TWI356397B - Acoustic device - Google Patents

Acoustic device Download PDF

Info

Publication number
TWI356397B
TWI356397B TW97124110A TW97124110A TWI356397B TW I356397 B TWI356397 B TW I356397B TW 97124110 A TW97124110 A TW 97124110A TW 97124110 A TW97124110 A TW 97124110A TW I356397 B TWI356397 B TW I356397B
Authority
TW
Taiwan
Prior art keywords
sounding
electromagnetic wave
wave signal
carbon nanotube
sound
Prior art date
Application number
TW97124110A
Other languages
Chinese (zh)
Other versions
TW201002098A (en
Inventor
Kai-Li Jiang
Lin Xiao
Zhuo Chen
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97124110A priority Critical patent/TWI356397B/en
Publication of TW201002098A publication Critical patent/TW201002098A/en
Application granted granted Critical
Publication of TWI356397B publication Critical patent/TWI356397B/en

Links

Landscapes

  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

100年11月16日修正替換W 1356.397 ...... 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種發聲裝置,尤其涉及一種基於奈米碳管 的發聲裝置。 【先前技術】 [0002] 發聲裝置一般由信號輸入裝置和發聲元件組成。通過信 號輸入裝置輸入電信號給發聲元件,進而發出聲音。先 前技術中的發聲元件一般爲一揚聲器。該揚聲器爲一種 把電信號轉換成聲音信號的電聲器件。具體地,揚聲器 可將一定範圍内的音頻電功率信號通過換能方式轉變爲 失真小並具有足夠聲壓級的可聽聲音。揚聲器的種類很 多,雖然它們的工作方式不同,但一般均爲通過産生機 械振動推動周圍的空氣,.使空氣介質產生波動從而實現 “電-力-聲”之轉換。 [0003] 請參閱圖1,先前的電動式揚聲器100通常由三部分組成 :音圈102、磁鐵104及振膜106。音圈102通常採用一導 體,當音圈102中輸入一個音頻電流信號時,音圈102相 當於一個載流導體。若將其放在固定磁場裏,根據載流 導體在磁場中會受到洛倫兹力作用,音圈102會受到一個 大小與音頻電流成正比、方向隨音頻電流方向變化而變 化的力。故,音圈102就會在磁場作用下産生振動,並帶 動振膜106振動,振膜106前後的空氣亦隨之振動,將電 信號轉換成聲波向四周輻射。然而,該電動式揚聲器100 的結構較爲複雜,且其必須在有磁的條件下工作。 [0004] 進一步地,先前技術中的發聲裝置的發聲原理爲“電-力 097124110 表單編號A0101 第3頁/共23頁 1003423464-0 1356397 __ 100年11月16日核正替换頁 -聲”之轉換原理,即發聲的最基本條件爲電信號的輸入 。在極端環境,如無電環境下,則無法應用上述發聲裝 置進行發聲。 [0005] 光聲效應指當物質受到周期性強度調製的光照射時,會 産生聲信號的現象。當物質受到光照射時,物質因吸收 .光能而受激發,並通過非輻射躍遷使吸收的光能全部或 部分轉變爲熱。如果照射的光束經過周期性的強度調製 ,則在物質内產生周期性的溫度變化,使這部分物質及 其鄰近的媒質熱脹冷縮而産生應力(或壓力)的周期性 變化,因而產生聲信號,此種信號稱光聲信號。光聲信 號的頻率與光調製頻率相同,其強度和相位則决定於物 質的光學、熱學、彈性和幾何的特性。目前,利用光聲 效應製造的光聲譜儀及光聲顯微鏡已經被廣泛應用於物 質組分分析檢測領域。例如,先前技術中的光聲譜儀一 般包括一光源、一樣品室及一信號檢測器。該光源一般 爲一調製的脈衝雷射源或連續雷射源。該信號檢測器一 般爲一麥克風。該樣品室中放置有待測的樣品’該樣品 材料不限,可爲氣體、液體或固體材料,如一固體粉末 或一生物樣品等。該雷射源發射雷射照射到樣品室中的 樣品上,由於光聲效應中産生的聲能直接正比於物質吸 收的光能,而不同成分的物質在不同光波的波長處出現 吸收峰值,故當具有多譜線或連續光譜的光源以不同波 長的光束相繼照射樣品時,樣品内不同成分的物質將在 與各自的吸收峰相對應的光波波長處産生光聲信號極大 值。該信號檢測器通過檢測該光聲信號的極大值,從而 097124110 表單编號A0101 第4頁/共23頁 1003423464-0 1356,397 100年11月16日按正替換頁 判斷待測樣品的材料種類。 [0006] 然而,一般材料受到光吸收能力的限制,產生的光聲信 號強度較弱,且頻率範圍在兆赫茲以上,只能通過麥克 風或壓電傳感器等換能裝置接收,故,先前技術中還沒 有利用光聲效應製造的發聲裝置使其産生的聲音信號能 .直接被人耳感知。另,先前技術中也沒有將廣義的電磁 波應用光聲效應製造的發聲裝置。 [0007] 自九十年代初以來,以奈米碳管(請參見He 1 ica 1 mi -crotubu1es of graphitic carbon, Nature, Sura-io Iijiraa,vol 354,p56(1 991 ))爲代表的奈米材料 以其獨特的結構和性質引起了人們極大的關注。近幾年 來,隨著奈米碳管及奈米材料研究的不斷深入,其廣闊 的應用前景不斷顯現出來。例如,由於奈米碳管所具有 的獨特的電磁學、光學、力學、化學等性能,大量有關 其在場發射電子源、傳感器、新型光學材料、軟鐵磁材 料等領域的應用研究不斷被報道。然而,先前技術中卻 尚未發現奈米碳管作爲發聲元件用於聲學領域。 [0008] 有鑒於此,提供一種結構簡單,可在無磁、無電的條件 下直接發出能夠被人耳感知的聲音的發聲裝置實為必要 〇 【發明内容】 [0009] 一種發聲裝置,其包括一電磁波信號輸入裝置及一發聲 元件。該發聲元件與該電磁波信號輸入裝置間隔設置。 其中,該發聲元件包括至少一層奈米碳管薄膜,該奈米 碳管薄膜包括多個相互平行的奈米碳管,該電磁波信號 097124110 表單編號 A0101 第 5 頁/共 23 頁 1003423464-0 1356397 __ 100年.11月16日核正替换頁 輸入裝置傳遞電磁波信號至該奈米碳管薄膜,使該奈米 碳管薄膜通過吸收該電磁波信號發熱,從而加熱氣體介 質發出聲波。 ‘ [0010] 相較於於先前技術,所述發聲裝置具有以下優點:其一 ,由於所述發聲裝置中的發聲元件僅由奈米碳管薄膜組 成,無需磁鐵等其它複雜結構,故該發聲裝置的結構較 爲簡單,有利於降低該發聲裝置的成本。其二,該發聲 裝置科用輸入信號造成該奈米碳管薄膜溫度變化,從而 使其周圍氣體介質迅速膨脹和收縮,進而發出聲波,故 該奈米碳管薄膜組成的發聲裝置可在無磁的條件下工作 。其三,由於該奈米碳管薄膜具有較小的熱容和大的比 表面積,故該奈米碳管薄膜具有升溫迅速、熱滯後小、 熱交換速度快的特點,故該奈米碳管薄膜組成的發聲裝 置可發出很寬頻譜範圍内的聲音(ΙΗζ-lOOkHz),且具 有較好的發聲效果。其四,由於奈米碳管薄膜爲多個相 互平行且並排設置的長奈米碳管組成,故奈米碳管薄膜 具有較好的機械強度和韌性,並且沿奈米碳管排列方向 具有較好的導熱性能,從而使發聲元件具有較好的發聲 效果。其五,由於奈米碳管具有極大的比表面積,在凡 德瓦爾力的作用下,奈米碳管薄膜本身有很好的黏附性 ,故奈米碳管薄膜可方便地直接黏附於支撐結構表面。 【實施方式】 [0011] 以下將結合附圖詳細說明本技術方案實施例的發聲裝置 〇 [0012] 請參閱圖2,本技術方案第一實施例提供一種發聲裝置10 . 097124110 表單编號A0101 第6頁/共23頁 1003423464-0 1356397 100年.11月16日按正替換頁 ,該發聲裝置10包括一電磁波信號輸入裝置112,一發聲 元件114 ’ 一支撐結構11 6及一調製裝置118。該發聲元 件114設置於該支撐結構Π6上。該支撐結構116爲一可 選擇結構,用於支撐和固定該發聲元件114。該電磁波信 號輸入裝置112與該發聲元件114對應且間隔設置,用於 提供一電磁波信號120。該調製裝置1丨8設置於該電磁波 信號輸入裝置112與發聲元件114之間,用於對所述電磁 波信號120進行強度或頻率的調製。從該電磁波信號輸入 裝置112發出的電磁波信號120通過該調製裝置118進行 強度和頻率的調製後傳遞至該發聲元件114表面。 [0013] 所述發聲元件114包括至少一層奈米碳管薄膜。所述奈米 碳管薄膜的掃描電鏡照片請參見圖3。所述奈米碳管薄膜 包括多個基本相互平行設置的奈米碳管。相鄰兩個奈米 碳管之間通過凡德瓦爾力結合,且相鄰兩個奈米碳管之 間的距離爲0~5微米。所述奈米碳管薄膜的長度爲奈米碳 管的長度,優選地,所述奈米碳管薄臈的長度爲丨微米 〜30毫米》所述奈米碳管薄膜的厚度爲〇. 5奈米〜1〇〇微米 。所述奈米碳管薄膜中的奈米碳管可爲單壁奈米碳管、 雙壁奈求碳管及多壁奈米碳管中的—種或多種。所述單 壁奈米碳管的直徑爲0.5奈米〜5〇奈米.,所述雙壁奈米碳 管的直徑爲1.0奈米,奈米,所述多壁奈米碳管的直徑 爲1. 5奈米〜50奈米。 進-步地,所述發聲元件114包括至少兩層重疊設置的奈 米碳管薄膜,相鄰兩層奈米碳管薄膜之間通過凡德瓦爾 力緊密結合,且相鄰兩層奈米碳管薄财的奈米碳管之 097124110 表單編號A0101 1003423464-0 [0014] 1356397 __ 100年11月16日核正替換頁 間具有一交又角度α,0度$90度,具體可依據實際 需求製備。當相鄰兩層奈米碳管薄膜中的奈米碳管之間 的夾角α大於0度時,所述發聲元件114中的多個奈米碳 管形成一網狀結構,且該網狀結構包括多個均勻分佈的 微孔,其孔徑小於5微米。當所述發聲元件114包括多層 奈米碳管薄膜相互重疊設置時,該發聲元件114爲一自支 撐結構。 [0015] 可以理解,所述發聲元件114的厚度不能太厚,太厚則影 響奈米碳管與周圍氣體介質進行熱交換,從而影響該發 聲元件114的發聲效果。另,該發聲元件114的厚度不能 太薄,太薄則該奈米碳管薄膜強度較差,在發聲過程中 · 容易損壞。當所述發聲元件114的厚度比較小時,例如小 於10微米,該發聲元件114具有較高的透明度,此時,可 將該發聲元件114直接設置在各種顯示裝置、手機顯示屏 或油畫的上表面,從而達到節省空間的目的。優選地, 所述發聲元件114的厚度爲0.5奈米~1毫米。 [0016] 本技術方案實施例中,所述發聲元件114包括兩層重疊設 置的奈米碳管薄膜,且奈米碳管在該兩層奈米碳管薄膜 中沿同一方向排列。所述發聲元件114的長度爲3厘米, 寬度爲3厘米,厚度爲50奈米。 [0017] 所述支撐結構116主要起支撐作用,其形狀不限,任何具 有確定形狀的物體,如一墙壁或桌面,均可作爲本技術 方案第一實施例中的支撐結構116。具體地,該支撐結構 116可爲一平面或曲面結構,並具有一表面。此時,該發 聲元件114直接設置並貼合於該支撐結構116的表面上。 097124110 表單编號Α0101 第8頁/共23頁 1003423464-0 1356397 r 100年11月16日按正替换頁 由於奈米碳管具有極大的比表面積,在凡德瓦爾力的作 用下,該奈米碳管薄膜本身有很好的黏附性,故採用該 奈米碳管薄膜作發聲元件114時,可將奈米碳管薄膜直接 黏附於支撐結構116表面。進一步地,所述支撐結構11 6 與所述發聲元件114之間還可通過黏結劑相互黏結,從而 使所述發聲元件114更好地固定在支撐結構116上。所述 黏結劑可爲一耐高溫的矽膠。 [0018] 由於該發聲元件114整體通過支撐結構116支撐,故該發 聲元件114可承受強度較高的電磁波信號120輸入,從而 具有較高的發聲強度。另,該支撐結構116也可爲一框架 結構、桿狀結構或不規則形狀結構。此時,該發聲元件 114部分與該支撐結構116相接觸,其餘部分懸空設置。 此種設置方式可使該發聲元件114與空氣或周圍介質更好 地進行熱交換。該發聲元件114與空氣或周圍介質接觸面 積更大,熱交換速度更快,故具有更好的發聲效率。 [0019] 該支撐結構116的材料不限,可爲一硬性材料,如金剛石 、木質材料、玻璃或石英。另,所述支撐結構11 6還可爲 一柔性材料,如紙質材料、塑膠或樹脂。優選地,該支 撐結構116的材料應具有較好的絕熱性能,從而防止該發 聲元件114産生的熱量過度的被該支撐結構116吸收,無 法達到加熱空氣發聲的目的。另,該支撐結構11 6優選爲 具有一較爲粗糙的表面,從而可使設置於上述支撐結構 116表面的發聲元件114與空氣或其他外界介質具有更大 的接觸面積。 [0020] 可以理解,由於上述發聲元件114中的奈米碳管薄膜爲一 097124110 表單編號A0101 第9頁/共23頁 1003423464-0 1356397 100年.11月16日修正替换頁 自支樓結構,故該支樓結構11 6爲一可選擇結構。 [0021] 所述電磁波信號輸入裝置112包括一電磁波信號源,該電 磁波信號源可發出強度或頻率可變的電磁波,形成一電 磁波is號120。該電磁波信號12〇的強度或頻率可不斷變 化,從而能夠使作爲發聲元件114的奈米破管薄膜吸收該 電磁波彳s號120間歇加熱空氣,使空氣不斷膨脹收縮,進 而持續發出聲音。該電磁波信號12〇的頻率範圍包括無線 電波、紅外線、可見光、紫外線、微波、X射線及^射線 等。優選的,該電磁波信號源爲一光信號源,所發出的 電磁波信號120,可爲一光信號,該光信號的波長包括從紫 外至遠紅外波長的各種光波《該電磁波信號丨2〇的平均功 率密度在l/zW/mm2~20W/mm2範圍内。可以理解,該電磁 波k號1 2 0的強度不能太弱,太弱則無法使奈米碳管薄膜 充分加熱周圍空氣發出聲音’並且,該電磁波信號丨2〇的 強度不能太強,太強使奈米碳管薄膜與空氣中的氧發生 反應,從而破壞該奈米碳管薄膜。優選地,該電磁波信 號源爲一脈衝雷射發生器® [0022] 該電磁波信號輸入裝置11 2發出的電磁波信號120在發聲 元件114上的入射角度與位置不限。另,該電磁波信號輸 入裝置112與發聲元件114之間的距離不限,但應確保從 該電磁波信號輸入裝置112發出的電磁波能夠傳遞至該發 聲元件114表面。優選地,當該電磁波信號爲一光信號, 且該電磁波信號輸入裝置112與該發聲元件114距離較遠 時,該電磁波信號輸入裝置112可進一步包括一光纖,該 光纖一端與所述光信號源連接,另一端延伸至所述奈米 097124110 表單编號A0101 第10頁/共23頁 1003423464-0 1356397 100年.11月16日修正替換頁 碳管薄膜附近,從而使通過上述雷射發生器發出的電磁 波信號120通過光纖遠距離傳遞至發聲元件114表面。 [0023] 所述調製裝置118爲一可選擇結構,設置於該電磁波信號 120的傳輸路徑上,包括強度調製器、頻率調製器或兩者 的結合β所述發聲裝置10通過調製裝置118對電磁波信號 120的強度及頻率進行調製,從而實現使發聲元件114所 發出的聲音的強度及頻率的改變。具體地,可通過以不 同頻率開關電磁波信號120調製電磁波信號120的強弱, 或者以不同頻率變化電磁波信號120的強度調製電磁波信 號120的強弱。電磁波信號120強弱的變化影響發聲元件 114發聲頻率的變化。通過對該電磁波信號120進行調製 ,可使該發聲元件114發出不同頻率的聲音。可以理解, 該調製裝置118可與所述電磁波信號輸入裝置112集成或 間隔設置。當所述電磁波信號輸入裝置112包括一光纖時 ,該調製裝置118可設置於光纖的起始端或結束端上。本 實施例中,該調製裝置118爲一電光晶體。 [0024] 本技術方案實施例發聲裝置中採用奈米碳管薄膜作爲發 聲元件,由於奈米碳管對電磁波的吸收接近絕對黑體, 從而使發聲裝置對於各種波長的電磁波具有均一的吸收 特性。另,奈米碳管具有較小的熱容和較大的散熱面積 。故,當發聲元件114中的奈米碳管受到如雷射等電磁波 < 的照射時,奈米碳管因吸收光能而受激發,並通過非輻 射使吸收的光能全部或部分轉變爲熱。奈米碳管溫度迅 速升高,並和周圍的空氣或其他介質進行迅速的熱交換 。如果照射的電磁波經過周期性的強度調製,則在奈米 097124110 表單編號Α0101 第11頁/共23頁 1003423464-0 1356397 ___ 100年.11月16日梭正替换頁 碳管内產生周期性的溫度變化,從而使其周圍的氣體介 質也産生周期性的溫度變化,造成周圍空氣或其他介質 迅速的膨脹和收縮,從而發出聲音。進一步地,本實施 例中,所述發聲元件114包括由大量相互平行且並排設置 的奈米碳管組成的奈米碳管薄膜,故當電磁疚信鐃輸入 裝置118發出的電磁波信號120的頻率合適,且發聲元件 114周圍介質爲空氣時,發聲元件114發出的聲音可直接 被人耳感知。可以理解,當電磁波信號120的頻率增高時 ,該發聲元件114可發出超聲波。 [0025] 請參閱圖4,本技術方案第二實施例提供一種發聲裝置20 ,該發聲裝置20包括一信號輸入裝置212、一發聲元件 214、一支撐結構21 6及一調製裝置218。 [0026] 該支撐結構21 6爲一框架結構、桿狀結構或不規則形狀結 構。該發聲元件214部分與該支撐結構216相接觸,其餘 部分懸空設置,從而使聲音能夠透過該發聲元件214傳遞 。該電磁波信號輸入裝置212與該發聲元件214對應且間 隔設置。該調製裝置218設置於該電磁波信號輸入裝置 212與發聲元件214之間。 [0027] 該發聲裝置20與第一實施例中的發聲裝置10的結構基本 相似,與第一實施例中的發聲裝置10的區別在於,該發 聲裝置20進一步包括一攏音結構222,該攏音結構222間 隔設置在所述發聲元件214遠離電磁波信號220輸入的一 侧。該攏音結構222與該發聲元件214相隔設置,從而使 發聲元件214發出的聲波通過攏音結構222反射,增強該 發聲裝置20的發聲效果。根據發聲元件214的大小,該距 097124110 表單编號 A0101 第 12 頁/共 23 頁 1003423464-0 1356397 , 100年.11月16日修正替&頁 離可爲1厘米〜1米。可以理解,該攏音結構222可爲具有. 一較大表面的各種結構,如一平面結構或一曲面結構。 本實施例中,該攏音結構222爲一平板。該攏音結構222 可通過支架與該發聲元件214間隔。另,該攏音結構222 與該支撐結構216也可爲一集成設置的整體,如一具有狹 窄開口的腔體’該發聲元件214平鋪於該腔體的開口上, 從而形成一亥姆霍茲共振腔。該攏音結構222的材料爲木 質、塑膠、金屬或破璃等。 [0028] 本技術方案實施例提供的發聲裝置的發聲強度可達1〇〇分 貝聲壓級’發聲頻率範圍爲1赫茲至10萬赫茲(即 ΙΗζ-lOOkHz)。另,本钱術方案實施例中的奈米碳管薄 膜具有較好的韌性和機械強度,利用所述奈米碳管薄膜 可方便地製成各種形狀和尺寸的發聲裝置,該發聲裝置 可方便地應用於各種音樂設備中,如音響、手機、Mp3、 MP4、電視、計算機等電子領域及其它發聲裝置中。另, 由於電磁波,尤其係雷射,可在真空中遠距離傳播,該 發聲裝置可用於遠距離信號傳輸領域,如將聲音信號通 過電磁波的形式遠距離傳輸。進一步地,由於上述發聲 兀件通過電磁波照射即可發聲,故,當該電磁波爲紅外 線、可見光、紫外線、微波、X射線及r射線時,該發聲 元件可在一無電、無磁的極端環境下工作。 [0029] 本技術方案實施例提供的發聲裝置具有以下優點:其一 ,由於所述發聲裝置中的發聲元件僅由奈米碳管薄膜組 成,無需磁鐵等其它複雜結構,故該發聲裝置的結構較 爲簡單,有利於降低該發聲裝置的成本。其二,由於所 097124110 表單蝙號A0101 第13頁/共23頁 1003423464-0 I 100年11月16日修正脊換·gy 述由奈米碳管薄膜組成的發聲元件可通過輸入一電磁波 號發聲,故,該發聲元件可在一無電環境下工作。其 〜,4發聲裝置利用輸入信號造成該奈米碳管薄膜溫度 变化,從而使其周圍氣體介質迅速膨脹和收縮,進而發 聲波,故該奈米碳管薄膜組成的發聲裝置可在無磁的 條件下工作。其四,由於該奈米碳管薄膜具有較小的熱 令和大的比表面積,故該奈米碳管薄臈具有升溫迅速、 *’、、滯後小、熱交換速度快的特點,故該奈米碳管薄膜組 成的發聲裝置可發出很寬頻譜範圍内的聲音( 1HZ-100kHZ),且具有較好的發聲效果。其五,由於奈 米碳管薄膜爲多個相互平行且並排設置的長奈米碳管組 成,故該奈米碳管薄膜沿奈米碳管排列方向具有較好的 導熱性能,能充分發揮奈米碳管的特性,從而使發聲元 件具有較好的發聲效果。其六,由於奈米碳管具有極大 的比表面積,在凡德瓦爾力的作用下,奈米碳管薄膜本 身有很好的黏附性’故奈米碳管薄膜可方便地直接黏附 於支擇結構表Φ。其七’當㈣聲辑厚度比較小時, 例如小於10微米,該發聲元件具有較高的透明度,此時 ’可將該發聲元件直接設置在各種顯示裝置、手機顯示 屏的顯示表面或油畫的上表面’從而達到節省空間的目 的》其八,所述發聲裝置可進-步包括切結構及擺音 結構,該支撐結構可提高發聲裝置的發聲強度,該攏音 結構可反射發聲元件發出的聲波,增強所述發聲裝置的 發聲效果。 综上所述,本發明確已符合發明專利之要件,遂依法提 表單编號A0101 第14頁/共23頁 1003423464-0 1356397 100年11.月16日梭正替换頁 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0031] 圖1係先前技術中揚聲器的結構示意圖。 [0032] 圖2係本技術方案第一實施例發聲裝置的結構示意圖。 [0033] 圖3係本技術方案第一實施例發聲裝置中奈米碳管薄膜的 掃描電鏡照片。 [0034] 圖4係本技術方案第二實施例發聲裝置的結構示意圖。 【主要元件符號說明】 [0035] 揚聲器:100 [0036] 音圈:102 [0037] 磁鐵:104 [0038] 振膜:106 [0039] 發聲裝置:10,20 [0040] 電磁波信號輸入裝置:112,212 [0041] 發聲元件:114,214 [0042] 支撐結構:116,216 [0043] 調製裝置:118,218 [0044] 電磁波信號:1 20, 220 097124110 表單编號A0101 第15頁/共23頁 1003423464-0 1356397 [0045] 100年.11月16日核正替換頁攏音結構:222 097124110 表單编號A0101 第16頁/共23頁 1003423464-0Correction of the replacement of W 1356.397 on November 16, 100. 6. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a sounding device, and more particularly to a sound emitting device based on a carbon nanotube. [Prior Art] [0002] A sounding device generally consists of a signal input device and a sounding element. An electrical signal is input to the sounding element through the signal input device to emit a sound. The sounding element of the prior art is generally a speaker. The speaker is an electroacoustic device that converts an electrical signal into a sound signal. Specifically, the speaker can convert a range of audio electric power signals into a audible sound having a small distortion and a sufficient sound pressure level by a transducing mode. There are many types of speakers, and although they work in different ways, they generally push the surrounding air by generating mechanical vibrations, causing fluctuations in the air medium to achieve "electric-force-acoustic" conversion. [0003] Referring to FIG. 1, the prior electric speaker 100 is generally composed of three parts: a voice coil 102, a magnet 104, and a diaphragm 106. The voice coil 102 typically employs a conductor that is equivalent to a current carrying conductor when an audio current signal is input to the voice coil 102. If it is placed in a fixed magnetic field, the voice coil 102 will be subjected to a Lorentz force in the magnetic field, and the voice coil 102 will be subjected to a force that is proportional to the audio current and whose direction changes with the direction of the audio current. Therefore, the voice coil 102 generates vibration under the action of a magnetic field, and drives the diaphragm 106 to vibrate. The air before and after the diaphragm 106 also vibrates, and the electric signal is converted into sound waves to radiate around. However, the structure of the electrodynamic speaker 100 is complicated, and it must operate under magnetic conditions. [0004] Further, the sounding principle of the sounding device in the prior art is "Electric-force 097124110 Form No. A0101 Page 3 / Total 23 Page 1003423464-0 1356397 __ November 16th, 100th, the replacement page - sound" The principle of conversion, that is, the most basic condition for sounding is the input of electrical signals. In extreme environments, such as in an unpowered environment, the above-mentioned sounding device cannot be applied for sounding. [0005] The photoacoustic effect refers to a phenomenon in which an acoustic signal is generated when a substance is irradiated with light of a periodic intensity modulation. When a substance is exposed to light, the substance is excited by absorption of light energy, and the absorbed light energy is converted into heat in whole or in part by non-radiative transition. If the irradiated beam undergoes periodic intensity modulation, a periodic temperature change is generated within the substance, causing the material and its adjacent medium to expand and contract, causing periodic changes in stress (or pressure), thereby producing sound. Signal, this signal is called photoacoustic signal. The frequency of the photoacoustic signal is the same as the frequency of the optical modulation, and its intensity and phase are determined by the optical, thermal, elastic and geometric properties of the material. At present, photoacoustic spectrometers and photoacoustic microscopes fabricated using photoacoustic effects have been widely used in the field of physical component analysis and detection. For example, prior art photoacoustic spectrometers typically include a light source, a sample chamber, and a signal detector. The source is typically a modulated pulsed laser source or a continuous source of laser light. The signal detector is typically a microphone. The sample to be tested is placed in the sample chamber. The sample material is not limited and may be a gas, a liquid or a solid material such as a solid powder or a biological sample. The laser source emits a laser to the sample in the sample chamber, and the sound energy generated by the photoacoustic effect is directly proportional to the light energy absorbed by the substance, and the substances of different compositions have absorption peaks at different wavelengths of the light wave, so When a light source having a multi-spectrum or continuous spectrum sequentially illuminates a sample with beams of different wavelengths, substances of different compositions within the sample will produce photoacoustic signal maxima at wavelengths of light waves corresponding to respective absorption peaks. The signal detector detects the maximum value of the photoacoustic signal, thereby 097124110 Form No. A0101 Page 4 / 23 pages 1003423464-0 1356, 397 November 16, 100, according to the replacement page to determine the material type of the sample to be tested . [0006] However, general materials are limited by the light absorbing ability, the generated photoacoustic signal is weak, and the frequency range is above megahertz, and can only be received by a transducer such as a microphone or a piezoelectric sensor. Therefore, in the prior art, The sounding device produced by the photoacoustic effect has not yet been made to be directly perceived by the human ear. Further, in the prior art, there is no sound generating device which is manufactured by applying a photoacoustic effect to a generalized electromagnetic wave. [0007] Since the early 1990s, nanocarbons represented by carbon nanotubes (see He 1 ica 1 mi -crotubu1es of graphitic carbon, Nature, Sura-io Iijiraa, vol 354, p56 (1 991 )) The material has attracted great attention due to its unique structure and properties. In recent years, with the deepening of research on carbon nanotubes and nanomaterials, its broad application prospects have been continuously revealed. For example, due to the unique electromagnetic, optical, mechanical, and chemical properties of carbon nanotubes, a large number of applications related to field emission electron sources, sensors, new optical materials, and soft ferromagnetic materials have been reported. . However, carbon nanotubes have not been found in the prior art as sounding elements for use in the field of acoustics. [0008] In view of the above, it is necessary to provide a sounding device that can directly emit sound that can be perceived by the human ear under the condition of no magnetism and no electricity. [0009] A sounding device includes An electromagnetic wave signal input device and a sound emitting component. The sound emitting element is spaced apart from the electromagnetic wave signal input device. Wherein, the sounding element comprises at least one layer of carbon nanotube film comprising a plurality of mutually parallel carbon nanotubes, the electromagnetic wave signal 097124110 Form No. A0101 Page 5 of 23 1003423464-0 1356397 __ 100 years. On November 16th, the nuclear replacement page input device transmits an electromagnetic wave signal to the carbon nanotube film, so that the carbon nanotube film generates heat by absorbing the electromagnetic wave signal, thereby heating the gas medium to emit sound waves. [0010] Compared with the prior art, the sounding device has the following advantages: First, since the sounding element in the sounding device is composed only of a carbon nanotube film, and no other complicated structure such as a magnet is needed, the sounding device The structure is relatively simple, which is beneficial to reducing the cost of the sounding device. Secondly, the sounding device uses the input signal to cause the temperature of the carbon nanotube film to change, so that the surrounding gas medium rapidly expands and contracts, and then emits sound waves, so the sound generating device composed of the carbon nanotube film can be non-magnetic. Working under the conditions. Third, since the carbon nanotube film has a small heat capacity and a large specific surface area, the carbon nanotube film has the characteristics of rapid temperature rise, small heat lag, and high heat exchange rate, so the carbon nanotube The sounding device composed of a thin film can emit sound in a wide spectral range (ΙΗζ-lOOkHz) and has a good sounding effect. Fourth, since the carbon nanotube film is composed of a plurality of long carbon nanotubes arranged in parallel and side by side, the carbon nanotube film has good mechanical strength and toughness, and has a relatively good arrangement along the direction of the carbon nanotubes. Good thermal conductivity, so that the sounding component has a good sounding effect. Fifth, because the carbon nanotubes have a very large specific surface area, the carbon nanotube film itself has good adhesion under the action of van der Waals force, so the carbon nanotube film can be easily adhered directly to the support structure. surface. Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. [0012] Referring to FIG. 2, a first embodiment of the present technical solution provides a sounding device 10. 097124110 Form No. A0101 6 pages/total 23 pages 1003423464-0 1356397 100 years. On November 16th, according to the replacement page, the sounding device 10 includes an electromagnetic wave signal input device 112, a sounding element 114', a support structure 116 and a modulation device 118. The sounding element 114 is disposed on the support structure Π6. The support structure 116 is an alternative structure for supporting and securing the sounding element 114. The electromagnetic wave signal input device 112 is disposed corresponding to the sound emitting element 114 and spaced apart to provide an electromagnetic wave signal 120. The modulation device 1A is disposed between the electromagnetic wave signal input device 112 and the sounding element 114 for modulating the intensity or frequency of the electromagnetic wave signal 120. The electromagnetic wave signal 120 emitted from the electromagnetic wave signal input device 112 is modulated by the modulation device 118 to the intensity and frequency, and then transmitted to the surface of the sound emitting element 114. [0013] The sounding element 114 includes at least one layer of carbon nanotube film. See Figure 3 for a scanning electron micrograph of the carbon nanotube film. The carbon nanotube film comprises a plurality of carbon nanotubes disposed substantially parallel to each other. The adjacent two carbon nanotubes are combined by van der Waals force, and the distance between two adjacent carbon nanotubes is 0-5 micrometers. The length of the carbon nanotube film is the length of the carbon nanotube tube. Preferably, the length of the carbon nanotube thin layer is 丨 micrometers to 30 mm. The thickness of the carbon nanotube film is 〇. 5 Nano ~ 1 〇〇 micron. The carbon nanotubes in the carbon nanotube film may be one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The diameter of the single-walled carbon nanotube is 0.5 nm to 5 Å nanometer. The diameter of the double-walled carbon nanotube is 1.0 nm, and the diameter of the multi-walled carbon nanotube is 1. 5 nm ~ 50 nm. Further, the sounding element 114 comprises at least two layers of carbon nanotube film arranged in an overlapping manner, and the adjacent two layers of carbon nanotube film are tightly bonded by van der Waals force, and adjacent two layers of nano carbon 097124110, the thin carbon tube of the thin tube. Form No. A0101 1003423464-0 [0014] 1356397 __ On November 16th, 100, the replacement page has a cross angle α, 0 degrees and 90 degrees, which can be prepared according to actual needs. . When the angle α between the carbon nanotubes in the adjacent two layers of the carbon nanotube film is greater than 0 degrees, the plurality of carbon nanotubes in the sound generating element 114 form a network structure, and the network structure A plurality of uniformly distributed micropores having a pore size of less than 5 microns are included. When the sounding element 114 includes a plurality of layers of carbon nanotube film disposed one on another, the sounding element 114 is a self-supporting structure. [0015] It can be understood that the thickness of the sound emitting element 114 cannot be too thick, and if it is too thick, it affects the heat exchange between the carbon nanotube and the surrounding gaseous medium, thereby affecting the sounding effect of the sound emitting element 114. Further, the thickness of the sound emitting element 114 should not be too thin, and if it is too thin, the carbon nanotube film is inferior in strength, and is easily damaged during the sounding process. When the thickness of the sound emitting element 114 is relatively small, for example, less than 10 micrometers, the sound emitting element 114 has a high transparency, and at this time, the sound emitting element 114 can be directly disposed on the upper surface of various display devices, mobile phone display screens or oil paintings. To achieve space saving purposes. Preferably, the sound emitting element 114 has a thickness of 0.5 nm to 1 mm. [0016] In the embodiment of the technical solution, the sounding element 114 includes two layers of carbon nanotube films which are arranged in an overlapping manner, and the carbon nanotubes are arranged in the same direction in the two layers of carbon nanotube film. The sound emitting element 114 has a length of 3 cm, a width of 3 cm, and a thickness of 50 nm. [0017] The support structure 116 mainly serves as a support, and its shape is not limited. Any object having a certain shape, such as a wall or a table top, can be used as the support structure 116 in the first embodiment of the present technical solution. Specifically, the support structure 116 can be a planar or curved structure and has a surface. At this time, the sounding element 114 is directly disposed and attached to the surface of the support structure 116. 097124110 Form No. 1010101 Page 8 of 23 1003423464-0 1356397 r On November 16, 100, according to the positive replacement page, due to the large specific surface area of the carbon nanotubes, under the action of Van der Valli, the nano The carbon tube film itself has good adhesion, so when the carbon nanotube film is used as the sounding element 114, the carbon nanotube film can be directly adhered to the surface of the support structure 116. Further, the supporting structure 116 and the sound emitting element 114 may also be bonded to each other by a bonding agent, so that the sounding element 114 is better fixed on the supporting structure 116. The binder may be a high temperature resistant silicone. Since the sounding element 114 is entirely supported by the support structure 116, the sounding element 114 can withstand the input of the electromagnetic wave signal 120 having a higher intensity, thereby having a higher sounding intensity. Alternatively, the support structure 116 can be a frame structure, a rod structure or an irregular shape structure. At this time, the sound emitting element 114 is partially in contact with the support structure 116, and the remaining portion is suspended. This arrangement provides for better heat exchange of the sound producing element 114 with air or surrounding medium. The sound emitting element 114 has a larger contact area with air or surrounding medium, and has a faster heat exchange rate, so that it has better sound generation efficiency. [0019] The material of the support structure 116 is not limited and may be a rigid material such as diamond, wood material, glass or quartz. Alternatively, the support structure 116 may be a flexible material such as paper material, plastic or resin. Preferably, the material of the support structure 116 should have better thermal insulation properties, so that the heat generated by the sound-emitting element 114 is prevented from being excessively absorbed by the support structure 116, and the purpose of heating the air to sound is not achieved. In addition, the support structure 116 preferably has a relatively rough surface so that the sound emitting element 114 disposed on the surface of the support structure 116 has a larger contact area with air or other external medium. [0020] It can be understood that since the carbon nanotube film in the sound emitting element 114 is a 097124110, the form number A0101, page 9 / 23 pages 1003423464-0 1356397 100 years. November 16 revised replacement page self-supporting structure, Therefore, the branch structure 116 is an optional structure. [0021] The electromagnetic wave signal input device 112 includes an electromagnetic wave signal source, and the electromagnetic wave signal source can emit an electromagnetic wave of variable intensity or frequency to form an electromagnetic wave is number 120. The intensity or frequency of the electromagnetic wave signal 12〇 can be constantly changed, so that the nano tube film as the sounding element 114 can absorb the electromagnetic wave 彳s 120 intermittently to heat the air, so that the air continuously expands and contracts, and the sound continues to be emitted. The frequency range of the electromagnetic wave signal 12 包括 includes radio waves, infrared rays, visible rays, ultraviolet rays, microwaves, X rays, and ray rays. Preferably, the electromagnetic wave signal source is an optical signal source, and the emitted electromagnetic wave signal 120 can be an optical signal, and the wavelength of the optical signal includes various optical waves from ultraviolet to far infrared wavelengths. The average of the electromagnetic wave signals 丨2〇 The power density is in the range of l/zW/mm2~20W/mm2. It can be understood that the intensity of the electromagnetic wave k is not too weak, and if it is too weak, the carbon nanotube film cannot sufficiently heat the surrounding air to emit sound. Moreover, the intensity of the electromagnetic wave signal 不能2〇 cannot be too strong, too strong. The carbon nanotube film reacts with oxygen in the air to destroy the carbon nanotube film. Preferably, the electromagnetic wave signal source is a pulsed laser generator® [0022] The incident angle and position of the electromagnetic wave signal 120 emitted by the electromagnetic wave signal input device 11 on the sound emitting element 114 are not limited. Further, the distance between the electromagnetic wave signal input device 112 and the sound emitting element 114 is not limited, but it should be ensured that electromagnetic waves emitted from the electromagnetic wave signal input device 112 can be transmitted to the surface of the sound emitting element 114. Preferably, when the electromagnetic wave signal is an optical signal, and the electromagnetic wave signal input device 112 is far away from the sound emitting element 114, the electromagnetic wave signal input device 112 may further include an optical fiber, one end of the optical fiber and the optical signal source. Connection, the other end extends to the nano 097124110 Form No. A0101 Page 10 / Total 23 Page 1003423464-0 1356397 100. November 16 Amendment Replacement Page Carbon Tube Film Near, so that the above laser generator is issued The electromagnetic wave signal 120 is transmitted to the surface of the sound emitting element 114 over a long distance by the optical fiber. [0023] The modulating device 118 is an optional structure disposed on the transmission path of the electromagnetic wave signal 120, and includes an intensity modulator, a frequency modulator, or a combination of the two. The sounding device 10 transmits electromagnetic waves through the modulating device 118. The intensity and frequency of the signal 120 are modulated to effect a change in the intensity and frequency of the sound emitted by the sound producing element 114. Specifically, the strength of the electromagnetic wave signal 120 can be modulated by switching the electromagnetic wave signal 120 at a different frequency, or the intensity of the electromagnetic wave signal 120 can be modulated by varying the intensity of the electromagnetic wave signal 120 at a different frequency. The change in the intensity of the electromagnetic wave signal 120 affects the change in the sounding frequency of the sounding element 114. By modulating the electromagnetic wave signal 120, the sound producing element 114 can be made to emit sound of different frequencies. It will be appreciated that the modulation device 118 can be integrated or spaced apart from the electromagnetic wave signal input device 112. When the electromagnetic wave signal input device 112 includes an optical fiber, the modulation device 118 can be disposed on the beginning or the end of the optical fiber. In this embodiment, the modulating device 118 is an electro-optic crystal. [0024] In the sounding device of the embodiment of the present invention, a carbon nanotube film is used as the sounding element, and since the absorption of electromagnetic waves by the carbon nanotubes is close to an absolute black body, the sounding device has uniform absorption characteristics for electromagnetic waves of various wavelengths. In addition, the carbon nanotubes have a small heat capacity and a large heat dissipation area. Therefore, when the carbon nanotubes in the sound generating element 114 are irradiated by electromagnetic waves such as lasers, the carbon nanotubes are excited by the absorption of light energy, and the absorbed light energy is completely or partially converted into non-radiation. heat. The carbon nanotube temperature rises rapidly and undergoes rapid heat exchange with the surrounding air or other medium. If the illuminating electromagnetic wave is subjected to periodic intensity modulation, then in the nano 097124110 Form No. 1010101 Page 11 / Total 23 Page 1003423464-0 1356397 ___ 100 years. On November 16th, the shuttle is replacing the page with a cyclical temperature change. Therefore, the surrounding gas medium also produces periodic temperature changes, causing the surrounding air or other medium to rapidly expand and contract, thereby making a sound. Further, in the embodiment, the sound emitting element 114 includes a carbon nanotube film composed of a plurality of carbon nanotubes arranged parallel to each other and arranged side by side, so the frequency of the electromagnetic wave signal 120 emitted by the electromagnetic signal input device 118 is used. Suitably, and the medium surrounding the sounding element 114 is air, the sound emitted by the sounding element 114 can be directly perceived by the human ear. It will be appreciated that the acoustic component 114 can emit ultrasonic waves as the frequency of the electromagnetic wave signal 120 increases. Referring to FIG. 4, a second embodiment of the present invention provides a sounding device 20, which includes a signal input device 212, a sounding component 214, a support structure 216, and a modulation device 218. The support structure 216 is a frame structure, a rod structure or an irregular shape structure. The sounding element 214 is partially in contact with the support structure 216, and the remaining portion is suspended so that sound can be transmitted through the sounding element 214. The electromagnetic wave signal input device 212 is provided corresponding to the sound emitting element 214 and spaced apart. The modulating device 218 is disposed between the electromagnetic wave signal input device 212 and the sound emitting element 214. [0027] The sounding device 20 is substantially similar in structure to the sounding device 10 in the first embodiment, and is different from the sounding device 10 in the first embodiment in that the sounding device 20 further includes a sound collecting structure 222. The tone structure 222 is spaced apart from the side of the sounding element 214 that is remote from the input of the electromagnetic wave signal 220. The sound-sounding structure 222 is spaced apart from the sound-emitting element 214 such that the sound waves emitted by the sound-emitting element 214 are reflected by the sound-sounding structure 222, enhancing the sounding effect of the sounding device 20. According to the size of the sounding element 214, the distance 097124110 Form No. A0101 Page 12 of 23 1003423464-0 1356397, 100 years. November 16th, the correction & page can be 1 cm ~ 1 m. It can be understood that the sound structure 222 can be various structures having a large surface, such as a planar structure or a curved structure. In this embodiment, the sound structure 222 is a flat plate. The sound structure 222 can be spaced from the sounding element 214 by a bracket. In addition, the sound structure 222 and the support structure 216 can also be an integrated whole body, such as a cavity having a narrow opening. The sounding element 214 is laid on the opening of the cavity to form a Helmholtz. Resonant cavity. The material of the sound structure 222 is wood, plastic, metal or broken glass. [0028] The sounding device provided by the embodiment of the present technical solution has an utterance intensity of up to 1 〇〇 decibel sound level, and the vocalization frequency ranges from 1 Hz to 100,000 Hz (ie, ΙΗζ-lOO kHz). In addition, the carbon nanotube film in the embodiment of the present invention has better toughness and mechanical strength, and the sound generating device of various shapes and sizes can be conveniently fabricated by using the carbon nanotube film, and the sound generating device can be conveniently Used in a variety of music equipment, such as audio, mobile phones, Mp3, MP4, television, computers and other electronic fields and other sound devices. In addition, since electromagnetic waves, especially lasers, can be transmitted over long distances in a vacuum, the sounding device can be used in the field of long-distance signal transmission, such as transmitting sound signals over long distances in the form of electromagnetic waves. Further, since the utterance element can be sounded by electromagnetic wave irradiation, when the electromagnetic wave is infrared light, visible light, ultraviolet light, microwave, X-ray, and r-ray, the sound-emitting element can be in an extreme environment of no electricity or magnetism. jobs. [0029] The sounding device provided by the embodiment of the present technical solution has the following advantages: First, since the sounding element in the sounding device is composed only of a carbon nanotube film, and no other complicated structure such as a magnet is needed, the structure of the sounding device is relatively For the sake of simplicity, it is advantageous to reduce the cost of the sounding device. Second, because of the 097124110 form bat number A0101 page 13 / 23 pages 1003423464-0 I November 16, 100 correction of the ridge change gy said the sound element composed of the carbon nanotube film can be sounded by inputting an electromagnetic wave number, Therefore, the sounding element can operate in an unpowered environment. The ~4 sounding device uses the input signal to cause the temperature change of the carbon nanotube film, so that the surrounding gas medium rapidly expands and contracts, and then emits sound waves, so the sound generating device composed of the carbon nanotube film can be non-magnetic. Work under conditions. Fourth, since the carbon nanotube film has a small heat command and a large specific surface area, the carbon nanotube thin film has the characteristics of rapid temperature rise, *', small hysteresis, and fast heat exchange rate, so The sounding device composed of the carbon nanotube film can emit sound in a wide spectral range (1HZ-100kHZ) and has a good sounding effect. Fifthly, since the carbon nanotube film is composed of a plurality of long carbon nanotubes arranged parallel to each other and arranged side by side, the carbon nanotube film has good thermal conductivity along the arrangement direction of the carbon nanotubes, and can fully exert the function. The characteristics of the carbon tube make the sounding element have a good sounding effect. Sixth, because the carbon nanotubes have a very large specific surface area, the carbon nanotube film itself has good adhesion under the action of van der Waals force, so the carbon nanotube film can be easily adhered directly to the selection. Structure table Φ. When the thickness of the sound is relatively small, for example, less than 10 micrometers, the sounding element has a high transparency, and the sounding element can be directly disposed on the display surface of various display devices, mobile phone display screens or oil paintings. The surface 'to achieve the purpose of saving space>> The sounding device can further include a cutting structure and a pendulum structure, the support structure can improve the sounding intensity of the sounding device, and the sounding structure can reflect the sound wave emitted by the sounding element Enhancing the sounding effect of the sounding device. In summary, the present invention has indeed met the requirements of the invention patent, and is stipulated in accordance with the law. Form No. A0101 Page 14 of 23 1003423464-0 1356397 100 years 11. On the 16th of the day, the shuttle is replaced by a patent application. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0031] FIG. 1 is a schematic structural view of a speaker in the prior art. 2 is a schematic structural diagram of a sounding device according to a first embodiment of the present technical solution. 3 is a scanning electron micrograph of a carbon nanotube film in the sounding device of the first embodiment of the present technical solution. 4 is a schematic structural diagram of a sounding device according to a second embodiment of the present technical solution. [Main component symbol description] [0035] Speaker: 100 [0036] Voice coil: 102 [0037] Magnet: 104 [0038] Diaphragm: 106 [0039] Sounding device: 10, 20 [0040] Electromagnetic wave signal input device: 112 212 [0041] Sounding element: 114, 214 [0042] Support structure: 116, 216 [0043] Modulation device: 118, 218 [0044] Electromagnetic wave signal: 1 20, 220 097124110 Form No. A0101 Page 15 of 23 Page 1003423464-0 1356397 [0045] 100 years. November 16th nuclear replacement page sound structure: 222 097124110 Form number A0101 Page 16 / Total 23 page 1003423464-0

Claims (1)

1356397 ' ‘ 100年.11月16日修正替換頁 七、申請專利範圍: 1 . 一種發聲裝置,其包括: 一電磁波信號輸入裝置; 一發聲元件,該發聲元件與該電磁波信號輸入裝置對應且 間隔設置, 其改良在於.,該發聲元件包括至少一層奈米碳管薄膜,該 奈米碳管薄膜包括多個相互平行的奈米碳管,該電磁波信 號輸入裝置傳遞電磁波信號至該奈米碳管薄膜,使該奈米 碳管薄膜通過吸收該電磁波信號發熱,從而加熱氣體介質 發出聲波。 2. 如申請專利範圍第1項所述的發聲裝置,其中,所述奈米 碳管薄膜中,奈米碳管並排設置,相鄰兩個奈米碳管相互 接觸,且相鄰兩個奈米碳管之間通過凡德瓦爾力緊密結合 〇 3. 如申請專利範圍第1項所述的發聲裝置,其中,所述奈米 碳管薄膜中的相鄰兩個奈米碳管之間的距離小於5微米。 4. 如申請專利範圍第1項所述的發聲裝置,其中,所述發聲 元件包括至少兩層重疊設置的奈米碳管薄膜,相鄰兩層奈 米碳管薄膜之間通過凡德瓦爾力緊密結合,且相鄰兩層奈 米碳管薄膜中的奈米碳管的排列方向形成一夾角α,0度 S a S90度。 5 .如申請專利範圍第4項所述的發聲裝置,其中,所述發聲 元件爲一網狀結構,該網狀結構包括均勻分佈的微孔,該 微孔的扎徑小於5微米。 6.如申請專利範圍第1項所述的發聲裝置,其中,所述奈米 097124110 表單編號Α0101 第17頁/共23頁 1003423464-0 1356397 100年.11月16日核正替換頁 碳管為單壁奈米碳管、雙壁奈米碳管及多壁奈米碳管中的 一種或多種。 7. 如申請專利範圍第4項所述的發聲裝置,其中,所述單壁 奈米碳管的直徑為0.5奈米〜50奈米,所述雙壁奈米碳管 的直徑為1. 0奈米〜50奈米,所述多壁奈米碳管的直徑為 1.5奈米〜50奈米。 · 8. 如申請專利範圍第1項所述的發聲裝置,其中,所述發聲 元件的厚度爲0.5奈米~1毫米。 9. 如申請專利範圍第1項所述的發聲裝置,其中,該發聲裝 置進一步包括一支撐結構,所述發聲元件通過該支撐結構 固定設置。 10.如申請專利範圍第9項所述的發聲裝置,其中,所述支撐 結構爲一平面或曲面結構,並具有一表面,所述發聲元件 直接設置並貼合於該支撐結構的表面。 11 .如申請專利範圍第9項所述的發聲裝置,其中,所述支撐 結構爲一框架結構、桿狀結構或不規則形狀結構,所述發 聲元件通過該支撐結構部分懸空設置。 12 .如申請專利範圍第11項所述的發聲裝置,其中,所述發聲 裝置進一步包括一攏音結構,所述攏音結構設置於發聲元 件遠離電磁波信號输入裝置的一側,與所述發聲元件相對 並間隔設置。 13 .如申請專利範圍第9項所述的發聲裝置,其中,所述支撐 結構的材料爲金剛石、玻璃、石英、塑膠、樹脂、木質材 料或紙質材料》 14.如申請專利範圍第1項所述的發聲裝置,其中,所述發聲 裝置進一步包括一攏音結構,所述攏音結構包括一亥姆霍 097124110 表單编號A0101 第18頁/共23頁 1003423464-0 1356397 100年11.月16日核正替换頁 茲共振腔,所述發聲元件通過該攏音結構固定設置。 15.如申請專利範圍第1項所述的發聲裝置,其中,所述電磁 波信號爲無線電波、紅外線、可見光、紫外線、微波、X 射線及T射線中的一種或多種。 16 .如申請專利範圍第1項所述的發聲裝置,其中,所述電磁 波信號輸入裝置包括一光信號源,所述電磁波信號輸入裝 置通過該光信號源發出光信號,該光信號的波長範圍爲從 紫外區至遠紅外區之間。 17 .如申請專利範圍第16項所述的發聲裝置,其中,所述光信 號源爲一脈衝雷射發生器。 18 .如申請專利範圍第16項所述的發聲裝置,其中,所述電磁 波信號輸入裝置進一步包括一光纖,該光纖一端與所述光 信號源連接,另一端延伸至所述奈米碳管薄膜附近,所述 光信號通過光纖傳遞至奈米碳管薄膜。 19.如申請專利範圍第1項所述的發聲裝置,其中,該發聲裝 置進一步包括一調製裝置,該調製裝置設置於所述電磁波 信號輸入裝置與發聲元件之間,且位於所述電磁波信號的 傳輸路徑上,該調製裝置包括強度調製裝置、頻率調製裝 置或兩者的結合。 20 .如申請專利範圍第1項所述的發聲裝置,其中,所述電磁 波信號的平均功率密度爲1 V W/mm2~20W/nm2。 097124110 表單編號A0101 第19頁/共23頁 1003423464-01356397 ' '100 years. November 16th revised replacement page VII. Patent application scope: 1. A sounding device, comprising: an electromagnetic wave signal input device; a sounding component, the sounding component corresponding to the electromagnetic wave signal input device and spaced The improvement is characterized in that the sounding element comprises at least one layer of carbon nanotube film, the carbon nanotube film comprises a plurality of mutually parallel carbon nanotubes, and the electromagnetic wave signal input device transmits an electromagnetic wave signal to the carbon nanotube The film causes the carbon nanotube film to generate heat by absorbing the electromagnetic wave signal, thereby heating the gas medium to emit sound waves. 2. The sounding device according to claim 1, wherein in the carbon nanotube film, the carbon nanotubes are arranged side by side, the adjacent two carbon nanotubes are in contact with each other, and two adjacent nanometers are adjacent to each other. The sound-emitting device according to the first aspect of the invention, wherein the carbon nanotubes are in the vicinity of the adjacent two carbon nanotubes in the carbon nanotube film. The distance is less than 5 microns. 4. The sounding device of claim 1, wherein the sounding element comprises at least two layers of carbon nanotube film disposed in an overlapping manner, and a van der Waals force is passed between two adjacent layers of carbon nanotube film. Tightly bonded, and the arrangement direction of the carbon nanotubes in the adjacent two layers of carbon nanotube film forms an angle α, 0 degrees S a S90 degrees. 5. The sounding device of claim 4, wherein the sounding element is a mesh structure comprising uniformly distributed micropores having a diameter of less than 5 microns. 6. The sounding device according to claim 1, wherein the nano 097124110 form number Α 0101 page 17 / 23 pages 1003423464-0 1356397 100 years. November 16 nuclear replacement page carbon tube is One or more of single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes. 7. The diameter of the single-walled carbon nanotubes is from 0.5 nm to 50 nm, and the diameter of the double-walled carbon nanotubes is 1.0. Nano ~ 50 nm, the diameter of the multi-walled carbon nanotubes is 1.5 nm ~ 50 nm. 8. The sounding device according to claim 1, wherein the sound emitting element has a thickness of 0.5 nm to 1 mm. 9. The sounding device of claim 1, wherein the sounding device further comprises a support structure, the sound emitting element being fixedly disposed by the support structure. 10. The sounding device of claim 9, wherein the support structure is a planar or curved structure and has a surface, and the sound emitting element is directly disposed and attached to a surface of the support structure. The sounding device according to claim 9, wherein the support structure is a frame structure, a rod-like structure or an irregular-shaped structure, and the sound-emitting element is partially suspended by the support structure. 12. The sounding device of claim 11, wherein the sounding device further comprises a sound-sounding structure, the sound-sounding structure is disposed on a side of the sounding element away from the electromagnetic wave signal input device, and the sounding The components are arranged opposite and spaced apart. The sounding device according to claim 9, wherein the material of the support structure is diamond, glass, quartz, plastic, resin, wood material or paper material. 14. As claimed in claim 1 The sounding device, wherein the sounding device further comprises a sounding structure, the sounding structure comprises a Helmho 097124110 Form No. A0101 Page 18/23 pages 1003423464-0 1356397 100 years 11. 16 The Japanese core is replacing the page cavity, and the sounding element is fixedly disposed by the sounding structure. The sounding device according to claim 1, wherein the electromagnetic wave signal is one or more of radio waves, infrared rays, visible light, ultraviolet rays, microwaves, X rays, and T rays. The sounding device of claim 1, wherein the electromagnetic wave signal input device comprises an optical signal source, and the electromagnetic wave signal input device emits an optical signal through the optical signal source, and the wavelength range of the optical signal It is between the ultraviolet region and the far infrared region. The sounding device of claim 16, wherein the optical signal source is a pulsed laser generator. 18. The sounding device of claim 16, wherein the electromagnetic wave signal input device further comprises an optical fiber, one end of the optical fiber being connected to the optical signal source and the other end extending to the carbon nanotube film Nearby, the optical signal is transmitted to the carbon nanotube film through the optical fiber. 19. The sounding device of claim 1, wherein the sounding device further comprises a modulation device disposed between the electromagnetic wave signal input device and the sound emitting element and located at the electromagnetic wave signal The modulation device includes an intensity modulation device, a frequency modulation device, or a combination of both on the transmission path. The sounding device according to claim 1, wherein the electromagnetic wave signal has an average power density of 1 V W/mm 2 to 20 W/nm 2 . 097124110 Form No. A0101 Page 19 of 23 1003423464-0
TW97124110A 2008-06-27 2008-06-27 Acoustic device TWI356397B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97124110A TWI356397B (en) 2008-06-27 2008-06-27 Acoustic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97124110A TWI356397B (en) 2008-06-27 2008-06-27 Acoustic device

Publications (2)

Publication Number Publication Date
TW201002098A TW201002098A (en) 2010-01-01
TWI356397B true TWI356397B (en) 2012-01-11

Family

ID=44825080

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97124110A TWI356397B (en) 2008-06-27 2008-06-27 Acoustic device

Country Status (1)

Country Link
TW (1) TWI356397B (en)

Also Published As

Publication number Publication date
TW201002098A (en) 2010-01-01

Similar Documents

Publication Publication Date Title
JP4555384B2 (en) Thermoacoustic device
TWI356396B (en) Acoustic device
Tian et al. Single-layer graphene sound-emitting devices: experiments and modeling
JP4555387B2 (en) Thermoacoustic device
US8068626B2 (en) Thermoacoustic device
JP2009296591A (en) Thermoacoustic device
JP5270460B2 (en) Thermoacoustic device
JP5270461B2 (en) Thermoacoustic device
JP5270646B2 (en) Thermoacoustic device
JP5270459B2 (en) Sound transmission system
TWI356397B (en) Acoustic device
Wang et al. New high fidelity (hi-fi) three-dimensional thermophone CNT sponge
JP5356992B2 (en) Thermoacoustic device
TWI356395B (en) Acoustic device
TWI385938B (en) Acoustic transmitting system
TWI353584B (en) Acoustic device
JP5270466B2 (en) Thermoacoustic device
Qiu et al. Characteristic parameters and selection principles of substrates and gases for graphene thermophones
TWI403180B (en) Sound box
TWI353580B (en) Acoustic device
TW201001394A (en) Acoustic device
TWI353582B (en) Acoustic device
TWI375944B (en) Acoustic device
TW201002095A (en) Acoustic device