TWI357665B - - Google Patents

Download PDF

Info

Publication number
TWI357665B
TWI357665B TW97118624A TW97118624A TWI357665B TW I357665 B TWI357665 B TW I357665B TW 97118624 A TW97118624 A TW 97118624A TW 97118624 A TW97118624 A TW 97118624A TW I357665 B TWI357665 B TW I357665B
Authority
TW
Taiwan
Prior art keywords
substrate
electrode
ultraviolet light
light detector
seed layer
Prior art date
Application number
TW97118624A
Other languages
Chinese (zh)
Other versions
TW200950109A (en
Original Assignee
Univ Nat Formosa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Formosa filed Critical Univ Nat Formosa
Priority to TW97118624A priority Critical patent/TW200950109A/en
Publication of TW200950109A publication Critical patent/TW200950109A/en
Application granted granted Critical
Publication of TWI357665B publication Critical patent/TWI357665B/zh

Links

Description

1357665 九、發明說明: 【發明所屬之技術領域】 本發明係關於-種氧化鋅奈米柱之紫外光檢測器,特別是 指-種製作方法為先對基板連同其上之晶種層之堆疊結構二 溫化學槽核法進行化學反應,再湘光㈣技術料罩圖形 定義出光檢測器之主動區域,並同時形成第—電極與第二電極 的氧化鋅奈米柱之紫外光檢測器。 【先前技術】 近年對於紫外光短波長光電元件的研究進展快速,這些操 作於短波段之光電元件的剌範圍相#廣,例如應用在雷射視 力橋正雷射除斑美容、可見光到紫外光的偵測、臭氧層的監控 等等 傳統紫外光檢測器上使用第三代半導體的氮化録⑽)做 為材料,GaN是屬於直接能隙的材料,且其能隙值約為3 4 ev (365 nm),可以被應用在短波長的範圍,但所需製程溫度高且 束縛能只有24 meV。 在光纖傳輸系統中,影像與資料經電訊號調變後,透過光 送器轉為光H經光纖傳輸到達光偵測器端,將光訊號轉 變為電訊號,經過解調而獲得影像與資料。光_器模組主要 是由光檢測元件與放大、缝及⑽處理單元所組成,其中光 則元件之作用為將所接收到之光訊號轉換為電訊號。依結構 分類,f用之光偵測器包括光導(ph〇t〇c〇nduct〇r)、p n 1357^6.5 , 备 junction、p-i-n photodetector、蕭基位障(Schottky barrier diodes)、 金屬-半導體-金屬光偵測器 (metal-semiconductor-metal photodetectors , MSM PDs)、 光電晶體(phototransistor)、光偵測陣列(detector array)和 雪崩型光4貞測器(avalanche detectors, APD)等。 其中p-i-n光偵測器由於可藉由本質層(I層)厚度之調 整,來達到最佳之量子效率及頻率響應,因此是最常使用之光 • 偵測器。另一方面,金屬-半導體-金屬光偵測器製作程序簡單 與場效應晶體(FET)製作具兼容性,使得其成為光電積體電路光 接收器的重要組件,再加上其與生倶來低電容的特性之優點, 也成為高速操作不可或缺之元件。 目前既有的氧化辞奈米線(nanowire)光檢測器都是使用 化學氣相沉基法(Chemical vapor deposi tion,CVD)來成長氧 化鋅奈米線(nanowi re),將奈米線跨接於兩電極間或者將奈米 ® 柱(nanorod)填塞高分子再將電極蒸鑛(Thermal evaporation) 於奈米柱頂端,此製程繁雜且無法將奈米線大量增加主動層光 吸收,本發明與先前奈米柱(線)差別,無須高溫製程和受到其 他高分子以外材料影響光吸收層,且能選區成長來提升光吸收 層,大幅增加紫外光響應度。. • 由此可見,上述習用物品仍有諸多缺失,實非一良善之設 計者,而亟待加以改良。 1357665 器 本案發明人鑑於上述習用氧化鋅奈米柱之紫外光檢測琴所 衍生的各項缺點,乃亟思加収良_,並經多年苦心孤料 心研究後’終於成功研發完成本件氧化鋅奈米柱之紫外光檢測 【發明内容】 本發明之目的即在於提供一種低溫成長的氧化辞奈米柱之 紫外光檢測n,其氧化鋅奈妹能自由㈣奈米直徑與長度。 本發明之次一目的係在於提供一種利用自由選擇各類 進行低溫成長奈米柱,以達到氧化鋅奈米柱之紫外光檢測㈣ 商業化。 本發明之另-目的係在於提供一種氧化辞奈米柱之紫外光 檢測器’利用光《彡技術的光罩圖形來選區成長奈米柱於主動 區域,大幅提升光吸收率。 本心明之又-目的係在於提供一種氧化辞奈米柱之紫外光 檢測器,透過光微影技術製程,可自由選擇不同金屬來提升效 應。 本ι明之再一目的係在於提供一種能有效抓補電子電洞的 金屬-半導體-金屬氧化鋅奈米柱之紫外光檢測器。 可達成上述發明目的之氧化辞奈米柱之紫外光檢測器,係 利用化學槽水浴法配合光微f彡技術的光罩圖形選區成長垂直切 南松度之氧化鋅奈米柱陣列,透過此方法可自由選擇各類基 1357665 板,同時製作指叉狀(金屬-半導體—金屬結構)金屬電極間隙中 成長奈米柱陣列的光檢測器元件4其製作成本低,配合光微 影技術的製作方法來達到㈣金屬t極之效果,防止在化學样 水浴法的製程中造成金屬電極破壞,另外可相使用不同金屬 電極作為蕭基接觸,以優化其光檢測器元件特性。 【實施方式】 請參閱圖-至圖三,本發明所提供之氧化辞奈米柱之紫外 光檢測器’主要包括有: 光檢測器(100)至少包括基板⑴、晶種層⑵、以及兩個具 不同電性之第—電極(31)與第二電極⑽。該基板⑴係選擇炫 點比較低的基板⑴,例如:玻璃基板、歸基板等:該晶種層 (2)晶體成長於基板(1)上,而該第一電極(31)與第二電極(32) 刀別位於日日種層(2 )之不同部份上且彼此相隔一段距離。 請再次參照圖一,係利用射頻濺鍍(RF—邛此忱〇沉積技術 f3將基板(1)上的晶體成核與成長有晶種層(2 ),利用射頻賤 鍍形成氧化鋅晶種層(2),以解決玻璃基板(1)與氧化鋅介面之 曰曰種層(2),亦同時解決晶格不匹配之問題,且經由調節晶種層 (2)厚度的方式可達到控制尺寸之大小的晶體成長製程。 在本發明之一實施例中,更可在同質晶體成長的晶種層(2) 之步驟與後續電極材料層(3)製作之步驟間,先對基板(1)連同 其上之晶種層(2)之堆疊結構以低溫化學槽水浴法進行化學反 1357665 應。本發明係使用氧化鋅奈米柱(22)作為光吸收層與主動區域 (21)之光檢測器元件,係透過低溫化學槽水浴法(低溫是指1〇〇 °C以下’化學槽水浴法是指使用化學溶液(5)調配作為反應)的 方式製備氧化鋅奈米柱(22),配合光微影技術的製作方法來達 到保護金屬之效果,其能防止在化學槽水浴法的製程中造成金 屬破壞,且可使用不同金屬作為電極材料層(3)的蕭基接觸(當 金屬與半導體接觸時,界面間常會有一能階形成而阻礙電子的 傳導,這能階稱為蕭基位障(schottky barrier),而所形成之 接面稱為蕭基接面),此新穎之光檢測器(100)元件對於短波長 之光吸收極為敏感,在紫外光區有很好的光響應度; 其中,此化學反應至少包括先將基板(1)連同其上之晶種層 (2)浸入化學溶液(5)(係使用包括含鋅鹽類與鹼性緩衝劑的來 源材料配置)中約持續數分鐘,該化學溶液(5)中的含鋅鹽類(硝 酸辞 Zinc Nitrate Hexahydrate、醋酸鋅 Zinc Acetate)能提 供Zn2+離子’鹼性緩衝劑(氫氧化鈉Na〇H、氨水丽3、烏洛托品 HMTA)提供OH—,使該晶種層(2)在化學溶液(5)中反應成為氧化 鋅錯合物(complex)。 該低溫化學槽水浴法來製備氧化鋅奈米柱(22)時,為在化 學溶液(5)中使用包括硝酸鋅與氨水的來源材料配置,調配整體 的濃度與酸鹼值(由於使用化學粉末來調配溶液,調整適當的 濃度ΙΜιη〜1M,在加入氨水後,能利用氨水來調整溶液中的酸鹼 1357665 值(即pH值,約PH 9〜10))’而調整溶液濃度與氨水量能調整氧 化鋅成長的速度,然後將基板(1)置入化學溶液中,進行沈 積氧化辞晶種層(2)晶體成長製程,在晶種層(2)之成長期間, 可進一步利用恆溫系統使得氧化鋅晶種層(2)在低於i 〇 〇 t以下 成長,藉最佳化晶種層(2)之成長條件以得到最佳化的垂直型氧 化辞奈米柱(22)陣列。 請同時參照圖一,氧化辞奈米柱(22)陣列在成長過程令, 溶夜中會造成指叉狀第一電極(31)與第二電極(32)金屬結構上 的改變,因而影響it件之特性,因此能利用光微影技術與光罩 圖形相互搭配來解決。$成基板⑴與其上之晶種層⑵的清潔 處理後,利用光微影技術的光罩圖形定義出光檢測器(1〇〇)之主 動區域(21),並同時形成第—電極(31)與第:電極(32)。其中, 第-電極⑻與第:電極(32)為鮮圖形曝光、顯影於基板⑴ 上所構成,最後元件只有基板⑴、晶種層⑵、以及兩個具不 同電性之第-電極⑻與第二電極⑽,且在最後元件製程完 畢中會再使用丙鋼、酒精溶劑將第—電極(31)與第二電極(32) 的光阻去除掉。 如圖二所示’在本發明之紫外線光檢測H(IGG)實施例之製 w方法,其定義出主動區域(21)以及形成第一電極⑶)與第二 電極(32)時’係塗覆正光阻⑻於晶種層⑵上且搭配瞧光 罩圖形⑹與·K-B光罩圖形(42),主要目的為保護氧化辞奈 1357665 米柱(22)在蒸鍍蕭基介面的金屬材料(7)時被破壞,另一目的為 保濩第電極(31)與第二電極(32)在化學溶液(5)中,第一電極 (31)與第二電極(32)被化學溶液⑸中的含鋅鹽類驗性緩衝劑 破壞,接續,將說明本發明之紫外線光檢測器結構之製造方法, 其至少包括: 步驟A:利用射頻滅鍍(RF_sputter)沉積技術形成氧化辞晶 種層(2)於玻璃基板(1)上,如圖四與圖五所示; 步驟B :塗佈正光阻⑹於基板⑴上,而後經乾燥烘烤(如 圖六所示); 步驟C ‘ Mask-B光罩圖形(42)曝光、顯影於基板(1)上,利 用光微影技術光罩圖形(42)(如圖十八所示)圖案化在 基板(1)上的晶種層(2)定義為主動區域(21)與電極材料層 (3),使此正光阻(6)具有電極材料層(3)圖案結構,其中此主動 區域(21)圖案結構暴露出部份之晶種層⑵,且電極材料層⑺ 圖案結構較佳可呈指叉狀(如圖七所示); 1步驟D:基板(1)連同晶種層(2)、電極材料層(3)與正光阻 ⑹之堆疊結構以低溫化學槽水浴法進行化學反應,並於主動區 域(21)成長氧化辞奈米柱(22)結構,該堆疊結構進行化學反應 時能再透過簡易⑽溫加熱方式,以控制成長氧化辞奈米柱(22) 結構(如圖八所示); •步驟Ε:利用抓除方式移除主動區域⑵)上的正光阻⑹以 1357665 « 及位於電極材料層(3)上之正光阻(6)(如圖九所示); 步驟F :塗佈正光阻(6)於基板(1)上,而後經乾燥供烤(如 圖十所示); 步驟G : Mask-A光罩圖形(41)曝光、顯影於基板(1)上,利 用光微影技術將Mask-A光罩圖形(41)(如圖十七所示)圖案化在 基板(1)上,透過正光阻(6)與Mask-A光罩圖形(41)交替使用來 做為保護氧化鋅奈米柱(22)之光吸收層為目的,避免在最後步 驟在氧化鋅奈米柱(22)上蒸鍍金屬材料(7)造成對氧化辞奈米 柱(2 2 )之光吸收層結構破壞,並留下位於晶種層(2 )之暴露部分 上之電極材料層(3),能在晶種層(2)上形成指叉狀排列之第一 電極(31)與第二電極(32)(如圖十一所示); 步驟Η :在氧化鋅奈米柱⑽蒸鑛上蕭基介面的金屬材料 ⑺’該金屬材料⑺與上述正光阻⑻相對應,由於有正光阻⑻ 作為保護’能防止在蒸錢金屬對奈米柱造成破壞,因此可選擇 各類之金屬材料(7)來作為蕭基介面接觸(如圖十二所示); 步驟I:使用丙酮、酒精溶劑舉離製程(Uft_〇ff旰沉“幻 抓除正光阻(6); 形成具導電極之金屬—半導體—金屬的氧化鋅奈米柱 (22 )之光檢測器(1 0〇)結構(如圖十三所示)。 β再參閱圖二’為本發明之紫外線光檢測器(1⑻第二實施 例的製作流裎’其為紫外線光檢測器⑽)在定義出主動區域 12 13576651357665 IX. Description of the Invention: [Technical Field] The present invention relates to an ultraviolet light detector of a zinc oxide nano column, and in particular to a method for preparing a substrate and a seed layer thereon The structure of the second temperature chemical tank nucleus method is used for the chemical reaction, and the Xiangguang (4) technical material mask pattern defines the active region of the photodetector, and simultaneously forms the ultraviolet light detector of the zinc oxide nano column of the first electrode and the second electrode. [Prior Art] In recent years, research on ultraviolet short-wavelength optoelectronic components has been progressing rapidly. These devices operate in short-wavelength optoelectronic components. For example, they are used in laser vision bridges for positive laser de-spotting, visible to ultraviolet light. The detection, the monitoring of the ozone layer, and the like, using a third-generation semiconductor nitride recording (10) on a conventional ultraviolet photodetector as a material, GaN is a material of direct energy gap, and its energy gap value is about 3 4 ev ( 365 nm) can be applied in the short wavelength range, but the required process temperature is high and the binding energy is only 24 meV. In the optical fiber transmission system, the image and data are modulated by the electric signal, and then transmitted to the light H through the optical transmitter to reach the optical detector end, and the optical signal is converted into an electrical signal, and the image and data are obtained by demodulation. . The optical module is mainly composed of a light detecting component and an amplification, slit and (10) processing unit, wherein the light component functions to convert the received optical signal into an electrical signal. According to the structure classification, the photodetector used for f includes a light guide (ph〇t〇c〇nduct〇r), pn 1357^6.5, a junction, a pin photodetector, a Schottky barrier diodes, a metal-semiconductor- Metal-semiconductor-metal photodetectors (MSM PDs), phototransistors, detector arrays, and avalanche detectors (APD). Among them, the p-i-n photodetector is the most commonly used light detector because it can adjust the thickness of the intrinsic layer (I layer) to achieve the best quantum efficiency and frequency response. On the other hand, the metal-semiconductor-metal photodetector fabrication process is simple to be compatible with field effect crystal (FET) fabrication, making it an important component of optoelectronic integrated circuit photoreceivers, plus its The advantages of low capacitance characteristics are also indispensable components for high speed operation. At present, the existing nanowire photodetector uses chemical vapor deposition (CVD) to grow a zinc oxide nanowire (nanowi re) and bridge the nanowire. The electrode is filled with a nanometer between the two electrodes or the nanorod is further vaporized at the top of the nanocolumn. This process is complicated and the nanowire can not be greatly increased by active layer light absorption. The present invention Previous nano-column (line) difference, no need for high-temperature process and other materials other than the polymer to affect the light-absorbing layer, and can grow in the selected area to enhance the light-absorbing layer, greatly increasing the UV responsiveness. • It can be seen that there are still many missing items in the above-mentioned household items, which is not a good designer and needs to be improved. 1357665 The inventor of the present invention, in view of the above-mentioned shortcomings of the ultraviolet light detecting piano of the conventional zinc oxide nano column, is a good _ _ _, and after years of painstaking research, 'finally successfully developed this piece of zinc oxide Ultraviolet Light Detection of Nano Columns [Disclosure] It is an object of the present invention to provide an ultraviolet light detection n of a low temperature grown oxidized column, wherein the zinc oxide is free (iv) nanometer diameter and length. A second object of the present invention is to provide a low temperature growth nano column by freely selecting various types to achieve ultraviolet light detection (IV) commercialization of a zinc oxide nano column. Another object of the present invention is to provide an ultraviolet light detector for oxidizing a column of nanometers. The photomask pattern of the light technique is used to select a region to grow a nanocolumn in the active region to greatly increase the light absorptivity. The purpose of this invention is to provide an ultraviolet light detector for oxidizing the column of nanometers. Through the process of photolithography, different metals can be freely selected to enhance the effect. A further object of the present invention is to provide an ultraviolet photodetector for a metal-semiconductor-metal zinc oxide nanocolumn which can effectively capture an electron hole. The ultraviolet light detector of the oxidized nano column which can achieve the above object of the invention is a zinc oxide nano column array which is grown by a chemical bath water bath method and a reticle pattern selection region of the light micro-f彡 technology, and is passed through the method. The photodetector element 4 of the growing nano column array in the interdigitated (metal-semiconductor-metal structure) metal electrode gap can be freely selected at the same time, and the fabrication cost of the photolithography technology is compatible. To achieve the effect of the (4) metal t-pole, to prevent the destruction of the metal electrode in the process of the chemical sample water bath method, and to use different metal electrodes as the base contact to optimize the characteristics of the photodetector element. [Embodiment] Referring to FIG. 3 to FIG. 3, the ultraviolet light detector of the oxidized column of the present invention mainly includes: the photodetector (100) includes at least a substrate (1), a seed layer (2), and two a first electrode (31) and a second electrode (10) having different electrical properties. The substrate (1) is selected from a substrate (1) having a relatively low hue point, for example, a glass substrate, a substrate, or the like: the seed layer (2) crystal grows on the substrate (1), and the first electrode (31) and the second electrode (32) The knives are located on different parts of the day seed layer (2) and are separated from each other by a distance. Please refer to Figure 1 again, using RF sputtering (RF-邛 this 忱〇 deposition technique f3 to nucleate and grow the seed layer (2) on the substrate (1), and form the zinc oxide seed crystal by RF 贱 plating. Layer (2) to solve the problem of the lattice layer mismatch between the glass substrate (1) and the zinc oxide interface, and simultaneously solve the problem of lattice mismatch, and control can be achieved by adjusting the thickness of the seed layer (2) The crystal growth process of the size of the size. In an embodiment of the present invention, the substrate (1) is further disposed between the step of growing the seed layer (2) of the homogenous crystal and the step of fabricating the subsequent electrode material layer (3). With the stacked structure of the seed layer (2) thereon, the chemical reaction is carried out by a low temperature chemical bath water bath method. The present invention uses a zinc oxide nano column (22) as the light absorbing layer and the light of the active region (21). The detector element is prepared by a low temperature chemical bath water bath method (low temperature means 1 〇〇 ° C or less 'chemical bath water bath method refers to the use of chemical solution (5) formulated as a reaction) to prepare a zinc oxide nano column (22), Cooperating with the manufacturing method of photolithography technology to achieve protective metal The effect is that it can prevent metal damage in the process of the chemical bath water bath method, and different metals can be used as the base contact of the electrode material layer (3) (when the metal is in contact with the semiconductor, there is often an energy level between the interfaces to hinder The conduction of electrons, which can be referred to as the Schottky barrier, and the junction formed by the Schottky barrier, is a very sensitive component of the short-wavelength light absorption. , having good light responsivity in the ultraviolet region; wherein the chemical reaction includes at least immersing the substrate (1) together with the seed layer (2) thereon in the chemical solution (5) (including the use of zinc-containing salts) The zinc-containing salt (Zinc Nitrate Hexahydrate, zinc acetate Zinc Acetate) in the chemical solution (5) can provide a Zn2+ ion 'alkaline buffer' for about several minutes in the source material configuration of the alkaline buffer. Sodium hydroxide Na〇H, Ammonium 3, and urotropine HMTA provide OH—, and the seed layer (2) is reacted in the chemical solution (5) to form a zinc oxide complex. Slot water bath to prepare oxidation For the column (22), in order to use the source material including zinc nitrate and ammonia in the chemical solution (5), the overall concentration and the pH value are adjusted (the chemical solution is used to adjust the solution, and the appropriate concentration is adjusted ΙΜιη~ 1M, after adding ammonia water, ammonia water can be used to adjust the acid-base 1357665 value (ie pH value, about PH 9~10))', and adjusting the solution concentration and ammonia amount can adjust the growth rate of zinc oxide, then the substrate (1) Placed in a chemical solution to perform a deposition oxidation of the seed layer (2) crystal growth process, during the growth of the seed layer (2), the thermostat system can be further utilized to make the zinc oxide seed layer (2) low The growth is performed below i 〇〇t, and the growth conditions of the seed layer (2) are optimized to obtain an optimized vertical oxidized column (22) array. Please also refer to Figure 1. The array of oxidized nano-pillars (22) is in the process of growth, which causes the change of the metal structure of the first electrode (31) and the second electrode (32) of the interdigitated electrode, thus affecting the piece. The characteristics can be solved by using the photo lithography technology and the reticle pattern to match each other. After the substrate (1) and the seed layer (2) thereon are cleaned, the active region (21) of the photodetector (1) is defined by the mask pattern of the photolithography technique, and the first electrode (31) is simultaneously formed. And the: electrode (32). Wherein, the first electrode (8) and the first electrode (32) are formed by fresh pattern exposure and development on the substrate (1), and finally the substrate only has the substrate (1), the seed layer (2), and two first electrodes (8) having different electrical properties. The second electrode (10), and in the final component process, the photoresist of the first electrode (31) and the second electrode (32) is removed by using a polypropylene steel or an alcohol solvent. As shown in FIG. 2, the method of manufacturing the ultraviolet light detecting H (IGG) embodiment of the present invention defines the active region (21) and the formation of the first electrode (3) and the second electrode (32). The positive photoresist (8) is applied to the seed layer (2) and is matched with the reticle pattern (6) and the KB mask pattern (42). The main purpose is to protect the metal material of the oxidized Schneider 1357665 m column (22) in the vapor deposition Schnauzer interface ( 7) is destroyed, another purpose is to protect the first electrode (31) and the second electrode (32) in the chemical solution (5), the first electrode (31) and the second electrode (32) are chemically solutiond (5) The zinc-containing salt-based buffering agent is broken, and the method for manufacturing the ultraviolet light detector structure of the present invention will be described. The method includes at least: Step A: forming an oxidized crystal seed layer by using a radio frequency extruding (RF_sputter) deposition technique ( 2) on the glass substrate (1), as shown in Figure 4 and Figure 5; Step B: coating the positive photoresist (6) on the substrate (1), and then drying and baking (as shown in Figure 6); Step C ' Mask- The B reticle pattern (42) is exposed and developed on the substrate (1), and the lithography pattern (42) is utilized by the photo lithography technique (as shown in the figure). The seed layer (2) patterned on the substrate (1) is defined as an active region (21) and an electrode material layer (3) such that the positive photoresist (6) has an electrode material layer (3) pattern structure. The active region (21) pattern structure exposes a portion of the seed layer (2), and the electrode material layer (7) pattern structure preferably has a fork shape (as shown in FIG. 7); 1 step D: substrate (1) A chemical reaction between the seed layer (2), the electrode material layer (3) and the positive photoresist (6) is carried out by a low temperature chemical bath water bath method, and the oxidized column (22) is grown in the active region (21). When the stack structure is chemically reacted, it can be controlled by simple (10) temperature heating to control the growth of the oxidized column (22) (as shown in Figure 8). • Step Ε: remove the active area (2) by using the removal method. The positive photoresist (6) is 1357665 « and the positive photoresist (6) on the electrode material layer (3) (as shown in Figure 9); Step F: coating the positive photoresist (6) on the substrate (1), and then dried For baking (as shown in Figure 10); Step G: Mask-A mask pattern (41) is exposed and developed on the substrate (1) The Mask-A mask pattern (41) (shown in Figure 17) is patterned on the substrate (1) by photolithography, and the positive photoresist (6) is alternated with the Mask-A mask pattern (41). For the purpose of protecting the light absorbing layer of the zinc oxide nano column (22), it is avoided to vaporize the metal material (7) on the zinc oxide nano column (22) in the final step to cause the oxidation of the column (2 2 The structure of the light absorbing layer is broken, and the electrode material layer (3) on the exposed portion of the seed layer (2) is left, and the first electrode (31) of the interdigitated arrangement can be formed on the seed layer (2). And the second electrode (32) (as shown in FIG. 11); Step Η: the metal material (7) of the Schöne interface on the zinc oxide nano column (10), the metal material (7) corresponding to the above positive photoresist (8), Since the positive photoresist (8) as a protection can prevent the damage of the nano column caused by the steaming metal, various metal materials (7) can be selected as the interface of the Xiaoji interface (as shown in Figure 12); Step I: Use acetone, alcohol solvent to lift off the process (Uft_〇ff旰 sinking “magic grabbing positive photoresist” (6); forming metal with conductive electrode—semiconductor The structure of the photodetector (10 〇) of the body-metal zinc oxide nano-pillar (22) (shown in Figure 13). Referring to Fig. 2', the ultraviolet light detector of the present invention (the production flow of the second embodiment of 1 (8), which is an ultraviolet light detector (10)) defines the active region 12 1357665

(21)以及形成苐一電極(31)與第 阻(6)於晶種層(2)上搭配财沉―A 主要目的為保護氧化鋅奈米柱(22)在蒸錢蕭基介面 圖形(42), 的金屬材料(7 )時被破壞,另一目 電極(32)在化學溶液(5)令,第一 二電極(32)時,係先塗覆正光 光罩圖形(41)與MASK-B光罩 的為保護第一電極(31)與第二 電極(31)與第二電極(32)被化 學溶液⑸巾的含鋅鹽類鹼性緩_破壞,其料線光檢測器結 構之製造方法,至少包括:(21) and forming the first electrode (31) and the first resistance (6) on the seed layer (2) with the sinking--A main purpose is to protect the zinc oxide nano column (22) in the steaming Xiaoji interface graphics ( 42), the metal material (7) is destroyed, the other electrode (32) is in the chemical solution (5), the first two electrodes (32), the first light mask pattern (41) and MASK- The B-mask protects the first electrode (31) and the second electrode (31) and the second electrode (32) from being damaged by the zinc salt of the chemical solution (5), and the material of the line photodetector is The manufacturing method includes at least:

步驟A .利用射頻濺鑛(RF_spimer)沉積技術形成氧化辞 晶種層(2)於玻璃基板⑴上(如圖四與圖五所示); 步驟B’ :塗佈正光阻⑻於基板⑴上,而後經乾燥烘烤(如 圖十所示); 步驟C’ ·· Mask-A光罩圖形(41)曝光、顯影於基板(1)上, 利用光微影技術將Mask—A光罩圖形⑹(如圖十七所示)圖案化 φ 在基板〇)上的晶種層(2)定義為主動區域(21)與電極材料層 (3)使此正光阻⑻具有電極材料層⑶圖案結構,其中此主動 區域(21)圖案結構暴露出部份之晶種層⑵,且電極材料層⑶ 圖案結構較佳可呈指叉狀(如圖十一所示); 在主動區域(21)蒸錢上蕭基介面的金屬材料 (7)’該金屬材料(7)與正光阻(6)相對應,透過正光袓與mask_a 光罩圖形(41)來定義指叉電極形狀,因此可選擇各類之金屬材 料(7)來作為蕭基介面接觸(如圖十二所示); 13 1357.665 步驟E’ :使用丙酮、酒精溶劑舉離製程(u f t_〇f f ρΓ〇α%) 抓除正光阻(6)(如圖十四所示); 步驟F .塗佈正光阻(6)於基板(1)上,而後經乾燥烘烤(如 圖六所示); 步驟G’ : Mask-B光罩圖形(42)曝光、顯影於基板(1)上, 利用光微影技術將Mask_B光罩圖形(42)(如圖十八所示)圖案化 在基板(1)上,透過正光阻(6)與MASK_A光罩圖形(41)交替使用 來做為保護氧化鋅奈米柱(22)之光吸收層為目的,避免主動區 域(21)與電極材料層(3)被化學溶液(5)中的含鋅鹽類鹼性緩衝 劑破壞,_,電極材料層⑶在晶種層⑵上形成指叉狀排列 之第一電極(31)與第二電極(32)(如圖十五所示); 步驟Η .基板(1)連同晶種層(2)、電極材料層(3)與正光 阻(6)之堆疊結構以低溫化學槽水浴法進行化學反應,並於主動 區域(21)成長氧化辞奈米柱(22)結構,該堆疊結構進行化學反 應時能再透過簡易的怪溫加熱方式,以控制成長氧化鋅奈米柱 (2 2)結構(如圖十六所示); 步驟I’ :利用抓除方式移除主動區域(21)上的正光阻(6) 以及位於電極材料層(3)上之正光阻(6)形成電極之金屬-半導 體-金屬的氧化鋅奈米柱(22)之光檢測器(1〇〇)結構(如圖九所 示); ;^驟J •形成電極之金屬-半導體_金屬的氧化鋅奈米柱 14 1357665 .. (22)之光檢測器(1 〇〇)結構(如圖十三所示)。 其中,在步驟C與步驟c,中,利用射頻濺鍍氧化鋅晶種層 (2)來解決玻璃基板(1)與氧化鋅介面之晶種層(2)來解決晶格 不匹配之問題’且經由調節晶種層⑵厚度的方式可達到控制尺 寸之大小。本發明使用半導體材料氧化辞(Zn〇),室溫下能隙值 約為3.37 eV,束缚能有6〇 meV,屬於直接能隙的電極材料, 且在成長溫度上氧化鋅有較低的製程溫度,可選擇熔點比較低 •的基板(1)。而在步驟C與步驟c,巾,利用光罩圖形曝光、顯 影於基板(1)上形成主動區域(21)與電極材料層(3),其電極材 .料層(3)之材質較佳係選用透明導電材料,(如氧化鋅),且電極 材料層(3)之厚度較佳可例如介於1〇〇nm與約12〇之間。 本發明為短波段之光電元件的應用,來偵測短波長的訊 號,.透過新穎的奈米結構特性,大幅提升在短波長的吸收與光 Φ 響應度,相較於傳統式薄膜光檢測器(100)中有較高的光吸收面 積,且特殊的奈米結構來加速電子傳輸速度,因此,本發明有 利於在短波長元件的發展和廣泛應用。 本發明所提供之氧化辞奈米柱之紫外光檢測器,與前述引 證案及其他習用技術相互比較時,更具有下列之優點: (1)該氧化鋅奈米柱陣列對於紫外光波段極為敏感,相較於 傳統式薄臈光檢測器中有較高的光吸收面積,且特殊的奈米結 構來傳輸電子速度,因此新穎之元件對於探測短波長有極高之 13.57665 響應度,為創新設計。 ⑵利用同質晶體成長於基板上,因主動層與基板之間具較 佳之晶格匹配而使得缺陷大大地減少,因此可大幅提高晶種層 之品質,而增強晶種層之光電特性,進而可有效改善光檢測器 之響應度’並可降低雜訊等效功率,而獲得較高之檢測率/ 上列詳細說明係針對本發明之一可行實施例之具體說明, 惟該實施例並非用以限制本發明之專利範g ’凡未脫離本發明 技藝精神所為之等效實施或變更,均應包含於本案之專利範圍 中。 綜上所述’本案不但在空間型態上確屬創新並能較習用 物品增進上述多項功效,應已充分符合新触及進步性之法定 發明專利要件,爰依法提出中請,懇_ 1局核准本件發明專 利申請案’以勵發明,至感德便。 【圖式簡單說明】 圖-為本發明氧化鋅奈綠之紫外光檢測器之立體示意 圖; 圖二為本發明紫外級測器其製作過程中保護奈米柱在蒸 鍍金屬破壞之製造流程圖; 圖三為本發明紫外光檢測器其製作過程中保護金屬在水溶 液中金屬被化學溶液破壞之製造流程圖; 圖四為基板初型之立體示意圖; 1357665 圖五為步驟A或步驟A,利用射頻雜沉積技術製作氧化 鋅晶種層於基板上之立體示意圖; 圖六為步驟B或步驟F,其晶種層塗佈正光阻,且經 30分鐘之立體示意圖; 圖七為步驟C其光罩圖形曝光、顯影於基板上之立體示意 圖為步驟D其堆疊結構以低溫化學槽水浴法進行化學反 '並成長氧化鋅奈米柱結構之立體示意圖; 意圖; " 少驟E或步驟Γ.利用抓除方式移除光阻之立體示 ^ ,驟F或步驟B’其晶種層塗佈正光阻,且經軟烤 30分鐘之立體示意圖; 圖形曝光顯影於基板上 圖十為步驟G或步驟C,其光罩 之立體示意圖; W十二為步 體示意圖; 騍Η或步驟D,在奈米柱蒸鍍上金屬材料之立 81十三·為步 結構之立體示意圖; 圖十四為步 驟J或步驟J’形成氧化鋅奈米柱之光檢測器 意圖; 驟Ε’使用溶劑舉離製程抓除正光阻之立體示 圖十五為步…, 其光罩圖形曝光、顯影於基板上之立體示 17 1357665 意圖; 圖十六為步驟Η’其堆疊結構以低溫化學槽水浴法進行化 學反應,並成長氧化鋅奈米柱結構之立體示意圖; 圖十七為該Mask-A光罩圖形之示意圖; 圖十八為該Mask-B光罩圖形之示意圖。 【主要元件符號說明】 100光檢測器 • 1基板 2晶種層 21主動區域 22奈米柱 3電極材料層 31第一電極 32第二電極 • 41 Mask-A光罩圖形 42 Mask-B光罩圖形 5化學溶液 61正光阻 7金屬材料 18Step A. Using an RF sputtering method (RF_spimer) deposition technique to form an oxidized crystal seed layer (2) on the glass substrate (1) (as shown in FIG. 4 and FIG. 5); Step B': coating a positive photoresist (8) on the substrate (1) Then, it is dried and baked (as shown in Figure 10); Step C' · Mask-A mask pattern (41) is exposed and developed on the substrate (1), and Mask-A mask pattern is formed by photolithography (6) (shown in FIG. 17) The seed layer (2) patterned on the substrate 定义) is defined as an active region (21) and an electrode material layer (3) such that the positive photoresist (8) has an electrode material layer (3) pattern structure. Wherein the active region (21) pattern structure exposes a portion of the seed layer (2), and the electrode material layer (3) pattern structure preferably has a fork shape (as shown in FIG. 11); steaming in the active region (21) The metal material (7) of the Xiaoji interface on the money corresponds to the positive photoresist (6), and the shape of the finger electrode is defined by the positive diaphragm and the mask_a mask pattern (41). The metal material (7) is used as the interface of the Xiaoji interface (as shown in Figure 12); 13 1357.665 Step E': Acetone, alcohol solvent lift off process (uf t_〇ff ρΓ〇α%) Grab the positive photoresist (6) (as shown in Figure 14); Step F. Apply positive photoresist (6) on the substrate (1) And then dried and baked (as shown in Figure 6); Step G': Mask-B mask pattern (42) is exposed and developed on the substrate (1), and the Mask_B mask pattern is used by photolithography (42) (as shown in Fig. 18), patterned on the substrate (1), alternating with the positive photoresist (6) and the MASK_A mask pattern (41) to protect the zinc oxide column (22) as a light absorbing layer. The purpose is to prevent the active region (21) and the electrode material layer (3) from being destroyed by the zinc salt-containing alkaline buffer in the chemical solution (5), and the electrode material layer (3) is formed in the interdigitated arrangement on the seed layer (2). a first electrode (31) and a second electrode (32) (as shown in FIG. 15); Step Η. Substrate (1) together with seed layer (2), electrode material layer (3) and positive photoresist (6) The stack structure is chemically reacted by a low temperature chemical bath water bath method, and the structure of the oxidized column (22) is grown in the active region (21), and the stack structure can be chemically reacted. A simple strange temperature heating method is used to control the growth of the zinc oxide nano-pillar (2 2) structure (as shown in Figure 16); Step I': remove the positive photoresist on the active area (21) by means of the removal method ( 6) and the photodetector (1〇〇) structure of the metal-semiconductor-metal zinc oxide nano-pillar (22) on the electrode material layer (3) forming the electrode (Fig. IX) ;; ^J J • Metal-semiconductor_metal-forming zinc oxide nano-pillar 14 1357665 .. (22) Photodetector (1 〇〇) structure (as shown in Figure 13). Wherein, in step C and step c, the problem of lattice mismatch is solved by using the RF sputtering sputtered zinc oxide seed layer (2) to solve the seed layer (2) of the glass substrate (1) and the zinc oxide interface. The size of the control size can be achieved by adjusting the thickness of the seed layer (2). The invention uses a semiconductor material to oxidize (Zn〇), has a band gap value of about 3.37 eV at room temperature, a binding energy of 6 〇meV, is an electrode material of a direct energy gap, and has a lower process of zinc oxide at a growth temperature. Temperature, you can choose the substrate with a lower melting point (1). In step C and step c, the towel is exposed and developed on the substrate (1) by using a mask pattern to form an active region (21) and an electrode material layer (3), and the electrode material layer (3) is preferably made of a material. A transparent conductive material (such as zinc oxide) is used, and the thickness of the electrode material layer (3) is preferably, for example, between 1 〇〇 nm and about 12 Å. The invention relates to the application of short-wavelength photovoltaic elements for detecting short-wavelength signals, and greatly improves absorption at short wavelengths and light Φ responsivity through novel nanostructure characteristics, compared to conventional thin film photodetectors. (100) has a high light absorption area and a special nanostructure to accelerate the electron transport speed. Therefore, the present invention is advantageous for development and wide application of short-wavelength elements. The ultraviolet light detector of the oxidized column of the present invention has the following advantages when compared with the above cited documents and other conventional techniques: (1) The zinc oxide nano-pillar array is extremely sensitive to ultraviolet light bands. Compared with the traditional thin-light detector, which has a high light absorption area and a special nanostructure to transmit electron velocity, the novel component has an extremely high 13.57665 responsiveness for detecting short wavelengths, which is an innovative design. (2) Using a homogenous crystal to grow on the substrate, the defect is greatly reduced due to better lattice matching between the active layer and the substrate, thereby greatly improving the quality of the seed layer and enhancing the photoelectric characteristics of the seed layer. Effectively improving the responsiveness of the photodetector' and reducing the noise equivalent power, and obtaining a higher detection rate / the detailed description above is a specific description of one possible embodiment of the present invention, but the embodiment is not used The equivalents of the present invention are intended to be included in the scope of the patents of the present invention. In summary, the case is not only innovative in terms of space type, but also able to enhance the above-mentioned multiple functions compared with the customary items. It should have fully complied with the statutory invention patent requirements that are new and progressive, and submitted to the law in accordance with the law. This invention patent application 'invented the invention, to the sense of virtue. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 2 is a schematic perspective view of a zinc oxide blue green ultraviolet detector according to the present invention; FIG. 2 is a manufacturing flow chart for protecting a nano column in vapor deposition metal during the manufacturing process of the ultraviolet level detector of the present invention. Figure 3 is a manufacturing flow diagram of the protection of the metal in the aqueous solution by the chemical solution during the manufacturing process of the ultraviolet light detector of the present invention; Figure 4 is a schematic perspective view of the initial form of the substrate; 1357665 Figure 5 is the use of step A or step A, FIG. 6 is a perspective view of a zinc oxide seed layer formed on a substrate by a radio frequency hybrid deposition technique; FIG. 6 is a step B or a step F, wherein the seed layer is coated with a positive photoresist and a three-dimensional schematic view is performed for 30 minutes; The three-dimensional schematic diagram of the mask pattern exposure and development on the substrate is a schematic diagram of the chemical structure of the stacked structure of the step D in the low temperature chemical bath water bath method and the growth of the zinc oxide nano column structure; intention; " less E or step Γ. Use the grabbing method to remove the stereoscopic display of the photoresist, step F or step B', the seed layer is coated with positive photoresist, and soft-baked for 30 minutes. Figure 10 on the upper board is step G or step C, a schematic view of the reticle; W12 is a schematic diagram of the step; 骒Η or step D, the metal material is deposited on the nanocolumn 81. Figure 14 is a photodetector for forming a zinc oxide nanocolumn in step J or step J'; a schematic view of the use of a solvent liftoff process to remove the positive photoresist. The cover pattern is exposed and developed on the substrate. The stereoscopic display 17 1357665 is intended; FIG. 16 is a schematic view of the step Η 'the stack structure is chemically reacted by a low temperature chemical bath water bath method, and the zinc oxide nano column structure is grown; FIG. A schematic view of the Mask-A reticle pattern; FIG. 18 is a schematic view of the Mask-B reticle pattern. [Main component symbol description] 100 photodetector • 1 substrate 2 seed layer 21 active region 22 nano column 3 electrode material layer 31 first electrode 32 second electrode • 41 Mask-A mask pattern 42 Mask-B mask Graphic 5 chemical solution 61 positive photoresist 7 metal material 18

Claims (1)

十、申請專利範圍: 1_ 一種氧化鋅奈米柱之紫外光檢測器,包括: 一基板,為低熔點的基板; aB種層,位於該基板上,其中該晶種層係以化學槽水浴 法(C B D)配合光微影技術的光罩圖形選區成長氧化鋅奈米 柱陣列該基板上; 一第一電極位於該晶種層之第一部分上; 一第二電極位於該晶種層之第二部分上,且該第一電極與 該第二電極相互分開。 2.如申請專利範圍第i項所述之氧化鋅奈米柱之紫外光檢測 -巾4化學槽水浴法是指使用化學溶液調配作為反應 的方式製備氧化鋅奈米柱,配合光微影技術的製作方法來 達到保護金屬之效果,防止在化學槽水浴法的製程中造成 金屬破壞,且可使用不同金屬作為電極蕭基接觸。 3·如申請專利範圍第Μ所述之氧化鋅奈米柱之紫外光檢測 器’其中該基板置入化學溶液十,進行沈積氧化辞晶種層 晶體成長製程,在晶種層之成長期間,可進-步利用恆溫 系統使得氧化鋅晶種層在低於1G(rc下成長,藉最佳化晶種 層之成長條件以得到最佳化的垂直型氧化辞奈米柱陣列。 4.如申請專利範圍第Μ所述之氧化鋅奈米柱之紫外光檢測 °〇 〃中。亥氧化鋅奈米柱陣列在成長過程中,溶液中會造 成指叉狀第-電極與第二電極金屬結構上的改變,因而影 1357665 響元件之特性,因此能利用光微影技術的光罩圖形定義出 光檢測器之主動區域,並同時形成第—電極與第二電極。 5, 一種紫外線光檢測器結構之製造方法,至少包括: 步驟A :利用射頻濺鍍沉積技術形成氧化鋅晶種層於基板 上; 步驟B .塗佈正光阻於基板上,而後經乾燥烘烤; ^ 步驟C:光罩圖形曝光、顯影於基板上的晶種層定義為主動 區域與電極材料層; 步驟D:基板連同晶種層、電極材料層與正光阻之堆疊結構 以低溫化學槽水浴法進行化學反應,以成長氧化辞奈米柱 結構; 正光阻以及位於電 步驟E:利用抓除方式移除主動區域上的 極材料層上之正光阻; v心F .塗佈正光阻於基板上,而後經乾燥烘烤; .步驟G:光罩圖形曝光、顯影於基板上,利用光微影技術將 光罩圖形圖案化在基板上,並形成第—電極與第二電極; 步驟Η.在氧化鋅奈米柱蒸鍍上蕭基介面的金屬材料; 步驟I :使用溶劑舉離製程抓除正光阻; 步驟J:形成具透明導電極之金屬_半導體金屬的氧化辞奈 米柱之光檢測器結構。 不 如申請專利範圍第5項所述之-種紫外線光檢測器結構之 20 ' '、中°亥步驟C利用光微影技術將Mask-B光罩圖 形圖案化在基板上的晶種層定義為主動區域與電極材料 層。 如申請專利範圍第6項所述之一種紫外線光檢測器結構之 製w方法’其中該主動區域圖案結構暴露出部份之晶種 層,且電極材料層圖案結構較佳可呈指叉狀。 8. 9. 如申請專利範圍第5項所述之—種紫外線光檢測器結構之 製造方法’其中該步驟c利用Mask_B光罩圖形曝光、顯影 於基板上1吏此正光阻具有電極材料層圖案結構。 如申請專利範圍第5項所述之—種紫外線光檢測器結構之 製造方法’其中該步驟D的堆疊結構進行化學反應時能於 主動區域成長氧化鋅奈米柱結構。 如申請專利範圍第5項所述之一種紫外線光檢測器結構之 製造方法,其中該步驟D的堆疊結構進行化學反應時能再 透過恆溫加熱方式,以控制成長乳化鋅奈米柱結構。 11_如申請專利範圍第5項所述之—種紫外線光檢測器結構之 製造方法,其中該步驟G光罩圖形為Μ Α光罩圖形。 12_ =請專利範圍第5項所述之—種紫外線光檢測器結構之 製以方法’其中該基板透過正光阻與光罩圖形交替 使用來做為保護氧化鋅奈米柱之光吸收層為目的。 A如申請專利範圍第5項所述之一種紫外線光檢測器結構之 21 13.57665 製造方法’其中該步驟「 的先罩圖形曝光、顯影於基板上, 而留下位於晶種層之a霞邱八L 暴路口 P刀上之電極材料層,能在晶種 層上形成指叉狀排列之第一電極與第二電極。 14_如申請專利範圍第5 項所述之一種紫外線光檢測器結構之 製造方法,其中該步驟Η的金屬材料與正光阻相對應,由 於有正光阻作為保護,能防止在在蒸鑛金屬對奈米柱造成 破樓’因此可選擇各類之金屬材料來作為蕭基介面接觸。 15_如申請專利範圍第5項所诚 種i外線光檢測器結構之 製造方法,其中該步驟I亦萨 方使用丙酮、酒精溶劑舉離製 程抓除正光阻。 & % -種紫外線光檢測器結構之製造方法,至少包括: =驟利用射頻濺鑛沉積技術形成氧化辞晶種層於基板 步驟B’ ··塗佈正光阻於基板上,而後經乾燥供烤· 步驟C,··光罩圖形曝光、顯影於基板上的晶種層定義為主 動區域與電極材料層; 步驟D’··在主動區域蒸鍍上蕭基介面的金屬材料: 步驟E,.·使用丙酮、酒精溶劑舉離製程抓除正光阻; 步驟F ·塗佈正光阻於基板上’而後經乾燥烘烤; 步驟G’:光罩圖形曝光、顯影於基板上,利用光微影技術 將光罩圖形圖案化在基板上,並形成第一電極與第二電極丨 22 13,57665 】申。月專la IS第16項所述之—種紫外線光檢測器結構之 製U方法,其中3亥步驟G,的光罩圖形為μ㈣一 b光罩圖形。 22· ^申請專利範圍第16項所述之—種紫m檢利結構之 •方法’其中6亥步驟G’的基板透過正光阻與HB光罩 圖形交替使用來做為保護氧化鋅奈米柱之光吸收層為目 的’避免主動區域與電極材料層被化學溶液中的含辞鹽類 鹼性緩衝劑破壞。 23 Μ 4專利範圍第彳6項所述之—種紫外線光檢測器結構之 製造方法’其中該步驟(;’的光罩圖形曝光、顯影於基板上, 而電極材料層在晶種層上形成指叉狀排列之第一電極與第 —電極。 24·如申請專利範圍第16項所述之一種紫外線光檢測器結構之 製造方法,其中該步驟Η,的堆疊結構以低溫化學槽水浴法 進行化學反應,並於主動區域成長氧化鋅奈米柱結構。 2匕如申請專利範圍第24項所述之—種紫外線光檢測器結構之 製迨方法,其中該低溫化學槽水浴法的溫度在低於1 〇 〇亡以 下。 26_如申請專利範圍第16項所述之一種紫外線光檢測器結構之 製造方法,其中該步驟H’的堆疊結構進行化學反應時能再 透過恆溫加熱方式,以控制成長氧化辞奈米柱結構。 27·如中請專利範圍第5或16項所述之—種紫外線光檢測器結 24 1357665 構之製造方法,其中該基板係選擇熔點比較低的基板。 28.如申請專利範圍第5或16項所述之一種紫外線光檢測器結 構之製造方法,其中該基板為玻璃基板或塑膠基板。 29·如中請專利範圍第5或16項所述之—種紫外線光檢測器結 構之製造方法,其中該化學槽水浴法更包括將基板連同其 上之晶種層浸入含鋅鹽類與檢性緩衝劑的化學溶液中。 30. 如申睛專利範圍第29項所述之一種紫外線光檢測器結構之 製造方法,其中該化學溶液中的含鋅鹽類為硝酸鋅(Zinc Nitrate Hexahydrate)或醋酸鋅(zinc Acetate)。 31. 如申凊專利範圍第29項所述之一種紫外線光檢測器結構之 製造方法,其中該該化學溶液中的驗性緩衝劑為氫氧化鈉 (NaOH)、或氨水(NH3)、或烏洛托品(關TA)。X. Patent application scope: 1_ A UV detector for zinc oxide nano column, comprising: a substrate, which is a substrate with a low melting point; a layer of a layer, which is located on the substrate, wherein the seed layer is a chemical bath water bath method (CBD) illuminating the zinc oxide nano-pillar array on the substrate with a mask pattern selection of photolithography; a first electrode is on the first portion of the seed layer; and a second electrode is on the second layer of the seed layer Partially, and the first electrode and the second electrode are separated from each other. 2. The ultraviolet light detection of the zinc oxide nano column as described in the scope of claim patent - the chemical tank water bath method refers to the preparation of zinc oxide nano column by using chemical solution formulation as a reaction method, combined with photolithography The manufacturing method is to achieve the effect of protecting the metal, preventing metal damage in the process of the chemical bath water bath method, and using different metals as the electrode base contact. 3. The ultraviolet light detector of the zinc oxide nano column described in the scope of the patent application, wherein the substrate is filled with a chemical solution ten, a deposition oxidation crystal layer crystal growth process is performed, during the growth of the seed layer, The thermostat system can be further utilized to allow the zinc oxide seed layer to grow at less than 1 G (rc), by optimizing the growth conditions of the seed layer to obtain an optimized vertical oxidized column of nano-column. In the ultraviolet light detection of the zinc oxide nano column described in the patent application, the zinc oxide nanometer column array during the growth process causes the interdigitated first electrode and the second electrode metal structure to be formed in the solution. The change in the upper part thus affects the characteristics of the element 1357766, so that the active area of the photodetector can be defined by the mask pattern of the photolithography technique, and the first electrode and the second electrode are simultaneously formed. 5. An ultraviolet light detector structure The manufacturing method comprises at least: Step A: forming a zinc oxide seed layer on the substrate by using a radio frequency sputtering deposition technique; Step B: coating a positive photoresist on the substrate and then drying and baking; ^ Step C: Light The pattern exposure and the seed layer developed on the substrate are defined as the active region and the electrode material layer; Step D: the substrate together with the seed layer, the electrode material layer and the positive photoresist stack structure are chemically reacted by a low temperature chemical bath water bath method to grow Oxidized column structure; positive photoresist and electrical step E: removal of positive photoresist on the active material layer on the active region by means of removal; v core F. coating positive photoresist on the substrate, and then drying and baking Step G: The mask pattern is exposed and developed on the substrate, and the mask pattern is patterned on the substrate by photolithography, and the first electrode and the second electrode are formed; Step 蒸. Steaming in the zinc oxide nano column Metal material coated with Xiaoji interface; Step I: Grab the positive photoresist using the solvent lift-off process; Step J: Form the photodetector structure of the oxidized column of the metal-semiconductor metal with transparent conductive electrode. The seed layer of the ultraviolet light detector structure described in the fifth item is the same as that of the ultraviolet light detector structure. The seed layer on the substrate is defined by the photolithography technique to define the Mask layer of the Mask-B mask pattern as A method for fabricating an ultraviolet light detector structure according to claim 6 wherein the active region pattern structure exposes a portion of the seed layer, and the pattern of the electrode material layer is 8. The method of manufacturing a UV photodetector structure as described in claim 5, wherein the step c is exposed and developed on the substrate by using a Mask_B mask pattern. The positive photoresist has a pattern structure of the electrode material layer. The method for manufacturing an ultraviolet light detector structure as described in claim 5, wherein the stack structure of the step D can chemically react to grow zinc oxide nanoparticles in the active region. A method for manufacturing an ultraviolet light detector structure according to the fifth aspect of the invention, wherein the stacked structure of the step D can be subjected to a constant temperature heating method to control the growth of the emulsified zinc nano column structure. . 11_ The manufacturing method of the ultraviolet light detector structure as described in claim 5, wherein the step G reticle pattern is a Α reticle pattern. 12_ = Please refer to the method of the ultraviolet light detector structure described in the fifth item of the patent range, wherein the substrate is used as a light absorbing layer for protecting the zinc oxide nano column through the alternating use of the positive photoresist and the mask pattern. . A. 21,57665 manufacturing method of the ultraviolet light detector structure described in claim 5, wherein the first mask pattern of the method is exposed and developed on the substrate, leaving a Xiaqiu in the seed layer L The electrode material layer on the P-knife of the crater can form a first electrode and a second electrode arranged in the shape of a fork on the seed layer. 14_ An ultraviolet light detector structure according to item 5 of the patent application scope The manufacturing method, wherein the metal material of the step corresponds to the positive photoresist, and because of the positive photoresist as the protection, the metal column can be prevented from being broken on the column by the steamed metal. Therefore, various metal materials can be selected as the Xiaoji. Interface contact 15_ As in the patent application scope 5, the method of manufacturing the external line photodetector structure, wherein the step I also uses acetone and alcohol solvent to remove the positive photoresist from the process. & % - species The manufacturing method of the ultraviolet light detector structure comprises at least: forming a oxidized crystal seed layer on the substrate by using an RF sputtering deposition technique, and coating the positive photoresist on the substrate, and After drying and baking, Step C, · The mask pattern is exposed, and the seed layer developed on the substrate is defined as the active region and the electrode material layer; Step D'··In the active region, the metal material of the Xiaoji interface is evaporated. : Step E,.. Use acetone, alcohol solvent to remove the positive photoresist from the process; Step F · Apply positive photoresist on the substrate' and then dry and bake; Step G': The mask pattern is exposed and developed on the substrate. The lithography pattern is patterned on the substrate by photolithography, and the first electrode and the second electrode are formed, and the ultraviolet light detector structure is described in the above. The U method, in which the mask pattern of 3H step G, is a μ (four)-b mask pattern. 22· ^ Patent application of the 16th item - a method for the purple m-profit structure • Method 6 'The substrate is used as a light absorbing layer for protecting the zinc oxide nano-pillar through the alternating use of positive photoresist and HB mask pattern' to prevent the active region and the electrode material layer from being destroyed by the salt-containing alkaline buffer in the chemical solution. 23 Μ 4 patent scope The manufacturing method of the ultraviolet light detector structure of the above-mentioned item 6 wherein the reticle pattern is exposed and developed on the substrate, and the electrode material layer is formed on the seed layer to form the first arrangement of the interdigitated arrangement. The method of manufacturing an ultraviolet light detector structure according to claim 16, wherein the stacking structure is chemically reacted in a low temperature chemical bath water bath method in the active region. The invention relates to a method for preparing a structure of an ultraviolet light detector according to the invention of claim 24, wherein the temperature of the low temperature chemical bath water bath method is less than 1 〇〇. The method for manufacturing an ultraviolet light detector structure according to claim 16, wherein the stacked structure of the step H' can be further subjected to a constant temperature heating method to control the growth of the oxidized column structure. . The method of manufacturing an ultraviolet light detector junction according to claim 5 or claim 16, wherein the substrate is a substrate having a relatively low melting point. 28. A method of fabricating an ultraviolet light detector structure according to claim 5, wherein the substrate is a glass substrate or a plastic substrate. The method for manufacturing an ultraviolet light detector structure as described in claim 5 or 16, wherein the chemical bath water bath method further comprises immersing the substrate together with the seed layer thereon to include a zinc salt and detecting The chemical solution of the buffer. 30. A method of fabricating an ultraviolet light detector structure according to claim 29, wherein the zinc salt in the chemical solution is zinc nitrate (Zinc Nitrate Hexahydrate) or zinc acetate (zinc Acetate). 31. A method of fabricating an ultraviolet light detector structure according to claim 29, wherein the test buffer in the chemical solution is sodium hydroxide (NaOH), or ammonia (NH3), or Lotto (off TA). 2525
TW97118624A 2008-05-21 2008-05-21 UV inspector for zinc oxide nano-pillar TW200950109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97118624A TW200950109A (en) 2008-05-21 2008-05-21 UV inspector for zinc oxide nano-pillar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97118624A TW200950109A (en) 2008-05-21 2008-05-21 UV inspector for zinc oxide nano-pillar

Publications (2)

Publication Number Publication Date
TW200950109A TW200950109A (en) 2009-12-01
TWI357665B true TWI357665B (en) 2012-02-01

Family

ID=44871203

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97118624A TW200950109A (en) 2008-05-21 2008-05-21 UV inspector for zinc oxide nano-pillar

Country Status (1)

Country Link
TW (1) TW200950109A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5926921B2 (en) * 2011-10-21 2016-05-25 浜松ホトニクス株式会社 Photodetector
TWI604192B (en) * 2015-12-01 2017-11-01 國立虎尾科技大學 Producing method of self-powered photosensitive sensor
TWI605609B (en) * 2017-03-13 2017-11-11 Ultraviolet light sensing element and its manufacturing method
CN107046084A (en) * 2017-04-06 2017-08-15 大连理工大学 A kind of preparation method of the ZnO ultraviolet detectors based on flexible polymer substrate

Also Published As

Publication number Publication date
TW200950109A (en) 2009-12-01

Similar Documents

Publication Publication Date Title
Hou et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon
Wang et al. Visible blind ultraviolet photodetector based on CH 3 NH 3 PbCl 3 thin film
EP2590223A2 (en) Solar cell
Raghavendra et al. Visible light sensitive cupric oxide metal-semiconductor-metal photodetectors
Hsu et al. Ultraviolet/visible photodetectors based on p–n NiO/ZnO nanowires decorated with Pd nanoparticles
TWI357665B (en)
CN109273543B (en) Transistor with nano-particles coated on chalcogenide film, preparation method and application
Kim et al. ITO nanowires-embedding transparent NiO/ZnO photodetector
US20200168822A1 (en) Methods and apparatuses for fabricating perovskite-based devices on cost-effective flexible conductive substrates
KR101540364B1 (en) ZSO-base perovskite solar cell and its preparation method
Nath et al. Surface-plasmon-induced Ag nanoparticles decorated In2O3 nanowires for low noise photodetectors
CN107180890A (en) A kind of back-illuminated type narrow bandpass solar blind ultraviolet detector and preparation method thereof
Xu et al. Surface engineering in SnO2/Si for high-performance broadband photodetectors
Chetri et al. Improved photodetector performance of SnO2 nanowire by optimized air annealing
CN113013263A (en) Enhanced two-dimensional semiconductor photoelectric detector and preparation method thereof
Fei et al. Improved responsivity of MgZnO film ultraviolet photodetectors modified with vertical arrays ZnO nanowires by light trapping effect
Hamd et al. Preparation of novel B4C nanostructure/Si photodetectors by laser ablation in liquid
CN110112233B (en) Photoelectric detection structure and device based on silver nanowire-graphene/gallium oxide nano-column and preparation method
Raj et al. Development of a highly sensitive UV sensor using Al, Ga, and In-doped NiO thin films via nebulizer spray pyrolysis method for photodetector applications
CN108649120A (en) A kind of perovskite photodetector and production method with light trapping structure
WO2018023192A1 (en) Photodetector and method of manufacture
CN109950359A (en) It is a kind of to be passivated enhanced low-dimensional nanometer detection device and preparation method using hafnium oxide
Nejad et al. Characterization of responsivity and quantum efficiency of TiO 2—Based photodetectors doped with Ag nanoparticles
KR102507617B1 (en) Substrate for UV photodetector comprising plasmonic hybrid nanoparticles, titanium dioxide and graphene quantum dots and hybrid UV photodetector using the same
CN209691770U (en) It is a kind of to be passivated enhanced low-dimensional nanometer detection device using hafnium oxide

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees