and spaced apart from the first antennas. The second antenna is a dipole antenna and is printed on the first surface and the second surface of the substrate. A printed antenna printed on a circuit board, the circuit board including a first surface and a second surface parallel to the first surface. The printed antenna includes a pair of vertically polarized antennas and horizontal poles disposed at a distance and arranged in parallel Antenna. The vertically polarized antennas respectively include a feeding portion, a first radiator and a second radiator, and the feeding portion is configured to feed the electromagnetic signals to the vertically polarized antenna. The feeding portion and the first radiator are disposed on the first surface of the circuit board, and the second radiator is disposed on the second surface of the circuit board. A horizontally polarized antenna is disposed between the vertically polarized antennas and spaced apart from the vertically polarized antennas. The horizontally polarized antenna includes a feeding portion, a first radiator and a second radiator. The feeding portion is configured to feed the electromagnetic wave signal to the horizontally polarized antenna, and the first radiator is disposed on the first surface of the circuit board. The radiator is disposed on the second surface of the circuit board. Wherein, the vertically polarized antenna and the horizontally polarized antenna are both dipole antennas. 097116255 Form No. A0101 1003271238-0 I358S53 [0008] [0010] [0012] 097116255 * ~100#, 07^ The multiple input multiple output antenna provided by the embodiment of the present invention utilizes different arrangements of multiple antennas The method achieves polarization diversity between antennas, thereby increasing the gain of the antenna. At the same time, the antenna is disposed on different surfaces of the substrate to reduce the area of the antenna. [Embodiment] Referring to Figures 1 and 2, the multiplexed multi-output antenna 20 of the present invention is printed on a substrate 10. The substrate 1A is a printed circuit board that includes a first surface 12 and a second surface 14, the first surface 12 and the second surface 14 being disposed in parallel. The multi-wheeled multiple output antenna 2A includes a pair of first antennas 3A and a second antenna 4''. The first antenna 30 and the second antenna 4' are both dipole antennas. The first antennas 30 are arranged in parallel at a certain distance and serve as vertically polarized antennas for multi-input multi-output antennas 20. The second antenna 4 is horizontally disposed between and spaced apart from the first antennas 30 as a horizontally polarized antenna of the multiple input multiple output antenna 2A. Each of the first antennas 30 includes a feed portion 32, a power splitter 33, a first radiator 34, a pair of ground portions 35, a ground transmission line 36, a connecting body 37, and a first light projecting body 38. The feed portion 32 is a transmission line having a 5 ohm ohm matching impedance for feeding electromagnetic wave signals to the first antenna 30. The feeding portion 32, the power distributor 33, the first radiator 34 and the grounding portions 35 are disposed on the first surface 12 of the substrate 1 , and the ground transmission line 36 , the connecting body 37 and the second radiator 38 are disposed on the substrate 10 . Second surface 14. The first radiator 34 is used for transmitting and receiving electromagnetic wave signals. The first radiator 34 is symmetrically designed with respect to the centerline 320 of the feed portion 32 and includes a pair of parallel first light emitters 344 and a pair of parallel second radiation portions 346. The first spokes = and the second radiating portions 346 are respectively distributed in the power splitter 33. 填 ο ο 第 ο 第 第 第 第 第 第 第 26 26 26 26 26 26 26 26 26 26 26 26 26 26 The side and the eye contact pair (10) (four) towel, the length of the 'light shot portion 344 and the second radiation portion 346 are both quarter wavelengths. The two parallel fourth-fourth portions 344 and the second (four) portions 346 of the (four) rows are on the same straight line. [0013] The power splitter 33 is electrically connected to the feed portion 32 and is symmetrically designed with respect to the center line 320 of the feed (four). The power splitter feeds the electromagnetic wave signals to the first light portion 344 and the second light portion 346. The power splitter 33 is substantially sturdy and includes a first-joining portion and a pair of second connecting portions 334. The first connecting portion 332 is electrically connected to the feeding portion 32 and symmetrically designed with respect to the center line 320 of the feeding (4). The second connecting portions 334 are substantially c-shaped and symmetrically distributed on both sides of the first connecting portion 332. The second connecting portion 334 is electrically connected to the first reflecting portion 344 and the second light emitting portion 346, respectively. [0014] The grounding portions 35 are symmetrically designed with respect to the centerline 320 of the feeding portion 32. The ground transmission line 36 is electrically connected to the ground portions 35 through a pair of vias 39, and the projection of the center line 320 of the feed portion 32 with respect to the second surface 14 of the substrate 1 is symmetric. [0015] The 辐射97i16255 second radiator 38 is coupled to the first radiator 34 for transmitting and receiving electromagnetic wave signals. The second radiator 38 is symmetrically formed with respect to the projection of the centerline 320 of the feed portion 32 on the second surface 14 of the substrate 1A, and includes a pair of parallel first radiating portions 384 and a pair of parallel second radiating portions 386. The first radiating portions 384 and the second radiating portions 386 are respectively distributed on both sides of the connecting body 37 and are symmetrically designed with respect to the projection of the center line 320 of the feeding portion 32 on the second surface 14 of the substrate 1A. Each of the first radiating portion 384 and the second radiating portion 386 has a length of four quarters. The two parallel first radiating portions 384 and the two parallel second radiating portions 386 are respectively located on the same straight line. Form 碥 Α 0101 Page 6 / 28 pages 1003271238-0 1358853 [0016] [0019] [0020] 〇〇ϋΤ 〇〇ϋΤ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 在 在 在 在 在 在 在The two first radiating portions 344 of the radiator 34 are coupled to the two second radiating portions 386 of the second radiator 38, respectively, and the two first radiating portions 346 of the first radiating body 34 and the two first radiating portions of the second radiator 38 The sections 384 are respectively coupled, which are equivalent to four antennas arranged together to form a microstrip dipole antenna array composed of four antennas. This not only increases the gain and radiation capability of the first antenna 30, but also reduces the size of the first antenna 30. In other embodiments, the first radiator 34 and the second ejector 38 of the first antenna 3〇 may have only one light projecting portion. The connector 37 is electrically connected to the ground transmission line 36 and is symmetrically designed with respect to the projection of the center line 320 of the feed portion 32 on the second surface 14 of the substrate 10. The connector 37 is generally of a meandering type and includes a first connecting portion 372 and a pair of second connecting portions 374. The first connection portion 372 is electrically connected to the ground transmission line 36 and is symmetrically disposed with respect to the projection of the center line 320 of the ballast portion 32 on the second surface 14 of the substrate 1A. The second connecting portions 374 are substantially C-shaped and symmetrically distributed on both sides of the first connecting portion 372. The second antenna 40 includes a feeding portion 42, a power distributor 43, a first radiator 44, and a ground portion 45. The grounding transmission line 46' connecting body 47 and the second radiator 48° feeding portion 42 are transmission lines having a 5 ohm-ohmic matching impedance for feeding electromagnetic wave signals to the second antenna 40. The feeding portion 42, the power distribution benefit 43, the first radiator 44, and the ground portion 45 are disposed on the first surface 12 of the substrate 1'. The ground transmission line 46, the connecting body 47, and the second radiator 48 are disposed on the second substrate 10. Surface 14. The first radiator 44 is used for transmitting and receiving electromagnetic wave signals. The first radiator 44 includes 097116255 Form No. 1010101 Page 7 / Total 28 Page 1003271238-0 1358853 [0021] 1100^: 071 26Ϊ" First radiating portion 444 and second radiating portion 446 » First radiating portion 444 and second The length of the radiating portion 446 is a quarter wavelength "the first radiating portion 484 and the second radiating portion 486 are on the same line". The power distributor 43 is electrically connected to the feeding portion 42 and is opposite to the center line 420 of the feeding portion 42. Symmetrical design. The power splitter 43 is for feeding electromagnetic wave signals to the first radiating portion 444 and the second radiating portion 446. The power splitter 43 is substantially C-shaped and is electrically connected to the first light-emitting portion 444 and the second radiating portion 446, respectively. [0024] The power distributor 43 is located at one end of the feeding portion 42, and the ground portion 45 is located at the other end of the feeding portion 42. The ground portion 45 is symmetrically designed with respect to the center line 42 of the feed portion 42. The ground transmission line 46 is electrically connected to the ground portion through a pair of vias 49, and is symmetrically disposed with respect to the projection of the center line 420 of the feed portion 42 on the second surface 14 of the substrate 1A. The second radiator 48 is coupled to the first radiator 44 for transmitting and receiving electromagnetic wave signals: the second radiator 48 includes a first radiating portion 484 and a second (four) portion 486, each of the first and second light portions 484 and the second light portion The length of the 486 is quarter-wavelength. The first light-lighting portion 484 and the second radiating portion are located in the same straight [0025] 097116255. In the present embodiment, the first-light-emitting portion 444 is coupled to the second radiating portion 486 of the j-th body 48. The illuminating unit 446 is coupled to the first radiating portion 484 of the second defensive body μ of the 拘^ 町 篮 basket 48, which is equivalent to the arrangement of the two antennas in the syllabary, so that the shape is composed of two antennas. Microstrip dipole antenna array. This not only increases the value of the second antenna 40 but also increases the number of the second antenna 40 and the first form number of the first radiator 44 A0101 page 8 / total 28 pages 1003271238-0 [0026] 13588853 [0027] [0029] [0029] 0030] * · · · ·. ____________-r--1 100 years of July: plus: date correction and radiation capacity, while reducing the size of the second antenna 4〇. In other embodiments, the first radiator 44 and the second radiator 48 of the second antenna 40 may have only one radiating portion. The connector 47 is electrically connected to the ground transmission line 47 and is symmetrically designed with respect to the projection of the center line 420 of the feed portion 42 on the second surface 14 of the substrate 10. The connector body 47 is substantially C-shaped and is electrically connected to the first radiating portion 484 and the second radiating portion 486, respectively. Referring to Figure 3, there is shown a schematic view of the projection of the multi-wheeled multiple output antenna 2 of the present invention on a horizontal plane of the substrate 10. The projections of the first antennas 30 are symmetrically designed with respect to the centerline of the projection of the second antenna 40. The projection of the first antenna 30 is symmetrically designed relative to the projection of the centerline 320 of the feed portion 32. The projection of the second antenna 40 is symmetrically designed with respect to the projection of the center line 4 2 0 of the feed portion 42. The first radiating portion 344, the second radiating portion 386, the second radiating portion 346, and the first injecting portion 384 are located on the same straight line. The first reflecting portion 444, the second radiating portion 486, the second radiating portion 446, and the first radiating portion 484 are located on the same straight line. In the present embodiment, the first radiators 34, 44 and the second radiators 38, 48 are referred to as light emitters. The first light-emitting portions 344, 384, 444, 484 and the second radiation portions 346, 386, 446, 486 are defined as radiation portions. Referring to Figure 4, there is shown the main size designation of the multiple input multiple output antenna 2 of the present invention. In the present embodiment, the total length D of the MIMO antenna 2 is 15.1 cm, and the total width G of the MIMO antenna 20 is 8.35 cm. The length A of the power splitter 33 of the first antenna 30 is one-half wavelength. The distance between the two first radiating portions 344 of the first antenna 30 097116255 Form No. A0101 Page 9 of 28 1003271238-0 1358853 100. July '26 revised replacement page E is a quarter wavelength. The length of the radiating portion of the first antenna 30 is one quarter wavelength. The distance F between the ground portion 35 of the first antenna 30 and the first connecting portion 332 is 4.7 cm. The distance C between the first ground portion 46 of the second antenna 40 and the first radiating portion 444 is 4.7 cm. The length of the radiating portion of the second antenna 40 is a quarter wavelength. [0031] In the present embodiment, the first antenna 30 located on the right side of the second antenna 40 is defined as the right first antenna 30, and the first antenna 30 located on the left side of the second antenna 40 is defined as the left side. The first antenna 30. 5 and 6, the radiation field pattern of the vertical direction of the 2.40 GHz and 2.50 GHz frequencies of the first antenna 30 on the left side of the multi-input and multi-output antenna 20 of the present invention is shown. As can be seen from the figure, the radiation of the first antenna 30 on the left side of the MIMO antenna of the embodiment of the present invention in the vertical direction meets the application requirements. Referring to FIGS. 7 and 8, there is shown a radiation pattern of the horizontal direction of the second antenna 40 of the MIMO antenna 20 of the present invention operating at a frequency of 2.40 GHz and 2.50 GHz, respectively. As can be seen from the figure, the radiation of the second antenna 40 of the multi-input multi-output antenna 20 of the embodiment of the present invention at various angles in the horizontal direction meets the application requirements. [0034] Referring to FIGS. 9 and 10, the radiation pattern of the vertical direction of the right first antenna 30 of the MIMO antenna of the present invention is performed at a frequency of 2.40 GHz and 2.50 GHz, respectively. As can be seen from the figure, the radiation of the right first antenna 30 of the multi-input and multi-output antenna 20 of the embodiment of the present invention at various angles in the vertical direction meets the application requirements. Please refer to FIG. 11, FIG. 12 and FIG. 13, which are shown as multi-input and multi-transmission 097116255 of the present invention. Form No. A0101 Page 10/28: 1003271238-0 1358853 [0037] [0038] [0038] [0042] [0042] [0042] 097116255; .100 years. July 2 έ self-correction _ page out antenna 20 reflection loss (Return Loss) test chart. The multiplexed multi-output antenna 20 of the embodiment of the present invention is applied to 2.4 and 2. 5GHZ. As can be seen from the figure, the reflection loss is less than -10 dB. Since the first antenna 30 and the second antenna 40 are spaced apart from each other, that is, the MIMO antenna 20 of the present invention has spatial diversity, the MIMO antenna 20 of the present invention can effectively counter signal fading. Thereby improving the signal quality. The MIMO antenna 20 of the present invention utilizes the difference in polarization directions between the first antenna 30 and the second antenna 40 to improve the relationship between the first antenna 30 and the second antenna 40. The isolation reduces the interference of signals between each other, thereby increasing the gain of the MIMO antenna 20. Since the first radiators 34, 44 and the second ground portions 38, 48 of the first antenna 30 and the second antenna 40 are respectively disposed on different surfaces of the substrate 10, the multiple input multiple output of the present invention is reduced. The area of the antenna 20. In summary, the present invention complies with the requirements of the invention patent and submits a patent application according to law. The above description is only the preferred embodiment of the present invention, and equivalent modifications or variations made by those skilled in the art will be included in the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing a multi-input multi-output antenna printed on a first surface of a substrate according to the present invention. 2 is a schematic diagram of a multi-input multi-output antenna printed on a second surface of a substrate according to the present invention. 3 is a form number A0101 of a multi-input multi-output antenna of the present invention on a horizontal plane of a substrate. Page 11/28 pages 1003271238-0 1358853 [0044] '100#.07月月.26白修正_Page Fig. 4 is a schematic view showing the size of a multi-input multi-output antenna according to the present invention. Fig. 5 is a diagram showing the radiation pattern of the first antenna on the left side of the multi-input and output antenna of the present invention operating at a frequency of 2.40 GHz. [0045] 6 is a radiation pattern diagram of the first antenna on the left side of the multi-input and output antenna of the present invention operating at a frequency of 2.50 GHz. [0046] FIG. 7 is a second antenna of the multi-input and output antenna of the present invention operating at 2.40. A radiation pattern of the horizontal direction of the GHz frequency. [0047] Figure 8 is a radiation pattern diagram of the second antenna of the multiple input and output antenna of the present invention operating in the horizontal direction of the 2.50 GHz frequency. The first antenna on the right side of the multi-input and output antenna of the invention operates in the vertical direction of the 2.40 GHz frequency. [0049] FIG. 10 shows the first antenna on the right side of the multi-input and output antenna of the present invention operating at 2.50 GHz. Radiation pattern of the vertical direction 11, FIG. 12 and FIG. 13 are diagrams showing reflection loss of a multi-input and output antenna of the present invention. [Main Element Symbol Description] [0051] Substrate 10 [0052] First Surface 12 [0053] Second Surface 14 Multiple Input Multiple Output Antenna 20 [0055] 097116255 First Antenna Form No. A0101 Page 30 12 / Total 28 Page 1003271238-0 1358853 100 years. July 26th Nuclear Correction ^ Page [0056] Second Antenna 40 [0057] Feeding portion 32' 42 [0058] Power splitter 33, 43 [0059] First radiator 34' 44 [0060] Ground portion 35, 45 [0061] Ground transmission line 36' 46 [0062] Connector 37 '47 [0063] second radiators 38, 48 [0064] vias 39' 49 [0065] centerline 320' 420 [0066] first connections 332, 372 [0067] second connections 334, 374 [0068] First radiating portion 344, 444, 384, 484 [0069] Second radiating portion 346, 446, 386, 486 097116255 Form No. A0101 Page 13 / Total 28 Page 1003271238-0

Claims (1)

1358853 , I-100牵07月_26 B极正替^頁 七、申請專利範圍: 1 . 一種印财天線,印刷於一電路板上,該電路板包括一第一 表面及一與該第一表面平行之第二表面,該印刷天線包括 一對垂直極化天線,係相隔一定的距離並平行設置,該等 垂直極化天線分別包括設置於該第一表面且順序相連的饋 ’入部、功率分配器及第一輻射體與設置於該第二表面且順 序相連的第二輻射體、連接體及接地傳輸線,該饋入部用 於向該第一天線饋入電磁波訊號,該功率分配器用於向該 第一天線的第一輻射體饋入電磁波信號,該功率分配器與 該連接體均呈Η型;以及 一水平極化天線,設置於該等垂直極化天線之間並與該等 垂直極化天線相間隔,該水平極化天線包括饋入部、第一 輻射體及第二輻射體,該饋入部用於向該第二天線饋入電 磁波訊號,該饋入部和該第一輻射體設置於該基板的第一 表面,該第二輻射體設置於該基板的第二表面; 其中,該等垂直極化天線和該水平極化天線均為偶極天線 〇 2 .如申請專利範圍第1項所述的印刷天線,其中該等垂直極 化天線和該水平極化天線均為微帶式偶極天線陣列。 3 .如申請專利範圍第2項所述的印刷天線,其中該垂直極化 天線的第一輻射體和第二輻射體耦合。 4 .如申請專利範圍第2項所述的印刷天線,其中該水平極化 天線的第一輻射體和第二輻射體耦合。 5.如申請專利範圍第1項所述的印刷天線,其中該等垂直極 097116255 表單編號Α0101 第14頁/共28頁 1003271238-0 〜 ; 100知.07月2!£日修正巷4^頁 化天線於該基板-水平面的投影相對該水平極化天線於該 基板同-水平面的投影的中心線呈對稱設計。 如申請專利範圍第1項所述的印刷天線其中該垂直極化 天線於該基板-水平面的投影相對其饋人部之中心線於該 基板同一水平面的投影呈對稱設計。 如申凊專利範圍第1項所述的印刷天線,其中該水平極化 Ketgn水平面的投影相對其饋入部之中心線於該 基板同一水平面的投影呈對稱設計。 如申明專利範圍第1項所述的印刷天線,其中該等垂直極 化天線和該水平極化天線的第一和第二輻射體分別包括至 少一輻射部,該至少一輻射部的長度為四分之一波長。 如申請專利範圍第1項所述的印刷天線,其中該水平極化 天線還包括功率分配器,其設置於該基板的第一表面,用 於向該水平極化天線的第—㈣體饋人電磁波信號。 如申請專利範圍第9項所述的印刷天線,其中該水平極化 天線還包括接地傳輸線,該接地傳輸線設置於該基板的第 二表面並透過過孔與該水平極化天線的接地部電性連接。 如申請專利範圍第10項所述的印刷天線,其中該水平極化 天線還包括連接體,該連接體設置於該基板的第二表面並 電性連接該水平極化天線的第二輻射體。 如申請專利範圍第U項所述的印刷天線,其中水平極化天 線的功率分配器和連接體均呈(:型。 表單編號A0101 第15頁/共28頁 1003271238-01358853, I-100 pulls July _26 B pole positive ^ page seven, the scope of application patent: 1. A printed antenna, printed on a circuit board, the circuit board includes a first surface and a first a second surface parallel to the surface, the printed antenna comprises a pair of vertically polarized antennas arranged at a distance and arranged in parallel, the vertically polarized antennas respectively comprising a feeding portion, power connected to the first surface and sequentially connected The distributor and the first radiator are connected to the second radiator, the connecting body and the ground transmission line which are sequentially connected to the second surface, and the feeding portion is configured to feed the electromagnetic wave signal to the first antenna, and the power distributor is used for Transmitting an electromagnetic wave signal to the first radiator of the first antenna, the power splitter and the connecting body are both in a Η type; and a horizontally polarized antenna disposed between the vertically polarized antennas and The vertically polarized antennas are spaced apart, and the horizontally polarized antenna includes a feeding portion, a first radiator and a second radiator, and the feeding portion is configured to feed an electromagnetic wave signal to the second antenna, the feeding portion and the first radiation And disposed on the first surface of the substrate, the second radiator is disposed on the second surface of the substrate; wherein the vertically polarized antenna and the horizontally polarized antenna are both dipole antennas 〇2. The printed antenna of claim 1, wherein the vertically polarized antenna and the horizontally polarized antenna are both microstrip dipole antenna arrays. 3. The printed antenna of claim 2, wherein the first radiator and the second radiator of the vertically polarized antenna are coupled. 4. The printed antenna of claim 2, wherein the first radiator and the second radiator of the horizontally polarized antenna are coupled. 5. The printed antenna according to claim 1, wherein the vertical poles 097116255 form number Α 0101 page 14 / total 28 pages 1003271238-0 ~; 100 know. 07 month 2! £日修正巷4^页The projection of the antenna on the substrate-horizontal plane is symmetrically designed with respect to the centerline of the projection of the horizontally polarized antenna on the substrate in the same-horizontal plane. The printed antenna according to claim 1, wherein the projection of the vertically polarized antenna on the substrate-horizontal plane is symmetrically designed with respect to a projection of a center line of the feed portion on the same horizontal plane of the substrate. The printed antenna according to claim 1, wherein the projection of the horizontally polarized Ketgn horizontal plane is symmetrically designed with respect to a projection of a center line of the feed portion at a same horizontal plane of the substrate. The printed antenna according to claim 1, wherein the vertically polarized antenna and the first and second radiators of the horizontally polarized antenna respectively comprise at least one radiating portion, and the at least one radiating portion has a length of four One wavelength. The printed antenna of claim 1, wherein the horizontally polarized antenna further comprises a power splitter disposed on the first surface of the substrate for feeding the first (four) body of the horizontally polarized antenna Electromagnetic wave signal. The printed antenna of claim 9, wherein the horizontally polarized antenna further comprises a ground transmission line disposed on the second surface of the substrate and transmitting through the via and the ground portion of the horizontally polarized antenna connection. The printed antenna of claim 10, wherein the horizontally polarized antenna further comprises a connector disposed on the second surface of the substrate and electrically connected to the second radiator of the horizontally polarized antenna. The printed antenna of claim U, wherein the power splitter and the connector of the horizontally polarized antenna are (: type. Form No. A0101 Page 15 of 28 1003271238-0
TW97116255A 2008-05-02 2008-05-02 Multi input multi output antenna TWI358853B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97116255A TWI358853B (en) 2008-05-02 2008-05-02 Multi input multi output antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97116255A TWI358853B (en) 2008-05-02 2008-05-02 Multi input multi output antenna

Publications (2)

Publication Number Publication Date
TW200947804A TW200947804A (en) 2009-11-16
TWI358853B true TWI358853B (en) 2012-02-21

Family

ID=44870416

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97116255A TWI358853B (en) 2008-05-02 2008-05-02 Multi input multi output antenna

Country Status (1)

Country Link
TW (1) TWI358853B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI554049B (en) * 2012-11-30 2016-10-11 鴻海精密工業股份有限公司 Multi-input multi-output antenna apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI554049B (en) * 2012-11-30 2016-10-11 鴻海精密工業股份有限公司 Multi-input multi-output antenna apparatus

Also Published As

Publication number Publication date
TW200947804A (en) 2009-11-16

Similar Documents

Publication Publication Date Title
WO2022021824A1 (en) Low-frequency radiation unit and base station antenna
CN107528115B (en) Differential feed dual-polarized oscillator assembly, oscillator unit and oscillator antenna
TWI420739B (en) Radiation pattern insulator and antenna system thereof and communication device using the antenna system
CN109509962B (en) Dual-frequency MIMO antenna structure for 5G mobile phone terminal
US9401545B2 (en) Multi polarization conformal channel monopole antenna
WO2018028162A1 (en) Decoupling assembly, multi-antenna system and terminal
US9748661B2 (en) Antenna for achieving effects of MIMO antenna
US9318811B1 (en) Methods and designs for ultra-wide band(UWB) array antennas with superior performance and attributes
CN108598696A (en) A kind of high-gain millimeter wave circular polarization medium resonator array antenna
US7812768B2 (en) Multiple input multiple output antenna
CN104966899A (en) Omnidirectional antenna and omnidirectional antenna array
CN111710972A (en) Multi-mode dual-polarization base station antenna oscillator
US11239544B2 (en) Base station antenna and multiband base station antenna
CN112615147B (en) Compact low-coupling extensible MIMO antenna based on orthogonal mode
CN111670546A (en) Antenna system for wireless communication equipment
CN111146592A (en) Antenna structure and terminal
CN210897639U (en) Dipole array antenna
EP3807954B1 (en) Antenna with multiple propagation modes
WO2023138324A1 (en) Antenna structure, electronic device and wireless network system
TWI358853B (en) Multi input multi output antenna
Vadlamudi et al. Very Low Profile, Wideband, Dual polarized Massive MIMO Antenna Element with High Isolation for 5G Base Station Applications
Wang et al. Compact and low-profile eight-element loop antenna array for the 3.6-ghz MIMO operation in the future smartphone applications
KR100706615B1 (en) Micro-strip patch antenna for using a multiple piles of substrates and array antenna thereof
CN212380561U (en) Multi-mode dual-polarization base station antenna oscillator
JP3442531B2 (en) Microstrip antenna element for wireless communication and apparatus provided with the antenna element

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees