TWI357077B - A pulse width converged method to control voltage - Google Patents

A pulse width converged method to control voltage Download PDF

Info

Publication number
TWI357077B
TWI357077B TW095119123A TW95119123A TWI357077B TW I357077 B TWI357077 B TW I357077B TW 095119123 A TW095119123 A TW 095119123A TW 95119123 A TW95119123 A TW 95119123A TW I357077 B TWI357077 B TW I357077B
Authority
TW
Taiwan
Prior art keywords
pulse width
level
memory
memory cell
programming
Prior art date
Application number
TW095119123A
Other languages
Chinese (zh)
Other versions
TW200721176A (en
Inventor
Chao I Wu
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Publication of TW200721176A publication Critical patent/TW200721176A/en
Application granted granted Critical
Publication of TWI357077B publication Critical patent/TWI357077B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0466Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Read Only Memory (AREA)
  • Non-Volatile Memory (AREA)

Description

Γ357077 16179twf.doc/e 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種於操作多個非揮發性多階記憶體 單元期間,利用一脈波寬度來控制臨界電壓(Vt)分布的方 法,且特別是有關於一種每一個記憶單元儲存層具有二位 元的非揮發性多階記憶單元。 【先前技術】 非揮發性多階記憶體單元是指在未提供電源給記憶體 的情形下仍然能儲存資訊的半導體記憶體型態。一些非揮 發性S己憶體單元例子包括罩幕式唯讀記憶體(Mask Read-Only Memory,Mask ROM),可程式唯讀記憶體 (Programmable Read-Only Memory,PROM),可抹除唯讀 口己隐體(Electrically Erasable Programmable read-OnlyΓ357077 16179twf.doc/e IX. Description of the Invention: [Technical Field] The present invention relates to controlling a threshold voltage (Vt) by using a pulse width during operation of a plurality of non-volatile multi-level memory cells. The method of distribution, and in particular, relates to a non-volatile multi-order memory unit having two bits per memory cell storage layer. [Prior Art] A non-volatile multi-level memory cell refers to a semiconductor memory type that can still store information without providing power to the memory. Some examples of non-volatile S-resonance units include Mask Read-Only Memory (Mask ROM), Programmable Read-Only Memory (PROM), which can erase read-only reading. Electable Erasable Programmable read-Only

Memory,EEPR〇M)。通常非揮發性記憶體單元資料可以 被程式化,讀取和(或)抹除,且程式化資料於被抹除前可 被長時間儲存。 氮化碎唯 si s己丨思體(Nitride read only memory,NBit)為 使用電荷陷入作為資料儲存的型態。一個NB i t單元的結構 有如個金氧半場效電晶體(metaI_〇xide_si〗i_朽咖淑以 tmns〗stor,MOSFET),但是其中的⑽心層由〇斯 (〇xide-nitride_oxide,氧化物_氮化物-氧化物)層所取代 (SOWOS)。在C)N〇上介電層的氮化㈣質具有在單元被,, 知式,時捕捉”電荷(電子)的特性。電荷局部化是電荷不 須經虱化石夕層作橫向移動而能儲存電荷的氮化石夕材質的能 4 135707? 16179twf.doc/e 力,因此該些電荷獨立於其他電荷。此元可與 *的”浮置閘極,,形成對照,其中浮動閘極具導。然而, 電荷於整個浮置閘極上可自由並橫向地分布,且電荷瘦由 通^氧化層被傳遞。在職t單元中對電荷陷入層的程式化 (換S之,注入電荷)能藉由各種熱載子注入法如通道熱電 子注入(channel hot electron injecti〇n,CHE),源極端注入 (_rce side injecti0n ’ SSI)或通道初始二次電子(channei _ mitiated secondary electron,CHISEL)來實現。此兩種方式 都是將電子注入到氮化矽層。局部化的電荷陷入技術允許 每一個單元有兩個分離的電荷位元,因此結果為每個單元 便擁有雙倍的記憶密度。 NBit單元之典型的抹除是藉由頻帶間熱電洞穿随 - (band-t〇-band hot hole tunneling,BTBHHT)來實現。 . 櫝取操作是由順向亦或是逆向來實現。讀取NBit單元 並不會影響到單元中資料。NB i t單元能經由已知的施加電 應技術而被重複地程式化,讀取以及抹除。 鲁 一 PHINES記憶單元是另一種電荷陷入儲存非揮發性 記憶體的操作型態,結構同樣為一具有ΟΝΟ介電層的n 通道MOSFET (S0N0S)。。一 PHINES記憶單元亦可利用 儲存之兩個物理位元來增加記憶體密度。 就PHINES記憶單元而言,例如Fowler-Nordheim(FN) 穿隧與頻帶間熱電洞穿隧(BTBHHT)之技術典型地分別被 用於抹除與程式化操作。使用FN穿隨來抹除一 PHINES 記憶單元’可於保持效率同時,顯現自我收斂行為而不造 16179twf.doc/e 化是經由使用_而技術降低 除操作:低“n:NEs記憶單元的程式化與抹 應用相當理想/、〃子常是複雜設計的大量儲存 恤記㈣單元之臨界1壓(vt)正比於保留於電 何儲存層中的電荷數量。當電荷改變,臨界電壓便 ίΐί二::電壓定義了對應於編程狀態之多階記憶 二絲狀態絲儲存於記龍單元中的 重的;===::;T:r之多 電壓範圍相對應於,定::== == 之趣單元的臨_準位之特定= 儲存,臨界電壓的多重範圍應彼此藉: .中:使==準:7於-清楚的方法 .定義出相對於齡黯母-準位的分隔在單元中 立當太電^除積了/電界^壓^響±到其餘的造成的任何問^ 緊密,愈容易盔誤妯择跑々忤_ 一 的刀布愈 Π5Τ077----- 16179twf.doc/e 分布而不致於產生錯 一脈波寬度方法被用 取過程需要區分出不同的臨界電壓 誤。為了控制這些臨界電壓的分布, 來程式化記憶體單元。 控制臨界分布的先前技術方法與本發明相較需垄 更複雜的技術。美國專利公告帛 632〇786 (Changetal^^ / 6219276(Parke^ 輿 w 了一種需要使用多重編程霄Memory, EEPR〇M). Usually non-volatile memory cell data can be programmed, read and/or erased, and the stylized data can be stored for long periods of time before being erased. Nitrix read only memory (NBit) is a type of data storage using charge trapping. The structure of a NB it unit is like a gold-oxygen half-field effect transistor (metaI_〇xide_si〗 i_ 朽咖淑tmns stor, MOSFET), but the (10) core layer is composed of muse (〇xide-nitride_oxide, oxide _ nitride-oxide layer replaced (SOWOS). The nitrided (tetra) material of the dielectric layer on C)N has the property of capturing charge (electron) in the unit, and the knowledge of the electric charge. The charge localization is that the electric charge does not need to be laterally moved by the fossilized layer. The charge of the nitrided material of the material can be 4 135707? 16179 twf.doc/e, so the charge is independent of the other charges. This element can be contrasted with the "floating gate of *", where the floating gate is guided. . However, the charge is freely and laterally distributed over the entire floating gate, and the charge is transferred by the oxide layer. Stylization of the charge trapping layer in the in-service t-cell (injecting charge) can be performed by various hot carrier injection methods such as channel hot electron injecti〇 (CHE), source-injection (_rce side) Injecti0n ' SSI) or channel initial secondary electron (channei _ mitiated secondary electron (CHISEL) to achieve. Both of these methods involve injecting electrons into the tantalum nitride layer. The localized charge trapping technique allows for two separate charge locations per cell, so the result is twice the memory density per cell. A typical erasure of the NBit unit is achieved by band-t〇-band hot hole tunneling (BTBHHT). The capture operation is implemented either forward or reverse. Reading the NBit unit does not affect the data in the unit. The NB i t unit can be repeatedly programmed, read and erased via known applied electrical techniques. Luyi PHINES memory cell is another type of operation in which charge is stored in non-volatile memory. The structure is also an n-channel MOSFET (S0N0S) with a germanium dielectric layer. . A PHINES memory unit can also use the two physical bits stored to increase the memory density. For PHINES memory cells, techniques such as Fowler-Nordheim (FN) tunneling and inter-band thermal tunneling (BTBHHT) are typically used for erase and stylization operations, respectively. Using FN to erase a PHINES memory unit can maintain self-convergence behavior while maintaining self-convergence without creating 16179twf.doc/e. By using _ technology to reduce the operation: low "n: NEs memory unit program The application of smearing and wiping is quite ideal. / The scorpion is often a complex design of a large number of storage notes. (4) The critical 1 pressure (vt) of the unit is proportional to the amount of charge remaining in the storage layer. When the charge changes, the threshold voltage is ίΐί :: Voltage defines the weight of the multi-level memory wire state corresponding to the programmed state stored in the dragon unit; ===::; The voltage range of T:r corresponds to, =:== = = The specificity of the _ level of the interesting unit = storage, the multiple ranges of the threshold voltage should be borrowed from each other: . Medium: make == quasi: 7 in - clear method. Define the separation from the maternal-level In the unit, the neutrality is too electric ^In addition to the electric / ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Doc/e distribution without generating a wrong pulse width method is used to distinguish different critical powers In order to control the distribution of these threshold voltages, the memory cells are programmed. The prior art method of controlling the critical distribution is more complicated than the present invention. US Patent Publication 帛 632 〇 786 (Changetal^^ / 6219276 ( Parke^ 舆w has a need to use multiple programming霄

j達到^纽界f齡布的方法,其增加設計複雜度, 其中的編程雜並狀值。此外,如教示了一種利用 -些脈波來控制臨界電壓分布的方法。特別的是,用來控 制臨界電壓分布驗波數量衫,臨界電壓分布的愈窄: 反之’本發明利用脈波寬度而不是脈波數量來控制臨界電 壓分布。 :此外,美國專利公告第6,396,741 (Bloom et al.)號揭 ,了一種利用使汲極電壓成梯級來程式化非揮發性記憶體 單兀的方法。此方法增加設計上的複雜度以控制編程電壓 因為在程式化操作中電壓並非是固定值。 美國專利公告第6,172,909 (Haddad et al.)號揭露了 一種於一記憶體單元中使臨界電壓分布曲線更緊密的方 法。Haddad指示出一種軟程式步驟方法,其中此軟程 式步驟方法在一抹除操作後被使用以避免過度抹除 問題,因此控制臨界電壓分布。此外,Haddad並未藉由 變更施加於每一個記憶體單元之編程脈波寬度以控制每一 個記憶體單元之臨界電壓分布。反之,本發明利用變更施 7 16179twf.doc/e ?體單元_料_突,不料錢 技術手段未考慮相關於_單二 =:;抹除問題’其中此問題對於記憶體單元之 【發明内容】之生命週期具有不利的效應。 去。特別的是’多個非揮發性多階 層。非揮發性記憶二= ^存層妓❹階記料元(Multi_Level Cel1,MIX) ϋ 位元電荷’其被載入於緩衝器中以確認編程狀態 -沾,ΐ位之脈波見度。兩個二位元非揮發性記憶體單 =較佳實施例為氮化唯讀記憶體⑽的及熱電洞注入氮 、子儲存益而耘式化的(pr〇gramming by h〇t h〇le injection nitride electron storage,卩聰呵記憶單元。可儲 :兩個別位兀電荷之非揮發性記憶體單元具有一典型結構 匕=半‘體基底’-源極區,一汲極區,一閘極,一第 ,化,一電荷儲存層以及一第二氧化層。本發明提供 固疋之第一操作(偏)電壓於汲極以及一固定之第二操 < (偏)電壓㈣極。固定之操作電壓為依據本發明之方法 16179twf.d〇c/e 程式化及抹除操作。此方法更進-步包含載入多階 =憶早tc(MLC)資料至-緩衝器,輕ML(: 料之編程狀 =及選擇脈波寬度以完成單元猶,其巾此操作為程式 化或抹除。本發明之脈波寬度是用於控制多個非揮發性 =憶體單元之臨界電麼分布,因此允許將操作收 疋義準位。 士發明使用-ϋ定操作(偏),相對於以上所提及 =,先前技術其中施加㈣極與沒極(並且’於先前技術 曰’扁程電;1,程式化電壓”)之操作(偏)電麼為變動。 〃脈波寬度也用於控制對於多階記憶單元(MLc)之不 :壓下之程式化速度。因此,本發明由於操作期間之 =電壓皆為定值’因此不需以複雜電路來控制程式化以 操作,歧—簡單的魏設計即可完成以改 善本發明之整體效率。 ,波寬度也用於控制本發明之另一方面即用於控制臨 ,“堅刀布,其中一較小的脈波寬度(例如,短持續期間 f於程式化多階記憶單元(MLC)之,,中間狀態,,。多階記憶 ^(MLC)之中’態為介於最低狀態與最高狀態間的狀 .舉例而言’―個二位元記憶體之中間狀態為01盘1()。 因此’較緊密的臨界電遷分布可達成多階記憶單元 (MLC)之每一個操作。此外,控制電壓分布可改善過度程 式化與過度抹除操作之相關問題,因此不需對記憶單元施 加額外的壓力便可使本方法更有效率。 1357077 16179twf.doc/e 时此外本方法利用固定之操作電愿來對多個多階記憶 早1程式化及抹除’允許以整體之較簡易設料成,反 =美國專利公告第6219276號及632_號所用的操作 固疋’因此需要一較複雜且較低效率設計以完 )、美國專利公告第6,396,741號揭露了一種使用 布'’及b;及極電絲㈣非揮發性記憶體單元臨界電壓分 易懂他目s":獅规更明顯 明如下。 ㈣例’亚配合所關式,作詳細說 【實施方式】 一脈波寬度收斂方法被用於操作多個 控制臨界電齡布。特別的是,本發明 早7^也可用於本發明方法。而且,本發明相關ϋ己憶體 ^性的多階儲存記憶體單元之操作,其中此^非揮 式化與抹除,且這些單元於儲存電荷層儲j了程 立電荷位元(換言之,資料位元)。 者存夕重的獨 .本發明籍由在不變更操作電壓下變更脈痒 :=,記憶體單元期間控制臨界電於操 作就是-種抹除操作,其中程式化乃是 t式化操 元之技術且抹除乃是—種將資料從記憶二寫入記 之技術。記憶體料之汲極與閘極是分別由固=2= 10 1357077 ί6ΐ 79twf.doc/e 電璧綱。非揮發性的多階記憶體單元的儲存 電何層中錯存兩位元以定義MLC資料,其可被載入至一 編碼狀態與脈波寬度。此緩衝器被用來於程 ί =記憶體單域儲存資料。舉例來說,記憶體資j reaches the method of the nucleus of the nucleus, which increases the design complexity, among which the programming is mixed. In addition, a method of using a pulse wave to control the threshold voltage distribution is taught. In particular, the narrower the threshold voltage distribution is used to control the threshold voltage distribution. The invention uses the pulse width rather than the pulse number to control the critical voltage distribution. In addition, U.S. Patent No. 6,396,741 (Bloom et al.) discloses a method for stabilizing non-volatile memory cells by stepping the drain voltage into steps. This approach increases the complexity of the design to control the programming voltage because the voltage is not a fixed value during stylized operation. U.S. Patent No. 6,172,909 (Haddad et al.) discloses a method for making the threshold voltage distribution curve closer in a memory cell. Haddad indicates a software program step method in which the soft step method is used after an erase operation to avoid over-wiping the problem, thus controlling the critical voltage distribution. In addition, Haddad does not control the threshold voltage distribution of each memory cell by varying the programmed pulse width applied to each memory cell. On the contrary, the present invention utilizes the change of the 16 16179 twf.doc / e body unit _ material _ sudden, unexpectedly, the technical means does not consider the _ single two =:; erase the problem 'where the problem is for the memory unit The life cycle has an adverse effect. go with. In particular, 'a plurality of non-volatile multi-level layers. Non-volatile memory two = ^ memory layer level material (Multi_Level Cel1, MIX) ϋ bit charge 'is loaded in the buffer to confirm the programming state - dip, clamp pulse visibility. Two two-dimensional non-volatile memory singles = preferred embodiment for nitriding read-only memory (10) and hot hole injection nitrogen, sub-storage and sputum (pr〇gramming by h〇th〇le injection Nitrogen electron storage, can be stored: two non-volatile memory cells with a charge and a charge have a typical structure 匕 = semi-body base - source region, a drain region, a gate , a first, a charge storage layer and a second oxide layer. The invention provides a first operation (bias) voltage of the solid state at the drain and a fixed second operation < (bias) voltage (four) pole. The operating voltage is a 16179 twf.d〇c/e stylization and erasing operation according to the method of the present invention. This method further includes loading multi-level = memorizing early tc (MLC) data to the buffer, light ML ( : Program programming = and select the pulse width to complete the unit, the operation is stylized or erased. The pulse width of the present invention is used to control the critical power of multiple non-volatile = memory unit Distribution, thus allowing the operation to be accepted. The inventor uses the -set operation (bias), For the above mentioned =, the prior art in which the operation of (four) poles and immersions (and 'in the prior art 曰 'flat circuit power; 1, stylized voltages)) is changed. The 〃 pulse width is also It is used to control the speed of the multi-level memory unit (MLc): the stylized speed of the press. Therefore, the present invention has a constant value for the voltage during operation. Therefore, it is not necessary to control the stylization with complicated circuits to operate. - Simple Wei design can be done to improve the overall efficiency of the invention. Wave width is also used to control another aspect of the invention for controlling the Pro, "hard knife cloth, where a smaller pulse width (eg The short duration f is in the stylized multi-order memory unit (MLC), the intermediate state, and the multi-level memory ^ (MLC) is the state between the lowest state and the highest state. For example, ' The middle state of a two-bit memory is 01 disk 1 (). Therefore, the 'tighter critical voltage distribution can achieve each operation of the multi-level memory cell (MLC). In addition, the control voltage distribution can improve over-stylization. Problems related to over-wiping operations, therefore This method can be made more efficient without applying additional pressure to the memory unit. 1357077 16179twf.doc/e In addition, this method uses a fixed operation power to program and erase multiple multi-level memories. In general, it is simpler to set up the material, and the operation of the US Patent Publication Nos. 6219276 and 632_ is therefore required to be completed, and a more complicated and less efficient design is required. U.S. Patent No. 6,396,741 discloses a Use cloth '' and b; and pole wire (four) non-volatile memory unit threshold voltage points easy to understand his eyes s ": lion rules are more obvious as follows. (four) example 'Asian cooperation, close, say in detail [implementation A pulse width convergence method is used to operate multiple control critical electrical age fabrics. In particular, the invention can also be used in the method of the invention. Moreover, the present invention relates to the operation of a multi-level memory cell unit, wherein the cells are non-swept and erased, and the cells store the charge cells in the stored charge layer (in other words, Data bit). The invention is based on the fact that the itch is changed without changing the operating voltage: =, the critical electric current is controlled during the memory unit is an erasing operation, wherein the stylization is a t-style operation Technology and erasing is a technique for writing data from memory two. The bungee and gate of the memory material are respectively fixed by solid = 2 = 10 1357077 ί6 ΐ 79 twf.doc / e eDonkey. The storage of non-volatile multi-level memory cells misplaces two bits in the layer to define the MLC data, which can be loaded into a coding state and pulse width. This buffer is used to store data in a single field of memory. For example, memory

Llt/咖删1111111被用於儲存在記憶體單元。依 :月之k佳實施例’記憶體資料先被載人至緩衝器且 之後此發訪開始程式化資料進記憶體單元。 ° 階記憶體單元可被程式化為含有多於一個的電 ^準位。舉例來說,—個二階的記憶體具有-第―、第二、 態,相對應於四個不同的編程準位。每:個 ,.扁域恶的電壓準位對應於以二進位形式例如00, 01 10 and 1二所表*的諸的位元,其巾每—條元數字代表於 3 = _記憶體單元中之電荷儲存層中各別且獨立之 :舉例來說,一非揮發性的二階記憶體單元 5 0V J對應於二進位狀態〇〇, 〇1,1〇, 11的約為 5.0V,4.〇v,3.0V,2.0V 的編程準位。 八有夕於—卩白之多階s己憶體單元也在本發明筋痛之 體單元具有多於四種狀態(換言之,編;準 狀)態。。牛例來說’三階記憶體單元具有從_至的八個 f λ —rV包S,在纪憶體單元之汲極與閘極先後 度以先程式化左位元繼而右位元或相應地先 釭式化右位7C繼而左位元。 11 Γ35Τ0Τ7 -----------------------------------_ 16179twf.doc/e . 此脈波寬度於操作非揮發性的多階記憶體單元期間控 • 制臨界電壓分布。在本發明之一較佳實施例中,此脈波寬 度對一 NBit單元而言約為5毫微秒(例如,,,非程式化,,)到 50毫微秒之間且對一 PHINES單元而言約為!毫微秒(例 如,”非程式化,,)到10毫微秒之間。其中對於最低臨界電 疋狀恶而§,此方法不程式化(例如,”非程式化”)記憶體 單元。此外,定義一程式化記憶體單元之程式化脈波的小 _ 脈波1度,其中該程式化脈波的最小脈波寬度近似於一軟 程式技術。以一 PHINES單元之操作而言,其抹除狀態 被定義在00,其為一高臨界電壓狀態因此程式化並非必 須,然而一約為Ins之脈波寬度可被用於程式化操作。脈 波X*度收斂法增加了對於多個非揮發性的多階記憶體單元 - 的操作效率,從而使整體操作速度提升。而且,脈波寬度 . 於—特定的編程時間控制臨界電壓分布,其中一較長之脈 波九度發展出一較大之臨界電屋分布以及一較短之脈波寬 度發展出一較小之臨界電壓分布。 ^ 當有記憶體單元,其編程準位具有不是太大就是太小 的臨界電壓分布時,對下一個較高準位或下一個較低編程 準位它們可以被解釋為錯誤表示資料。為了防止此種可能 因讀取操作多階,憶體單元所引起的錯誤表示,本發明於 其程式化/抹除撫作期間利用脈波寬度來控制臨界電壓分 布,因此提供/較佳的電荷裕度。此電荷裕度乃為介於臨 界電壓分布間的電壓微分且依據本發明之方法維持在一最 小值。 12 1357077 16179twf.doc/e ' 本發明之一較佳實施例是關於多個NBit非揮發性的 . 多階記憶體單元之操作。圖1顯示一 NBit單元之狀離,其 中NBlt單元之抹除狀態是處於一低臨界電壓。此NBit單 元包括一半導體p型基底。此基底具有一第一側邊,第二 側邊及一上表面。此基底之一部分具有一源極區及一汲極 區’兩^為η型,其核極區鄰接於第—側邊,源極區 鄰接於第二側紅兩區皆位於此基底之上表面下方。此基 • 底在上表面下方之—部分更包括一介於源極區與汲極區間 2通道。此NBit單元包括一第—氧化層及—電荷儲存層及 第二氧化層,其中該電荷儲存層具有第一端以儲存第一電 荷,元以及第二端以儲存第二電荷位元。此電荷儲存層之 電f位元定義出多階記憶單元(MLC)資料,其被載入於緩 ' ,雜編程狀態且設定脈波寬度以完絲作。緩衝 • 1確認是基於每—個記憶體狀態有-對應的脈波寬度。對 、幸乂低臨界電壓準位之Nbit而言,—較小之脈波寬度定義 鲁 為私式化操作,其程式化演算法由記憶體元件控制。 圖^與圖3表示-NBit記憶單元之程式化操作,其 中NBit藉由使用通道熱電子(CHE)來完成一個二端程式經 一端讀取而被程式化。 、特別地是,圖2示範了對^^^記憶單元之第一端程 j化操作,其中第一電荷位元被儲存於電荷儲存層的第二 碥。私式化操作藉由將電荷位元經由傳導路徑自基底的第 一側傳導到儲存電荷層的第二端以儲存電荷位元。 13 1357077 16179twf.doc/e • 類似地,圖3示範了對NBit記憶單元之第二端程式 • 化操作,其中第二電荷位元被儲存於電荷儲存層的第一 端,藉由將電荷位元經由傳導路徑自基底的第二側傳導到 儲存電荷層的第-端。基底的第一與第二側邊為源極區與 汲極區且來自這些區域之電荷被傳導且儲存於NBit非揮 發性多階記憶單元之電荷儲存層的任一端。 圖4與圖5進一步示範了利用tp〇r與CHE2NBit φ 記憶單元操作,其中多階記憶單元(MLC)資料被載入至緩 衝器並被確認以決定出編程狀態與編程準位。編程狀態選 擇要使用的脈波寬度,其中編程準位為臨界電壓。 圖4示範了被定義為編程狀態之編程準位之間的關 連。編程準位自一低臨界電壓到一高臨界電壓以用來程式 KNBit單元。而且,於單元操作期間臨界電壓分布之收斂 受到本發明方法控制。 、—圖5不範了不範了本發明利用通道熱電子(CHE)技術 以只現對NBlt多階記憶單元之二端程式化及一端讀取 技術之流程圖。編程電壓於一固定之電壓準位被偏 魘以促進程式化操作。本發明對NBit之典型操作電壓被定 ,成閘極約為10VDC而汲極約為5 5VDC。接著,紅資 料被載入於緩衝器且被確認以決定編程狀態及對於編程準 )立之脈波寬度以完成操作。編程準位與脈波寬度容許對 非揮發性多階記憶單元於同-程式化時間對於不同 電壓分布之控制。特別的是,脈波寬度被調整成在 耘式化時間控制臨界電壓分布之收斂。因此,由於脈 14Llt/Cash 1111111 is used to store in the memory unit. According to the best example of the month, the memory data is first loaded into the buffer and then the visit begins to program the data into the memory unit. The ° memory unit can be programmed to contain more than one electrical level. For example, a second-order memory has a -th, second, and state corresponding to four different programming levels. Each of the voltage levels of the flat domain corresponds to the bits in the binary form, such as 00, 01 10 and 1 , and the number of the strips represents the 3 = _ memory unit. The charge storage layers in the charge are separate and independent: for example, a non-volatile second-order memory cell 5 0V J corresponds to a binary state 〇〇, 〇1,1〇, 11 is about 5.0V, 4 .〇v, 3.0V, 2.0V programming level. The multi-order s-resonance unit of the eight-day-in-white is also in the body unit of the present invention having more than four states (in other words, edited; quasi-state). . In the case of cattle, the 'third-order memory unit has eight f λ —rV packets S from _ to the left, and the gates of the memory cells are first programmed to the left and then the right or the corresponding First, the right bit 7C is followed by the left bit. 11 Γ35Τ0Τ7 -----------------------------------_ 16179twf.doc/e . This pulse width is for operation Controlling the critical voltage distribution during non-volatile multi-level memory cells. In a preferred embodiment of the invention, the pulse width is about 5 nanoseconds (eg, unprogrammed,) to 50 nanoseconds for an NBit unit and is for a PHINES unit. It’s about! Nanoseconds (for example, "unprogrammed,") to between 10 nanoseconds, where for the lowest critical power, §, this method does not program (eg, "unprogrammed") memory cells. In addition, a small _ pulse wave of a stylized pulse wave of a stylized memory cell is defined, wherein the minimum pulse width of the stylized pulse wave is approximated by a software program technique. In terms of operation of a PHINES unit, The erase state is defined at 00, which is a high threshold voltage state so that stylization is not necessary, however, a pulse width of about Ins can be used for stylized operations. The pulse X* degree convergence method is added for multiple The operating efficiency of non-volatile multi-level memory cells - thus increasing the overall operating speed. Moreover, the pulse width. Controls the critical voltage distribution for a specific programming time, where a longer pulse wave develops nine degrees. A larger critical electric house distribution and a shorter pulse width develop a smaller threshold voltage distribution. ^ When there is a memory cell whose programming level has a threshold voltage distribution that is not too large or too small, Next comparison The high level or the next lower programming level can be interpreted as an erroneous representation. In order to prevent such an error from being caused by multiple stages of the read operation, the present invention is programmed/erased. The pulse width is used during stroke to control the threshold voltage distribution, thus providing/better charge margin. This charge margin is the voltage differential between the threshold voltage distributions and is maintained at a minimum in accordance with the method of the present invention. 12 1357077 16179 twf.doc/e' A preferred embodiment of the present invention relates to the operation of a plurality of NBit non-volatile, multi-level memory cells. Figure 1 shows the separation of an NBit cell, wherein the NBlt cell is erased. The state is at a low threshold voltage. The NBit unit includes a semiconductor p-type substrate. The substrate has a first side, a second side and an upper surface. One portion of the substrate has a source region and a drain region. 'Two ^ is n-type, the nuclear pole region is adjacent to the first side, and the source region is adjacent to the second side. Both regions are located below the upper surface of the substrate. The base is below the upper surface - part of the Including one The source region and the drain region are 2 channels. The NBit unit includes a first oxide layer and a charge storage layer and a second oxide layer, wherein the charge storage layer has a first end to store the first charge, the element and the second end To store the second charge bit. The electric f bit of the charge storage layer defines a multi-level memory cell (MLC) data, which is loaded in a slow, hetero-programmed state and sets the pulse width to complete the buffer. • 1 confirmation is based on the state of each memory - the corresponding pulse width. For the Nbit of the low threshold voltage level, the smaller pulse width is defined as the private operation, the program The algorithm is controlled by the memory component. Figure 2 and Figure 3 show the stylized operation of the -NBit memory unit, in which NBit is programmed by using channel hot electron (CHE) to complete a two-terminal program read at one end. In particular, Figure 2 illustrates a first end-pass operation of a memory cell in which the first charge bit is stored in a second pass of the charge storage layer. The privatization operation stores charge cells by conducting charge cells from a first side of the substrate to a second end of the charge storage layer via a conductive path. 13 1357077 16179twf.doc/e • Similarly, Figure 3 illustrates a second end programming operation of the NBit memory cell, wherein the second charge bit is stored at the first end of the charge storage layer by the charge bit The element is conducted from the second side of the substrate to the first end of the stored charge layer via a conductive path. The first and second sides of the substrate are the source and drain regions and the charge from these regions is conducted and stored at either end of the charge storage layer of the NBit non-volatile multi-level memory cell. Figures 4 and 5 further demonstrate the operation of the tp〇r and CHE2NBit φ memory cells, where multi-level memory cell (MLC) data is loaded into the buffer and validated to determine the programming state and programming level. The programming state selects the pulse width to be used, where the programming level is the threshold voltage. Figure 4 illustrates the relationship between programming levels defined as programming states. The programming level is from a low threshold voltage to a high threshold voltage for programming the KNBit unit. Moreover, the convergence of the threshold voltage distribution during unit operation is controlled by the method of the present invention. The present invention utilizes channel hot electron (CHE) technology to provide a flow chart for the two-end programming and one-end reading technique of the NBlt multi-level memory unit. The programming voltage is biased at a fixed voltage level to facilitate stylization. The typical operating voltage for the NBit of the present invention is set to a gate of about 10 VDC and a drain of about 55 VDC. The red data is then loaded into the buffer and acknowledged to determine the programmed state and the pulse width for programming to complete the operation. The programming level and pulse width allow control of different voltage distributions for non-volatile multi-level memory cells at the same-programmed time. In particular, the pulse width is adjusted to control the convergence of the threshold voltage distribution during the ramping time. Therefore, due to the pulse 14

I55707T 16179twf.doc/e 波見度疋唯-會改變的參數,控制臨界 前技術更簡易的設計。 兀汗季义无 實驗=臨6^^^別示=了酿多階記憶單元之理論與 #丨臨布 範了—脈波寬纽斂法以控 刀,且顯示了對於一 NBit非揮發性多階記情 相冋程式化時間脈波寬度對臨界電壓分布所造 圖7不乾了對於NBit非揮發性多階 TP,程式化操作所實驗得出的:二用 法需要於操作期間保持固定之操作電壓(例如,Vg=10^ Γ^5·Γ° °圖7的曲線顯示出不同的脈波寬_如,μ 宅微秒(黑點)及50毫微秒(白點))及其對 成的效應。此外,其他的脈波寬度於相同的 將造成不同的臨界電塵分布(未繪示)。 Λ咏作下 ^明之-第二較佳實施例是關於多個扭驰 匕夕:記憶單元之操作。圖8顯示一 pH觸非揮發性 夕階吞己憶單7G之抹除狀態,其中削NE ^ 狀態是位於-高臨界·。PHI鹏記料元包 體P型基底’具有-第一側邊,一第二側邊及一上表面。 此基底之Μ具有—源極區及_&極1,兩者皆 型,其中汲極區鄰接於第-側邊,源極區鄰接於第二侧 且兩區皆錄此基紅上表面下方。絲底在上表面下= 之一部分更包括一介於源極區與汲極區間的通道。 PHINES單元包括—第—氧化層及—f荷儲存層及第二氧 15 135707? 16179twf.doc/e 化層。該電荷儲存層具有第—端以儲存第—電荷位 第二端以齡第二㈣位元。此電荷儲存層之f荷位元定 義出多階g’Jt單元(MLC)資料’其被載人於緩衝器中 5忍編私狀悲'且設定脈波寬度。 圖9與圖10表示—PHINES記憶單元之程式化操作, 其中PHINES 憶單域錢㈣㈣熱制 (BTBHHT)來完成—個二端程式經—端讀取(Tp〇R)而被= 式化。 ,別的是’圖9示範了對—PHINES多階記憶單元之 =程式操作,其中—電荷位元(電洞)在儲存電荷層之 第二端被程式化(例如儲存)。此程式操作藉由將電洞透過 傳導路徑自基底的第—端傳導到電荷儲存層的第二端以儲 存電荷。 類似的,圖10示範了對一 PHINES多階記憶單元之 第一鈿転式操作,其中電荷位元藉由將電洞透過傳導路徑 自基底的第二端傳導到電荷儲存層的第一端而被儲存在電 荷儲存層之第一端。基底的第一端及第二端為汲極區及源 極區且出自這些區域的電荷被傳導到並儲存於非 揮發性夕P& δ己憶單元之電荷儲存層的任—端。 圖11與圖12表示一 PHINES記憶單元利用1]?〇11及 BTBHHT之程式化操作,其中多階記憶單元(MLC)資料 其中PHINES圮憶單元藉由使用頻帶間熱電洞穿隧機制 (BTBHHT)來完成一個二端程式經一端讀取(Tp〇R)而被程 式化,其被載入於緩衝器中以確認編程狀態與編程準位。 16 16179twf.doc/e :=取被使用的脈波寬度,其中編程準位為臨界電 連。嶋編程狀態之編程準位之間的關 化ΡΗΙΝΕ單元/^界電翻—低臨界f壓以用來程式 =本;明^ r六^7^!7彻本㈣頻㈣鱗洞㈣(BTBHHT) ==ΡΓΓΡΗΙΝΕδ多階記憶單元之二端程式化 壓準^誠技*之流程圖。編程電驗-固定之電 触式化操作。本發簡麵es之典 fsvoi 編m2 g貞料被載人於緩衝1且被確認以決定 2ΚΪΪΪ編程準位之脈波寬度以完成操作'編程準 ;:波見度谷許對PHINES非揮發性多階記憶單I55707T 16179twf.doc/e Visibility - only changes the parameters that control the critical pre-technical design.兀 季 季 义 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = Multi-order sympathy, stylized time, pulse width, and threshold voltage distribution are not shown. For NBit non-volatile multi-order TP, the stylized operation is experimentally: the two usages need to be fixed during operation. Operating voltage (for example, Vg = 10^ Γ ^ 5 · Γ ° ° The curve of Figure 7 shows different pulse widths _ such as μ home microseconds (black dots) and 50 nanoseconds (white dots)) The effect on the formation. In addition, other pulse widths that are the same will result in different critical electric dust distributions (not shown). The second preferred embodiment relates to a plurality of twisting operations: the operation of the memory unit. Figure 8 shows the erased state of a pH-touch non-volatile singularity recall 7G, in which the cut NE ^ state is located at - high critical. The PHI-pumped substrate has a first side, a second side and an upper surface. The base of the substrate has a source region and a _& pole, both of which are shaped, wherein the drain region is adjacent to the first side, the source region is adjacent to the second side, and the base red upper surface is recorded in both regions. Below. The portion of the wire bottom below the upper surface includes a channel between the source region and the drain region. The PHINES unit includes a first-oxide layer and a -f-load storage layer and a second oxygen 15 135707? 16179 twf.doc/e layer. The charge storage layer has a first end to store a first charge level and a second end to a second (fourth) position. The f-bit of the charge storage layer defines a multi-order g'Jt unit (MLC) data that is carried in the buffer and sets the pulse width. Figure 9 and Figure 10 show the stylized operation of the PHINES memory unit, in which PHINES recalls the single-domain (4) (4) hot (BTBHHT) to complete - a two-end program - Tp 〇 R (Tp 〇 R) is =. The other is that Figure 9 demonstrates the operation of the PHINES multi-level memory cell, where the charge bit (hole) is programmed (e.g., stored) at the second end of the stored charge layer. The program operates to store charge by conducting a hole through the conductive path from the first end of the substrate to the second end of the charge storage layer. Similarly, FIG. 10 illustrates a first 操作 operation of a PHINES multi-level memory cell in which a charge bit is conducted from a second end of the substrate to a first end of the charge storage layer by passing a hole through the conductive path. It is stored at the first end of the charge storage layer. The first and second ends of the substrate are the drain and source regions and the charge from these regions is conducted to and stored at any end of the charge storage layer of the non-volatile P& Figure 11 and Figure 12 show the stylization operation of a PHINES memory unit using 1]?11 and BTBHHT, in which multi-level memory unit (MLC) data is used by the PHINES memory unit by using the inter-band thermal tunneling mechanism (BTBHHT). Completing a two-terminal program is programmed by one end read (Tp〇R), which is loaded into the buffer to confirm the programming state and programming level. 16 16179twf.doc/e := Take the pulse width used, where the programming level is the critical connection.关Programming state between the programming level of the ΡΗΙΝΕ ΡΗΙΝΕ / / / — — — — — 低 低 低 低 低 低 低 低 低 低 低 低 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ) == ΡΓΓΡΗΙΝΕ δ multi-level memory unit two-end stylized pressure standard ^ Cheng technology * flow chart. Programming Wit - Fixed electrical touch operation. This documentary es es code fsvoi ed m2 g 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 es es es es es es es es es es es Multi-level memory list

於不同的臨界電壓分布之控制。特別的 :I是度破调整成在同一程式化時間控制臨界電屋分 t收叙。因此’由於脈波寬度是唯 制臨界電壓可允許-較先前技術更簡易的設計。 I 〜圖13與圖14分別示範了 PHINES記憶單元之理論盥 ^驗的臨界電壓分布。圖13示範了一脈波寬度收敛法以控 ^ 電壓为布’且顯示了對於一 pHINEs非揮發性多階 記憶單元經過一相同程式化時間脈波寬度對臨界電壓分^ 所造成的效應。 圖14示範了對於PHINES非揮發性多階記憶單元 TPOR-BTBHHT程式化操作所實驗得出的臨界電屋 17 16179twf.d〇c/e $=。此方法需要於操作期間保持固定之操作電壓(例如, g^io^且Vd=5 5V)。圖中曲線顯示出不同的脈波寬度 /、對臨界電壓分布所造成的效應。此外,其他的脈波寬 ς於相同的程式化操作下將造成不同的臨界電壓分布(未 續"不)。 ,較,先前技術方法,以脈波寬度收斂法去控制臨界 分ί提供了一個更有效率的技術,以及較不複雜的途 執行轉發性多階錢單元程式化及抹除操作。脈波 見f法用來改善非揮發性多階記憶單元整體的程式化及抹 =刼作。更進一步地說,脈波寬度法藉由控制臨界電壓分 :之裕度而避免了有關於過度程式化及過度抹除的問 通,因此增加了記憶單元生命週期中的資料信賴度。 ,何熟習此技藝者,在不脫離本發明之精神和範圍 内田可作些5午之更動與潤飾,因此本發明之保護範圍者 視後附之申請專利範圍所界定者為準。 田 【圖式簡單說明】 圖1表不一個處於低臨界電壓之二位元非揮發性 記憶體單元之抹除狀態。 圖2表示一個二位元非揮發性NBit記憶體單元 位元程式化操作。 圖3表示一個二位元非揮發性NBit記憶體 位元程式化操作。 '"乐一 心fl麵—顧Blt編程準㈣界電壓分布及其相對應 编%狀悲。 圖5表示利用本發明發法以實現對NB丨t之二端程式化 一端讀取(TPOR)操作之流程圖。 18Control of different threshold voltage distributions. Special: I is to adjust the degree to control the critical electric house in the same stylized time. Therefore 'because the pulse width is a threshold voltage allowable - a simpler design than the prior art. I ~ Figure 13 and Figure 14 respectively demonstrate the theoretical threshold voltage distribution of the PHINES memory cell. Figure 13 illustrates a pulse width convergence method to control the voltage as a cloth' and shows the effect of a similarly programmed time pulse width on a critical voltage component for a pHINEs non-volatile multi-level memory cell. Figure 14 illustrates the critical electric house 17 16179twf.d〇c/e $= experimentally derived for the PHINES non-volatile multi-level memory cell TPOR-BTBHHT stylization operation. This method requires maintaining a fixed operating voltage during operation (eg, g^io^ and Vd=5 5V). The curves in the figure show the effect of different pulse widths / on the critical voltage distribution. In addition, other pulse widths will result in different threshold voltage distributions under the same stylized operation (not continued). Compared with the prior art method, the pulse width convergence method is used to control the critical point. It provides a more efficient technique, and the less complicated way to perform the forwarding multi-order cell unit stylization and erasing operations. Pulse wave See f method to improve the stylization and smear of non-volatile multi-level memory cells. Furthermore, the pulse width method avoids the problem of over-stylization and over-erase by controlling the threshold voltage margin, thus increasing the data reliability in the memory cell life cycle. It is to be understood that those skilled in the art will be able to make modifications and refinements within 5 pm without departing from the spirit and scope of the invention, and the scope of the invention is defined by the scope of the appended claims. Field [Simple description of the diagram] Figure 1 shows the erased state of a two-element non-volatile memory cell at a low threshold voltage. Figure 2 shows a two-bit non-volatile NBit memory unit bit stylized operation. Figure 3 shows a two-bit non-volatile NBit memory bit stylized operation. '"Leyi heart fluff face- Gu Blt programming quasi-(four) boundary voltage distribution and its corresponding code % sorrow. Figure 5 is a flow chart showing the implementation of the two-end stylized one-end read (TPOR) operation of NB丨t using the method of the present invention. 18

Claims (1)

1357077 __ 98-3-31 - 十、申請專利範圍: 贤年!A日修(更)正替拔知 '1357077 __ 98-3-31 - X. Application for patent scope: Xiannian! A-day repair (more) is justification 1·一種操作多個非揮發性多階記憶體單元之方法,該 記憶體單元具有至少一第一、第二、第三及第四編程準位, 每一編程準位對應於一相異之二進位狀態且具有一臨界電 壓分布,該方法包含: (a)維持每一記憶體單元之閘極於一固定操作電壓;以 及1 . A method of operating a plurality of non-volatile multi-level memory cells, the memory cells having at least a first, second, third, and fourth programming levels, each programming level corresponding to a different one a binary state and having a threshold voltage distribution, the method comprising: (a) maintaining a gate of each memory cell at a fixed operating voltage; (b)變更施加於每一記憶體單元之一程式化脈波之一 脈波寬度以控制每一記憶體單元之該臨界電壓分布。 2·如申請專利範圍第1項所述之方法,其中該多階記 憶體單元為二位元記憶體單元且四個編程準位對應於二進 位狀態00,01,10以及U。 〜、一 如申請專利範圍第2項所述之方法,其中第一、第 二、第三及第四編程準位分別約為5 0V,4 〇v, 2.0V。 . UVU^(b) changing the pulse width applied to one of the programmed pulse waves of each memory cell to control the threshold voltage distribution of each memory cell. 2. The method of claim 1, wherein the multi-level memory unit is a two-bit memory unit and the four programming levels correspond to binary states 00, 01, 10 and U. ~, as in the method of claim 2, wherein the first, second, third and fourth programming levels are approximately 50 V, 4 〇 v, 2.0 V, respectively. . UVU^ 4. 如申μ專利圍第1項所述之方法,其中該非揮發 階記憶體單元為NBit單元。 乂 5. 如申請專利範圍第4項所述之方法,复 為5毫微_ 5G毫鮮之間。 "脈波寬度參 6. 如申請專利範圍第丨項所述之方法,其 階記憶體單元為PHINES單元。 …4揮發性) 7. 如申請專利範圍第6項所述之方法,農 約為1毫微_ K)毫微秒之間。 ,、中雜波寬度 —8.如中請專利範圍第i項所述之錢, 藉由使用二端程式化-端讀*(TPOR)a式化來實^ / 20 9. 如申請專利範圍第8項所述之方法,宜 用一選自通道熱電子(CHE)及頻帶間熱電洞穿隨=ΤΡ〇ί^ (ΒΤΒΗΗΤ)所組成的技術。 10. 如申請專利範圍第1項所述之方法, 的其中之—為—程式化操作。 Ί操作方去 ^如申請專利範圍第i項所述之方法,其中該操作方法 的其中之一為一抹除操作。 ο U如申請專利範圍第i項所述之方法,其中該脈波寬度 於私式化多階記憶體單元中間的狀態。 13·如申請專利範圍第i項所述之方法,其中一較長之脈 度形成一較大之臨界電壓分布而—較短之脈波寬度形成 —較小之臨界電壓分布。—— 〇 21 1357077 v ' 年9r月i〇’1曰7修(更)正替 97-10-17 五、中文發明摘要: 一種細作多個非揮發性多階記憶體單元之方法。此記 憶體單元具有至少第一、第二、第三及第四編程準位。每 一編程準位對應於一相異之二進位狀態且具有一臨界電壓 分布。維持每一記憶體單元之操作電壓固定且變更施加於 每一記憶體單元之程式化脈波之脈波寬度以控制每一記憶 體單元之臨界電壓分布。 六、 英文發明摘要: A method of operating on a plurality of non-volatile multi-level memory cells is disclosed. The memory cells have at least a first, second, third and fourth program level. Each of program levels corresponds to a different binary state and has a voltage threshold distribution. A constant operating voltage is maintained on the memory cells and the voltage threshold distribution of the, memory cell is controlled by varying a pulse width of a programming pulse applied to each memory cell. 七、 指定代表圖: (一) 本案指定代表圖為:圖(5)。 (二) 本代表圖之元件符號簡單說明: PW :脈波寬度 八、 本案若有化學式時,請揭示最能顯示發明特徵的化 學式:無 34. The method of claim 1, wherein the non-volatile memory unit is an NBit unit.乂 5. If the method described in item 4 of the patent application is applied, the ratio is between 5 nanometers and 5G milliseconds. " Pulse width parameter. 6. As described in the scope of the patent application, the order memory unit is a PHINES unit. ...4 Volatile) 7. The method described in claim 6 of the patent application is about 1 nanometer (K) nanoseconds. , , and the width of the middle clutter—8. The money described in item i of the patent scope is obtained by using the two-end stylized-end reading* (TPOR) a formula. In the method described in item 8, a technique selected from the group consisting of channel hot electron (CHE) and inter-band thermoelectric hole penetration = ΤΡ〇 ί ^ (ΒΤΒΗΗΤ) is preferred. 10. In the method of claim 1, the method is - stylized operation. The operator is referred to the method of claim i, wherein one of the methods of operation is an erase operation. U. The method of claim i, wherein the pulse width is in a state intermediate the private multi-level memory unit. 13. The method of claim i, wherein a longer pulse forms a larger threshold voltage distribution - a shorter pulse width is formed - a smaller threshold voltage distribution. —— 〇 21 1357077 v 'year 9r month i〇’1曰7 repair (more) positive 97-10-17 V. Chinese Abstract: A method of making multiple non-volatile multi-level memory cells. The memory cell has at least first, second, third and fourth programming levels. Each programming level corresponds to a different binary state and has a threshold voltage distribution. The operating voltage of each memory cell is maintained constant and the pulse width of the programmed pulse applied to each memory cell is varied to control the threshold voltage distribution of each memory cell. The method of operating on a plural of non-volatile multi-level memory cells is disclosed. The memory cells have at least a first, second, third and fourth program level. Each of program levels corresponds to a different Binary state and has a voltage threshold distribution. A constant operating voltage is maintained on the memory cells and the voltage threshold distribution of the memory cell is controlled by varying a pulse width of a programming pulse applied to each memory cell. Figure: (1) The representative representative of the case is: Figure (5). (2) Brief description of the symbol of the representative figure: PW: Pulse width VIII. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention: None 3
TW095119123A 2005-11-23 2006-05-30 A pulse width converged method to control voltage TWI357077B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/286,510 US7372732B2 (en) 2005-11-23 2005-11-23 Pulse width converged method to control voltage threshold (Vt) distribution of a memory cell

Publications (2)

Publication Number Publication Date
TW200721176A TW200721176A (en) 2007-06-01
TWI357077B true TWI357077B (en) 2012-01-21

Family

ID=38053283

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095119123A TWI357077B (en) 2005-11-23 2006-05-30 A pulse width converged method to control voltage

Country Status (3)

Country Link
US (1) US7372732B2 (en)
CN (1) CN100524530C (en)
TW (1) TWI357077B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7630249B2 (en) * 2007-06-21 2009-12-08 Sandisk Corporation Intelligent control of program pulse duration
US7580290B2 (en) * 2007-06-21 2009-08-25 Sandisk Corporation Non-volatile storage system with intelligent control of program pulse duration
US7978520B2 (en) 2007-09-27 2011-07-12 Sandisk Corporation Compensation of non-volatile memory chip non-idealities by program pulse adjustment
KR101301773B1 (en) 2007-10-25 2013-09-02 삼성전자주식회사 Apparatus and method of multi-bit programming
KR101466697B1 (en) * 2008-07-10 2014-12-01 삼성전자주식회사 Memory device and method of programming data in memory
KR20100013847A (en) * 2008-08-01 2010-02-10 삼성전자주식회사 Memory device and memory programming method
US8498162B2 (en) * 2011-04-29 2013-07-30 Spansion Llc Method, apparatus, and manufacture for flash memory write algorithm for fast bits
KR20120126389A (en) * 2011-05-11 2012-11-21 삼성전자주식회사 Data storage system having multi-bit memory device and on-chip buffer program method thereof
DE102014115885B4 (en) * 2014-10-31 2018-03-08 Infineon Technologies Ag Health state of non-volatile memory
US10643720B2 (en) 2018-05-23 2020-05-05 Sandisk Technologies Llc Bit line voltage control for damping memory programming

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218569A (en) * 1991-02-08 1993-06-08 Banks Gerald J Electrically alterable non-volatile memory with n-bits per memory cell
US5677869A (en) * 1995-12-14 1997-10-14 Intel Corporation Programming flash memory using strict ordering of states
JP3180669B2 (en) * 1996-06-03 2001-06-25 日本電気株式会社 Nonvolatile semiconductor memory and writing method thereof
JPH10199267A (en) * 1996-12-28 1998-07-31 Sony Corp Non-volatile semiconductor memory device
US6046934A (en) * 1999-01-12 2000-04-04 Macronix International Co., Ltd. Method and device for multi-level programming of a memory cell
JP2000222892A (en) * 1999-02-01 2000-08-11 Matsushita Electric Ind Co Ltd Threshold value control method and screening method for semiconductor memory
US6172909B1 (en) 1999-08-09 2001-01-09 Advanced Micro Devices, Inc. Ramped gate technique for soft programming to tighten the Vt distribution
US6219276B1 (en) 2000-02-25 2001-04-17 Advanced Micro Devices, Inc. Multilevel cell programming
US6396741B1 (en) 2000-05-04 2002-05-28 Saifun Semiconductors Ltd. Programming of nonvolatile memory cells
TW490675B (en) 2000-12-22 2002-06-11 Macronix Int Co Ltd Control method of multi-stated NROM
EP1365417A1 (en) * 2002-05-13 2003-11-26 STMicroelectronics S.r.l. Programming method of the memory cells in a multilevel non-volatile memory device
US6870774B2 (en) * 2002-12-10 2005-03-22 Micron, Technology, Inc. Flash memory architecture for optimizing performance of memory having multi-level memory cells
US7049652B2 (en) * 2003-12-10 2006-05-23 Sandisk Corporation Pillar cell flash memory technology
US6937520B2 (en) * 2004-01-21 2005-08-30 Tsuyoshi Ono Nonvolatile semiconductor memory device
US7151692B2 (en) * 2004-01-27 2006-12-19 Macronix International Co., Ltd. Operation scheme for programming charge trapping non-volatile memory
US7187590B2 (en) * 2004-04-26 2007-03-06 Macronix International Co., Ltd. Method and system for self-convergent erase in charge trapping memory cells
US7190614B2 (en) * 2004-06-17 2007-03-13 Macronix International Co., Ltd. Operation scheme for programming charge trapping non-volatile memory
KR100928738B1 (en) * 2004-08-30 2009-11-27 스펜션 엘엘씨 Semiconductor device, test method and data recording method of semiconductor device

Also Published As

Publication number Publication date
TW200721176A (en) 2007-06-01
US7372732B2 (en) 2008-05-13
CN1992083A (en) 2007-07-04
US20070115719A1 (en) 2007-05-24
CN100524530C (en) 2009-08-05

Similar Documents

Publication Publication Date Title
TWI357077B (en) A pulse width converged method to control voltage
JP4002712B2 (en) Nonvolatile semiconductor memory device and data holding method of nonvolatile semiconductor memory device
JP5160787B2 (en) Memory device using positive gate stress to recover over-erased cells and method therefor
CN100538897C (en) The algorithm of dynamic reference programming
JP2006210910A (en) Multiple bit nonvolatile memory device using carbon nanotube channel and operation method thereof
JP4153499B2 (en) Electrically writable and erasable memory cell operating method and storage device for electrical memory
US7646637B2 (en) Nonvolatile memory having modified channel region interface
TWI297499B (en) Method of identifying logical information in a programming and erasing cell by on-side reading scheme
US6349062B1 (en) Selective erasure of a non-volatile memory cell of a flash memory device
US6775187B1 (en) Method of programming a dual cell memory device
TWI286760B (en) Dual gate multi-bit semiconductor memory
JP4450330B2 (en) Method for programming a dual cell memory device that records multiple data states per cell
US20070231991A1 (en) Semiconductor memory device and method of operating a semiconductor memory device
US7312495B2 (en) Split gate multi-bit memory cell
US7852680B2 (en) Operating method of multi-level memory cell
TW201013677A (en) A high second bit operation window method for virtual ground array with two-bit memory cells
US7483299B2 (en) Devices and operation methods for reducing second bit effect in memory device
TWI376790B (en) Two-bit non-volatile flash memory cells and methods of operating memory cells
US6768673B1 (en) Method of programming and reading a dual cell memory device
JP2007042166A (en) Nonvolatile semiconductor storage device and method of operating the same
JP2009038370A (en) Non-volatile memory devices and programming methods thereof including moving electrons through pad oxide layers between charge trap layers
KR20060002337A (en) Methods of operating a flash memory cell having a local sonos gate
US20080123435A1 (en) Operation of Nonvolatile Memory Having Modified Channel Region Interface
JP2007257827A (en) Nonvolatile semiconductor storage device and method for storing data in nonvolatile semiconductor storage device
TW200939234A (en) Operating method of memory