1356652 1⑻生8日?S 口修TF®抱百 -—— I — f -Λ ―― r— f^· · · ·—· MO·'»·» ^ 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種有機發光二極體晝素結構及其 製造方法與應用其之面板,且特別是有關於一種主動式有 機發光二極體晝素結構及其製造方法與應用其之面板。 【先前技術】 隨著平面顯示科技的進步,各式平面顯示器不斷地推 陳出新,例如是液晶顯示器(Liquid Crystal Display, LCD)、有機發光二極體顯示器(Organic Light Emitting Diode display,OLED display)或電漿顯示器(Plasma Display Panel display,PDP display)。其中,有機發 光二極體顯示器具有不需背光源、對比度高、厚度薄、視 角廣、反應速度快、可用於撓曲性面板、使用溫度範圍廣、 構造及製程較簡單等優異特性。使得有機發光二極體顯示 器逐漸廣泛的應用於各式電子產品中。 有機發光二極體顯示器最簡單的結構是將有機發光 層夾在兩個能注入電流的陽極及陰極之間。有機發光二極 體顯示器屬於載流子雙注入型發光元件,是由注入的電子 和電洞在有機物中複合而産生的發光。有機電激發光過程 基本上可分爲以下五個階段: 1.電子與電洞注入:有機發光二極體顯示器被施加 電壓時,陽極及陰極向夾在中間的有機發光層分別注入電 洞和電子。 6 1356652 100年8月25日修正替換頁 2. 電子與電洞的遷移:注入的電子和電洞分別於有 機發光層内遷移。 3. 激子的産生:電子和電洞在有機發光層中相遇並 結合,以産生激子。 ' 4.激子的遷移:激子發生遷移,將能量傳遞給發光 ' 分子,並激發分子使其從基態躍遷到單重激發態。 - 5.電激發光:單重激發態的能量通過輻射即産生光 子,釋放出能量。 【發明内容】 本發明係有關於一種有機發光二極體晝素結構及其 製造方法與應用其之面板,其利用有機發光二極體元件之 陽極/陰極與開關元件之源極/汲極電性連接,以形成一主 動式有機發光二極體畫素結構及應用其之面板。 根據本發明之第一部分,提出一種有機發光二極體晝 素結構。有機發光二極體晝素結構包括一基板、一有機發 光二極體元件及一開關元件。有機發光二極體元件係設置 於基板上。有機發光二極體元件包括一第一電極、一第二 電極及一發光層。第一電極係電性連接於一第一電壓位 準。第二電極係與第一電極相互隔開。發光層係設置於第 一電極及第二電極上,發光層係與第一電極及第二電極電 性連接。開關元件係設置於基板上。開關元件包括一第三 電極及一第四電極。第三電極係與第二電極電性連接。第 . 四電極係電性連接於一第二電壓位準。 1356652 UK)年8月25曰修正替換頁 根據本發明之第二部分,提出一種有機發光二極體面 板。有機發光二極體面板具有矩陣排列之複數個有機發光 二極體畫素結構。有機發光二極體面板包括一基板、數個 第-電極、數個第二電極、—發光層及數個開關元件。第 一電極係設置於基板上並電性連接於一第一電壓位準。各 極係對應於各行之晝素結構。第二電極係重疊於第 F ^ t 係對應於各列之晝素結構的部分 :域雷第二電極並與第一電極相互隔開。發光層係設置於 極雷ί查及第一電極之上。發光層係與第一電極及第二電 於並中之基板各開關元件對應 第j雷 —極體晝素結構。各開關元件包括一 第二電極及一第四電極。第三電極係與其中之 電性連接。第四電極係電性連接於—第二電壓位準了 夸姓Γ據=發明之第三部分’提出一種有機發光二極體晝 t k方法’有機發光二極體畫素結構之製造方法 L „ 一 梃供一基板。形成一開關元件於基板 #關70件包括一第三電極及—第四電極。形成一有機 件於開關元件之上,有機發光二極體元件包 括—第—電極、一第二電極及一發光層。第二電極係與第 二電極電性連接。發光層係設置於第一電極及第二電極之 上,發光層並與第一電極及第二電極電性連接。 &為讓本發明之上述内容能更明顯易懂,下文特舉較佳 實施例,並配合所附圖式,作詳細說明如下: 1356652 I 〇〇年8月25日修正替換胃 【實施方式】 請參照第1圖’其繪示依照本發明第一實施例之有機 發光一極體晝素結構P100之示意圖。有機發光二極體畫 素結構(Organic Light Emitting Diode Pixel Structure,OLED Pixel Structure) PI00 至少包括一基 板110、一有機發光二極體元件120及一開關元件i3〇。 有機發光二極體元件120係設置於基板110上。有機發光 一極體元件120包括一苐一電極121、一第二電極122及 一發光層123。第二電極122係與第一電極121相互隔開。 發光層123係設置於第一電極121及第二電極122上。發 光層123係與第一電極121及第二電極122電性連接。開 關το件130係設置於基板110上。開關元件13〇包括一第 三電極133及一第四電極134。第三電極133係與第二電 極12 2電性連接。 其中,開關元件130係為一薄膜電晶體(Thin Film Transistor’TFT)。一般而言,薄膜電晶體包括一源極(在 ^實施例中,第四電極134係為源極)、一汲極(在本實 施例中,第二電極133係為沒極)及一閘極135。 此外,有機發光二極體元件12〇之第一電極121及第 一電極122分別為一陰極及一陽極。第一電極12丨電性連 接於一第-電壓位準V1’第三電極133與第二電極122電 ,接,且第四電極134電性連接於一第二電壓位準。也 .有機發光二極體元件12g之陰極電性連接於第-電壓位準VI’開關元件13{)线極與有機發光二極體元件 1356652 100年8月25日修正替梅頁 120之陽極電性連接,開關元件13〇之源極電性連接於第 二電壓位準V2。因此,當開關元件130之汲極及源極導通 時’在開關元件130及有機發光二極體元件12〇之間形成 一導電通路’此導電通路之兩端分別電性連接於第一電壓 位準VI及一第二電壓位準V2。在本實施例中,第二電壓 位準V2係大於第一電壓位準vi。 此外,有機發光二極體畫素結構P100更包括一絕緣 層124。絕緣層124係設置於第一電極121及第二電極122 之間’以相互隔開第一電極121及第二電極122。其中絕 緣層124係可以包含光阻間隔(photo spacer)材料。 另外’有機發光二極體晝素結構P100更包括一電子 源125及一電洞源126。電子源125係設置於陰極(在本 實施例中,陰極係為第一電極121)及發光層123之間。 在本實施例中,電子源125包括一電子注入層(electron injection layer,EIL) 1251 及一電子傳輸層(electron transport layer,ETL) 1252。電子注入層 1251 係設置 於陰極(在本實施例中,陰極係為第一電極121)上。電 子傳輸層1252係設置於發光層123及電子注入層1251之 間。或者是,電子源125可以只是一電子傳輸層1252,而 沒有電子注入層1251。 電洞源126係設置於陽極(在本實施例中,陽極係為 第二電極122)及發光層123之間。在本實施例中,電洞 源 126 包括一電洞注入層(hole injection layer,HIL) 1261 及一電洞傳輸層(hole transport layer ’ HTL)1262。 1356652 100年8月25日修正替換頁 電洞注入層1261係設置於陽極(在本實施例中,陽極係 為第二電極122)上。電洞傳輸層1262係設置於發光層 123及電洞注入層1261之間。或者是,電洞源126可以只 是一電洞傳輸層1262,而沒有電洞注入層1261。其中, • 電洞源126及電子源125之間係以絕緣層124相互隔開。 再者,有機發光二極體晝素結構P100更包括一保護 • 層127。保護層127係覆蓋發光層123、第一電極12卜第 二電極122、電子源125及電洞源126。 當開關元件130及有機發光二極體120之間的導電通 路導通時,由於第二電壓位準V2大於第一電壓位準VI, 電洞將經由第四電極134、第三電極133傳遞至第二電極 122,並經由電洞源126往發光層123移動。電子將由第 一電極121,經由電子源125往發光層123移動。當電子 及電洞在發光層123中結合時,發光層123的發光材料會 受激而發光。 請參照第2圖,其繪示第1圖之有機發光二極體畫素 結構P100之俯視圖。如第1圖及第2圖所示,第1圖相 當於第2圖沿截面線1-Γ之剖面圖。如第2圖所示,有 機發光二極體晝素結構P100包括另一開關元件140,用以 控制開關元件130之開關。開關元件130、開關元件140 及有機發光二極體元件120即組成一主動式有機發光二極 體畫素結構P100。 請參照第3圖,其繪示依照本發明之第一實施例之有 機發光二極體面板100之示意圖。數個第2圖之有機發光 11 1356652 !〇〇年8月25日修正替換頁 二極體畫素結構P100即可形成一有機發光二極體面板 100。其中,此些有機發光二極體畫素結構p100係以矩陣 式排列。有機發光二極體面板100包括一基板110 (基板 11〇係繪示於第1圖中)、數個第一電極121、數個第二電 極122、一發光層123 (發光層123係繪示於第1圖中) 及數個開關元件130及數個開關元件14〇。各第一電極121 係對應於各有機發光二極體畫素結構P1QQ。各第二電極 122係對應於各有機發光二極體晝素結構ρι〇〇。此些第二 電極122並與此些第一電極i21相互隔開。開關元件13() 係設置於基板11〇上。各開關元件13〇對應於其中之一有 機發光二極體晝素結構p100。 在任相鄰兩列(圖式之γ軸方向)之此些有機發光二 極體晝素結構P100中,第一電極121及第二電極122係 上下顛倒的異侧配置,詳細地說,相鄰二列晝素結構上方 晝素結構列的第一電極121配置於該晝素結構上侧,下方 晝素結構列的第一電極121配置於該晝素結構下側;上方 晝素結構列的第二電極122配置於該晝素結構下侧,下方 晝素結構列的第二電極122配置於該晝素結構上侧。如第 所7F ’在同—列之有機發光二極體晝素結構削〇中, 5電極121皆位於各個有機發光二極體晝素結構 同側。在同—列之有機發光二極體晝素結構P1 〇〇中, 2極122音位於各個有機發光二極體晝素結構 第i带側。任相鄰兩列有機發光二極體晝素結構p剛的 $極121係、異側配置,任相鄰兩列有機發光二極體畫 12 8) 1356652 100年8月25日修正替換頁 素結構P100的第二電極122係異側配置。 藉此,相鄰兩列之數個第一電極121即可集合成一個 較大之區塊A1。另外,相鄰兩列之數個第二電極122亦可 集合成一個較大之區塊A2。在有機發光二極體面板100之 製造過程中,較大之區塊Al、A2係可降低製程上的誤差, 並降低製造成本。 請同時參照第4圖及第5A〜5D圖。第4圖繪示依照 本發明第一實施例之有機發光二極體晝素結構P100之製 造方法的流程圖,第5A〜5D圖繪示依照第4圖各步驟的 示意圖。首先,請參照第5A圖,進入第4圖之步驟410。 提供一基板110。基板110係為玻璃基板、塑膠基板或陶 瓷基板。 接著,請參照第5B圖,進入第4圖之步驟420。形 成開關元件130於基板110上。開關元件130包括第三電 極133及第四電極134。其中,第三電極133及第四電極 134分別作為一汲極及一源極。 然後,請參照第5C圖,進入第4圖之步驟430。形 成一有機發光二極體元件120於開關元件130上。有機發 光二極體元件120包括一第一電極121、一第二電極122 一發光層123。第二電極122係與第三電極133電性連接。 更詳細的說,在此步驟中,係先以黃光微影製程形成 第一電極121及第二電極122。第一電極121與第二電極 122透過絕緣層124相互隔開。較佳地,絕緣層124係可 包含光阻間隔材料。陰極之材料包含鎂(Mg)或銀(Ag), 13 1356652 -—— I — / -j--' »—· “· t=i 氮化鉬(MoN),鋁(Al),陽極之材料包含銦氧化合物 (indium tin oxide,ITO)° 接著,再以蒸鍍之方式形成電子源125於第一電極上 121。其中,電子源125包括電子注入層1251及電子傳輸 層1252。並以蒸鍍之方式形成電洞源126於第二電極122 上。其中,電洞源126包括電洞注入層1261及電洞傳輸 層 1262 。 然後,以蒸鍍之方式形成發光層123於電子源125及 電洞源126上。 接著,請參照第5D圖,形成保護層127覆蓋於發光 層123、電子源125、電洞源126、第一電極121及第二電 極122,以避免外界濕氣或微粒子侵入。至此,本實施例 之有機發光二極體畫素結構P100便告完成。 第二實施例 本實施例之有機發光二極體晝素結構P200及其製造 方法與應用其之面板和第一實施例之有機發光二極體晝 素結構P100及其製造方法與應用其之面板不同之處在 於:開關元件230之源極/汲極之對應關係。其餘相同之 處不再贅述。 請參照第6圖,其繪示依照本發明第二實施例之有機 發光二極體畫素結構P200之示意圖。有機發光二極體元 件220之第一電極221係為陰極,且第二電極222係為陽 極。開關元件230之第三電極233係為源極,且第四電極 1356652 • · ' 100年8月25日修正替換頁 4係為及極。也就是說,有機發光二極體元件22〇之 陰極電f連接第1壓位準V卜且有機發光二極體元件 • 之陽極电性連接於開關元件230之源極,開關元件230 .之祕則電性連接於第二電壓位準V2。 • 第三實施例 本只她例之有機發光二極體晝素結構P300及其製造 方法共應用其之面板和第一實施例之有機發光二極體晝 素、、’。構P100及其製造方法與應用其之面板不同之處在 於有機發光一極體畫素結構P300更包括一導電層340, 其餘相同之處不再贅述。 請參照第7圖,其繪示依照本發明第三實施例之有機 發光二極體晝素結構P300之示意圖。在本實施例中,有 機發光二極體晝素結構P300更包括導電層340。導電層 340係設置於第—電極121及發光層323之間。 一相較於第—實施例之有機發光二極體元件12〇,第三 實施例之有機發光二極體元件32〇之電子源125位於較高 之高度。使得第三實施例之發光層323對應於第一電極121 之底面323a與發光層323對應於第二電極122之底面32北 實質上係為共平面。 藉此,在平垣的發光層323中,電子與電洞更容易結 合。因此可提高有機發光二極體畫素結構p3〇〇及應用其 之面板的發光效率。 ^ 凊同時參照第8圖及第9A〜9D圖。第8圖繪示依照 1356652 本發明第三實施例之有機發光二極體晝素結構P300之製 造方法的流程圖,第9A〜9D圖繪示依照第8圖各步驟的 示意圖。首先,請參照第9A〜9B圖,進入第8圖之步驟 410及步驟420。第三實施例之步驟410及步驟420與第 一實施例之步驟410及步驟420相同,不再贅述。 然後,請參照第9C圖,進入第8圖之步驟830。形 成一導電層340於第一電極121上。其中導電層340係為 一金屬層,例如是銘(A1)、钥(Mo )、氮化翻(MoN )、銀 (Ag)、鎂(Ma)、妈(Ca)或其合金。 接著,請參照第9C圖,進入第8圖之步驟430。形 成有機發光二極體元件320於開關元件130上。在此步驟 中,由於電子源125受到導電層340的支撐,使得發光層 323對應於第一電極121之底面323a與發光層323對應於 第二電極122之底面323b實質上係為共平面。 然後,請參照第9D圖,形成保護層127覆蓋於發光 層323、電子源125、電洞源126、第一電極121及第二電 極122,以避免外界濕氣或微粒子侵入。至此,本實施例 之有機發光二極體晝素結構P300便告完成。 本發明上述實施例所揭露之有機發光二極體晝素結 構及其製造方法與應用其之面板係利用有機發光二極體 元件之陽極/陰極與開關元件之源極/汲極電性連接,以形 成一主動式有機發光二極體晝素結構及應用其之面板。此 外,第三實施例之導電層更使得發光層之底面位於共平 面,以增加有機發光二極體晝素結構及應用其之面板的發 16 1356652 100年8月25日修正替換頁 光效率。 綜上所述,雖然本發明已以較佳實施例揭露如上,然 其並非用以限定本發明。本發明所屬技術領域中具有通常 知識者,在不脫離本發明之精神和範圍内,當可作各種之 更動與潤飾。因此,本發明之保護範圍當視後附之申請專 利範圍所界定者為準。1356652 1 (8) Health 8th? S 修 TF 抱 抱 - - - - - - - - - - - - - - - MO MO MO MO 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九 九The invention relates to an organic light-emitting diode halogen structure, a manufacturing method thereof and a panel thereof, and particularly relates to an active organic light-emitting diode halogen structure, a manufacturing method thereof and a panel thereof. [Prior Art] With the advancement of flat panel display technology, various flat panel displays are constantly being developed, such as liquid crystal display (LCD), organic light emitting diode display (OLED display) or electric Plasma Display Panel display (PDP display). Among them, the organic light-emitting diode display has excellent characteristics such as no backlight, high contrast, thin thickness, wide viewing angle, fast reaction speed, flexible panel, wide temperature range, simple structure and simple process. The organic light-emitting diode display has been widely used in various electronic products. The simplest structure of an organic light-emitting diode display is to sandwich an organic light-emitting layer between two anodes and a cathode capable of injecting current. The organic light-emitting diode display is a carrier double-injection type light-emitting element, and emits light by injecting electrons and holes in an organic substance. The organic electroluminescence process can be basically divided into the following five stages: 1. Electron and hole injection: When an organic light-emitting diode display is applied with a voltage, the anode and the cathode are respectively injected into the hole in the organic light-emitting layer sandwiched therebetween. electronic. 6 1356652 Revised replacement page on August 25, 100 2. Migration of electrons and holes: The injected electrons and holes migrated separately in the organic light-emitting layer. 3. Exciton generation: electrons and holes meet and combine in the organic light-emitting layer to generate excitons. 4. Migration of excitons: excitons migrate, transfer energy to the luminescent 'molecule, and excite the molecule to transition from the ground state to the singlet excited state. - 5. Electrical excitation: The energy of a singlet excited state produces photons by radiation, releasing energy. SUMMARY OF THE INVENTION The present invention relates to an organic light-emitting diode structure, a method for fabricating the same, and a panel using the same, which utilizes an anode/cathode of an organic light-emitting diode element and a source/drain of a switching element. Sexually connected to form an active organic light-emitting diode structure and a panel for use thereof. According to a first aspect of the invention, an organic light emitting diode structure is proposed. The organic light emitting diode halogen structure includes a substrate, an organic light emitting diode element, and a switching element. The organic light emitting diode element is disposed on the substrate. The organic light emitting diode element includes a first electrode, a second electrode and a light emitting layer. The first electrode is electrically connected to a first voltage level. The second electrode system is spaced apart from the first electrode. The light emitting layer is disposed on the first electrode and the second electrode, and the light emitting layer is electrically connected to the first electrode and the second electrode. The switching element is disposed on the substrate. The switching element includes a third electrode and a fourth electrode. The third electrode system is electrically connected to the second electrode. The fourth electrode is electrically connected to a second voltage level. 1356652 UK) August 25, Amendment Replacement Page In accordance with the second part of the present invention, an organic light emitting diode panel is proposed. The organic light emitting diode panel has a plurality of organic light emitting diode pixel structures arranged in a matrix. The organic light emitting diode panel comprises a substrate, a plurality of first electrodes, a plurality of second electrodes, a light emitting layer and a plurality of switching elements. The first electrode is disposed on the substrate and electrically connected to a first voltage level. Each pole corresponds to the pixel structure of each row. The second electrode is overlapped with the F ^ t portion corresponding to the halogen structure of each column: the second electrode of the domain is separated from the first electrode. The illuminating layer is disposed on the first electrode. The light-emitting layer corresponds to the first electrode and the second switching element of the second substrate, and the j-th pole-polar body structure. Each switching element includes a second electrode and a fourth electrode. The third electrode is electrically connected to the third electrode. The fourth electrode is electrically connected to the second voltage level. According to the third part of the invention, an organic light-emitting diode 昼tk method is proposed, which is a manufacturing method of the organic light-emitting diode structure. Providing a substrate for forming a switching element on the substrate #70 includes a third electrode and a fourth electrode. An organic component is formed on the switching element, and the organic light emitting diode element includes a first electrode, a The second electrode and the second electrode are electrically connected to the second electrode, and the light emitting layer is disposed on the first electrode and the second electrode, and the light emitting layer is electrically connected to the first electrode and the second electrode. In order to make the above-mentioned contents of the present invention more comprehensible, the following description of the preferred embodiments and the accompanying drawings will be described in detail as follows: 1356652 I Amendment of the stomach on August 25 of the following year [Embodiment Referring to FIG. 1 , a schematic diagram of an organic light-emitting diode structure P100 according to a first embodiment of the present invention is shown. Organic Light Emitting Diode Pixel Structure (OLED Pixel Str) The ucture includes at least a substrate 110, an organic light emitting diode element 120, and a switching element i3. The organic light emitting diode element 120 is disposed on the substrate 110. The organic light emitting body element 120 includes a first electrode. 121. A second electrode 122 and a light-emitting layer 123. The second electrode 122 is spaced apart from the first electrode 121. The light-emitting layer 123 is disposed on the first electrode 121 and the second electrode 122. The light-emitting layer 123 is connected to the first electrode 121. An electrode 121 and a second electrode 122 are electrically connected to each other. The switch τ is provided on the substrate 110. The switching element 13A includes a third electrode 133 and a fourth electrode 134. The third electrode 133 is connected to the second electrode 12 2, the electrical connection. The switching element 130 is a thin film transistor (Thin Film Transistor 'TFT). In general, the thin film transistor includes a source (in the embodiment, the fourth electrode 134 is the source a drain (in the present embodiment, the second electrode 133 is a gate) and a gate 135. Further, the first electrode 121 and the first electrode 122 of the organic light emitting diode device 12 are respectively Cathode and an anode. The first electrode 12 is electrically Connected to a first voltage level V1', the third electrode 133 is electrically connected to the second electrode 122, and the fourth electrode 134 is electrically connected to a second voltage level. Also, the cathode of the organic light emitting diode element 12g Electrically connected to the first-voltage level VI' switching element 13{) line pole and organic light-emitting diode element 1356652 modified on August 25, 100, the anode of the meter page 120, the source of the switching element 13 Electrically connected to the second voltage level V2. Therefore, when the drain and the source of the switching element 130 are turned on, a conductive path is formed between the switching element 130 and the organic light emitting diode element 12'. The two ends of the conductive path are electrically connected to the first voltage level. Quasi VI and a second voltage level V2. In this embodiment, the second voltage level V2 is greater than the first voltage level vi. Further, the organic light emitting diode pixel structure P100 further includes an insulating layer 124. The insulating layer 124 is disposed between the first electrode 121 and the second electrode 122 to separate the first electrode 121 and the second electrode 122 from each other. The insulating layer 124 may comprise a photo spacer material. Further, the organic light emitting diode structure P100 further includes an electron source 125 and a hole source 126. The electron source 125 is disposed between the cathode (in the present embodiment, the cathode is the first electrode 121) and the light-emitting layer 123. In this embodiment, the electron source 125 includes an electron injection layer (EIL) 1251 and an electron transport layer (ETL) 1252. The electron injection layer 1251 is provided on the cathode (in the present embodiment, the cathode is the first electrode 121). The electron transport layer 1252 is disposed between the light emitting layer 123 and the electron injecting layer 1251. Alternatively, the electron source 125 may be just an electron transport layer 1252 without the electron injection layer 1251. The hole source 126 is disposed between the anode (in the present embodiment, the anode is the second electrode 122) and the light-emitting layer 123. In the present embodiment, the hole source 126 includes a hole injection layer (HIL) 1261 and a hole transport layer 'HTL' 1262. 1356652 Correction Replacement Page, August 25, 100 The hole injection layer 1261 is disposed on the anode (in the present embodiment, the anode is the second electrode 122). The hole transport layer 1262 is disposed between the light emitting layer 123 and the hole injection layer 1261. Alternatively, the hole source 126 may be only a hole transport layer 1262 without the hole injection layer 1261. Wherein, the hole source 126 and the electron source 125 are separated from each other by an insulating layer 124. Furthermore, the organic light-emitting diode halogen structure P100 further includes a protective layer 127. The protective layer 127 covers the light-emitting layer 123, the first electrode 12, the second electrode 122, the electron source 125, and the hole source 126. When the conductive path between the switching element 130 and the organic light emitting diode 120 is turned on, since the second voltage level V2 is greater than the first voltage level VI, the hole will be transmitted to the third electrode 134 and the third electrode 133. The two electrodes 122 move toward the light-emitting layer 123 via the hole source 126. The electrons are moved from the first electrode 121 to the light-emitting layer 123 via the electron source 125. When electrons and holes are combined in the light-emitting layer 123, the light-emitting material of the light-emitting layer 123 is excited to emit light. Referring to Fig. 2, there is shown a plan view of the organic light emitting diode pixel structure P100 of Fig. 1. As shown in Fig. 1 and Fig. 2, Fig. 1 corresponds to a cross-sectional view taken along line 1 - 第 of Fig. 2; As shown in Fig. 2, the organic light emitting diode structure P100 includes another switching element 140 for controlling the switching of the switching element 130. The switching element 130, the switching element 140, and the organic light emitting diode element 120 constitute an active organic light emitting diode structure P100. Referring to Figure 3, there is shown a schematic diagram of an organic light emitting diode panel 100 in accordance with a first embodiment of the present invention. Several organic light-emitting diagrams in Fig. 2 1 1356652 ! Corrected replacement page on August 25 of the following year. The diode pixel structure P100 can form an organic light-emitting diode panel 100. Among them, the organic light-emitting diode structure p100 is arranged in a matrix. The OLED panel 100 includes a substrate 110 (the substrate 11 is shown in FIG. 1 ), a plurality of first electrodes 121 , a plurality of second electrodes 122 , and a light-emitting layer 123 . In Fig. 1), a plurality of switching elements 130 and a plurality of switching elements 14A. Each of the first electrodes 121 corresponds to each of the organic light emitting diode pixel structures P1QQ. Each of the second electrodes 122 corresponds to each organic light-emitting diode structure ρι. The second electrodes 122 are spaced apart from the first electrodes i21. The switching element 13 () is provided on the substrate 11A. Each of the switching elements 13A corresponds to one of the organic light-emitting diode elementary structures p100. In the organic light-emitting diode elementary structure P100 of any two adjacent columns (the γ-axis direction of the drawing), the first electrode 121 and the second electrode 122 are arranged on the opposite side of each other, and in detail, adjacent The first electrode 121 of the halogen structure column above the two-order halogen structure is disposed on the upper side of the halogen structure, and the first electrode 121 of the lower halogen structure column is disposed on the lower side of the halogen structure; The second electrode 122 is disposed on the lower side of the halogen structure, and the second electrode 122 of the lower halogen structure is disposed on the upper side of the halogen structure. For example, in the same column of the organic light-emitting diode structure, the 5 electrodes 121 are located on the same side of the organic light-emitting diode structure. In the same-column organic light-emitting diode structure P1 〇〇, the two-pole 122-tone is located on the i-th band side of each organic light-emitting diode structure. Adjacent to the two columns of organic light-emitting diodes, the structure of the p-type is just 121, the opposite side, and the adjacent two columns of organic light-emitting diodes are painted. 12 8) 1356652 The second page of the revised page structure P100 was revised on August 25, 100. The two electrodes 122 are arranged on the opposite side. Thereby, the plurality of first electrodes 121 of the adjacent two columns can be assembled into one larger block A1. In addition, the plurality of second electrodes 122 of the adjacent two columns may also be combined into one larger block A2. In the manufacturing process of the organic light-emitting diode panel 100, the larger blocks A1 and A2 can reduce the error in the process and reduce the manufacturing cost. Please refer to Figure 4 and Figures 5A to 5D at the same time. 4 is a flow chart showing a method of fabricating the organic light-emitting diode halogen structure P100 according to the first embodiment of the present invention, and FIGS. 5A to 5D are schematic views showing the steps in accordance with FIG. First, please refer to FIG. 5A and proceed to step 410 of FIG. A substrate 110 is provided. The substrate 110 is a glass substrate, a plastic substrate or a ceramic substrate. Next, please refer to FIG. 5B and proceed to step 420 of FIG. 4. The switching element 130 is formed on the substrate 110. The switching element 130 includes a third electrode 133 and a fourth electrode 134. The third electrode 133 and the fourth electrode 134 respectively serve as a drain and a source. Then, referring to FIG. 5C, the process proceeds to step 430 of FIG. An organic light emitting diode element 120 is formed on the switching element 130. The organic light-emitting diode element 120 includes a first electrode 121, a second electrode 122, and a light-emitting layer 123. The second electrode 122 is electrically connected to the third electrode 133. In more detail, in this step, the first electrode 121 and the second electrode 122 are formed by a yellow light lithography process. The first electrode 121 and the second electrode 122 are separated from each other by the insulating layer 124. Preferably, the insulating layer 124 can comprise a photoresist spacer material. The material of the cathode contains magnesium (Mg) or silver (Ag), 13 1356652 - - I - / -j--' » - · "· t = i molybdenum nitride (MoN), aluminum (Al), anode material Indium tin oxide (ITO) is formed. Next, an electron source 125 is formed on the first electrode 121 by vapor deposition. The electron source 125 includes an electron injection layer 1251 and an electron transport layer 1252. The hole source 126 is formed on the second electrode 122. The hole source 126 includes a hole injection layer 1261 and a hole transport layer 1262. Then, the light-emitting layer 123 is formed on the electron source 125 by vapor deposition. Next, please refer to FIG. 5D to form a protective layer 127 covering the light-emitting layer 123, the electron source 125, the hole source 126, the first electrode 121 and the second electrode 122 to avoid external moisture or fine particles. In this case, the organic light emitting diode structure P100 of the present embodiment is completed. The second embodiment of the organic light emitting diode structure P200 of the present embodiment, the manufacturing method thereof and the panel and the first application thereof Organic light-emitting diode halogen structure P100 of the embodiment and its manufacturer The difference between the method and the application panel is the correspondence between the source and the drain of the switching element 230. The rest will not be described again. Please refer to FIG. 6 , which illustrates the organic A schematic diagram of a light-emitting diode structure P200. The first electrode 221 of the organic light-emitting diode element 220 is a cathode, and the second electrode 222 is an anode. The third electrode 233 of the switching element 230 is a source, and The fourth electrode 1356652 • · 'August 25, 100 correction replacement page 4 is the pole. That is, the cathode of the organic light-emitting diode element 22 is electrically connected to the first pressure level V and the organic light-emitting diode The anode of the polar body element is electrically connected to the source of the switching element 230, and the secret of the switching element 230 is electrically connected to the second voltage level V2. • The third embodiment of the present invention is an organic light emitting diode. The halogen structure P300 and the manufacturing method thereof are applied to the panel and the organic light emitting diode of the first embodiment, and the P100 and the manufacturing method thereof are different from the panel in which the organic light emitting body is used. The pixel structure P300 further includes a conductive 340, the rest of the same points will not be described again. Referring to FIG. 7, a schematic diagram of an organic light-emitting diode halogen structure P300 according to a third embodiment of the present invention is shown. In this embodiment, the organic light-emitting diode The halogen structure P300 further includes a conductive layer 340. The conductive layer 340 is disposed between the first electrode 121 and the light-emitting layer 323. Compared with the organic light-emitting diode element 12 of the first embodiment, the third embodiment The electron source 125 of the organic light emitting diode element 32 is located at a higher height. The light-emitting layer 323 of the third embodiment is substantially coplanar with respect to the bottom surface 323a of the first electrode 121 and the bottom surface 32 of the light-emitting layer 323 corresponding to the second electrode 122. Thereby, in the flat light-emitting layer 323, electrons and holes are more easily combined. Therefore, the luminous efficiency of the organic light-emitting diode pixel structure p3〇〇 and the panel to which the organic light-emitting diode is applied can be improved. ^ 凊 Refer to Figure 8 and Figures 9A to 9D at the same time. FIG. 8 is a flow chart showing a method of fabricating the organic light-emitting diode structure P300 according to the third embodiment of the present invention, and FIGS. 9A to 9D are schematic views showing the steps in accordance with FIG. First, please refer to steps 9A to 9B, and proceed to step 410 and step 420 of Fig. 8. Steps 410 and 420 of the third embodiment are the same as steps 410 and 420 of the first embodiment, and are not described again. Then, referring to Figure 9C, proceed to step 830 of Figure 8. A conductive layer 340 is formed on the first electrode 121. The conductive layer 340 is a metal layer such as Ming (A1), Mo (Mo), Niobium (MoN), Silver (Ag), Magnesium (Ma), Ma (Ca) or an alloy thereof. Next, please refer to FIG. 9C and proceed to step 430 of FIG. 8. An organic light emitting diode element 320 is formed on the switching element 130. In this step, since the electron source 125 is supported by the conductive layer 340, the bottom surface 323a of the light-emitting layer 323 corresponding to the first electrode 121 and the bottom surface 323b of the light-emitting layer 323 corresponding to the second electrode 122 are substantially coplanar. Then, referring to Fig. 9D, a protective layer 127 is formed to cover the light-emitting layer 323, the electron source 125, the hole source 126, the first electrode 121, and the second electrode 122 to prevent intrusion of external moisture or particles. Thus far, the organic light-emitting diode structure P300 of the present embodiment is completed. The organic light-emitting diode structure and the method for manufacturing the same according to the above embodiments of the present invention are electrically connected to the source/drain of the anode/cathode and the switching element of the organic light-emitting diode element. To form an active organic light-emitting diode structure and a panel for the same. In addition, the conductive layer of the third embodiment further causes the bottom surface of the light-emitting layer to be located on the common plane to increase the structure of the organic light-emitting diode and the surface of the panel to which the light-emitting layer is applied. In the above, the present invention has been disclosed in the above preferred embodiments, but it is not intended to limit the present invention. Those skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
17 1356652 100年8月25日修正替換頁 【圖式簡單說明】 第1圖繪示依照本發明第一實施例之有機發光二極 體畫素結構之示意圖; 第2圖繪示第1圖之有機發光二極體晝素結構之俯視 圖; 第3圖繪示依照本發明之第一實施例之有機發光二 極體面板之不意圖; 第4圖繪示依照本發明第一實施例之有機發光二極 體晝素結構之製造方法的流程圖; 第5A〜5D圖繪示依照第4圖各步驟的示意圖; 第6圖繪示依照本發明第二實施例之有機發光二極 體晝素結構之示意圖; 第7圖繪示依照本發明第三實施例之有機發光二極 體畫素結構之示意圖; 第8圖繪示依照本發明第三實施例之有機發光二極 體晝素結構之製造方法的流程圖;以及 第9A〜9D圖繪示依照第8圖各步驟的示意圖。 1356652 100年8月25日修正替換頁 【主要元件符號說明】 100 :有機發光二極體面板 110 :基板 120、 220、320 :有機發光二極體元件 121、 221 :第一電極 122、 222 :第二電極 123、 323 :發光層 130、140、230 :開關元件 133、 233 :第三電極 134、 234 :第四電極 124 :絕緣層 125 :電子源 1251 :電子注入層 1252 :電子傳輸層 126 :電洞源 1261 :電洞注入層 1262 :電洞傳輸層 127 :保護層 323a、323b :底面 340 :導電層17 1356652 Correction replacement page of August 25, 100 [Simplified description of the drawings] FIG. 1 is a schematic view showing the structure of an organic light-emitting diode according to a first embodiment of the present invention; FIG. 2 is a schematic view of the first embodiment; A top view of the organic light emitting diode structure; FIG. 3 is a schematic view of the organic light emitting diode panel according to the first embodiment of the present invention; and FIG. 4 is a view showing the organic light emitting light according to the first embodiment of the present invention. FIG. 5A to FIG. 5D are schematic diagrams showing steps in accordance with FIG. 4; and FIG. 6 is a diagram showing the structure of an organic light-emitting diode in accordance with a second embodiment of the present invention. FIG. 7 is a schematic diagram showing the structure of an organic light emitting diode according to a third embodiment of the present invention; and FIG. 8 is a diagram showing the structure of an organic light emitting diode structure according to a third embodiment of the present invention. A flow chart of the method; and FIGS. 9A to 9D are schematic views showing the steps in accordance with FIG. 1356652 Correction replacement page on August 25, 100 [Description of main component symbols] 100: Organic light-emitting diode panel 110: Substrate 120, 220, 320: Organic light-emitting diode elements 121, 221: First electrodes 122, 222: Second electrodes 123, 323: light-emitting layers 130, 140, 230: switching elements 133, 233: third electrodes 134, 234: fourth electrode 124: insulating layer 125: electron source 1251: electron injection layer 1252: electron transport layer 126 : hole source 1261 : hole injection layer 1262 : hole transmission layer 127 : protective layer 323a, 323b : bottom surface 340 : conductive layer
Al、A2 :區塊 P100、P200、P300 :有機發光二極體畫素結構 VI :第一電壓位準 19 1356652 100年8月25円修正替換頁 V2 :第二電壓位準Al, A2: Block P100, P200, P300: Organic Light Emitting Diode Pixel Structure VI: First Voltage Level 19 1356652 August 25, 2014 Correction Replacement Page V2: Second Voltage Level