TWI357112B - Etched nanofin transistors - Google Patents

Etched nanofin transistors Download PDF

Info

Publication number
TWI357112B
TWI357112B TW096112125A TW96112125A TWI357112B TW I357112 B TWI357112 B TW I357112B TW 096112125 A TW096112125 A TW 096112125A TW 96112125 A TW96112125 A TW 96112125A TW I357112 B TWI357112 B TW I357112B
Authority
TW
Taiwan
Prior art keywords
fin
gate
forming
surrounding
column
Prior art date
Application number
TW096112125A
Other languages
Chinese (zh)
Other versions
TW200802617A (en
Inventor
Leonard Forbes
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Publication of TW200802617A publication Critical patent/TW200802617A/en
Application granted granted Critical
Publication of TWI357112B publication Critical patent/TWI357112B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors

Description

1357112 九、發明說明: 【發明所屬之技術領域】 本揭示大體來說係有關於丰導體元件,並且更明確地 說,係有關於奈米鰭狀電晶體。 【先前技術】1357112 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present disclosure relates generally to abundance conductor elements and, more particularly, to nano fin fin transistors. [Prior Art]

半導體產業擁有必需縮小元件尺寸,例如電晶體,以 及增加基材上的元件密度之市場導向。某些產品目標包含 減少耗電、較高的效能、以及較小的尺寸。第1圖示出以 係數k為調整因子之各種元件參數的一般趨勢及關係。 MOSFET技術不斷缩小至通道長度低於〇丨微米(1〇〇奈米 或1000埃)之深次微米範圍造成習知電晶體結構的重大問 題。例如,接面深度應比通道長度小很多。因此,參考第 1圖所示之電晶體100,就大約1000埃長的通道長度1〇2 而言,該荨接面深度101應該是數百埃等級。這麼淺的接 rThe semiconductor industry has a need to reduce component size, such as transistors, and to increase the market orientation of component density on substrates. Some product targets include reduced power consumption, higher performance, and smaller size. Figure 1 shows the general trends and relationships of various component parameters with a factor k as the adjustment factor. The continual shrinking of MOSFET technology to deep sub-micron ranges with channel lengths below 〇丨 micron (1 〇〇 nano or 1000 angstroms) poses a significant problem for conventional transistor structures. For example, the junction depth should be much smaller than the channel length. Therefore, referring to the transistor 100 shown in Fig. 1, the channel depth 101 should be on the order of hundreds of angstroms in terms of the channel length 1 〇 2 of about 1000 angstroms long. Such a shallow connection r

面很難用習知植入及擴散技術形成。需要極高水準的通道 摻雜以抑制短通道效應,例如汲極引發能障衰退(drain induced barrier lowering)、臨界電壓轉降(roll off)、以及 次臨界傳導。 漏電流在低電壓及以較低功率電池運作之CMOS電路 及系統中是一個重要的問題,特別是在DRAM電路中。該 臨界電壓值很小,以連到顯著的過驅(overdrive)和合理的 切換速度。但是,如第2圖所示,小的臨界電壓會導致相 當大的次臨界漏電流。 5 1357112The surface is difficult to form using conventional implantation and diffusion techniques. Very high levels of channel doping are required to suppress short channel effects such as drain induced barrier lowering, critical voltage roll off, and subcritical conduction. Leakage current is an important issue in low voltage and CMOS circuits and systems operating on lower power batteries, especially in DRAM circuits. The threshold voltage is small to connect to significant overdrive and reasonable switching speeds. However, as shown in Figure 2, a small threshold voltage results in a relatively large secondary critical leakage current. 5 1357112

針對此問題所提出的某些設計使用擁有超薄主體的電 晶體’或是表面空間電荷區在其他電晶體尺寸缩小時增大 的電晶體。也提出雙閘極(dual-gate)或兩閘極(double-gate) 電晶體結構以縮小電晶體。如產業中常使用者,“雙閘極,, 指擁有前閘極和背閘極的電晶體’其可以分開且獨立的電 壓藤動’而“兩閘極,,則指兩個閘極在相同電位時驅動之結 構。兩閘極元件結構之一範例是鰭狀FET。已經提出過“三 閉極”結構和環繞閘極結構。在“三閘極,,結構中,該閘極係 位於該通道的三邊。在環繞閘極結構中,該閘極環繞或包 圍該電晶體通道。該環繞閘極結構提供對於該電晶體通道 的預期控制,但是在實際上很難實現該結構。Some of the designs proposed for this problem use a transistor with an ultra-thin body or a transistor whose surface space charge region increases as other transistors shrink in size. A dual-gate or double-gate transistor structure has also been proposed to reduce the transistor. For example, in the industry, "double gate, refers to a transistor with a front gate and a back gate, which can be separated and independent of voltage vines" and "two gates," meaning that the two gates are the same The structure that is driven at the potential. An example of a two-gate element structure is a fin FET. A "three closed pole" structure and a surrounding gate structure have been proposed. In a "three-gate," structure, the gate is located on three sides of the channel. In a surrounding gate structure, the gate surrounds or surrounds the transistor channel. The surrounding gate structure provides access to the transistor channel Expected control, but it is actually difficult to implement the structure.

第3圖示出擁有汲極、源極、和利用閘極絕緣層與半 導體主體隔離之前及背閘極的雙閘極MOSFET,並且也示 出該没極所產生的電場。該雙閘極及/或兩閘極MOSFET 的某些特性比習知塊狀矽MOSFET佳,因為與單一閘極比 較’該兩個閘極更佳地從該通道的源極端遮蔽該汲極電極 產生的電場。該環繞閘極進一步從該源極遮蔽該汲極電極 產生的電場。因此,改善了次臨界漏電流特性,因為在關 閉該雙閘極及/或兩閘極MOSFET時,次臨界電流在閘極 電壓降低時更快速地降低。第4圖大體示出雙閘極,兩閘 極,或環繞閘極MOSFET之改善的次臨界特性,與習知塊 狀矽MOSFET的次臨界特性相比。 第5A-C圖示出一習知鰭狀FET。第5A圖示出該鰭狀 FET之上視圖,第5B圖示出該鰭狀FET沿著線5B-5B的 6 504 '1357112Figure 3 shows a double gate MOSFET having a drain, a source, and a gate before and after isolating the semiconductor body with a gate insulating layer, and also showing the electric field generated by the pole. Some of the characteristics of the dual gate and/or two gate MOSFETs are better than conventional bulk MOSFETs because they are better shielded from the source terminal of the channel than the single gate. The electric field produced. The surrounding gate further shields the electric field generated by the drain electrode from the source. Therefore, the sub-critical leakage current characteristics are improved because the sub-critical current decreases more rapidly when the gate voltage is lowered when the double-gate and/or two-gate MOSFETs are turned off. Figure 4 generally shows the improved subcritical characteristics of the dual gate, the two gates, or the surrounding gate MOSFET compared to the subcritical characteristics of conventional bulk MOSFETs. 5A-C illustrate a conventional fin FET. Figure 5A shows a top view of the fin FET, and Figure 5B shows the fin FET along line 5B-5B of 6 504 '1357112

端視圖。所示的鰭狀FET503包含第一源極/汲極區 第二源極/汲極區5 0 5、以及延伸在該第一及第二源 汲極區之間的矽鰭狀物5〇6。該矽鰭狀物作用為電_晶 體,其中該第一和第二源極/汲極區之間的通道是 的。一閘極絕緣層 507,例如氧化矽,係形成在該鰭 上,並且一閘極508在該氧化層形成在該鰭狀物上之 成在其上。所示習知鰭狀FET的鰭狀物係形成在埋氧 509上。第5C圖示出用來製造鰭狀FET之鰭狀物的 蝕刻技術。如第5C圖所示,該鰭狀物的寬度係由微 電子束微影及蝕刻界定。因此,該鰭狀物寬度最初是 小„特J寸(1 F)。随後利用氧化或蝕刻來缩小該鰭狀 寬度,如箭號510所示者。 【發明内容】 本標的物之觀點使用側壁間隙壁技術來蝕刻超薄 鰭狀物進入晶圓,並且利用這些蝕刻出之奈米鰭狀物 擁有環繞閘極之奈米鰭狀電晶體。若干實施例在一矽 中蝕刻矽奈米鰭狀物。锌等矽奈米鰭狀物係用來 CMOS電晶體的主體區、,在此電晶體主體的厚度和通 度兩者擁有比微影尺寸小的尺寸。例如,某些實施例 厚度在20奈米至50奈米等級的超薄奈米鰭狀物。 本標的物之一觀點係有關於一種形成電晶體之方 根據一 '實施例,從一結晶基材形成一.鰭狀物。在該基材 鰭狀物下方形成一第一源極/汲極區。在該鰭狀物周圍 極/ 體主 水平 狀物 後形 化層 習知 影或 一最 物的 奈米 製造 基材 做為 道長 提供 法。 内該 形成 7 1357112 一環繞閘極絕缘層。在該韓狀物周圍形成一 該環繞閘極藉由該環繞閘極絕緣層與該鰭殊 狀物頂部内形成一第二源極/¾極區。若干 上之一層内蝕刻一孔洞,在該孔洞内形成御 等側壁間隙壁形成一鰭狀物圖案,並且利用 相應的光罩餘刻進入該結晶基材以從該基本 一觀點係有關於一電晶體。一電晶體 結晶基材’其擁有蝕刻在其内之溝槽以從該 半導體鰭狀物;一第一源極/汲極區,形成 該鰭狀物底部;以及一第二源極/汲極區, 頂部,以在該鰭狀物内該第一和第二源極/ 出一垂直方向的通道區。該電晶體也包含一 —環繞閘極,該閘極絕緣層形成在該鰭狀衫 極形成在該鰭狀物周圍並藉由該閘極絕緣 離。該鰭狀物擁有小於一最小特徵尺寸之名 逆些及其他觀點、實施例、優點、及 於本標的物之描述及炎奂固上 疋及參考圖式而變得更顯I? 【實施方式】 如下的詳細描述係參考附圖,其經 可在其中執行之特定觀點及實施例。以 些實施例,以使熟知技藝者可執行本標 若干實施例並不必定互相排除,因為一 另-實施例的觀點合併。可使用其它實 環繞閘極,並且 i物隔離。在該鰭 實施例在該基材 壁間隙壁,從該 與該鰭狀物圖案 f形成該鰭狀物。 實施例包含:一 基材形成一結晶 在該結晶基材内 形成在該鰭狀物 汲極區之間界定 閘極絕緣層以及 〖周圍,該環繞閘 層與該鰭狀物隔 4面尺寸。 特徵可從後方對 i易見· 圖解示出本發明 分的細節描述這 物。本標的物之 施例之觀點可與 例,並且可在不 8 1357112End view. The fin FET 503 is shown to include a first source/drain region second source/drain region 5 0 5 and a fin 5 5 6 extending between the first and second source drain regions . The scorpion fin acts as an electro-crystal, wherein the channel between the first and second source/drain regions is . A gate insulating layer 507, such as hafnium oxide, is formed on the fin, and a gate 508 is formed on the fin on the oxide layer. The fins of the conventional fin FET are shown formed on the buried oxide 509. Figure 5C shows an etching technique used to fabricate the fins of a fin FET. As shown in Figure 5C, the width of the fin is defined by microelectron beam lithography and etching. Therefore, the width of the fin is initially small (1 F). The width of the fin is then reduced by oxidation or etching, as indicated by arrow 510. [Summary of the Invention] Sidewall spacer technology to etch ultra-thin fins into the wafer and utilize these etched nano-fins to have a nano-fin-like transistor surrounding the gate. Several embodiments etch the nano-fin in a crucible The zinc nano-fins are used in the body region of a CMOS transistor, where both the thickness and the passivity of the transistor body have a size smaller than the lithography size. For example, certain embodiments are thick. An ultra-thin nanofin of the order of 20 nm to 50 nm. One of the objects of the subject matter relates to a method of forming a crystal. According to an 'embodiment, a fin is formed from a crystalline substrate. Forming a first source/drain region under the fin of the substrate. The surface of the fin/body main horizontal post-forming layer or the most nano-made substrate Provided as a method for the road leader. The inside should form 7 1357112 a surrounding gate insulation Forming a surrounding gate around the Korean material, a second source/3⁄4 pole region is formed in the top of the fin-shaped insulating layer by the surrounding gate insulating layer, and a hole is etched in one of the upper layers, Forming a fin pattern in the hole to form a fin pattern, and using a corresponding mask to enter the crystal substrate to be related to a transistor from the basic point of view. A transistor crystal substrate Having a trench etched therein to form a bottom of the fin from the semiconductor fin; a first source/drain region; and a second source/drain region, top to a first and a second source/a vertical channel region in the fin. The transistor also includes a surrounding gate, the gate insulating layer being formed on the fin-shaped pole formed on the fin Surrounded and insulated by the gate. The fin has a name less than a minimum feature size and other views, embodiments, advantages, and descriptions of the subject matter and the sturdy squat and reference pattern And become more obvious I? [Embodiment] The following detailed description of the system The accompanying drawings, which are set forth herein, are in the <Desc/Clms Page number>> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Other solid surround gates are used, and the object is isolated. The fin embodiment is formed in the substrate wall spacer from which the fin is formed. Embodiments include: forming a crystal on a substrate Forming a gate insulating layer between the finned bungee regions and surrounding the crystal substrate, the surrounding gate layer and the fin are separated by 4 faces. Features can be seen from the rear to the i. The details of the present invention are shown to describe the matter. The viewpoint of the embodiment of the subject matter can be exemplified and can be used at 8 1357112.

背離本標的物之範圍下做出結構、邏輯、以及電氣上的 變。在如下描述中,“晶圓”及“基材’’等詞係可互換地使用 其通常是指積體電路形成在其上的任何結構。並且也指 體電路製造的各個階段期間之此種結構。兩個詞皆包含 雜及未摻雜的半導體、位於一支持半導體或絕缘材料上 半導體磊晶層、此類層的組合、以及技藝中已知的其他 類結構。本應用中所使用的“水平’’一詞係介定為與晶圓 基材的習知平面或表面平行的平面,無論該晶圓或基材 向位為何。“垂直” 一詞係指與上面定義的水平垂直之 向。介係詞,例如“上”、“側”、“較高”、“較低”、“ 方”及“下方’’係關於晶圓或基材上表面上的習知平面或 面界定'無論該晶圓或基材的向位為何。但是,不應將 下詳細描述視為限制性質,並且本發明之範圍僅由附屬 請專利範圍,以及此等申請專利範圍賦予的等效物之最 範圍界定。 在此揭示的是奈米鰭狀電晶體,以及一種製造技術 其中奈米鰭狀物係經蝕刻進入一基材或晶圓,並用來製 單晶奈米鰭狀電晶體。如下討論參考矽奈米鰭狀物實 例。熟知技藝者會了解,在閱讀並理解本揭示之後,如 使用其他半導體形成奈米鰭狀物。本標的物之觀點提供 有垂直通道的奈米鰭狀電晶體,其中擁有第一源極/汲 區在該鰭狀物底部,以及第二源極/汲極區在該鰭狀物 部。第6A-6L圖示出形成奈米鰭狀電晶體之製程,根據 標的物之若干實施例。 改 積 摻 之 此 或 的 方 上 表 如 中 大 造 施 何 擁 極 頂 本 9 1357112 在一梦晶圓±沉積氮化#,並且以一層非晶梦 (a-silicon)覆蓋該氮化矽。第6A圖示出在該非晶矽Η]内 界定出孔洞612並且形成側壁間隙壁614之後的結構6ΐι 的側視圖。該等孔洞612延伸至該氮化矽,615,其位於 例如梦晶圓之基材616丨。若干實施例藉由氧化該非晶梦 來形成該側壁間隙壁。第6B圖示出該結構61 i之側視圖, 在以一層厚的非晶矽層616覆蓋該結構之後。第6c圖示 出在至少平坦化,由箭號示出,該結構至除去該非晶矽上 的氧化物的程度之後的結構611。可使用化學機械研磨 (chemical mechanical polishing,CMP)製程來平坦化該結 構。這留下氧化物614之拉長的矩形圖案,也稱為“跑道” 圖案,暴露在該表面上。該等圖案線條的寬度係由氧化物 厚度決定,而非光罩和微影❶例如,該氧化物厚度可在2〇 奈米至5 0奈米等級範圍内,根據若干實施例。 第6D圖示出該跑道圖案上,其選擇性覆蓋一 穸$氧化物,並暴露出氧化物的其他部分。除去暴露出 的氧化物部分,电示出。執行一蝕刻製程,例如氫 氧化钟(potassium hydroxide,KOH)餘刻,以除去該非晶 梦。該氧化物,或第6D圖所示之光罩和姓刻之後餘留下 的氧化物部分,在蝕刻期間保護該氮化物。在除去該非晶 矽之後,可蝕刻該氮化物6 1 5,然後執行方向性發银刻, 其蝕刻該晶圓6 1 6至低於該氮化物的預定深度。該氣化物 圖案保護局部區域的矽不受蝕刻,造成從該矽晶圓目前較 低的表面突出之梦鰭狀物617。如第6E圖所示。第6F和 10 1357112 Γ:::該結構之上視及測視圖,在以掺質摻雜該等鰭狀 。乂及位於該等錄狀物底部之溝槽之後。如第6F圖 =二:槽内的捧贫形成傳導· 618(例如源極線)。該 :該韓狀物的底部或底部部分形成源極/及極區。 該等:狀:狀物相當薄’該溝槽内的掺質能夠完全擴散至 ^ - 下方。該等帶狀區可以呈列或行方向。 2 B6ii圖示出在該韓狀物617周圍形成閘極絕緣層 619,並且太分从. 恳&amp;圍形成閘極材料620並藉由該閘極 隔離之後的結構611。例如,-實施例使用熱 氧化該等矽鰭狀物。該閘極材料620可以是多 晶矽或金屬’ &amp;據若干實施例。Structural, logical, and electrical changes are made from the scope of the subject matter. In the following description, the terms "wafer" and "substrate" are used interchangeably and generally refer to any structure on which an integrated circuit is formed, and also refers to such a phase during the various stages of bulk circuit fabrication. Structure. Both terms include hetero and undoped semiconductors, semiconductor epitaxial layers on a supporting semiconductor or insulating material, combinations of such layers, and other types of structures known in the art. The term "horizontal" is defined as a plane parallel to the known plane or surface of the wafer substrate, regardless of the orientation of the wafer or substrate. The term “vertical” refers to the direction perpendicular to the horizontal definition defined above. Prepositions such as "upper", "side", "higher", "lower", "square" and "lower" are defined in relation to conventional planes or faces on the upper surface of a wafer or substrate. What is the orientation of the wafer or substrate. However, the following detailed description is not to be considered as limiting, and the scope of the invention is limited only by the scope of the appended claims and the scope of the equivalents Disclosed herein are nano fin transistors, and a fabrication technique in which nano fins are etched into a substrate or wafer and used to make single crystal nano fin transistors. Examples of nano-fins. It will be appreciated by those skilled in the art that after reading and understanding the present disclosure, other semiconductors are used to form nano-fins. The subject matter of this subject provides a nano-fin-shaped transistor with vertical channels, wherein Having a first source/deuterium region at the bottom of the fin and a second source/drain region at the fin portion. Figures 6A-6L illustrate a process for forming a nanofin-shaped transistor, according to the target Several embodiments of the object. The square table of this or the like is such as Zhongda Zhihe, the top of the book 9 1357112 in a dream wafer ± deposited nitride #, and covered with a layer of amorphous (a-silicon) tantalum nitride. Figure 6A shows The amorphous germanium defines a side view of the hole 612 and forms a structure 6ΐ after the sidewall spacer 614. The holes 612 extend to the tantalum nitride 615, which is located, for example, on the substrate 616 of the dream wafer. The embodiment forms the sidewall spacer by oxidizing the amorphous dream. Figure 6B shows a side view of the structure 61 i after covering the structure with a thick layer of amorphous germanium 616. Figure 6c shows at least Flattening, shown by arrows, to the structure 611 after removal of the oxide on the amorphous germanium. A chemical mechanical polishing (CMP) process can be used to planarize the structure. This leaves oxidation. An elongated rectangular pattern of objects 614, also referred to as a "racetrack" pattern, is exposed on the surface. The width of the lines of the pattern is determined by the thickness of the oxide, rather than the reticle and lithography, for example, the thickness of the oxide. Available in 2 nanometers to In the range of 50 nanometers, according to several embodiments. Figure 6D shows the runway pattern selectively covering one 氧化物$ oxide and exposing other portions of the oxide. Removing the exposed oxide portion, Electrically shown. An etching process, such as a potassium hydroxide (KOH), is performed to remove the amorphous dream. The oxide, or the mask shown in Fig. 6D, and the remaining oxidation after the last name a portion of the material that protects the nitride during etching. After removing the amorphous germanium, the nitride 6 15 can be etched, and then directional silver etching is performed, which etches the wafer 6 16 to below the nitride Scheduled depth. The vapor pattern protects the localized regions from etch, resulting in a dream fin 617 that protrudes from the lower surface of the wafer. As shown in Figure 6E. 6F and 10 1357112 Γ::: The top view and the view of the structure are doped with the fins.乂 and after the grooves at the bottom of the recordings. For example, Figure 6F = 2: The trap in the tank forms conduction · 618 (for example, the source line). The bottom or bottom portion of the Korean material forms a source/and a polar region. These: Shape: The material is quite thin. The dopant in the trench can completely diffuse below ^ -. The strips may be in a column or row direction. 2 B6ii illustrates the formation of a gate insulating layer 619 around the Korean 617, and the structure 611 after the gate material 620 is formed and separated by the gate. For example, the embodiment uses thermal oxidation of the fins. The gate material 620 can be polysilicon or metal &amp;&amp;&gt; according to several embodiments.

和6J圖分別不出沿著第一陣列實施例之線6J-6J 的上視圖及剖面圖。以絕緣冑621(例如氧化物)回填該結 構611,並且在該等鑛狀物側邊形成溝槽。問極繞線材料 622 ’例如多晶矽或金屬,可經沉積且具方向性地蝕刻以僅 留在該等側壁本並與該等鰭狀物之環繞閘極接觸。可蝕刻 S閘極材料和閘極繞線付料,以使其内凹而低於該等鰭狀 物的頂部。可以氧化物再次回填整個結構並平坦化以僅 留下氧化物在該表面上。然後可蝕刻接觸開口和汲極摻雜 區至該等柱狀物頂部,並植入汲極區,並且用習知技術製 w金屬接觸至該等汲極區。在此例中,該金屬繞線可沿著“X 方向延伸’而該埋藏源極繞線則可沿著與圖式紙面垂直的 方向延伸® 第6JC和6L圖分別示出沿著第二陣列實施例之線 11 1357112 6L-6L的上視圖及 該結構川,並且圖。以絕緣質621(例如氧化物)回填 槽》閘極繞線持料二方向”沿著該等錄狀物617形成溝 具方向性地钱亥二例如多晶硬或金屬,彳經沉積且 極接觸。可二=:等側壁上並與該等…之閉 宣缺料和閘極繞線材'钭,以使其内凹 而低於該等鰭狀物。 填整個结構,了以一絕緣質(例如氧化物)回The top and side views along line 6J-6J of the first array embodiment are not shown separately from the 6J diagram. The structure 611 is backfilled with an insulating crucible 621 (e.g., oxide) and trenches are formed on the sides of the minerals. The pole winding material 622', such as polysilicon or metal, may be deposited and directionally etched to remain only in the sidewalls and in contact with the surrounding gates of the fins. The S gate material and the gate winding can be etched to make it concave below the top of the fins. The oxide can be backfilled again and planarized to leave only oxide on the surface. The contact opening and the drain doping region can then be etched to the top of the pillars and implanted into the drain region, and metal contacts are made to the drain regions by conventional techniques. In this example, the metal winding can extend along the "X direction" and the buried source winding can extend in a direction perpendicular to the plane of the drawing. The 6JC and 6L diagrams respectively show along the second array. The top view of the line 11 1357112 6L-6L of the embodiment and the structure, and the illustration, the backfilling of the insulating material 621 (e.g., oxide) "gate winding winding two directions" along the recordings 617 The groove is directional, such as polycrystalline hard or metal, which is deposited and in contact with each other. Can be two:: on the side wall and with the closing of the material and the gate winding wire '钭, so that it is concave and lower than the fins. Fill the entire structure, back with an insulating material (such as oxide)

平坦化以僅留下氧化物在該表面上。然後 可姓刻接觸開°和液極摻雜區至該等柱狀物㈣,並植入 沒極區,並儿用習知技術製造金屬接觸至該等沒極區。在 此例中’該金屬繞線可沿著與圖式紙面垂直的方向延伸, 而該埋藏源極繞線則可沿著“ χ方向,,延伸。Planar to leave only oxide on the surface. The opening and the liquid-doped regions can then be contacted to the pillars (4) and implanted into the non-polar regions, and metal contacts are made to the non-polar regions by conventional techniques. In this case, the metal winding may extend in a direction perpendicular to the plane of the drawing, and the buried source winding may extend in the "χ direction".

在第一和第二陣列實施例中,可在形成該環繞閘極絕 緣層和環繞閘極之前先植入該埋藏源極/汲極。第6L圖 示出擁有源極,汲極區623和624、内凹的閘極62〇、以及 源極/汲極區繞線618之完整雜狀物結構之一。這些奈米 錄狀FET可擁有大〜的深寬比,並且會比奈米線feT傳導更 多電流。 第7圖示出一奈米縛狀電晶體陣列之奈米韓狀物的佈 局之上視圖’根據若干實施例。該圖示出兩個側壁間隙壁 7 1 4“跑道”,並且進一步示出利用蝕刻除去的側壁間隙壁部 分。用來禮成該側壁間隙壁軌跡的孔洞係以最小特徵尺寸 (1F)形年。該等光罩帶725擁有最小特徵尺寸(if)之寬度, 並且係利用最小特徵尺寸(1F)隔離。在所示佈局中,該等 奈米縛狀物的行擁有大約2F的中央對中央間距,並且該 12 1357112In the first and second array embodiments, the buried source/drain may be implanted prior to forming the surrounding gate insulating layer and surrounding the gate. Figure 6L shows one of the complete impurity structures having source, drain regions 623 and 624, recessed gate 62A, and source/drain region winding 618. These nano-recorded FETs can have a large aspect ratio and conduct more current than the nanowire feT. Figure 7 shows a top view of the layout of a nano-kun of a nano-bound transistor array, according to several embodiments. The figure shows two side wall spacers 714 "raceway" and further shows the side wall spacer portions removed by etching. The holes used to ritualize the sidewall spacers are in the smallest feature size (1F). The reticle strips 725 have a minimum feature size (if) width and are separated by a minimum feature size (1F). In the illustrated layout, the rows of the nano-buckles have a central-to-center spacing of approximately 2F, and the 12 1357112

等奈米鰭狀物的列擁有大約1 F的中央對中央間距。此外 如第7圖所示,因為該等奈米鰭狀物係由側壁間隙壁形 在該等孔洞側壁上,第一和第二列之間的中央對中央間 會相應於該等奈米鰭狀物厚度的量稍微小於 1F( if-τ') , 並 且第二 和第三 列之間 的中央 對中央 間距會 相應於 等奈米鰭狀物厚度的量稍微大於1F(1F+AT)。一般來說 第一和第二列之間的中央對中央間距會相應於該等奈米 狀物厚度的量稍微小於特徵尺寸間隔(NF- △ T),而第二 第三列之間的中央對中央間距會相應於該等奈米鰭狀物 度的量稍微大於特徵尺寸間隔(NF+ Δ T)。 〆-The columns of nano-fin fins have a central to central spacing of approximately 1 F. In addition, as shown in FIG. 7, since the nano fins are formed on the sidewalls of the holes by sidewall spacers, the center-to-center between the first and second columns corresponds to the nano-fins. The amount of thickness of the article is slightly less than 1F (if-τ'), and the center-to-center spacing between the second and third columns will be slightly greater than 1F (1F+AT) corresponding to the thickness of the iso-nano fin. Generally, the center-to-center spacing between the first and second columns will be slightly less than the feature size interval (NF-ΔT) corresponding to the thickness of the nano-materials, and the center between the second and third columns. The amount of center-to-center spacing corresponding to the nano-pits is slightly greater than the feature size spacing (NF+ ΔT). 〆-

成 距 Δ 該 , 鰭 和 厚 的 9 鰭 &gt; 在 繞 極 触 如 觸 構 狀 列 第 第8圖示出製造奈米鰭狀電晶體之製程,根據本標 物之若干實施例。在8 2 6,從結晶基材形成鰭狀物。例如 可從晶圓蝕刻出該等鰭狀物。在 827,在該基材内該等 狀物底部形成第一源極/汲極區。因為該鰭狀物是薄的 該掺質能夠擴散至該鰭狀物的整個範圍下方。在828, 該等鰭狀物周圍形成環繞閘極絕緣層;並且在 8 2 9,環 閘極係經形成在該等鰭狀物周圍,並且藉由環繞該等閘 .絕緣層與其隔離。在8 3 0以絕緣質回填所形成的結構。 刻溝槽並且毗鄰該環繞閘極形成閘極線且與其接觸, 8 3 1所示者。某些實施例形成與該環繞閘極的相反側接 之兩條閘極線。該等閘極線可經定向而在該奈米鰭狀結 的長邊上與該環繞閘極接觸,或可經定向而在該奈米鰭 結構的短邊上與該環繞閘極接觸。也就是說,可以行或 方向形成該等閘極線。在 832,在該等鰭狀物頂部形成 13 二源極/汲極 觸。 第9圖示 圖之826所示 在該結晶基材 式在該層内形 材上的層係一 和該非晶矽之 在該孔洞’内貼 壁。若干實施 以該第一層之 垣化該結構。 除去該非晶矽 的氧化物側壁 狀物圖案,例 /· .施例中,所形 厚度,其相應 第二方向上擁 厚度,並且顯 (a-silicon) » % 相應於側壁間 若干實施例蝕 該基材時用該 圖案的光罩。 區,並具在833形成第二源極/汲極區的接 出從結晶基材形成鰭狀物之製程,例如第容 者,根據本標的物之若干實施例。在934, 上形成一層,並且在935,蝕刻或以其他方 成孔洞。在若干實施例中,形成在該結晶基 非晶矽層,擁有一氮化矽層夹在該結晶基材 間,並且蝕刻一孔洞至該氮化矽層。在9 3 6, 著界定該孔洞周邊的該層側壁形成側壁間隙 例氧化該非晶矽層以形成該等側壁間隙壁。 材料(a-silicon)回填該孔洞,並且在937平 在第6B和6C圖所示之實施例令,該平坦化 上表面上的氧化物,留下“跑道,,或矩形圖案 間隙壁。在93 8,從該等側壁間隙壁形成鰭 如可利用光罩和蝕刻製程實現者。在某些實 成的鰭狀物圖案在第一方向上擁有第一剖面 於最小特徵尺寸,並且在與第一方向垂直的 有第二剖面厚度,其相應於該氧化物側壁的 著小於該最小特徵尺寸。在939,除去該層 3下鰭狀物圖案的側壁間隙壁。在940利用 隙壁之鰭狀物圖索的光罩蝕刻該結晶基材。 刻該氮化矽層成為鰭狀物圖案,然後在蝕刻 氮化矽層來做為該結晶基材之擁有該鰭狀物 在9 4 1,除去該光罩層(例如氮化矽)以暴露 14 1357112 出該等姓刻的賴狀物之頂部βThe distance Δ, the fin and the thick 9 fins &gt; in the polar touch contact configuration Figure 8 shows the process for fabricating a nano fin transistor, according to several embodiments of the present document. At 8 2, a fin is formed from the crystalline substrate. For example, the fins can be etched from the wafer. At 827, a first source/drain region is formed at the bottom of the substrate within the substrate. Because the fin is thin, the dopant can diffuse below the entire extent of the fin. At 828, a surrounding gate insulating layer is formed around the fins; and at 8 2 9, a ring gate is formed around the fins and is isolated therefrom by surrounding the gates. The structure formed by backfilling with insulating material at 830. The trench is engraved and adjacent to the surrounding gate to form and contact the gate line, as shown by 331. Some embodiments form two gate lines that are opposite sides of the surrounding gate. The gate lines may be oriented to contact the surrounding gates on the long sides of the nano fin junctions or may be oriented to contact the surrounding gates on the short sides of the nanofin structure. That is, the gate lines can be formed in a row or direction. At 832, 13 two source/drain contacts are formed on top of the fins. In Fig. 826, the layer 1 of the crystalline substrate is placed in the hole and the amorphous layer is adhered to the hole. Several implementations degenerate the structure with the first layer. Removing the amorphous sidewall oxide pattern, in the example, the thickness of the shape, which corresponds to the thickness in the second direction, and the a-silicon » % corresponds to several embodiments between the sidewalls The mask of the pattern is used for the substrate. The region, with the formation of a second source/drain region at 833, forms a fin from the crystalline substrate, such as the first embodiment, according to several embodiments of the subject matter. A layer is formed on 934, and at 935, the holes are etched or otherwise formed. In some embodiments, the crystalline amorphous germanium layer is formed with a tantalum nitride layer sandwiched between the crystalline substrates and a hole is etched into the tantalum nitride layer. At 936, sidewalls of the layer defining the periphery of the hole are formed with sidewall gaps. The amorphous germanium layer is oxidized to form the sidewall spacers. The material (a-silicon) backfills the hole, and at 937, the embodiment shown in Figures 6B and 6C, the flattening of the oxide on the upper surface, leaving a "runway, or rectangular pattern of spacers. 93. Forming fins from the sidewall spacers can be implemented by a reticle and an etch process. In some solid fin patterns, the first profile has a first profile at a minimum feature size, and A direction perpendicular to the second has a thickness of the second section corresponding to the sidewall of the oxide being less than the minimum feature size. At 939, the sidewall spacer of the lower fin pattern of the layer 3 is removed. The photomask of the object is etched to the crystalline substrate. The tantalum nitride layer is patterned into a fin, and then the tantalum nitride layer is etched to serve as the crystalline substrate, and the fin is removed at 94. The mask layer (e.g., tantalum nitride) is exposed to 14 1357112 to the top of the surname

第ίο圖係根據本標的物之若干實施例之記憶體元件 的若干實施例之高階组織的簡化方塊圖。所示記憶體元件 1042包含記憶體陣列1〇43以及讀取/寫入控制電路 1044,以透過通訊線或通道1〇45在該記憶體陣列上執行操 作。所示的記憶體元件1042可以是記憶卡或記憶體模組, 例如早排直插記憶體模組(single inline memory module, SIMM)和雙排直插記憶體模组(dual inline memory module, DIMM)。熟知技藝者會了解,在閱讀並理解本揭示之後, 能夠利用所蝕刻出的奈米鰭狀電晶體來製造記憶體陣列及 /或控制電路的半導體零組件,如上所述般。這些元件的 結構和製造方法已在上面描述過。Figure ί is a simplified block diagram of a high order organization of several embodiments of memory elements in accordance with several embodiments of the subject matter. The memory element 1042 is shown to include a memory array 1 〇 43 and a read/write control circuit 1044 for performing operations on the memory array through communication lines or channels 1 〇 45. The memory component 1042 shown may be a memory card or a memory module, such as a single inline memory module (SIMM) and a dual inline memory module (DIMM). ). Those skilled in the art will appreciate that after reading and understanding the present disclosure, the semiconductor fins of the memory array and/or control circuitry can be fabricated using the etched nanofuse transistors, as described above. The structure and manufacturing method of these components have been described above.

該記憶體陣列1 043包含一些記憶體單元1046。該陣 列中之該等記憶體單元係以列及行配置。在若干實施例 中’字元線1〇47連接該等列内的記憶體單元,而位元線 1048則連接該等行内的記憶鱧單元。該讀取/寫入控制電 路1044包含字元線選擇電路ι〇49(其作用以選擇所要的 列)、位元線選擇電路1050(其作用以選擇所要的行)、以及 讀取電路1 05 1 (其作用以偵測所選的記憶體陣列1 043内之 記憶體單元的記憶狀態)》 第11圖示出擁有一或多個奈米鰭狀電晶體之電子系 統1152的示圖’根據若干實施例。電子系統Π52包含控 制器1153、匯流排1154、以及電子元件1155,其中該匯 流排1154提供該控制器1153和該電子元件1155之間的通 15 1357112 訊通道。在若干實施例中,該控制器及/或電子元件包含 如此前所述之奈米鰭狀電晶體。所示電子系統 1152可包 含,但不限於,資訊處理元件、無線系統、電信通訊系統, 光纖系統、光電系統、及電腦。The memory array 1 043 includes some memory cells 1046. The memory cells in the array are arranged in columns and rows. In some embodiments, the word line 1〇47 connects the memory cells in the columns, and the bit line 1048 connects the memory cells in the rows. The read/write control circuit 1044 includes a word line selection circuit ι 49 (which functions to select a desired column), a bit line selection circuit 1050 (which functions to select a desired line), and a read circuit 105. 1 (which acts to detect the memory state of the memory cells in the selected memory array 1 043). Figure 11 shows a diagram of an electronic system 1152 having one or more nano-fin transistors. Several embodiments. The electronic system 52 includes a controller 1153, a busbar 1154, and an electronic component 1155, wherein the busbar 1154 provides a pass 15 1357112 channel between the controller 1153 and the electronic component 1155. In several embodiments, the controller and/or electronic component comprises a nanoflip transistor as described above. The illustrated electronic system 1152 can include, but is not limited to, information processing components, wireless systems, telecommunications systems, fiber optic systems, optoelectronic systems, and computers.

第12圖示出擁有控制器1257和記憶體1 258的系統 1256的實施例之示圖。該控制器及/或記憶體可包含根據 若干實施例之奈米鰭狀電晶體。所示系統1 2 5 6也包含電子 設備1259和匯流排1260,.以提供該控制器和該電子設備, 以及該控制器和該記憶體之間的通訊通道。該匯流排可包 含位址、資料匯流排、以及控制匯流排,每一個皆獨立配 置;或者可使用共同的通訊通道來提供位址、資訊、及/ 或控制,其使用係由該控制器管理。在一實施例中,該電 子設備 1 259可以是與記憶體1 25 8配置類似的額外記憶 體。一實施例可包含與該匯流排1260連接的一或多個週邊 設備1261。週邊設備可包含顯示器、額外的儲存記憶體、 或可與該控制器及/或該記憶體合併操作之其他控制元 件。在一實施例中,該控制器係一處理器。任何控制器 1257、記憶體1258、電子設備1259、和週邊設備1261皆 可包含根據若干實施例之奈米鰭狀電晶體。該系統1256 可包含,但不限於,資訊處理設備、電信通訊系統、以及 電腦。含有如在此揭示中所描述之奈米鰭狀電晶體的應用 包含用於記憶體模組、設備驅動、電源模組、通訊數據機、 處理器模組、以及特殊應用模組内的電子系統,並且可包 含多層、多晶片模組。此種電路可進一步是各種電子系統 16 1357112 的子零组件,例如時鐘電視行動電話、個人電腦汽 車、工業控制系统、飛機、及其他。Figure 12 shows a diagram of an embodiment of a system 1256 having a controller 1257 and a memory 1 258. The controller and/or memory can include a nanoflip transistor in accordance with several embodiments. The illustrated system 1 2 5 6 also includes an electronic device 1259 and a busbar 1260 for providing the controller and the electronic device, as well as a communication channel between the controller and the memory. The busbar can include an address, a data bus, and a control bus, each of which is independently configured; or a common communication channel can be used to provide address, information, and/or control, the use of which is managed by the controller . In an embodiment, the electronic device 1 259 can be an additional memory similar to the memory 1 285 configuration. An embodiment may include one or more peripheral devices 1261 connected to the busbar 1260. Peripheral devices may include a display, additional storage memory, or other control elements that may operate in conjunction with the controller and/or the memory. In an embodiment, the controller is a processor. Any of the controller 1257, the memory 1258, the electronic device 1259, and the peripheral device 1261 can comprise a nanofoil transistor in accordance with several embodiments. The system 1256 can include, but is not limited to, information processing equipment, telecommunications systems, and computers. Applications containing nanofuse transistors as described in this disclosure include electronic systems for memory modules, device drivers, power modules, communication modems, processor modules, and special application modules And can include multi-layer, multi-chip modules. Such circuitry may further be a sub-component of various electronic systems 16 1357112, such as clock television mobile phones, personal computer automobiles, industrial control systems, aircraft, and others.

s S隐體可實施為含有根據若干實施例之奈米哼狀電 晶體的記憶體元件。可了解實施例也可在任何尺寸和類型 的記隐電路上實施,並且不欲受限在特定類型的記憶體元 件。記憶體類㉝包含DRAM、SRAM(靜態隨機存取記憶體) 或决門記隱體°此外,DRAM可以是-般稱為SGRAM(同 步圖形隨機存取記憶體.)、SDRAM(同步動態隨機存取記憶 體)、SDRAM 11、和 DDR SDRAM(雙倍速 SDRAM)之同步 DRAM。各種紐油 u 新興的記憶體技術皆能夠使用擁有該等壓應 變通道之電晶體。The s S stealth can be implemented as a memory element containing a nanowire-shaped transistor according to several embodiments. It will be appreciated that embodiments can also be implemented on any size and type of hidden circuitry and are not intended to be limited to a particular type of memory component. The memory class 33 includes DRAM, SRAM (Static Random Access Memory) or a secret memory. In addition, the DRAM can be generally referred to as SGRAM (Synchronous Graphics Random Access Memory), SDRAM (Synchronous Dynamic Random Access Memory). Synchronous DRAM with memory), SDRAM 11, and DDR SDRAM (Double-Speed SDRAM). Various oils u Emerging memory technologies can use transistors with these pressure-dependent strain channels.

本揭示包含數種製程、電路圖、以及單元結構。本標 的物並不又限於特定製程順序或邏輯配置。雖然在此已示 出並描述特疋實施例,❻熟知技藝者會了解經計畫以達到 相同效用之任何配置皆可取代所示之特定實施例。此應用 意欲涵蓋本標的物之適應型或變異。4 了解上述說明意在 例示而非限制性。上述實施例,及其他實施例的合併, 士於詳閱並了解上述說明之熟知技藝者而言是顯而易見 本標的物之_範圍應參考附屬專利範圍,以及此等申請 專利範圍賦予的等效物之最大範圍判定。 【圖式簡單說明】 第1圖示出以係數k為調整因子之各種元件參數的一 般趨勢及關係。 17 1357112 第2圖示出習知矽MO SFET的次臨界漏電流。 第3圖示出擁有汲極、源極、利用閘極絕緣層與半導 體主體隔離之前及背閘極的雙閘極MOSFET,以及該汲極 所產生的電場。 第4圖大體示出雙閘極,兩閘極,或環繞閘極MOSFET 之改善的次臨界特性,與習知塊狀矽MOSFET的次臨界特 性相比。 第5A-C圖示出一習知鰭狀FET。The disclosure includes several processes, circuit diagrams, and unit structures. This subject matter is not limited to a specific process sequence or logical configuration. Although the specific embodiments have been shown and described herein, it will be understood by those skilled in the art that the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; This application is intended to cover adaptations or variations of the subject matter. 4 The above description is intended to be illustrative and not limiting. The combination of the above-mentioned embodiments, and other embodiments, is apparent to those skilled in the art and the scope of the invention is to be understood by reference to the scope of the appended claims and the equivalents The maximum range is determined. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 shows the general trend and relationship of various component parameters with a coefficient k as an adjustment factor. 17 1357112 Figure 2 shows the subcritical leakage current of a conventional 矽MO SFET. Figure 3 shows the double gate MOSFET with the drain, source, front and back gates isolated by the gate insulator and the semiconductor body, and the electric field generated by the drain. Figure 4 generally shows the improved subcritical characteristics of the dual gate, the two gates, or the surrounding gate MOSFET compared to the subcritical characteristics of conventional bulk MOSFETs. 5A-C illustrate a conventional fin FET.

第6 A-6L圖示出形成奈米鰭狀電晶體之製程,根據本 標的物之若干實施例。 第7圖示出一奈米鰭狀電晶體陣列之奈米鰭狀物的佈 局之上視圖,根據若干實施例。 第8圖示出製造奈米鰭狀電晶體之製程,根據本標的 物之若干實施例。 第9圖示出從一結晶基材形成鰭狀物之製程,根據本 標的物之若干實施例。6A-6L illustrate a process for forming a nano fin transistor, in accordance with several embodiments of the subject matter. Figure 7 shows a top view of the layout of the nano-fin of a nano-fin transistor array, in accordance with several embodiments. Fig. 8 is a view showing a process for fabricating a nano fin-shaped transistor, according to several embodiments of the subject matter. Figure 9 illustrates a process for forming a fin from a crystalline substrate, in accordance with several embodiments of the subject matter.

第1 0圖係根據本標的物之若干實施例之記憶體元件 的若干實施例之高階組織的簡化方塊圖。 第11圖示出具有一或多個奈米鰭狀電晶體之電子系 統的示圖,根據若干實施例。 第12圖示出具有控制器和記憶體之系統的實施例之 示圖。 【主要元件符號說明】 18 1357112Figure 10 is a simplified block diagram of a high order organization of several embodiments of memory elements in accordance with several embodiments of the subject matter. Figure 11 shows a diagram of an electronic system having one or more nano fin transistors, in accordance with several embodiments. Fig. 12 is a diagram showing an embodiment of a system having a controller and a memory. [Main component symbol description] 18 1357112

100 電晶體 102 通道 503 鰭狀FET 504 第一源極/ 505 ' 622 第二源極/汲極區 506 鰭狀物 507、 618 閘極 508 ' 6 1 9 閘極 509 埋氧化層 510 箭號 611 結構 612 孔洞 613 非晶矽 614、 714 側壁間隙壁 615 氮化矽層 616 基材 617 矽鰭狀物 618 傳導線 619 閘極絕緣A 620 閘極材料 621 絕緣質 622 閘極繞線材料 623、 624 源極 725 光罩帶 1042 記憶體元 1043 記憶體陣列 1044 讀取/寫 1045 通道 1046 記憶體單 1047 字元線 1048 位元線 1049 字元線選擇電路 1050 位元線選 1051 讀取電路 1152 電子系統 1153 ' 1 257 控制器 1154 、1260 匯 1155 電子元件 1252 ' 1256 系 1252 ' 1 25 8 記憶體 1259 電子設備 1261 週邊設備 /汲·極區 絕緣層 /汲極區 件 入控制電路 元 擇電路 流排 統 19100 transistor 102 channel 503 fin FET 504 first source / 505 ' 622 second source / drain region 506 fin 507, 618 gate 508 ' 6 1 9 gate 509 buried oxide layer 510 arrow 611 Structure 612 Hole 613 Amorphous germanium 614, 714 sidewall spacer 615 tantalum nitride layer 616 substrate 617 fin fin 618 conductive line 619 gate insulation A 620 gate material 621 insulation 622 gate winding material 623, 624 Source 725 Mask Band 1042 Memory Element 1043 Memory Array 1044 Read/Write 1045 Channel 1046 Memory Single 1047 Character Line 1048 Bit Line 1049 Character Line Select Circuit 1050 Bit Line Select 1051 Read Circuit 1152 Electronics System 1153 ' 1 257 Controller 1154 , 1260 sink 1155 Electronic component 1252 ' 1256 Series 1252 ' 1 25 8 Memory 1259 Electronic device 1261 Peripheral device / 汲 · Polar region insulation / bungee region into the control circuit element selection circuit flow Row 19

Claims (1)

1357112 第丨&gt;1VT號專利案ico年Γ月修正1357112 Dijon &gt; 1VT Patent Case ico Year Month Amendment 十、申請專利範圍: !.一種形成電晶體之方法,其至少包含以下步驟: 從一結晶基材形成一鰭狀物,其中形成該鰭狀物包含 以下步驟: 沉積一材料於該結晶基材上; 使用具有一最小特徵長度之一光罩圖案蝕刻該材 料,以在該材料中界定至少兩個孔洞,其中該材料提X. Patent application scope: A method for forming a transistor, comprising at least the following steps: forming a fin from a crystalline substrate, wherein forming the fin comprises the steps of: depositing a material on the crystalline substrate Etching the material using a reticle pattern having a minimum feature length to define at least two holes in the material, wherein the material 供環繞並界定該等孔洞之每_者的側壁,且其中該等 孔洞之每一者的寬度為一最小特徵長度(F); &amp;環繞並界定該等孔洞的該等側壁之每一者上形 成側壁間隙壁; 從該等側壁間隙縣^ 3 Ρ永壁形成一鰭狀物圖案,其中該鰭 狀物圖案提供一側劈門Ρ公 j雙間隙壁陣列,其中一第一列與毗 鄰該第一列之一第-而丨认山^ —歹】的中央對中央間距為該最小特 徵長度(F)減去該鰭妝你 瑪狀物之厚度(△ T),且該第二列與Having surrounding and defining a sidewall of each of the holes, and wherein each of the holes has a width of a minimum feature length (F); &amp; each of the sidewalls surrounding and defining the holes Forming sidewall spacers; forming a fin pattern from the sidewall spacers, wherein the fin pattern provides a side gate array of one side gate, wherein a first column is adjacent to The center-to-center spacing of one of the first columns - and the center-to-center spacing is the minimum feature length (F) minus the thickness of the fins (Δ T), and the second column versus 毗鄰該第二列之一第= # 一夕』的中央對中央間距為該最小 特徵長度(F)加上該轉狀抓^ 羁狀物之厚度(Δ T);以及 使用該鰭狀物圖宰作主 禾作為一光罩,以從該結晶基材 ϋ刻出該縛狀物, 其中該韓狀物在_笛 乐~~方向上擁有相應於該最小 特徵長度之剖面厚声,* 厚度,並且在與該第一方向垂直的一 第一方向上擁有小於兮县, ' ^最小特徵長度之剖面厚度, 其中該苐一方向實暂_ t β Α貝上係與該結晶基材之一表面 20 ^357112 平行,且該第二方向實質上係與該結晶基材之該表面 平行, 在該基材内該鰭狀物下方形成一第一源極/汲極區; 在該鰭狀物周圍形成一環繞閘極絕緣層; 在該鰭狀物周圍形成一環繞閘極,並且該環繞閘極藉 由該環繞閘極絕緣層與該鰭狀物隔離;以及 在該鰭狀物頂部内形成一第二源極/汲極區。The center-to-center spacing of one of the second columns adjacent to the second column is the minimum feature length (F) plus the thickness of the rotating grip (ΔT); and the use of the fin map The master is used as a mask to engrave the binding from the crystalline substrate, wherein the Korean has a thick sound corresponding to the minimum characteristic length in the direction of the whistle ~, * thickness And having a profile thickness smaller than that of the first direction perpendicular to the first direction, '^ minimum feature length, wherein the first direction is a temporary _ t β mussel and one of the crystalline substrates The surface 20^357112 is parallel, and the second direction is substantially parallel to the surface of the crystalline substrate, and a first source/drain region is formed under the fin in the substrate; Forming a surrounding gate insulating layer; forming a surrounding gate around the fin, and the surrounding gate is isolated from the fin by the surrounding gate insulating layer; and forming in the top of the fin A second source/drain region. 2. 如申請專利範圍第1項所述之方法,其中上述之從一結 晶基材形成一鰭狀物包含從一結晶矽基材形成一鰭狀物。 3. 如申請專利範圍第1項所述之方法,其中上述之在該基 材内該鰭狀物下方形成一第一源極/汲極區包含在毗鄰該 基材的一溝槽内植入一掺質,並且擴散該掺質至該鰭狀物 下方。2. The method of claim 1, wherein the forming a fin from a crystalline substrate comprises forming a fin from a crystalline germanium substrate. 3. The method of claim 1, wherein the forming a first source/drain region under the fin in the substrate comprises implanting in a trench adjacent to the substrate A dopant is added and the dopant is diffused below the fin. 4. 如申請專利範圍第3項所述之方法,其中上述之擴散包 含擴散該掺質進入該鰭狀物底部。 5. 如申請專利範圍第1項所述之方法,其中上述之形成一 環繞閘極絕緣層包含形成氧化矽。 6.如申請專利範圍第1項所述之方法,更包含使該環繞閘 21 1357112 極内凹,以使該環繞閘極的高度低於該鰭狀物的高度。 7.如申請專利範圍第1項所述之方法,更包含形成一閘極 接觸,其係毗鄰該環繞閘極並與該環繞閘極接觸。 8.如申請專利範圍第1項所述之方法,更包含形成至少一 閘極線,其係毗鄰該環繞閘極並與該環繞閘極接觸。4. The method of claim 3, wherein the diffusion comprises diffusing the dopant into the bottom of the fin. 5. The method of claim 1, wherein the forming a surrounding gate insulating layer comprises forming yttrium oxide. 6. The method of claim 1, further comprising recessing the surrounding gate 21 1357112 such that the height of the surrounding gate is lower than the height of the fin. 7. The method of claim 1, further comprising forming a gate contact adjacent the surrounding gate and in contact with the surrounding gate. 8. The method of claim 1, further comprising forming at least one gate line adjacent to and in contact with the surrounding gate. 9.如申請專利範圍第8項所述之方法,其中上述之形成毗 鄰該環繞閘極並與該環繞閘極接觸之至少一閘極線包含形 成一第一閘極線以及一第二閘極線,該第一閘極線係毗鄰 該環繞閘極之第一側並與其接觸,該第二閘極線係毗鄰該 環繞閘極之第二側並與其接觸,該第一及第二側係位於該 鰭狀物的相反側。9. The method of claim 8, wherein the forming the at least one gate line adjacent to the surrounding gate and contacting the surrounding gate comprises forming a first gate line and a second gate a first gate line adjacent to and in contact with a first side of the surrounding gate, the second gate line being adjacent to and in contact with a second side of the surrounding gate, the first and second side systems Located on the opposite side of the fin. 10.如申請專利範圍第8項所述之方法,其中上述之鰭狀 物擁有一矩形範圍,該矩形範圍含有一短邊及一長邊’其 中形成毗鄰該環繞閘極並與該環繞閘極接觸之至少一閘極 線包含形成一閘極線以在該長邊上接觸該環繞閘極。 11.如申請專利範圍第8項所述之方法,其中上述之鰭狀 物擁有一矩形範圍,該矩形範圍含有一短邊及一長邊,其 中形成毗鄰該環繞閘極並與該環繞閘極接觸之至少一閘極 22 1357112 線包含形成一閘極線以在該短邊上接觸該環繞閘極。 12.如申請專利範圍第1項所述之方法,其中上述之形成 一環繞閘極包含形成一多晶矽環繞閘極。 一種形成電晶體之方法,其至少包含以下步驟:10. The method of claim 8, wherein the fin has a rectangular range, the rectangular range including a short side and a long side 'which is adjacent to the surrounding gate and the surrounding gate Contacting at least one of the gate lines includes forming a gate line to contact the surrounding gate on the long side. 11. The method of claim 8, wherein the fin has a rectangular range, the rectangular range having a short side and a long side, wherein the surrounding gate is formed adjacent to the surrounding gate Contacting at least one gate 22 1357112 line includes forming a gate line to contact the surrounding gate on the short side. 12. The method of claim 1, wherein said forming a surrounding gate comprises forming a polysilicon surrounding the gate. A method of forming a transistor, comprising at least the following steps: 從一結晶矽基材蝕刻出一鰭狀物,其中從該結晶 珍基材触刻出該鰭狀物包含以下步驟: 沉積一材料於該結晶矽基材上; 使用具有一最小特徵長度之一光罩圖案蝕刻該材 料’以在該材料中界定至少兩個孔洞,其中該材料提 供環繞並界定該等孔洞之每一者的側壁,且其中該等 孔洞之每一者的寬度為一最小特徵長度(F); 在環繞並界定該尊孔洞的該等側壁之每一者上形 成側壁間隙壁;Etching a fin from a crystalline germanium substrate, wherein the fin is engraved from the crystalline substrate comprising the steps of: depositing a material on the crystalline germanium substrate; using one having a minimum characteristic length A reticle pattern etches the material' to define at least two holes in the material, wherein the material provides sidewalls that surround and define each of the holes, and wherein each of the holes has a minimum width a length (F); forming a sidewall spacer on each of the sidewalls surrounding and defining the aperture; 從該等側壁間隙壁形成一趙狀物圖案,其中該錯 狀物圖案提供一側壁間隙壁陣列,其中一第一列與毗 鄰該第一列之一第二列的中央對中央間距為該最小特 徵長度(F)減去該鰭狀物之厚度(ΔΤ),且該第二列與 毗鄰該第二列之一第三列的中央對中央間距為該最小 特徵長度(F)加上該鰭狀物之厚度(△!);以及 使用該鰭狀物圖案作為一光罩,以從該結晶矽基 材蝕刻出該鰭狀物’ 23 1357112 其令該鰭狀物在一第一方向上擁有相應於一最小 特徵長度之剖面厚度,並且在與該第一方向垂直的第 二方向上擁有小於該最小特徵長度之剖面厚度, 其中該第一方向實質上係與該結晶矽基材之一表 面平行’且該第二方向實質上係與該結晶矽基材之該 表面平行, 在該基材内該籍狀物下方形成一第一源極/'及極區; • 在該鰭狀物周圍形成一環繞閘極氧化物; 在該鰭狀物周圍形成一多晶石夕環繞閘極,並且該多晶 矽環繞閘極藉由該環繞閘極氧化物與該鰭狀物隔離;以及 在該鰭狀物頂部内形成一第二源極/汲極區。 14. 如申請專利範圍第13項所述之方法,其中上述之形成 一環繞閘極氧化物包含熱氧化從該結晶矽基材蝕刻出之該 矽鰭狀物》 15. —種形成電晶體之方法,其至少包含以下步驟: 從一結晶基材蝕刻出一鰭狀物,該鰭狀物在—第一方 向上擁有相應於一最小特徵長度之剖面厚度,並且在與該 第一方向垂直的一第二方向上擁有小於該最小特徵長度之 剖面厚度,該第一方向實質上係與該結晶基材之一表面平 行’且該第二方向實質上係與該結晶基材之該表面平行, 其中從該結晶基材蝕刻出一鰭狀物包含以下步驟: 24Forming a sinuous pattern from the sidewall spacers, wherein the smear pattern provides an array of sidewall spacers, wherein a first column and a center-to-center spacing adjacent to a second column of the first column are the minimum The feature length (F) minus the thickness of the fin (ΔΤ), and the center of the second column adjacent to the third column of the second column is the minimum feature length (F) plus the fin The thickness of the object (Δ!); and using the fin pattern as a mask to etch the fin from the crystalline germanium substrate '23 1357112, which gives the fin a first direction Corresponding to a profile thickness of a minimum feature length, and having a profile thickness less than the minimum feature length in a second direction perpendicular to the first direction, wherein the first direction is substantially associated with a surface of the crystalline germanium substrate Parallel 'and the second direction is substantially parallel to the surface of the crystalline germanium substrate, a first source/' and a polar region are formed under the substrate in the substrate; • around the fin Forming a surrounding gate oxide; in the fin Forming a polycrystal around the gate to surround the gate, and the polysilicon surrounding the gate is isolated from the fin by the surrounding gate oxide; and forming a second source/汲 in the top of the fin Polar zone. 14. The method of claim 13, wherein the forming a surrounding gate oxide comprises thermally oxidizing the fin from the crystalline germanium substrate. 15. forming a transistor The method comprises at least the steps of: etching a fin from a crystalline substrate, the fin having a cross-sectional thickness corresponding to a minimum feature length in a first direction and perpendicular to the first direction a second direction having a profile thickness less than the minimum feature length, the first direction being substantially parallel to a surface of the crystalline substrate and the second direction being substantially parallel to the surface of the crystalline substrate Wherein etching a fin from the crystalline substrate comprises the steps of: 24 以在 界定 的寬 壁間 圖案 列之 去該 第三 狀物 材, 由該 沉積“, 持料於該結晶基材上; 使用具有今θ 另孩取小特徵長度之一光罩圖案蝕刻該材料, 該材料中ϋ ~ , 丫界疋至少兩個孔洞,其中該材料提供環 該等孔洄+ &gt; 呵之母一者的側壁,且其中該等孔洞之每—者 度為—最小特徵長度(F);; 在環繞鼓界定該等孔洞的該等側壁之每一者上形成側 隙壁; 從該等側壁間隙壁形成一鰭狀物圖案’其中該韓狀物 ^供側壁間隙壁陣列,其中一第一列與B比鄰該第― 一第二列的中央對中央間距為該最小特徵長度(F)減 鰭狀物之厚度(ΔΤ),且該第二列與毗鄰該第二列之一 列的中央對中央間距為該最小特徵長度(F)加上該鳍 之厚度(△ T); 利用相應於該錄狀物圖案之光罩來姓刻進入該結晶基 以從該基材形成該鰭狀物; 在該基材内該鰭狀物下方形成一第一源極/&gt;及極區; 在該鰭狀物周圍形成一環繞閘極絕緣層; 在該鰭狀物周圍形成一環繞閘極’並且該環繞閘極藉 環繞閘極絕緣層與該鰭狀物隔離;以及 在該鰭狀物頂部内形成一第二源極/汲·極區。 p申請專利範圍第〗5項所述之方法,其中上述之形成 繞閘極絕緣層包含熱氧化從該結晶基材钮刻出之該雜 25 Γ357112 狀物。 17.如申請專利範圍第15項所述之方法,其中上述之形成 一環繞閘極包含蝕刻該閘極以使該閘極頂端低於該鰭狀物 頂表面。 1 8. —種形成電晶體陣列的方法,其至少包含:The third material is removed from the defined wide wall pattern by the deposition "on the crystalline substrate; the material is etched using a reticle pattern having a small feature length of the current θ In the material, at least two holes are formed in the ϋ~, 丫 boundary, wherein the material provides a side wall of the hole &+ &gt; 母, and wherein each of the holes is the minimum feature length (F); forming a backlash wall on each of the sidewalls surrounding the drum defining the holes; forming a fin pattern from the sidewall spacers, wherein the Hans are provided for the sidewall spacer array , wherein a first column and B are adjacent to the center-to-center spacing of the first-second column is the minimum feature length (F) minus the thickness of the fin (ΔΤ), and the second column is adjacent to the second column The center-to-center spacing of one of the columns is the minimum feature length (F) plus the thickness of the fin (ΔT); the reticle corresponding to the recording pattern is used to surpass the crystalline group to form from the substrate a fin; forming a lower portion of the fin below the substrate a first source/> and a polar region; a surrounding gate insulating layer is formed around the fin; a surrounding gate is formed around the fin and the surrounding gate is surrounded by the gate insulating layer and the The fin is isolated; and a second source/pole region is formed in the top of the fin. The method of claim 5, wherein the forming of the gate insulating layer comprises thermal oxidation 17. The method of claim 15, wherein the forming a surrounding gate comprises etching the gate to lower the gate tip On the top surface of the fin. 1 8. A method of forming an array of transistors, comprising at least: 在一石夕晶圓上形成一氮化物層; 在該氮化物層上形成一非晶石夕層; 在該非晶矽層内圖案化並蝕刻至少一孔洞; 氧化該非晶矽層,其在該非晶矽層的側壁上造成氧化 物側壁間隙壁; 、以非晶矽回填該孔洞; 平坦化以暴露出該等氧化物側壁; 圈案化並蝕刻該等氧化物側壁成為一鰭狀物圖案;Forming a nitride layer on a silicon wafer; forming an amorphous layer on the nitride layer; patterning and etching at least one hole in the amorphous layer; oxidizing the amorphous layer in the amorphous Forming an oxide sidewall spacer on the sidewall of the germanium layer; backfilling the void with an amorphous germanium; planarizing to expose the oxide sidewall; patterning and etching the oxide sidewall to form a fin pattern; 除去該非晶矽; 蝕刻該氮化物層,留下一鰭狀物圖案之氮化物在該鰭 狀物圖案之氡化物側壁下方; 利用該鰭狀物圖案之氮化物做為光罩來蝕刻該矽晶 圓,以從該矽晶圓蝕刻出矽鰭狀物; 植入掺質並擴散該掺質,以在該等蝕刻出之矽鰭狀物 下方形成一傳導線,該掺質提供該等矽鰭狀物之第一源極 / &gt;及極區, 26 1357112 在該等矽鰭狀物上形成一環繞閘極絕緣層; 在該等矽鰭狀物周圍形成一環繞閘極,並且該環繞閘 極藉由該環繞閘極絕緣層與該等矽鰭狀物隔離; 形成該陣列中相鄰的電晶體之閘極線,其毗鄰該等環 繞閘極並與該等環繞閘極接觸;以及 形成該等矽鰭狀物之第二源極/汲極區。Removing the amorphous germanium; etching the nitride layer leaving a nitride of a fin pattern under the germanic sidewall of the fin pattern; etching the germanium using the nitride of the fin pattern as a mask a wafer to etch a fin from the germanium wafer; implanting a dopant and diffusing the dopant to form a conductive line under the etched fins, the dopant providing the germanium a first source of the fins &gt; and a pole region, 26 1357112 forming a surrounding gate insulating layer on the fins; forming a surrounding gate around the fins and surrounding The gate is isolated from the fins by the surrounding gate insulating layer; forming gate lines of adjacent transistors in the array adjacent to and in contact with the surrounding gates; Forming a second source/drain region of the fins. 19.如申請專利範圍第18項所述之方法,其中上述之形成 一環繞閘極絕緣層包含熱氧化從該結晶矽基材蝕刻出之該 矽鰭狀物。 ’ 20.如申請專利範圍第18項所述之方法,其中上述之形成 一環繞閘極包含形成一多晶石夕閘極。19. The method of claim 18, wherein said forming a surrounding gate insulating layer comprises thermally oxidizing said fins etched from said crystalline germanium substrate. 20. The method of claim 18, wherein the forming a surrounding gate comprises forming a polycrystalline silicon gate. 2 1 . —種半導體結構,包含以行與列配置的一電晶體陣 列,每一個電晶體包含: 一結晶基材,擁有蝕刻在其中之溝槽以從該基材形成 一結晶半導體鰭狀物,該鰭狀物擁有小於一最小特徵尺寸 之剖面尺寸; 一第一源極/汲極區以及一第二源極/汲極區,該第 一源極/汲極區形成在該結晶基材内該鰭狀物底部,該第 二源極/汲極區形成在該鰭狀物頂部内,以在該鰭狀物内 該第一和第二源極/汲極區之間界定出一垂直方向的通道 27 1.357112 區, 一閘極絕緣層,形成在該鰭狀物周圍;以及 一環繞閘極,形成在該鰭狀物周圍並藉由該閘極絕緣層 與該鰭狀物隔離,2 1 . A semiconductor structure comprising an array of transistors arranged in rows and columns, each transistor comprising: a crystalline substrate having a trench etched therein to form a crystalline semiconductor fin from the substrate The fin has a cross-sectional dimension smaller than a minimum feature size; a first source/drain region and a second source/drain region, the first source/drain region being formed on the crystalline substrate Inside the fin bottom, the second source/drain region is formed in the top of the fin to define a vertical between the first and second source/drain regions within the fin Directional channel 27 1.357112 region, a gate insulating layer formed around the fin; and a surrounding gate formed around the fin and isolated from the fin by the gate insulating layer 其中一第一列與毗鄰該第一列之一第二列的中央對中 央間距為該最小特徵尺寸間隔(NF )減去該等鰭狀物結構之 厚度,且該第二列與毗鄰該第二列之一第三列的中央對中央 間距為該最小特徵尺寸間隔(NF)加上該等鰭狀物結構之厚 度0 22. 如申請專利範圍第21項所述之半導體結構,其中上述 之結晶基材包含矽。 23. 如申請專利範圍第21項所述之半導體結構,其中上述 之結晶基材係一結晶矽晶圓。One of the first column and the center-to-center spacing adjacent to the second column of the first column is the minimum feature size spacing (NF) minus the thickness of the fin structures, and the second column is adjacent to the first The center-to-center spacing of one of the third columns is the minimum feature size spacing (NF) plus the thickness of the fin structures. 22. The semiconductor structure of claim 21, wherein the above The crystalline substrate comprises ruthenium. 23. The semiconductor structure of claim 21, wherein the crystalline substrate is a crystalline germanium wafer. 24.如申請專利範圍第21項所述之半導體結構,其中上述 之環繞閘極絕緣層包含氧化矽。 25. 如申請專利範圍第21項所述之半導體結構,其中上述 之環繞閘極包含多晶矽。 26. 如申請專利範圍第21項所述之半導體結構,其中上述 28 Γ35711224. The semiconductor structure of claim 21, wherein the surrounding gate insulating layer comprises hafnium oxide. 25. The semiconductor structure of claim 21, wherein the surrounding gate comprises polysilicon. 26. The semiconductor structure of claim 21, wherein the above 28 Γ 357112 之環繞閘極包含金屬。 2 7. —種半導體結構,包含以行與列配置的一電晶體 列,每一個電晶體包含: 一結晶咬晶圓*擁有钱刻在其中之溝槽以從該晶圓 成一結晶半導體鰭狀物,該鰭狀物在一第一方向上擁有 於一最小特徵尺寸之剖面尺寸,並且在與該第一方向垂 的第二方向上擁有相應於該最小特徵尺寸之剖面尺寸; 一第一源極/汲極區以及一第二源極/汲極區,該 -源極/ &gt;及極區形成在該結晶珍晶圓内該雜狀物底部* 第二源極/及極區形成|在該鰭狀物頂部内,以在該鰭狀 内該第一和第二源極/汲極區之間界定出一垂直方向的 道區; 一閘極絕缘層,形成在該鰭狀物周圍;以及 一環繞閘極,形成在該鰭狀物周圍並藉由該閘極絕緣 與該鰭狀物隔離, 其中一第一列與毗鄰該第一列之一第二列的中央對 央間距為該最小特徵尺寸間隔(NF )減去該等鰭狀物結構 厚度,且該第二列與毗鄰該第二列之一第三列的中央對中 間距為該最小特徵尺寸間隔(NF)加上該等鰭狀物結構之 度。 2 8.如申請專利範圍第27項所述之半導體結構,其中上 陣 形 小 直 第 該 物 通 層 中 之 央 厚 述 29 1357112The surrounding gate contains metal. 2 7. A semiconductor structure comprising a transistor array arranged in rows and columns, each transistor comprising: a crystal bite wafer * having a groove engraved therein to form a crystalline semiconductor fin from the wafer The fin has a cross-sectional dimension of a minimum feature size in a first direction and a cross-sectional dimension corresponding to the minimum feature size in a second direction perpendicular to the first direction; a first source a pole/drain region and a second source/drain region, the source/gitter and the polar region are formed in the bottom of the impurity in the crystallized wafer* the second source/pole region is formed| In the top of the fin, a vertical track region is defined between the first and second source/drain regions in the fin; a gate insulating layer is formed around the fin And a surrounding gate formed around the fin and isolated from the fin by the gate insulation, wherein a first column and a center-to-center spacing adjacent to the second column of the first column are The minimum feature size interval (NF) minus the thickness of the fin structures, and the second column Third column adjacent to the central row of one of the second minimum feature size of the pitch spacing (NF) plus those of the fin-like structures that. 2 8. The semiconductor structure according to claim 27, wherein the upper array is slightly thicker than the central layer of the material layer 29 1357112 之閘極絕緣層包含氧化矽。 2 9.如申請專利範圍第28項所述之半導體結構,其中上 之氧化叾夕閘極絕緣層係熱成長之氧化梦。 30.如申請專利範圍第27項所述之半導體結構,其中上 之環繞閘極包含一多晶石夕環繞閘極。 31.如申請專利範圍第27項所述之半導體結構,其中上 之環繞閘極包含一金屬環繞閘極。 3 2 · —種半導體結構,其至少包含: 一電晶體陣列,以行及列配置,每一個電晶體包含 第一源極/汲極區、位於該第一源極/汲極區上方之一 二源極/汲極區、以及介於該第一和第二源極/汲極區 間的一垂直方向之通道區,該通道區係形成在一結晶半 體鰭狀物内,該結晶半導體鰭狀物擁有小於一最小特徵 寸之剖面厚度,該鰭狀物係藉由蝕刻溝槽以界定出該鰭 物而從一結晶晶圓形成,每一個電晶體更包含一閘極絕 層以及一環繞閘極,該閘極絕緣層形成在該鰭狀物周圍 該環繞閘極形成在該鰭狀物周圍並藉由該閘極絕緣層與 鰭狀物隔離,其中一第一列與毗鄰該第一列之一第二列 中央對中央間距為該最小特徵尺寸間隔(NF )減去該等鰭 述 述 述The gate insulating layer contains hafnium oxide. 2. The semiconductor structure of claim 28, wherein the upper oxidized gate insulating layer is an oxidizing dream of thermal growth. 30. The semiconductor structure of claim 27, wherein the upper surrounding gate comprises a polycrystalline spine surrounding the gate. The semiconductor structure of claim 27, wherein the upper surrounding gate comprises a metal surrounding gate. A semiconductor structure comprising at least: an array of transistors arranged in rows and columns, each transistor comprising a first source/drain region, one above the first source/drain region a second source/drain region, and a vertical channel region between the first and second source/drain regions, the channel region being formed in a crystalline half-body fin, the crystalline semiconductor fin The profile has a profile thickness less than a minimum feature, the fin being formed from a crystalline wafer by etching the trench to define the fin, each transistor further comprising a gate layer and a surround a gate electrode, the gate insulating layer is formed around the fin, the surrounding gate is formed around the fin and is isolated from the fin by the gate insulating layer, wherein a first column is adjacent to the first One of the columns, the second column, the center-to-center spacing, the minimum feature size interval (NF) minus the fins 第 之 導 尺 狀 緣 » 該 的 狀 30 Γ357112 物結構之厚度,且該第二列與毗鄰該第二列之一第三列的中 央對中央間距為該最小特徵尺寸間隔(N F )加上該等鰭狀物 結構之厚度。 33.如申請專利範圍第32項所述之結構,更包含至少一閘 極線,其係沿著該等鰭狀物與該環繞閘極接觸。The first guide ruler edge » the shape of the 30 Γ 357112 thickness of the object structure, and the second column and the center-to-center spacing adjacent to the third column of the second column are the minimum feature size interval (NF ) plus the The thickness of the fin structure. 33. The structure of claim 32, further comprising at least one gate line in contact with the surrounding gate along the fins. 34_如申請專利範圍第33項所述之結構,其中上述之鰭狀 物擁有一矩形剖面,該矩形剖面含有一長邊及一短邊,並 且該至少一閘極線在該長邊上接觸該環繞閘極。 35.如申請專利範圍第33項所述之結構,其中上述之鰭狀 物擁有一矩形剖面,該矩形剖面含有一長邊及一短邊'並 且該至少一閘極線在該短邊上接觸該環繞閘極。The structure of claim 33, wherein the fin has a rectangular cross section, the rectangular cross section having a long side and a short side, and the at least one gate line contacts the long side The surround gate. 35. The structure of claim 33, wherein the fin has a rectangular cross section, the rectangular cross section including a long side and a short side ' and the at least one gate line contacts the short side The surround gate. 3 6.如申請專利範圍第3 3項所述之結構,其中上述之至少 一閘極線包含位於該等鰭狀物相反側上之兩條閘極線。 31 Γ3571123. The structure of claim 3, wherein the at least one of the gate lines comprises two gate lines on opposite sides of the fins. 31 Γ357112 第6H圖Figure 6H 6\6 第6J圖6\6 Figure 6J
TW096112125A 2006-04-04 2007-04-04 Etched nanofin transistors TWI357112B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/397,358 US8354311B2 (en) 2006-04-04 2006-04-04 Method for forming nanofin transistors

Publications (2)

Publication Number Publication Date
TW200802617A TW200802617A (en) 2008-01-01
TWI357112B true TWI357112B (en) 2012-01-21

Family

ID=38559668

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096112125A TWI357112B (en) 2006-04-04 2007-04-04 Etched nanofin transistors

Country Status (2)

Country Link
US (2) US8354311B2 (en)
TW (1) TWI357112B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8734583B2 (en) 2006-04-04 2014-05-27 Micron Technology, Inc. Grown nanofin transistors
US8823006B2 (en) 2006-04-04 2014-09-02 Micron Technology, Inc. Nanofin transistors with crystalline semiconductor fins
US9893072B2 (en) 2006-04-04 2018-02-13 Micron Technology, Inc. DRAM with nanofin transistors

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070228491A1 (en) * 2006-04-04 2007-10-04 Micron Technology, Inc. Tunneling transistor with sublithographic channel
US7425491B2 (en) * 2006-04-04 2008-09-16 Micron Technology, Inc. Nanowire transistor with surrounding gate
JP5410666B2 (en) * 2007-10-22 2014-02-05 ルネサスエレクトロニクス株式会社 Semiconductor device
WO2013095550A1 (en) * 2011-12-22 2013-06-27 Intel Corporation Semiconductor device having a necked semiconductor body and method of forming semiconductor bodies of varying width
US8759184B2 (en) 2012-01-09 2014-06-24 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs and the methods for forming the same
US8609499B2 (en) * 2012-01-09 2013-12-17 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs and the methods for forming the same
US9029822B2 (en) * 2012-11-17 2015-05-12 Avalanche Technology, Inc. High density resistive memory having a vertical dual channel transistor
US9403675B2 (en) * 2013-08-22 2016-08-02 Board Of Regents, The University Of Texas System Self-aligned masks and methods of use
US10220410B2 (en) 2013-12-16 2019-03-05 The Texas A&M University System Systems and methods for in-situ formation of nanoparticles and nanofins
CN105097535B (en) * 2014-05-12 2018-03-13 中国科学院微电子研究所 The manufacture method of FinFet devices
US9825093B2 (en) * 2015-08-21 2017-11-21 Globalfoundries Inc. FinFET PCM access transistor having gate-wrapped source and drain regions
US9564437B1 (en) * 2015-08-25 2017-02-07 International Business Machines Corporation Method and structure for forming FinFET CMOS with dual doped STI regions
CN108962729A (en) * 2018-06-25 2018-12-07 深圳元顺微电子技术有限公司 A kind of preparation method of groove MOS field effect transistor
US11107817B2 (en) * 2019-03-11 2021-08-31 Micron Technology, Inc. Integrated assemblies comprising hydrogen diffused within two or more different semiconductor materials, and methods of forming integrated assemblies

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941026A (en) * 1986-12-05 1990-07-10 General Electric Company Semiconductor devices exhibiting minimum on-resistance
JPH07112067B2 (en) 1990-01-24 1995-11-29 株式会社東芝 Semiconductor device
US5013680A (en) * 1990-07-18 1991-05-07 Micron Technology, Inc. Process for fabricating a DRAM array having feature widths that transcend the resolution limit of available photolithography
JP3202223B2 (en) 1990-11-27 2001-08-27 日本電気株式会社 Method for manufacturing transistor
JP4047098B2 (en) 1994-09-13 2008-02-13 株式会社東芝 Semiconductor device and manufacturing method thereof
JP3549602B2 (en) * 1995-01-12 2004-08-04 株式会社ルネサステクノロジ Semiconductor storage device
JP3732884B2 (en) * 1996-04-22 2006-01-11 株式会社ルネサステクノロジ Internal power supply voltage generation circuit, internal voltage generation circuit, and semiconductor device
US6150687A (en) * 1997-07-08 2000-11-21 Micron Technology, Inc. Memory cell having a vertical transistor with buried source/drain and dual gates
US5909618A (en) * 1997-07-08 1999-06-01 Micron Technology, Inc. Method of making memory cell with vertical transistor and buried word and body lines
US5973356A (en) * 1997-07-08 1999-10-26 Micron Technology, Inc. Ultra high density flash memory
US6063688A (en) * 1997-09-29 2000-05-16 Intel Corporation Fabrication of deep submicron structures and quantum wire transistors using hard-mask transistor width definition
US6066869A (en) * 1997-10-06 2000-05-23 Micron Technology, Inc. Circuit and method for a folded bit line memory cell with vertical transistor and trench capacitor
US6747313B1 (en) * 1997-12-17 2004-06-08 Hyundai Electronics Industries Co., Ltd. Thin film transistor
US6177299B1 (en) * 1998-01-15 2001-01-23 International Business Machines Corporation Transistor having substantially isolated body and method of making the same
US6097065A (en) * 1998-03-30 2000-08-01 Micron Technology, Inc. Circuits and methods for dual-gated transistors
US6229161B1 (en) * 1998-06-05 2001-05-08 Stanford University Semiconductor capacitively-coupled NDR device and its applications in high-density high-speed memories and in power switches
US6104068A (en) * 1998-09-01 2000-08-15 Micron Technology, Inc. Structure and method for improved signal processing
US6320222B1 (en) * 1998-09-01 2001-11-20 Micron Technology, Inc. Structure and method for reducing threshold voltage variations due to dopant fluctuations
DE19943390A1 (en) 1999-09-10 2001-05-03 Walter Hansch Semiconductor component comprises vertical stack comprising source, drain and intermediate layer, gate comprising insulating and conducting layer connecting source and drain and tunnel current flowing in section of gate
US6967140B2 (en) * 2000-03-01 2005-11-22 Intel Corporation Quantum wire gate device and method of making same
CN101179079B (en) * 2000-08-14 2010-11-03 矩阵半导体公司 Rail stack array of charge storage devices and method of making same
US6413802B1 (en) * 2000-10-23 2002-07-02 The Regents Of The University Of California Finfet transistor structures having a double gate channel extending vertically from a substrate and methods of manufacture
US6664143B2 (en) * 2000-11-22 2003-12-16 North Carolina State University Methods of fabricating vertical field effect transistors by conformal channel layer deposition on sidewalls
US6448601B1 (en) * 2001-02-09 2002-09-10 Micron Technology, Inc. Memory address and decode circuits with ultra thin body transistors
US6531727B2 (en) 2001-02-09 2003-03-11 Micron Technology, Inc. Open bit line DRAM with ultra thin body transistors
US6496034B2 (en) * 2001-02-09 2002-12-17 Micron Technology, Inc. Programmable logic arrays with ultra thin body transistors
US6566682B2 (en) * 2001-02-09 2003-05-20 Micron Technology, Inc. Programmable memory address and decode circuits with ultra thin vertical body transistors
US6377070B1 (en) * 2001-02-09 2002-04-23 Micron Technology, Inc. In-service programmable logic arrays with ultra thin vertical body transistors
US6559491B2 (en) * 2001-02-09 2003-05-06 Micron Technology, Inc. Folded bit line DRAM with ultra thin body transistors
US6424001B1 (en) * 2001-02-09 2002-07-23 Micron Technology, Inc. Flash memory with ultra thin vertical body transistors
US6649476B2 (en) * 2001-02-15 2003-11-18 Micron Technology, Inc. Monotonic dynamic-static pseudo-NMOS logic circuit and method of forming a logic gate array
FR2823009B1 (en) * 2001-04-02 2004-07-09 St Microelectronics Sa METHOD FOR MANUFACTURING A VERTICAL TRANSISTOR WITH INSULATED GRID WITH LOW COVERAGE OF THE GRID ON THE SOURCE AND ON THE DRAIN, AND INTEGRATED CIRCUIT COMPRISING SUCH A TRANSISTOR
US20030008515A1 (en) * 2001-07-03 2003-01-09 Tai-Ju Chen Method of fabricating a vertical MOS transistor
US6815750B1 (en) * 2002-05-22 2004-11-09 Hewlett-Packard Development Company, L.P. Field effect transistor with channel extending through layers on a substrate
US6900521B2 (en) * 2002-06-10 2005-05-31 Micron Technology, Inc. Vertical transistors and output prediction logic circuits containing same
US6821834B2 (en) * 2002-12-04 2004-11-23 Yoshiyuki Ando Ion implantation methods and transistor cell layout for fin type transistors
US6794718B2 (en) 2002-12-19 2004-09-21 International Business Machines Corporation High mobility crystalline planes in double-gate CMOS technology
US6956256B2 (en) * 2003-03-04 2005-10-18 Micron Technology Inc. Vertical gain cell
US6762448B1 (en) * 2003-04-03 2004-07-13 Advanced Micro Devices, Inc. FinFET device with multiple fin structures
US7041575B2 (en) * 2003-04-29 2006-05-09 Micron Technology, Inc. Localized strained semiconductor on insulator
US6838322B2 (en) * 2003-05-01 2005-01-04 Freescale Semiconductor, Inc. Method for forming a double-gated semiconductor device
JP4108537B2 (en) 2003-05-28 2008-06-25 富士雄 舛岡 Semiconductor device
US6855582B1 (en) * 2003-06-12 2005-02-15 Advanced Micro Devices, Inc. FinFET gate formation using reverse trim and oxide polish
JP2007506274A (en) * 2003-09-16 2007-03-15 コニンクリユケ フィリップス エレクトロニクス エヌ.ブイ. Method for manufacturing electronic device and electronic device
JP2005116969A (en) 2003-10-10 2005-04-28 Toshiba Corp Semiconductor device and its manufacturing method
US7348243B2 (en) 2003-12-27 2008-03-25 Dongbu Electronics Co., Ltd. Semiconductor device and method for fabricating the same
ATE546837T1 (en) 2004-01-22 2012-03-15 Ibm VERTICAL FIN FET MOS DEVICES
US7122425B2 (en) * 2004-08-24 2006-10-17 Micron Technology, Inc. Methods of forming semiconductor constructions
US7242057B2 (en) * 2004-08-26 2007-07-10 Micron Technology, Inc. Vertical transistor structures having vertical-surrounding-gates with self-aligned features
US7241655B2 (en) * 2004-08-30 2007-07-10 Micron Technology, Inc. Method of fabricating a vertical wrap-around-gate field-effect-transistor for high density, low voltage logic and memory array
US7910288B2 (en) * 2004-09-01 2011-03-22 Micron Technology, Inc. Mask material conversion
JP3764161B2 (en) 2004-09-17 2006-04-05 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
KR100674914B1 (en) * 2004-09-25 2007-01-26 삼성전자주식회사 MOS transistor having strained channel layer and methods of manufacturing thereof
US7229895B2 (en) * 2005-01-14 2007-06-12 Micron Technology, Inc Memory array buried digit line
US7326611B2 (en) * 2005-02-03 2008-02-05 Micron Technology, Inc. DRAM arrays, vertical transistor structures and methods of forming transistor structures and DRAM arrays
US7120046B1 (en) * 2005-05-13 2006-10-10 Micron Technology, Inc. Memory array with surrounding gate access transistors and capacitors with global and staggered local bit lines
US7371627B1 (en) * 2005-05-13 2008-05-13 Micron Technology, Inc. Memory array with ultra-thin etched pillar surround gate access transistors and buried data/bit lines
US7679118B2 (en) * 2005-06-13 2010-03-16 Micron Technology, Inc. Vertical transistor, memory cell, device, system and method of forming same
US7888721B2 (en) * 2005-07-06 2011-02-15 Micron Technology, Inc. Surround gate access transistors with grown ultra-thin bodies
US20070052012A1 (en) * 2005-08-24 2007-03-08 Micron Technology, Inc. Vertical tunneling nano-wire transistor
US7439576B2 (en) * 2005-08-29 2008-10-21 Micron Technology, Inc. Ultra-thin body vertical tunneling transistor
US7446372B2 (en) 2005-09-01 2008-11-04 Micron Technology, Inc. DRAM tunneling access transistor
KR100660881B1 (en) * 2005-10-12 2006-12-26 삼성전자주식회사 Semiconductor devices comprising transistors having vertical channel and method of manufacturing the same
US7547947B2 (en) * 2005-11-15 2009-06-16 International Business Machines Corporation SRAM cell
US20070228491A1 (en) * 2006-04-04 2007-10-04 Micron Technology, Inc. Tunneling transistor with sublithographic channel
US7425491B2 (en) * 2006-04-04 2008-09-16 Micron Technology, Inc. Nanowire transistor with surrounding gate
US8734583B2 (en) 2006-04-04 2014-05-27 Micron Technology, Inc. Grown nanofin transistors
US8354311B2 (en) 2006-04-04 2013-01-15 Micron Technology, Inc. Method for forming nanofin transistors
EP2002468B1 (en) 2006-04-04 2013-07-24 Micron Technology, Inc. Nanowire transistor with surrounding gate
US7491995B2 (en) 2006-04-04 2009-02-17 Micron Technology, Inc. DRAM with nanofin transistors
KR101025741B1 (en) 2008-09-02 2011-04-04 주식회사 하이닉스반도체 Method for forming active pillar of vertical channel transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8734583B2 (en) 2006-04-04 2014-05-27 Micron Technology, Inc. Grown nanofin transistors
US8823006B2 (en) 2006-04-04 2014-09-02 Micron Technology, Inc. Nanofin transistors with crystalline semiconductor fins
US9893072B2 (en) 2006-04-04 2018-02-13 Micron Technology, Inc. DRAM with nanofin transistors

Also Published As

Publication number Publication date
TW200802617A (en) 2008-01-01
US8354311B2 (en) 2013-01-15
US20070231980A1 (en) 2007-10-04
US20130112982A1 (en) 2013-05-09
US8823006B2 (en) 2014-09-02

Similar Documents

Publication Publication Date Title
TWI357112B (en) Etched nanofin transistors
US9893072B2 (en) DRAM with nanofin transistors
JP5234439B2 (en) Nano Fin transistor made by etching
US8734583B2 (en) Grown nanofin transistors
CN101416317B (en) Etched nanofin transistors
CN105702568B (en) Method for manufacturing static random access memory and method for manufacturing semiconductor device
US7842594B2 (en) Semiconductor device and method for fabricating the same