TWI356921B - Color filter and the method for fabricating the sa - Google Patents

Color filter and the method for fabricating the sa Download PDF

Info

Publication number
TWI356921B
TWI356921B TW96151633A TW96151633A TWI356921B TW I356921 B TWI356921 B TW I356921B TW 96151633 A TW96151633 A TW 96151633A TW 96151633 A TW96151633 A TW 96151633A TW I356921 B TWI356921 B TW I356921B
Authority
TW
Taiwan
Prior art keywords
layer
layers
pixel regions
stacked
inorganic
Prior art date
Application number
TW96151633A
Other languages
Chinese (zh)
Other versions
TW200928457A (en
Inventor
Chao An Su
Tzung I Su
Ching Hung Kao
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW96151633A priority Critical patent/TWI356921B/en
Publication of TW200928457A publication Critical patent/TW200928457A/en
Application granted granted Critical
Publication of TWI356921B publication Critical patent/TWI356921B/en

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Description

1356921 九、發明說明: 【發明所屬之技術頜域】 本發明提供一種彩色濾光片的裝置及其製作方法,尤 指一種無機彩色濾光片的裝置及其製作方法。 • 【先前技術】 . 隨著數位相機、掃瞄器等電子商品不斷的開發與成 φ 長,消費市場對影像感測元件之需求亦持續的增加。一般 而言’目前常用的影像感測元件,包括了電荷耦合感測元 件(charge-coupled devices sensor,CCD sensor)以及互補式 金氧半導體電晶體影像感測器(CMOS image sensor,CIS)兩 大類。其中,由於CMOS影像感測器具有低操作電壓、低 功率消耗與南Ί呆作效率、可根據需要進行隨機存取(ran(j〇m access)等因素’並且可以整合於目前的半導體技術來大量 製造,因此受到極廣泛的應用。 請參考第1圖’第1圖為一典型的相機系統示意圖。 如第1圖所示’ 一相機系統包含有一 CMOS影像感測器 10、一驅動電路12、一垂直掃描電路14、一水平掃描電路 16、一類比前端18、一訊號處理線路20以及一控制褒置 22。其中CMOS影像感測器1〇包含有複數個第一像素區 100a、複數個第二像素區i〇〇b以及複數個第三像素區 100c,並以陣列方式排列而成,例如依據拜耳彩色據鏡陣 6 1356921 列⑽二帅咖。丨。咖⑽ray)f。各像素區分別可以接 收一預疋波長範圍的光線,並依據入射光 電荷訊號。在第1圖中,各第—鮮強度產生一 Τ谷弟像素區1〇〇a、各第-像辛 區100b以及各第三像素區職 弟-像素 刀別&不為R、G、B, 亦即苐-像素區嶋具有一彩色濾光片可以穿透旦有红 光波長範®的光線、第二像素區娜具有—彩色濾光片可 以穿透具m波長範_光線以及第三像素區職且 有-彩色濾'光片可以穿透具有藍光波長範_光線。〃 當控制裝置22接收到一觸發訊號,會使驅動電路u 驅動垂直掃描電路14和水平掃描電路16。接著,垂直掃 描電路14將活化CMOS影像感測器1〇中的各像素區,使 得各像素區產生電荷訊號(charge signal)。之後各像素區產 生的電荷訊號再傳輸到水平掃描電路16。因此,經由驅動 電路12、垂直掃描電路14和水平掃描電路16,可將各像 素區產生的電荷訊號轉換成伏特訊號(vo丨tage signal),之後 再將此伏特訊號傳輸至類比前端18。類比前端18會集人 並放大接收到的伏特訊號,並將此類比訊號轉換成邏輯气 號,接著再將此邏輯訊號輪出至訊號處理電路2〇。訊號處 理電路20另包含有〆矩陣處理裝置(未顯示),以將接收二 的邏輯訊號經由矩陣運算轉換成紅光訊號、綠光訊號以及 藍光訊號,因而產生影像資料。 ι〇 =參考第2圖’第2圖為第1圖之cm〇s影像感測器 第:。之剖面示意圖’第2圖僅顯示出一第一像素區、一 偟、象素區以及一第二像素區。如第2圖所示’ CM〇S景》 ^感測器H)係製作於-半導體基底1〇2上,例如一石夕基底 疒,而半導體基底102上包含有複數個第一像素區1〇〇a、 =數個第二像素區藝、以及複數個第三像素區踰 J & 另包含有一感光二極體(photodiode)層104, :感光,極體層1〇4另包含有複數個感光二極體ι〇6分別 於^第一像素區1〇〇a、各第二像素區1⑼匕以及各第三 一素區100c,以做為光電訊號轉換裝置。一般而言,感光 極體106係利用在|導體基底1〇2中植人導電性離子所 構成。於感光二極體層104上另有_絕緣層1〇8,用以隔 絕感光二極體層104和位於絕緣層⑽上方的一遽光片形 成層112 ’ 一般而言,、絕緣層1〇8係由氧化石夕等絕緣材料 斤構成。絕緣層108 $包含有複數個光學阻擔層⑽,用 以阻播光線散射進入鄰近的像素區所造成的干擾。另外, 4光片形成層112包含有複數個彩色據光片m分別位於 各第-像素區l〇〇a、各第二像素區以及各第三像素 區舰。當一入射光線118經由各像素區上方進入後,經 由-微聚光片(micro lens)ll6聚集,然後穿透過彩色濾光 片114及,,.邑緣層1〇8,再到達感光二極體伽,因而產生相 對應的電何訊號。 丄说921 /值得注意的是’習知CM〇S影像感測器的彩色渡光片 係由有機化學物質所構成’例如將㈣酸樹脂⑽咖resin) 矛不同顏色的色素或染料混合所構成。然而,這種有機彩 色;慮光片其抗熱性很低,因此長期曝露在光線下很容易產 生退化現象(degradati吵另外,這些有機材f,例如色素 或染料等,因其容易變質,所以習知耗丨慮光片的製作, 還需對這些有機物質進行材料控管,因而大大增加了製造 成本。 ,有鑑於此,中請人提出—種無機彩色濾、光片的裝置及 八製作方法’以改善上述習知技術的缺點,進而讓 影像感測器能應用在高溫的環境。 【發明内容】 本發明的主要目的在於提供一種彩色渡光片的裝置及 其製作方法,特別是指一種無機彩色遽光片的裝置及其製 作方法,以解決習知有機彩色滤光片在高溫環境下容 化的現象。 依據本發明之申請專利範圍,係揭露 之結構,包含有-基底,且該基底定義有複數個第色= 區、複數個第二像素區以及複數個第三像素區。各該第— 像素區均包含一第一堆疊層,各該第二像素區均包含—第 9 二堆疊層 二堆疊層 且各該第三像素區均包含該第 一堆疊層和該第 依據本發明之申請專利範 減光ο _ -又揭種製作彩色 傯尤片之方法。首先,提供一基 個第-Mr, 土低且。亥基底定義有複數 〃品、複數個第二像素區以及複數個 區,接著於各該第二像素區和各該第三像素區切成第 :堆疊層’㈣於各該第—像素區上形成—介電層,且該 等介電層和該等第-堆疊層均具有相同的高度,以於該基 底上形成—平坦的表面’最後於各該第-像素區和各該^ 二像素區上形成-第二堆疊層,且該等第二堆疊層係分別 覆蓋各該第—像素區上的該等介電層,並覆蓋各該第二像 素區上的該等第一堆疊層。 由於本發明之特點在於使用無機材質來製作彩色濾光 片,因此能有效解決習知有機彩色濾光片在高溫環境下容 易退化的現象,進而讓CM〇S影像感測器能應用在高溫的 環境。 【實施方式】 請參考第3圖,第3圖為本發明CMOS影像感測器之 剖面示意圖。CMOS影像感測器包含有複數個像素區 (pixel) ’且各像素區可以任何陣列方式排列成一像素陣列 丄乃6921 的㈣且在像素陣列中的各像素區,因包含有不同 :色:光片而產生區別。例如,當一像素陣列中的彩色 為具有穿透藍光⑻、綠光⑼和紅綱的功 =1=像素區和紅光像素區。值得注意的是,其他顏 井心 门㈣且本發明衫料於使用藍 、,核和,光的彩色濾光片,其他顏色,諸如包含青綠 參 /Γ)、g 色(yellGW)、綠色(green)和紫紅色(magenta)等 明色=光片亦可以使用。為彰顯本發明之特徵並簡化說 ^3 _顯示出—紅光像素區、—綠光像素區和一藍 2素區’並分別標示成第—像素區細a、第二像素區 200b和第三像素區200c。 回到第3圖,首先提供-半導體基底2〇2,例如一石夕 -等而半導體基底202上包含有複數個第—像素區 ^複數個第二像素區2〇〇b、以及複數個第三像素區 c半導體基底202另包含有—感光元件層2〇4,且感 二7L件層2〇4另包含有複數個感光二極體襄等之 分别位於各第-像素區識、各第二像素區鳩以及 第三像素區200c’以做為光電訊號轉換裝置。一般而言, ^光二極體206係利用在半導體基底2〇2中植人導電性離 所構成。羊導體基底202另包含有一絕緣層2〇8,位於 4光元件層204上,用以隔絕感光元件層2〇4和位於絕緣 1356921 層208上方的-濾光片形成層2i2。根 施例,絕緣層208係由氣化石夕等介電材料所構1之較佳實 形成層212包含有複數個彩色遽光片214分據光片 像素區2_、各第二像素區聽以及各第 於各第- 其中’位於第—像素區職的彩色濾光片214,、^_〇<:由 複數個無機詹堆疊而成的第_堆疊層和二 2二等之介電層;位於第三像素區2〇〇c的彩色遽光片石二 包卜由複數個無機層堆疊而成的第二堆疊層4〇〇;而位 於第二像素區200b的彩色濾光片214,包含—由第一堆疊 層300和第二堆疊層4〇〇組合所構成的結構。當—入射光 線218經由各像素區上方進入後,經由一微聚光片(micr0 lens) 216聚集’然後穿透過彩色濾光片214和絕緣層208, 再到達各感光二極體206 ’因而產生相對應的電荷訊號。 本發明之CMOS影像感測器與習知CMOS影像感測器 最大的差別在於,本發明之CMOS影像感測器所使用的彩 色渡光片為一種利用無機材料所形成之循環堆疊結構之組 合的彩色濾光片。因此,以下將詳細說明有關本發明之彩 色濾光片的裝置及其製作方法。 首先’請參考第4圖,第4圖為本發明之較佳實施例 的彩色濾光片中的第一堆疊層300。如第4圖所示,第一 堆疊層300包含有複數個第一無機層302、複數個第二無 12 1356921 機層304以及複數個第三無機層306。其中,第一無機層 302,位於入射光218 —側和絕緣層208 —側,而在兩層第 一無機層302之間另包含有一循環堆疊結構308。循環堆 疊結構308包含有第二無機層304和第三無機層306交替 堆疊的結構,在循環堆疊結構308和絕緣層208 —側的第 一無機層302之間另包含有一第二無機層304。根據本發 明之較佳實施例,第一無機層302可為氮化石夕(silicon nitride; SiN)層,第二無機層304可為氧化石夕(silicon oxide; Si02)層,第三無機層306可為氣氧化石夕(silicon-oxy-nitride; SiON)層,且各第一無機層302、各第二無機層304以及各 第三無機層306的厚度約為400至800埃之間,而第一堆 疊層300的總厚度約為9000埃。另外,本較佳實施例之循 環堆疊結構308中的第二無機層304和第三無機層306的 循環次數為六次,但並不限定於此,四至八個循環次數的 結構亦可以使用。值得注意的是,第一堆疊層300所使用 的三種無機層的堆疊順序並不限定於上述順序,其他排列 順序亦可以使用,但皆為一循環堆疊結構。 請參考第5圖,第5圖為本發明之第一堆疊層300的 穿透光譜圖,其中橫座標為波長(nm),縱座標為穿透率 (Transmittance)(%)。如第5圖所示,波長高於約520nm的 光線,對第一堆疊層300的穿透率約為80至100%之間, 亦即第一堆疊層300可以穿透波長高於約520nm的光線, 13 1356921 並過濾、波長低於約520nm的光線。 請參考第6圖,第6圖為本發明較佳實施例彩色濾光 片中的第二堆疊層400。如第6圖所示,第二堆疊層.400 包含有複數個第四無機層402、複數個第五無機層404以 及複數個第六無機層406,且第二堆疊層400係由第四無 機層402、第五無機層404和第六無機層406依序從入射 ' 光218側至絕緣層208側的方向循環堆疊而成。其中本較 ^ 佳實施例之堆疊的循環次數為六次,但並不限定於此,四 至八個循環次數的結構亦可以使用。根據本發明之較佳實 施例,第四無機層402可為氧化矽層,第五無機層404可 為氮化矽層,第六無機層406可為氮氧化矽層,且各第四 無機層402和各第五無機層404的厚度約為400至800埃, 另外,各第六無機層406的厚度約為200至500埃,第二 堆疊層400的總厚度約為12000埃。值得注意的是,第二 • 堆疊層400所使用的三種無機層的堆疊順序並不限定於氧 化矽層、氮化矽層以及氮氧化矽層的順序,其他排列順序 亦可以使用,但亦為一循環堆疊結構。 請參考第7圖,第7圖為本發明之第二堆疊層400的 穿透光譜圖,其中橫座標為波長(nm),縱座標為穿透率 (%)。如第7圖所示,波長低於約600nm的光線,對第二 堆疊層400的穿透率約為80至100%之間,亦即第二堆疊 14 1356921 層_ W透波長低於約_nm的光線,並過濾波長高 於約600nm的光線。 請參考第8圖,第8圖為本發明結合第一堆疊層· 和第二堆疊層400時’所得到的穿透光譜圖,其中橫座標 . 為波長(nm),縱座標為穿透率(%)。如第8圖所示,波長介 於約為5〇〇至6〇〇nm的光線,具有約8〇至1〇〇%的穿透率, φ 亦即第一堆疊層3⑻和第二堆疊層400可以再堆疊成另一 堆疊層,以用來過濾入射光,而得到波長範圍約為5〇〇至 600nm的光線。 依據目前通用規格’波長範圍介於約4〇〇至49〇nm的 光線被定義藍光’波長範圍介於約490至580nm的光線被 定義為綠光’波長範圍介於約580至700nm的光線被定義 為紅光。因此’本發明之較佳實施例包含第一堆疊層3〇〇 的彩色濾光片’能夠穿透紅光波長範圍的光線;包含第二 .堆疊層400的彩色濾光片,能夠穿透藍光波長範圍的光 線;而包含第一堆疊層3 00和第二堆疊層400的彩色據光 片,則能夠過穿透綠光波長範圍的光線。 請參考第9圖至第17圖,第9圖至第17圖為本發明 製作彩色濾光片之製程剖面示意圖。其中為彰顯本發明之 特徵並簡化說明,第9圖至第17圖僅顯示出第3圖中絕緣 15 Ιό^'ΖΙ 7糊和滤光片形成層212的製程示意圖 17圖僅顯示出—第—像素區、一 弟9圖至第 體基底202中’其上形成有-包含有複數個:::+導 荨之咸#开株爲ολ/ι 4尤一極體2〇6 層2。:上形如J9T’接箸再於感光元件 m u 發明之較佳實施例, ,錢層208可包含魏切等之絕緣材料 含有複數個第-像素區鳥、複數個第二像^層:包 及複數個第三像素區驗。此外,絕緣層2〇8 ;另包含乂 金屬内連線層(圖未*),且絕緣層上另可包 個第光學阻擋層(optical shielding layer) 21〇置於各第一 像素區2·、各第二像素區薦、以及各第三像素區綠 之間。一般而言’第一光學阻擋層210係由銳/氮化鈦或金 屬等不透光材料所構成。 接著’利用多次沉積製程,以於絕緣層208上覆蓋如 第6圖所示之第二堆疊層4〇〇β然後,再進行一沉積製程, 以於第二堆疊層4〇〇上全面沉積一均厚的氮氧化矽層22〇 等之無機層’做為後續化學機械研磨製程 (chemical-mechanical polishing,CMP)或触刻製程中的硬罩 幕(hard mask)或停止層(st〇p iayer)。根據本發明之較佳實施 例,氮氧化矽層220的厚度約為1000至1300埃。 16 1356921 接著,如第ίο圖所示,提供一圖案化遮罩(未顯示)覆 . 蓋第一像素區200b和第三像素區2〇〇c,然後進行一次或 '多次蝕刻製程,以移除第一像素區200a上的第二堆疊層 400’之後去除圖案化遮罩。其中,此蝕刻製程可選擇使用 非等向性乾蝕刻製程,例如—濺擊姓刻製程(sputtering1356921 IX. Description of the invention: [Technical jaw region to which the invention pertains] The present invention provides a color filter device and a method of fabricating the same, and more particularly to an inorganic color filter device and a method of fabricating the same. • [Prior Art] As the electronic products such as digital cameras and scanners continue to develop and grow, the demand for image sensing components in the consumer market continues to increase. Generally speaking, the currently used image sensing components include a charge-coupled device sensor (CCD sensor) and a complementary CMOS image sensor (CIS). . Among them, CMOS image sensors have low operating voltage, low power consumption and efficiency, can be randomly accessed as needed (ran (j〇m access) and other factors' and can be integrated into current semiconductor technology. It is widely used, so it is widely used. Please refer to Figure 1 'Figure 1 is a typical camera system diagram. As shown in Figure 1 'One camera system includes a CMOS image sensor 10, a drive circuit 12 a vertical scanning circuit 14, a horizontal scanning circuit 16, an analog front end 18, a signal processing circuit 20, and a control device 22. The CMOS image sensor 1 includes a plurality of first pixel regions 100a and a plurality of The second pixel area i〇〇b and the plurality of third pixel areas 100c are arranged in an array, for example, according to the Bayer color array 6 1356921 column (10) two handsome coffee. 咖 咖 (10) ray) f. Each pixel area can receive light of a predetermined wavelength range, and according to the incident light charge signal. In the first figure, each of the first-intensity intensity produces a 像素谷谷 pixel area 1〇〇a, each of the first-image symplectic areas 100b, and each third pixel area of the buddy-pixel knives & not R, G, B, that is, the 苐-pixel region 嶋 has a color filter that can penetrate the light having a red wavelength range, the second pixel region has a color filter that can penetrate the m-wavelength ray and the first The three-pixel area has a color filter that can penetrate the blue light wavelength ray. 〃 When the control device 22 receives a trigger signal, the drive circuit u drives the vertical scan circuit 14 and the horizontal scan circuit 16. Next, the vertical scanning circuit 14 activates each pixel region in the CMOS image sensor 1 to cause a charge signal to be generated in each pixel region. The charge signals generated in the respective pixel regions are then transferred to the horizontal scanning circuit 16. Therefore, the charge signal generated by each pixel region can be converted into a vo丨tage signal via the driving circuit 12, the vertical scanning circuit 14, and the horizontal scanning circuit 16, and then the volt signal is transmitted to the analog front end 18. The analog front end 18 collects the person and amplifies the received volt signal, and converts the analog signal into a logic gas number, and then rotates the logic signal to the signal processing circuit 2〇. The signal processing circuit 20 further includes a matrix processing device (not shown) for converting the received logic signal into a red signal, a green signal, and a blue signal via a matrix operation, thereby generating image data. 〇〇=Refer to Figure 2' Figure 2 is the cm〇s image sensor of Figure 1. FIG. 2 shows only a first pixel region, a 偟, a pixel region, and a second pixel region. As shown in Fig. 2, 'CM〇S Scene>> ^Sensor H) is fabricated on a semiconductor substrate 1〇2, such as a 夕 疒 substrate, and the semiconductor substrate 102 includes a plurality of first pixel regions 1 〇a, = a plurality of second pixel regions, and a plurality of third pixel regions over J & additionally comprising a photodiode layer 104, sensitized, the polar layer 1 〇 4 further comprises a plurality of sensitized layers The diode ι 6 is respectively used as the photoelectric signal conversion device in the first pixel region 1A, the second pixel region 1(9), and each of the third region 100c. In general, the photoconductor 106 is constructed by implanting conductive ions in the |conductor substrate 1〇2. On the photodiode layer 104, an insulating layer 1 〇 8 is provided for isolating the photodiode layer 104 and a lithographic sheet forming layer 112 ′ above the insulating layer (10). Generally, the insulating layer is 1 〇 8 It consists of an insulating material such as oxidized stone. The insulating layer 108$ includes a plurality of optically resistive layers (10) for blocking interference caused by light scattering into adjacent pixel regions. In addition, the 4-light sheet forming layer 112 includes a plurality of color light-receiving sheets m respectively located in each of the first pixel regions 10a, the second pixel regions, and the third pixel regions. When an incident light ray 118 enters through each pixel region, it is collected via a micro-lens ll6, and then passes through the color filter 114 and the rim layer 1 〇 8 to reach the photodiode. Body gamma, thus generating a corresponding electrical signal.丄 921 / It is worth noting that the 'color illuminator of the CM 〇 S image sensor is made up of organic chemicals, for example, (4) acid resin (10) coffee resin) . However, this kind of organic color; the light-proof sheet has low heat resistance, so it is easy to cause degradation when exposed to light for a long time (degradati noisy. In addition, these organic materials f, such as pigments or dyes, are easily deteriorated, so In order to control the production of optical films, it is necessary to control the materials of these organic substances, which greatly increases the manufacturing cost. In view of this, the inviting person proposes an inorganic color filter, a light film device and an eight-making method. In order to improve the shortcomings of the above-mentioned prior art, the image sensor can be applied to a high temperature environment. SUMMARY OF THE INVENTION The main object of the present invention is to provide a color light-draining device and a manufacturing method thereof, and more particularly to a method The invention relates to a device for manufacturing an inorganic color calender and a manufacturing method thereof for solving the phenomenon that a conventional organic color filter is filled in a high temperature environment. According to the patent application scope of the present invention, the disclosed structure includes a substrate and The substrate defines a plurality of first color=regions, a plurality of second pixel regions, and a plurality of third pixel regions. Each of the first pixel regions includes a first stack a layer, each of the second pixel regions includes a ninth second stacked layer and two stacked layers, and each of the third pixel regions includes the first stacked layer and the second patent application according to the present invention. A method for producing a color patch. First, a base-Mr is provided, and the ground is defined by a plurality of defects, a plurality of second pixel regions, and a plurality of regions, and then each of the second pixel regions And each of the third pixel regions is cut into: a stacked layer '(4) forms a dielectric layer on each of the first pixel regions, and the dielectric layers and the first stacked layers have the same height, so that Forming a flat surface on the substrate and finally forming a second stacked layer on each of the first pixel regions and each of the two pixel regions, and the second stacked layers respectively cover the respective first pixel regions The dielectric layers cover the first stacked layers on the second pixel regions. Since the invention is characterized in that an inorganic material is used to form the color filter, the conventional organic color filter can be effectively solved. It is easy to degrade under high temperature environment, and then let CM〇S The sensor can be applied to a high temperature environment. [Embodiment] Please refer to FIG. 3, which is a cross-sectional view of a CMOS image sensor according to the present invention. The CMOS image sensor includes a plurality of pixel regions (pixels). 'And each pixel region can be arranged in any array to form a pixel array 丄 is 6912 (4) and each pixel region in the pixel array is distinguished by containing different: color: light sheet. For example, when color in a pixel array In order to have the work of penetrating blue light (8), green light (9) and red metal = 1 = pixel area and red light pixel area. It is worth noting that other Yanjing Xinmen (4) and the present invention use blue, nuclear and Light color filters, other colors such as cyanine/Γ, g (yell GW), green (green), and magenta (magenta) can also be used. In order to highlight the features of the present invention and simplify the description, the red pixel region, the green pixel region, and the blue pixel region are respectively labeled as the first pixel region a, the second pixel region 200b, and the first pixel region. Three pixel area 200c. Returning to Fig. 3, first, a semiconductor substrate 2?2, for example, a stone-like-and-sequence is provided, and the semiconductor substrate 202 includes a plurality of first-pixel regions, a plurality of second pixel regions 2?b, and a plurality of third portions. The pixel region c semiconductor substrate 202 further includes a photosensitive element layer 2〇4, and the sensing layer 7L layer 2〇4 further includes a plurality of photosensitive diodes, etc., respectively located in each of the first pixel regions, each second The pixel region 鸠 and the third pixel region 200c' are used as photoelectric signal conversion devices. In general, the photodiode 206 is constructed by implanting conductivity in the semiconductor substrate 2〇2. The sheep conductor substrate 202 further includes an insulating layer 2〇8 on the 4-light element layer 204 for isolating the photosensitive element layer 2〇4 and the filter forming layer 2i2 above the insulating 1356921 layer 208. In the embodiment, the insulating layer 208 is composed of a gas-forming material such as a gas-fossil dielectric material. The preferred solid-forming layer 212 includes a plurality of color light-emitting sheets 214, a light-emitting pixel region 2_, and a second pixel region. Each of the first--those color filters 214 located in the first pixel region, ^_〇<: the first-stack layer and the second-two-second dielectric layer stacked by a plurality of inorganic materials a color smear 2 in the third pixel region 2 〇〇c, a second stacked layer 4 堆叠 stacked by a plurality of inorganic layers, and a color filter 214 located in the second pixel region 200b, including A structure composed of a combination of the first stacked layer 300 and the second stacked layer 4A. When the incident light 218 enters through the upper of each pixel region, it is collected via a micro concentrator (216) and then penetrates through the color filter 214 and the insulating layer 208, and then reaches each photodiode 206'. Corresponding charge signal. The biggest difference between the CMOS image sensor of the present invention and the conventional CMOS image sensor is that the color light-passing sheet used in the CMOS image sensor of the present invention is a combination of a cyclic stack structure formed by using an inorganic material. Color filter. Therefore, the apparatus relating to the color filter of the present invention and a method of fabricating the same will be described in detail below. First, please refer to FIG. 4, which is a first stacked layer 300 in a color filter according to a preferred embodiment of the present invention. As shown in FIG. 4, the first stacked layer 300 includes a plurality of first inorganic layers 302, a plurality of second no 12 1356921 machine layers 304, and a plurality of third inorganic layers 306. The first inorganic layer 302 is located on the side of the incident light 218 and the side of the insulating layer 208, and further comprises a cyclic stack structure 308 between the two first inorganic layers 302. The cyclic stack structure 308 includes a structure in which the second inorganic layer 304 and the third inorganic layer 306 are alternately stacked, and a second inorganic layer 304 is further included between the cyclic stacked structure 308 and the first inorganic layer 302 on the side of the insulating layer 208. According to a preferred embodiment of the present invention, the first inorganic layer 302 may be a silicon nitride (SiN) layer, the second inorganic layer 304 may be a silicon oxide (SiO 2 ) layer, and the third inorganic layer 306 The thickness may be between 400 and 800 angstroms, and each of the first inorganic layer 302, each of the second inorganic layer 304, and each of the third inorganic layers 306 may have a thickness of about 400 to 800 angstroms. The first stacked layer 300 has a total thickness of about 9000 angstroms. In addition, the number of cycles of the second inorganic layer 304 and the third inorganic layer 306 in the cyclic stack structure 308 of the preferred embodiment is six times, but is not limited thereto, and a structure of four to eight cycles can also be used. It should be noted that the stacking order of the three inorganic layers used in the first stacked layer 300 is not limited to the above order, and other ordering sequences may also be used, but all are a cyclic stack structure. Referring to FIG. 5, FIG. 5 is a transmission spectrum diagram of the first stacked layer 300 of the present invention, wherein the abscissa is wavelength (nm) and the ordinate is Transmittance (%). As shown in FIG. 5, the light having a wavelength higher than about 520 nm has a transmittance of about 80 to 100% to the first stacked layer 300, that is, the first stacked layer 300 can penetrate a wavelength higher than about 520 nm. Light, 13 1356921 and filtered, light having a wavelength below about 520 nm. Please refer to FIG. 6. FIG. 6 is a second stacked layer 400 in a color filter according to a preferred embodiment of the present invention. As shown in FIG. 6, the second stacked layer .400 includes a plurality of fourth inorganic layers 402, a plurality of fifth inorganic layers 404, and a plurality of sixth inorganic layers 406, and the second stacked layer 400 is composed of a fourth inorganic layer. The layer 402, the fifth inorganic layer 404, and the sixth inorganic layer 406 are sequentially stacked in a direction from the side of the incident light 218 to the side of the insulating layer 208. The number of cycles of the stacking of the preferred embodiment is six, but is not limited thereto, and a structure of four to eight cycles can also be used. According to a preferred embodiment of the present invention, the fourth inorganic layer 402 may be a hafnium oxide layer, the fifth inorganic layer 404 may be a tantalum nitride layer, the sixth inorganic layer 406 may be a hafnium oxynitride layer, and each fourth inorganic layer 402 and each of the fifth inorganic layers 404 have a thickness of about 400 to 800 angstroms. Further, each of the sixth inorganic layers 406 has a thickness of about 200 to 500 angstroms, and the second stacked layer 400 has a total thickness of about 12,000 angstroms. It should be noted that the stacking order of the three inorganic layers used in the second stack layer 400 is not limited to the order of the hafnium oxide layer, the tantalum nitride layer, and the hafnium oxynitride layer. Other arrangements may also be used, but also A cyclic stack structure. Please refer to FIG. 7. FIG. 7 is a transmission spectrum diagram of the second stacked layer 400 of the present invention, wherein the abscissa is wavelength (nm) and the ordinate is transmittance (%). As shown in FIG. 7, the transmittance of the light having a wavelength lower than about 600 nm to the second stacked layer 400 is between about 80 and 100%, that is, the second stack 14 1356921 layer _W transparent wavelength is lower than about _ Light in nm and filter light with a wavelength above about 600 nm. Please refer to FIG. 8. FIG. 8 is a diagram showing the penetration spectrum obtained when the first stacked layer and the second stacked layer 400 are combined in the present invention, wherein the abscissa is wavelength (nm) and the ordinate is transmittance. (%). As shown in FIG. 8, the light having a wavelength of about 5 〇〇 to 6 〇〇 nm has a transmittance of about 8 〇 to 1 〇〇, and φ is the first stacked layer 3 (8) and the second stacked layer. The 400 can be further stacked into another stacked layer for filtering incident light to obtain light having a wavelength in the range of about 5 〇〇 to 600 nm. According to the current general specification, a light having a wavelength range of about 4 〇〇 to 49 〇 nm is defined as a light having a wavelength range of about 490 to 580 nm, which is defined as green light, and a light having a wavelength range of about 580 to 700 nm is defined. Defined as red light. Thus, the preferred embodiment of the present invention includes a color filter of a first stacked layer 3 能够 capable of penetrating light of a red wavelength range; a color filter comprising a second stacked layer 400 capable of penetrating blue light The light of the wavelength range; and the color light film including the first stacked layer 300 and the second stacked layer 400 can pass through the light of the green wavelength range. Please refer to FIG. 9 to FIG. 17 , and FIG. 9 to FIG. 17 are schematic cross-sectional views showing a process for fabricating a color filter according to the present invention. In order to highlight the features of the present invention and simplify the description, FIGS. 9 to 17 only show the process diagram of the insulating 15 Ιό ΖΙ ΖΙ 7 paste and the filter forming layer 212 in FIG. - Pixel area, a younger picture 9 to the first body substrate 202 'formed thereon - contains a plurality of ::: + 荨 荨 salt # open ολ / ι 4 especially one body 2 〇 6 layer 2 . The upper layer is shaped like the J9T' and then the preferred embodiment of the photosensitive element mu. The money layer 208 may comprise an insulating material such as Weiche, etc., which comprises a plurality of pixel-pixel regions and a plurality of second image layers: And a plurality of third pixel regions. In addition, the insulating layer 2 〇 8; further comprises a ruthenium metal interconnect layer (not shown), and the insulating layer may further comprise an optical shielding layer 21 〇 disposed in each of the first pixel regions 2· Each second pixel area is recommended, and each third pixel area is between green. In general, the first optical barrier layer 210 is composed of an opaque material such as sharp/titanium nitride or metal. Then, a plurality of deposition processes are used to cover the insulating layer 208 with the second stacked layer 4β as shown in FIG. 6, and then a deposition process is performed to deposit the entire stacked layer 4 An evenly thick inorganic layer of yttrium oxynitride layer 22 做 as a hard-mask or stop layer in a subsequent chemical-mechanical polishing (CMP) or etch process (st〇p Iayer). In accordance with a preferred embodiment of the present invention, the ruthenium oxynitride layer 220 has a thickness of between about 1,000 and 1300 angstroms. 16 1356921 Next, as shown in FIG. 355, a patterned mask (not shown) is provided to cover the first pixel region 200b and the third pixel region 2〇〇c, and then one or more etching processes are performed to The patterned mask is removed after the second stacked layer 400' on the first pixel region 200a is removed. Among them, the etching process can choose to use an anisotropic dry etching process, for example, a splashing process (sputtering)

etCh Pr〇cess)、電聚敍刻製裎(plasma etch process)、或 一反應性離子蝕刻製程(reactive ion etch process,RIE • process)等。 接著’如第11圖所示,進行―沉積製程,以於絕緣層 208上全面沉積一均厚的氧化矽層222等介電層,使其填 滿第-像素區200a上已移除第二堆叠層働的部分。根據 本發明之較佳實施例,氧化妙層222的厚度約大於2〇〇〇〇 埃。其中,此沉積製程包括化學氣相沉積(chemicaivap〇r • deP〇Siti〇n,CVD)製程、低溫電漿增強化學氣相沉積製程 (pUsma-enhanced CVD,pECVD )、高密度電漿化學氣相沉 積製程(high density plasma CVD,HDpcVD )等。 然後’如第12圖所示,進行—化學機械研磨製程,並 可配合一回钱刻製程,且利用乳氧化石夕層220做為研磨停 止層,以去除第二像素區屬和第三像素區職上的氧 ,石夕層222 ’並於第一像素區2_上得到與第二像素區 〇〇b和第三像素區職等高度的氧切層222,此時 17 =士為一平坦的表面,以利於後續的沉積製程。值得注 =的是,在化學機械研磨製程和回_製程時,亦可以不 ^全移除於第二像素區2_和第三像素區2GGe上的氧化 =功’㈣氮氧化_ 22()上保留—層厚度約為_ 埃的氧化㈣222,以保護氮氧切層22g在後續 的银刻製程中不被損害。 =著’如第13圖所示,利用多次沉積製程,以於各第 形成如Ϊ 2術、第二像素區屬以及第三像素區綠上 夕 弟4圖所示之第一堆疊層3〇〇。 蓋第i像♦如第14圖所不’提供-圖案化遮罩(未顯示)覆 多==區·和第二像素區2嶋,然後進行一次或 以將第上氮的氧第切層220當_刻停止層’ 區憑H 種波域_第一像素 此絲㈣ 2_以及第三像素區紙。其中, 擊❹t可選擇使用一非等向性乾蚀刻製程,例如一漱 二積—平坦層並形成相對應之«光㈣-> 不多加贅述。知相關技藝者及具通常知識者所熟知,在此 18 1356921 根據本發明之較佳實施例,當入射光線經各第一像素 區200a、各第二像素區200b以及各第三像素區200c區, 會依據第5圖、第7圖和第8圖的透光光譜圖區分成三個 主要的部分,亦即第一像素區200a,因其包含有第一堆疊 層300,所以可以穿透波長大於約52〇nm(紅光波長範圍) .的光線;第三像素區200c ’因其包含有第二堆疊層400, .所以可以穿透波長小於約6〇〇nm(藍光波長範圍)的光線; _ 而第二像素區200b,因其同時包含有第一堆疊層3〇〇和第 二堆疊層400 ’所以可以穿透波長介於約5〇0至600nm(綠 光波長範圍)之間的光線。接著,再將這些光線產生的電荷 訊號透過矩陣運算,分離出紅光訊號、綠光訊號以及藍光 訊號。 值侍注意的是,第9圖至第14圖製作彩色濾光片之方 法亦了以另包含一第四像素區,第四像素區的結構與第 二像素區200b的結構類似,差別在於,沉積完第一堆疊層 3#0之後再利用多次沉積製程,以於第四像素區上再覆 蓋疊層因此可以製作出第四種顏色規格 的^色渡光,例如紫紅光或黃光等。另外,亦可以再進行 ::或:次蝕刻製程,以移除第二堆疊層400上的部分無 :i、巾㉔刻的次數和移除的無機層可依所需的穿透 ^調i目此可以再得到其他顏色規格的彩色渡光片。 19 1356921 請參考第15圖至第17圖,第關至第㈣為本發 明裝作減少跨越干擾(cross錄)的彩色濾光片之製程剖面 如第15圖所示,在第14圖所完成的彩色滤光片 ” ®案化遮罩(未顯示)覆蓋各第一像素區雇、各 第二像素區2〇〇b以及各第三像素區2〇〇c上 學阻㈣21〇的部分,接著提供一㈣製程,以移除第一 光學阻擒層210上的堆疊層,之後移除圖案化遮罩,因此 於各第—像素區2_、各第:像素區鳩、以及各第三像 素區2 0 0 e之間形成—間隙。其中,此_製程可以為一偵 測終點模式(end-P〇int m〇de),利用第一光學阻揚層2 i 〇當 作敍刻停止層,當偵測到第—光學阻騎⑽的^號後7 立即停止此触刻製程亦可以為—定時模式⑴二 mode)’當钕刻至第一光學阻料21〇後再進行一固定秒 數的過度钱刻(0ver etch),以彌補因為厚度不均,或其他因 素所造成的蝕刻差距。 '、 接著,如第16圖所示,進行一沉積製程,以於絕緣層 施的表面上全面沉積—均厚的第二光學阻擔層2ΐι,使^ 覆蓋在各第一像素區2〇〇a、各第二像素區2〇〇b以及各第 三像素區2GGe上的堆疊層,據本發明之較佳實施例,第 二光學阻擔層2U &厚度約小於麵埃,其並不填滿各第 一像素區200a、各第二像素區2〇〇b以及各第三像素區2⑻c 之間的間隙。·根據本發明之較佳實施例,第二光學阻擋層 20 所構成。 211可由鈦復化鈦或金屬等不透光材料 —取後,如第17圖所示,進行一姓 、 :像素區鳥、各第二像素區200b及各第V以移除各第 ,第二光學阻擔㈣,直到曝露出::二區 第二像素區2_上的第—堆 象素區篇和 2〇〇c ,.. 隹且層300,並曝露出第三素區 像素區Γ1切層⑽,⑽各第—像素區觀、各第二 與-Gb、以及該第三像素區·e的間隙壁形成第二 取:阻擋層2U °之後再沉積—平坦層並形成相對應之微 也先片(micro lens)’此為習知相關技藝者及具通常知識者 所熟知,在此不多加贅述。 本發明製作彩色濾光片之特點在於利用三種無機材質 (氮化碎、氧化矽以及氮氧化矽)堆疊成兩種堆疊層,並利 用這兩種堆疊層再組合出三種或三種以上不同顏色規格的 彩色濾光片。另外,由於本發明之彩色濾光片為一種無機 彩色濾光片’因此能有效解決習知有機彩色濾光片在高溫 環境下容易退化的現象,進而讓CMOS影像感測器能應用 在高溫的環境。值得注意的是,本發明之無機彩色濾光片 結構,並不限定使用在上述之CMOS影像感測器中的彩色 濾光片,其亦適用於其他影像感測器,例如電耦合感測元 件(CCD)等’或任何影像顯示器,例如石夕基浪阳(liquid crystal on silicon,LCOS)顯示面板等0 1356921 以上所述僅為本發明之較佳實施例,凡依本發明申請 專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範 圍。 【圖式簡單說明】 第1圖為典型的相機系統示意圖。 第2圖為第1圖相機系統示意圖中的cmos影像感測器之 結構示意圖。 第3圖為本發明之CMOS影像感測器之結構示意圖。 第4圖為本發明彩色濾光片之第一堆疊層。 第5圖為本發明之第一堆疊層的穿透光譜圖。 第6圖為本發明彩色濾光片之第二堆疊層。 第7圖為本發明之第二堆疊層的穿透光譜圖。 第8圖為本發明結合第一堆疊層和第二堆疊層的穿透光譜 圖。 第9圖至第π圖為本發明製作彩色濾光片之製程剖面示意 圖。 【主要元件符號說明】 10 : CMOS影像感測器 12 :驅動電路 14 :垂直掃描電路 22 1356921 16 : 水平掃描電路 18 : 類比前端 20 : 訊號處理線路 22 : 控制裝置 100a、200a :第一像素區 100b、200b :第二像素區 100c、200c :第三像素區 102、202 :半導體基底 104 :感光二極體層 106、206 :感光二極體 108、208 :絕緣層 110 :光學阻擋層 112、212 :濾光片形成層 114、214 :彩色濾光片 116、216 :微聚光片 118、218 :入射光線 204 : 感光元件層 210 : 第一光學阻擋層 211 : 第二光學阻擋層 220 : 氮氧化矽層 222 : 氧化矽層 300 : 第一堆疊層 302 : 第一無機層 23 1356921 304 :第二無機層 306 :第三無機層 308 :循環堆疊結構 400 :第二堆疊層 402 :第四無機層 404 :第五無機層 406 :第六無機層etCh Pr〇cess), a plasma etch process, or a reactive ion etch process (RIE • process). Then, as shown in FIG. 11, a “deposition process” is performed to completely deposit a dielectric layer such as a thick tantalum oxide layer 222 on the insulating layer 208 to fill the second pixel region 200a and remove the second layer. The part of the stack layer. In accordance with a preferred embodiment of the present invention, the oxide layer 222 has a thickness greater than about 2 angstroms. Among them, the deposition process includes chemical vapor deposition (chemicaivap〇r • deP〇Siti〇n, CVD) process, low temperature plasma enhanced chemical vapor deposition process (pUsma-enhanced CVD, pECVD), high density plasma chemical vapor phase High density plasma CVD (HDpcVD) and the like. Then, as shown in Fig. 12, a chemical mechanical polishing process is performed, and a process of etching can be performed, and the oxidized stone layer 220 is used as a polishing stop layer to remove the second pixel region and the third pixel. The oxygen in the district, the layer 222' and the oxygen layer 222 at the height of the second pixel region 〇〇b and the third pixel region are obtained on the first pixel region 2_, at which time 17 = one is A flat surface to facilitate subsequent deposition processes. It is worth noting that in the chemical mechanical polishing process and the return process, the oxidation = work '(4) oxynitride _ 22() on the second pixel region 2_ and the third pixel region 2GGe may not be completely removed. The upper layer is oxidized (four) 222 having a layer thickness of about angstroms to protect the oxynitride layer 22g from damage during the subsequent silver engraving process. = 'As shown in Fig. 13, a plurality of deposition processes are used to form the first stacked layer 3 as shown in Fig. 4, the second pixel region, and the third pixel region. Hey. The cover i image ♦ as shown in Fig. 14 does not provide a patterned mask (not shown) covering the multi-== region and the second pixel region 2嶋, and then performing the first or the first nitrogen-cutting layer 220 when the _ stop layer ' region by H wave domain _ first pixel this wire (four) 2_ and the third pixel area paper. Among them, the killing t can choose to use an anisotropic dry etching process, such as a two-layer-flat layer and form a corresponding «light (four)-> no more details. As is well known to those skilled in the art, as well known to those skilled in the art, in accordance with a preferred embodiment of the present invention, incident light rays pass through each of the first pixel region 200a, each of the second pixel regions 200b, and each of the third pixel regions 200c. According to the light transmission spectrum diagrams of FIG. 5, FIG. 7, and FIG. 8, the three main portions, that is, the first pixel region 200a, because the first stacked layer 300 is included, can penetrate the wavelength. Light having a wavelength greater than about 52 〇 nm (red wavelength range); the third pixel region 200c' can penetrate light having a wavelength of less than about 6 〇〇 nm (blue wavelength range) because it includes the second stacked layer 400. And the second pixel region 200b, because it includes both the first stacked layer 3〇〇 and the second stacked layer 400′, can penetrate a wavelength between about 5〇0 and 600 nm (green wavelength range). Light. Then, the charge signals generated by the light are processed through a matrix to separate the red light signal, the green light signal, and the blue light signal. It is noted that the method of fabricating the color filter in FIGS. 9 to 14 also includes a fourth pixel region, and the structure of the fourth pixel region is similar to that of the second pixel region 200b, with the difference that After depositing the first stacked layer 3#0, a plurality of deposition processes are used to cover the fourth pixel region to cover the layer, so that a fourth color specification of the color light can be produced, such as purple red or yellow light. . In addition, it is also possible to perform:: or: a secondary etching process to remove portions of the second stacked layer 400 without: i, the number of times the towel is 24 and the removed inorganic layer can be adjusted according to the required It is possible to obtain color dipoles of other color specifications. 19 1356921 Please refer to Fig. 15 to Fig. 17, the fourth to the seventh (fourth) is the process profile of the color filter for reducing crossover interference (cross recording) of the present invention as shown in Fig. 15, which is completed in Fig. 14. a color filter" ® case mask (not shown) covers each of the first pixel area, each of the second pixel area 2〇〇b, and each of the third pixel area 2〇〇c is a portion of the resistance (4) 21〇, and then Providing a (four) process for removing the stacked layers on the first optical barrier layer 210, and then removing the patterned mask, thus in each of the first pixel regions 2_, each of the pixel regions, and each of the third pixel regions Between 2 0 0 e, a gap is formed, wherein the _ process can be an end-P〇int m〇de, and the first optical resistive layer 2 i 〇 is used as a stop stop layer. When the number of the first optical stop (10) is detected, the immediate stop process can also be - timed mode (1) two mode) 'After engraving to the first optical resist 21 再 and then for a fixed number of seconds Over-the-money (0ver etch) to compensate for the etch gap caused by uneven thickness, or other factors. ', then, As shown in FIG. 16, a deposition process is performed to deposit a uniform thickness of the second optical resist layer 2ΐ on the surface of the insulating layer, so that the first pixel region 2〇〇a and the second portion are covered. a pixel region 2〇〇b and a stacked layer on each of the third pixel regions 2GGe. According to a preferred embodiment of the present invention, the second optical resistive layer 2U & thickness is less than a facet, which does not fill each first a gap between the pixel region 200a, each of the second pixel regions 2〇〇b, and each of the third pixel regions 2(8)c. According to a preferred embodiment of the present invention, the second optical barrier layer 20 is formed. 211 may be titanium-reposited titanium. Or an opaque material such as a metal—after taking, as shown in FIG. 17, performing a surname, a pixel area bird, each second pixel area 200b, and each Vth to remove each of the second and second optical resistances (four), Until the exposure:: the first pixel region of the second pixel region 2_ of the second region and 2〇〇c, .. and the layer 300, and expose the third pixel region Γ1 slice layer (10), (10) Each of the first pixel region, each of the second and -Gb, and the spacer of the third pixel region ·e form a second take: the barrier layer is 2U ° and then deposited - flat The layer and the corresponding micro lens are well known to those skilled in the art and those of ordinary skill in the art, and are not described here. The color filter of the present invention is characterized by using three inorganic materials. (nitriding, cerium oxide, and cerium oxynitride) are stacked into two stacked layers, and three or more color filters of different color specifications are combined by using the two stacked layers. In addition, due to the color filter of the present invention The light sheet is an inorganic color filter', so it can effectively solve the phenomenon that the conventional organic color filter is easily degraded in a high temperature environment, and the CMOS image sensor can be applied to a high temperature environment. It should be noted that the inorganic color filter structure of the present invention is not limited to the color filter used in the above CMOS image sensor, and is also applicable to other image sensors, such as an electrically coupled sensing element. (CCD), etc. or any image display, such as a liquid crystal on silicon (LCOS) display panel, etc. 0 1356921 The above is only a preferred embodiment of the present invention, and the scope of the patent application according to the present invention is Equal variations and modifications are intended to be within the scope of the present invention. [Simple description of the diagram] Figure 1 is a schematic diagram of a typical camera system. Fig. 2 is a schematic view showing the structure of a CMOS image sensor in the schematic diagram of the camera system of Fig. 1. FIG. 3 is a schematic structural view of a CMOS image sensor of the present invention. Figure 4 is a first stacked layer of the color filter of the present invention. Figure 5 is a breakthrough spectrum diagram of the first stacked layer of the present invention. Figure 6 is a second stacked layer of the color filter of the present invention. Figure 7 is a breakthrough spectrum diagram of the second stacked layer of the present invention. Figure 8 is a perspective view of the penetration spectrum of the first stacked layer and the second stacked layer of the present invention. Fig. 9 to Fig. π are schematic cross-sectional views showing a process for fabricating a color filter of the present invention. [Main component symbol description] 10 : CMOS image sensor 12 : drive circuit 14 : vertical scan circuit 22 1356921 16 : horizontal scan circuit 18 : analog front end 20 : signal processing circuit 22 : control device 100a, 200a : first pixel region 100b, 200b: second pixel region 100c, 200c: third pixel region 102, 202: semiconductor substrate 104: photodiode layer 106, 206: photodiode 108, 208: insulating layer 110: optical barrier layer 112, 212 : Filter forming layers 114, 214: color filters 116, 216: micro concentrating sheets 118, 218: incident light rays 204: photosensitive element layer 210: first optical blocking layer 211: second optical blocking layer 220: nitrogen Cerium oxide layer 222: yttrium oxide layer 300: first stacked layer 302: first inorganic layer 23 1356921 304: second inorganic layer 306: third inorganic layer 308: cyclic stacked structure 400: second stacked layer 402: fourth inorganic Layer 404: fifth inorganic layer 406: sixth inorganic layer

Claims (1)

1356921 _ 100年11月3日修正替換頁 十、申請專利範圍: 1. 一種彩色濾光片結構,包含有: . 一基.底,且該基底定義有複數個第一像素區、複數個 第二像素區以及複數個第三像素區; 各該第一像素區均包含一第一堆疊層,各該第一堆疊 . 層均包含有複數個第一無機層、複數個第二無機層以及複 數個第三無機層,該第一無機層均包含有氮化矽層,各該 第二無機層均包含有氧化矽層,而各該第三無機層均包含 有氮氧化矽層,且各該第二無機層和各該第三無機層係循 環排列成四至八個循環週期的循環堆疊結構; 各該第二像素區均包含一第二堆疊層,各該第二堆疊 層均包含有複數個第四無機層、複數個第五無機層以及複 數個第六無機層;以及 各該第三像素區均包含該第一堆疊層和該第二堆疊 層。 2. 如申請專利範圍第1項所述之結構,其中於各該第二堆 疊層中,各該第四無機層、各該第五無機層以及各該第六 無機層係循環排列成四至八個循環週期的循環堆疊結構。 3. 如申請專利範圍第1項所述之結構,其中各該第四無機 層均包含有氧化矽層,各該第五無機層均包含有氮化矽 層,而各該第六無機層均包含有氮氧化矽層。 25 1356921 _ 100年11月3曰修正替換頁 4. 如申請專利範圍第1項所述之結構,其中該彩色濾光片 另包含複數個間隙於各該像素區之間,和複數個光學阻擋 層位於該等間隙的底部和側壁上。 5. 如申請專利範圍第1項所述之結構,其中各該第一像素 區中均另包含一氧化矽層,位於該基底和該等第一堆疊層 之間。 6. 如申請專利範圍第1項所述之結構,其中各該第二像素 區和各該第三像素區另分別包含一氮氧化矽層,位於該等 第二堆疊層上,且該等氮氧化矽層可做為硬罩幕或停止層。 7. 如申請專利範圍第1項所述之結構,其中該基底另包含 複數個第四像素區,且各該第四像素區均包含有至少一該 第一堆疊層和至少一該第二堆疊層。 8. 如申請專利範圍第1項所述之結構,其中該基底另包含 複數個第四像素區,且各該第四像素區均包含有至少一該 第一堆疊層和部分之該第二堆疊層。 9. 如申請專利範圍第1項所述之結構,其中該基底另包含 複數個第四像素區,且各該第四像素區均包含有至少一該 第二堆疊層和部分之該第一堆疊層。 26 1356921 _ 100年11月3日修正替換頁 10. —種製作彩色淚光片之方法,包含有: 提供一基底,且該基底定義有複數個第一像素區、複數 . 個第二像素區以及複數個第三像素區; 於各該第二像素區和各該第三像素區上形成一第一堆 疊層,各該第一堆疊層均包含有複數個第一無機層、複數 個第二無機層以及複數個第三無機層; 於各該第一像素區上形成一介電層,且該等介電層和該 ^ 等第一堆疊層均具有相同的高度,以於該基底上形成一平 坦的表面;以及 於各該第一像素區和各該第二像素區上形成一第二堆 疊層,各該第二堆疊層均包含有複數個第四無機層、複數 個第五無機層以及複數個第六無機層,且該等第二堆疊層 係分別覆蓋各該第一像素區上的該等介電層,以及各該第 二像素區上的該等第一堆疊層。 11. 如申請專利範圍第10項所述之方法,其中於各該第一 堆疊層中,各該第一無機層、各該第二無機層以及各該第 三無.機層係循環排列成四至八個循環週期的循環堆疊結 構。 12. 如申請專利範圍第10項所述之方法,其中各該第一無 機層均包含有氧化矽層,各該第二無機層均包含有氮化矽 • 層,而各該第三無機層均包含有氮氧化矽層。 27 1356921 100年11月3日修正替換頁 13. 如申請專利範圍第10項所述之方法,其中於該各該第 二像素區和各該第三像素區上形成該第一堆疊層後,可於 該第一堆疊層上另外形成一氮氧化矽層,且該氮氧化矽層 可做為硬罩幕或停止層。 14. 如申請專利範圍第10項所述之方法,其中於各該第二 堆疊層中,各該第五無機層和各該第六無機層係循環排列 成四至八個循環週期的循環堆疊結構。 15. 如申請專利範圍第10項所述之方法,其中各該第四無 機層均包含有氮化矽層,各該第五無機層均包含有氧化矽 層,而各該第三無機層均包含有氮氧化矽層。 16. 如申請專利範圍第10項所述之方法,其中該彩色濾光 片另包含複數個間隙位於各該像素區之間,和複數個光學 阻擋層位於該等間隙的底部和側壁上。 17. 如申請專利範圍第10項所述之方法,其中該基底可另 包含有複數個第四像素區,且各該第四像素區均包含有至 少一該第一堆疊層和至少一該第二堆疊層。 18. 如申請專利範圍第17項所示之方法,其中該方法另包 含一蝕刻製程,用以移除部分之該第一堆疊層。 28 1356921 厂__ 100年11月3日修正替換頁 19.如申請專利範圍第17項所示之方法,其中該方法另包 含一蝕刻製程,用以移除部分之該第二堆疊層。 291356921 _ November 3, 100 revised replacement page 10, the scope of patent application: 1. A color filter structure, comprising: a base. The base defines a plurality of first pixel regions, a plurality of a second pixel region and a plurality of third pixel regions; each of the first pixel regions includes a first stacked layer, and each of the first stacked layers includes a plurality of first inorganic layers, a plurality of second inorganic layers, and a plurality of a third inorganic layer, each of the first inorganic layers comprising a tantalum nitride layer, each of the second inorganic layers each comprising a hafnium oxide layer, and each of the third inorganic layers comprises a hafnium oxynitride layer, and each of the layers The second inorganic layer and each of the third inorganic layers are cyclically arranged in a cyclic stack structure of four to eight cycles; each of the second pixel regions includes a second stacked layer, and each of the second stacked layers includes a plurality of a fourth inorganic layer, a plurality of fifth inorganic layers, and a plurality of sixth inorganic layers; and each of the third pixel regions includes the first stacked layer and the second stacked layer. 2. The structure of claim 1, wherein in each of the second stacked layers, each of the fourth inorganic layer, each of the fifth inorganic layers, and each of the sixth inorganic layers are cyclically arranged in four to eight A cyclic stack structure of cycles. 3. The structure of claim 1, wherein each of the fourth inorganic layers comprises a cerium oxide layer, each of the fifth inorganic layers comprising a cerium nitride layer, and each of the sixth inorganic layers Contains a layer of oxynitride. The structure of claim 1, wherein the color filter further comprises a plurality of gaps between the pixel regions, and a plurality of optical blocks. The layers are located on the bottom and side walls of the gaps. 5. The structure of claim 1, wherein each of the first pixel regions further comprises a tantalum oxide layer between the substrate and the first stacked layers. 6. The structure of claim 1, wherein each of the second pixel regions and each of the third pixel regions further comprise a layer of oxynitride, located on the second stacked layer, and the nitrogen The ruthenium oxide layer can be used as a hard mask or a stop layer. 7. The structure of claim 1, wherein the substrate further comprises a plurality of fourth pixel regions, and each of the fourth pixel regions comprises at least one of the first stacked layer and at least one of the second stacked regions. Floor. 8. The structure of claim 1, wherein the substrate further comprises a plurality of fourth pixel regions, and each of the fourth pixel regions comprises at least one of the first stacked layer and a portion of the second stack. Floor. 9. The structure of claim 1, wherein the substrate further comprises a plurality of fourth pixel regions, and each of the fourth pixel regions comprises at least one of the second stacked layer and a portion of the first stack. Floor. 26 1356921 _November 3, revised revision page 10. A method of making a colored tear film, comprising: providing a substrate, wherein the substrate defines a plurality of first pixel regions, a plurality of second pixel regions And a plurality of third pixel regions; forming a first stacked layer on each of the second pixel regions and each of the third pixel regions, each of the first stacked layers each comprising a plurality of first inorganic layers and a plurality of second layers An inorganic layer and a plurality of third inorganic layers; a dielectric layer is formed on each of the first pixel regions, and the dielectric layers and the first stacked layers have the same height to form on the substrate a flat surface; and a second stacked layer formed on each of the first pixel region and each of the second pixel regions, each of the second stacked layers each comprising a plurality of fourth inorganic layers and a plurality of fifth inorganic layers And a plurality of sixth inorganic layers, and the second stacked layers respectively cover the dielectric layers on each of the first pixel regions, and the first stacked layers on each of the second pixel regions. 11. The method of claim 10, wherein in each of the first stacked layers, each of the first inorganic layer, each of the second inorganic layers, and each of the third inorganic layers are cyclically arranged A cyclic stack structure of four to eight cycle periods. 12. The method of claim 10, wherein each of the first inorganic layers comprises a ruthenium oxide layer, each of the second inorganic layers comprising a lanthanum nitride layer, and each of the third inorganic layers Both contain a layer of arsenic oxynitride. The method of claim 10, wherein the first stacked layer is formed on each of the second pixel regions and each of the third pixel regions, A ruthenium oxynitride layer may be additionally formed on the first stacked layer, and the ruthenium oxynitride layer may serve as a hard mask or a stop layer. 14. The method of claim 10, wherein in each of the second stacked layers, each of the fifth inorganic layer and each of the sixth inorganic layers are cyclically arranged in a cyclic stack structure of four to eight cycles. . 15. The method of claim 10, wherein each of the fourth inorganic layers comprises a tantalum nitride layer, each of the fifth inorganic layers comprising a tantalum oxide layer, and each of the third inorganic layers Contains a layer of oxynitride. 16. The method of claim 10, wherein the color filter further comprises a plurality of gaps between each of the pixel regions, and a plurality of optical barrier layers are located on the bottom and sidewalls of the gaps. 17. The method of claim 10, wherein the substrate further comprises a plurality of fourth pixel regions, and each of the fourth pixel regions comprises at least one of the first stacked layer and at least one of the first Two stacked layers. 18. The method of claim 17, wherein the method further comprises an etching process for removing a portion of the first stacked layer. </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; 29
TW96151633A 2007-12-31 2007-12-31 Color filter and the method for fabricating the sa TWI356921B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96151633A TWI356921B (en) 2007-12-31 2007-12-31 Color filter and the method for fabricating the sa

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96151633A TWI356921B (en) 2007-12-31 2007-12-31 Color filter and the method for fabricating the sa

Publications (2)

Publication Number Publication Date
TW200928457A TW200928457A (en) 2009-07-01
TWI356921B true TWI356921B (en) 2012-01-21

Family

ID=44864061

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96151633A TWI356921B (en) 2007-12-31 2007-12-31 Color filter and the method for fabricating the sa

Country Status (1)

Country Link
TW (1) TWI356921B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10514571B2 (en) 2018-03-21 2019-12-24 Himax Display, Inc. Display panel and method of fabricating a display panel

Also Published As

Publication number Publication date
TW200928457A (en) 2009-07-01

Similar Documents

Publication Publication Date Title
JP6060851B2 (en) Method for manufacturing solid-state imaging device
CN104396018B (en) Solid-state image pickup apparatus and its manufacture method and electronic equipment
CN106067469B (en) Camera head and electronic equipment
TWI362106B (en)
CN102651376B (en) Solid camera head and manufacture method thereof and electronic equipment
KR101711651B1 (en) Solid-state image pickup device, method for manufacturing the same, and image pickup apparatus
Tournier et al. Pixel-to-pixel isolation by deep trench technology: application to CMOS image sensor
TWI295850B (en) Image sensor and pixel having an anti-reflective coating over the photodiode
US20070187793A1 (en) Filter, color filter array, method of manufacturing the color filter array, and image sensor
KR102075809B1 (en) Photoelectric conversion element, method for manufacturing photoelectric conversion element, solid-state imaging device and electronic device
US20120019695A1 (en) Image sensor having dark sidewalls between color filters to reduce optical crosstalk
CN103681728B (en) Solid camera head and its method and electronic equipment
US20160043125A1 (en) Solid-state image pickup unit, method of manufacturing the same, and electronic apparatus
WO2011141974A1 (en) Solid-state image pickup element and method for manufacturing same
JP2011527829A (en) Backside illuminated image sensor with backside trench
JP2009059824A (en) Solid-state imaging device and manufacturing method thereof, electronic information equipment
JP2013026332A (en) Solid state image sensor, manufacturing method of the same, and electronic apparatus
TW201216453A (en) Solid imaging element and manufacturing method thereof and imaging device
JP2015106621A (en) Solid-state imaging element and manufacturing method, and electronic equipment
JP6772171B2 (en) Photoelectric conversion element and solid-state image sensor
JP2009130239A (en) Color imaging device
JP2016033972A (en) Imaging apparatus and imaging system
CN108257998A (en) CMOS image sensor and its manufacturing method
JP2017157801A (en) Photoelectric conversion element, method for manufacturing the same, and solid-state imaging apparatus
JP2011151421A (en) Solid-state image sensor, method of manufacturing the same, and imaging device