1.375944 10Ϊ年:08月15日梭正替换頁 、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種發聲裝置,尤其涉及一種基於熱聲效應 的發聲裝置。 \. 【先前技術】 [0002] 發聲裝置一般由訊號輸入裝置和發聲元件組成,藉由訊 號輸入裝置輸入訊號給發聲元件,進而發出聲音。先前 技術中的發聲元件一般為一揚聲器。該揚聲器為一種把 電訊號轉換成聲音訊號的電聲器件。具體地,揚聲器可 將一定範圍内的音頻電功率訊號藉由換能方式轉變為失 真小並具有足夠聲壓級的可聽聲音。先前的揚聲器的種 類很多,根據其工作原理分為:電動式揚聲器、電磁式 揚聲器、靜電式揚聲器及壓電式揚聲器。雖然它們的工 '作方式不同,然一般均為藉由產生機械振動推動周圍的 空氣,使空氣介質產生波動從而實現“電-力-聲”之轉 換。它們大都採用振膜振動發出聲音,結構較為複雜。 [0003] 在二十世紀初,有人提出了 一楂基於熱聲效應的熱致發 聲元件的構想,請參見文獻“The Thermophone” , Edward C. Wente, Phys. Rev, Vol.XIX » No. 4 > pp333-345(1921 )及 “On Some Thermal Effects of Electric Currents” , William Henry Preece, Proceedings of the Royal Society of London, Vol·30, (1879-1881), pp408-411(1880) 。該熱致發聲元件藉由向一金屬箔片或金屬絲中通入交 流電來實現發聲。該金屬箔片或金屬絲須具有較小的熱 09714971^^ A〇101 第3頁/共28頁 1013309999-0 T375944__ [101^ 08¾ 15? 容’較薄的厚度’且可將其内部產生的熱量迅速傳導給 周圍氣體介質的特點。當交流電藉由所述金屬箱片或金 屬絲時,隨交流電電流強度的變化,金屬箔片或金屬絲 可迅速升降溫’並和周圍氣體介質迅速發生熱交換,使 氣體介質分子運動’周圍氣體介質的密度亦隨之發生變 化,進而發出聲波》 [0004] H. D. Arnold和I. B. Crandal 1亦介紹了一種簡單的熱致 發聲裝置’請參見‘The thermophone as a precision source of sound" , H. D. Arnold, I. B. Crandall, Phys. Rev. L 10, 22-38 (1917)。請參見圖1,該發聲裝置100採用一鉑片作發聲 元件102,該鉑片的厚度為〇. 7微米。該發聲元件1〇2藉 由夹具104固定。所述發聲元件1〇2及夾具丨04設置在一 基體108表面。電流引線1〇6與所述發聲元件1〇2電連接 ,用於向所述發聲元件102輸入電訊號。該發聲元件1〇2 的發聲頻率與其單位面積熱容密切相關。單位面積熱容 大,則發聲頻率範圍窄,強度低;單位面積熱容小,則 發聲頻率範圍寬,強度高。欲獲得具有較寬發聲頻率範 圍及較尚強度的聲波,則要求發聲元件102的單位面積熱 容愈小愈好。由於材料本身的限制,金屬鉑片厚度最小 只能達到0· 7微米,而〇. 7微米厚的鉑片的單位面積熱容 最小只能達到2. 0x1 〇_4焦耳每平方厘米開爾文。由於受 材料單位面積熱容的限制,所述發聲元件1〇2的發聲頻率 最南僅可達4千赫茲。該發聲元件1〇2的發聲頻率較窄, 且發聲強度較低,不足以被人耳直接感知。 第4頁/共28頁 〇9714971卢單編號 A0101 1013309999-0 1-375944 101年.08月15日修正替換頁 [0005] 综上所述,所述發聲元件102發聲頻率範圍較窄,且所述 發聲元件102的發聲強度低,人耳難以直接感知。 【發明内容】 [0006] 有鑒於此,提供一種發聲頻率範圍較寬,發聲強度高的 基於熱聲效應的發聲裝置實為必要。 [0007] 一種發聲裝置,其包括一發聲元件及一訊號輸入裝置。 該發聲元件包括至少一奈米碳管線狀結構。所述訊號輸 入裝置輸入訊號給該奈米碳管線狀結構,使該奈米碳管 線狀結構改變周圍介質的密度發出聲波。 [0008] 與先前技術相比較,所述發聲裝置具有以下優點:由於 奈米碳管線狀結構具有較小的單位面積熱容和較大的比 表面積,故該發聲元件具有升溫迅速、熱滯後小、熱交 換速度快的特點,故該奈米碳管線狀結構組成的發聲裝 置可以發出較寬頻率範圍内的聲音,具有較好的發聲效 果,且其發聲強度較高,可以被人耳直接感知到。 【實施方式】 [0009] 以下將結合附圖詳細說明本發明實施例的發聲裝置。 [0010] 請參閱圖2,本發明第一實施例提供一種發聲裝置10,該 發聲裝置10包括一訊號輸入裝置12,一發聲元件14,一 支撐結構16,一第一電極142及一第二電極144 »所述第 一電極142和第二電極144間隔設置,且與所述訊號輸入 裝置12電連接。所述支撐結構16對發聲元件14、所述第 一電極142和第二電極144起支撐作用。 [0011] 所述發聲元件14包括至少一奈米碳管線狀結構140,該奈 09714971#單編號 A〇101 第5頁/共28頁 1013309999-0 1375944 _ '101年08月15日核正替换頁 米碳管線狀結構140包括至少一奈米碳管線。所述奈米碳 管線狀結構140的單位面積熱容小於2. 0x1 (Γ4焦耳每平方 厘米開爾文,優選地,所述奈米碳管線狀結構140的單位 面積熱容小於5. 0x1 (Γ5焦耳每平方厘米開爾文。該奈米 碳管線狀結構140的直徑不限,可以根據實際應用調整。 該奈米碳管線狀結構140應用於熱發聲元件時,其與空氣 的接觸面積越大,其發聲強度越高。由於該奈米碳管線 狀結構140由奈米碳管線組成,且該奈米碳管線包括複數 個奈米碳管,而奈米碳管具有較高的韌性和機械強度, 故所述包括至少一奈米碳管線狀結構140的發聲元件14具 有較高的韌性和機械強度。當所述發聲元件14包括複數 個奈米碳管線狀結構140時,該複數個奈米碳管線狀結構 140既可以平行排列,亦可以交叉排列,亦可以相互交織 從而構成一層狀的發聲元件。 [0012] 本實施例中,所述發聲元件14包括複數個平行排列的奈 • 米碳管線狀結構140,該奈米碳管線狀結構140的直徑為 50微米。所述奈米碳管線狀結構140為該發聲元件14的最 小發聲單元,該發聲元件14的單位面積熱容與奈米碳管 線狀結構140的單位面積熱容相同,該發聲元件14單位面 積熱容小於2. 0x10_4焦耳每平方厘米開爾文。 [0013] 所述奈米碳管線狀結構140包括至少一奈米碳管線,該奈 米碳管線的直徑為0.5奈米至100微米。當所述奈米碳管 線狀結構140僅包括一根奈米碳管線時,該奈米碳管線可 以為扭轉奈米碳管線或者非扭轉奈米碳管線《當所述奈 米碳管線狀結構140包括多根奈米碳管線時,該奈米碳管 09714971^^^^ Α0101 第6頁/共28頁 1013309999-0 1375944 101年.08月15日修正替換頁 可以為扭轉奈米碳管線、非扭轉奈米碳管線或者兩者的 組合。具體地,當該奈米碳管線狀結構140包括多根奈米 碳管線時,該多根奈米碳管線既可以沿一轴線平行排列 形成束狀結構的奈米碳管線狀結構,亦可以繞同一軸線 扭轉形成一扭轉結構的奈米碳管線狀結構。 [0014] 所述奈米碳管線狀結構140中的奈米碳管包括單壁奈米碳 管、雙壁奈米碳管及多壁奈米碳管中的一種或多種。所 述單壁奈米碳管的直徑為0. 5奈米〜50奈米,所述雙壁奈 米碳管的直徑為1. 0奈米~50奈米,所述多壁奈米碳管的 直徑為1.5奈米~50奈米。 [0015] 請參閱圖3,所述非扭轉奈米碳管線包括複數個沿奈米碳 管線軸向方向排列的奈米碳管。具體地,該非扭轉奈米 ’ 碳管線包括複數個奈米碳管片段,該複數個奈米碳管片 段藉由凡德瓦爾力相連,每一奈米碳管片段包括複數個 相互平行並藉由凡德瓦爾力緊密結合的奈米碳管。該奈 杀碳管片段具有任意的長度、厚度、均勻性及形狀。該 非扭轉奈米碳管線的長度不限,直徑可以為〇. 5奈米至 100微米。非扭轉奈米碳管線可以為將奈米碳管膜藉由有 機溶劑處理得到。具體地,將有機溶劑浸潤所述奈米碳 管膜的整個表面,在該有機溶劑揮發時產生的表面張力 的作用下,奈米碳管膜中的相互平行的複數個奈米碳管 藉由凡德瓦爾力緊密結合,從而使奈米碳管膜收縮為一 非扭轉奈米碳管線。該有機溶劑可以為揮發性有機溶劑 ,如乙醇、曱醇、丙酮、二氯乙烷或氣仿,本實施例中 採用乙醇。藉由有機溶劑處理的非扭轉奈米碳管線與未 0劃7#單編號A0101 1013309999-0 第7頁/共28頁 T375Q44_ 101年08月15日核正替换頁 經有機溶劑處理的奈米碳管膜相比,其比表面積減小, 黏性降低。所述藉由有機溶劑處理獲得的非扭轉奈米碳 管線及其製備方法具體請參見範守善等人於2005年12月 16日申請的,於2007年6月20日公開的第CN1 982209A號 大陸公開專利申請(申請人:清華大學;鴻富錦精密工 業(深圳)有限公司)。 [0016] 所述扭轉奈米碳管線為採用一機械力將所述奈米碳管膜 兩端沿相反方向扭轉獲得。請參閱圖4,該扭轉奈米碳管 線包括複數個繞奈米碳管線轴向螺旋排列的奈米碳管。 具體地,該扭轉奈米碳管線包括複數個奈米碳管片段, 該複數個奈米碳管片段藉由凡德瓦爾力相連,每一奈米 碳管片段包括複數個相互平行並藉由凡德瓦爾力緊密結 合的奈米碳管。該奈米碳管片段具有任意的長度、厚度 、均勻性及形狀。該扭轉奈米碳管線長度不限,直徑可 以為0. 5奈米至100微米。進一步地,可採用一有機溶劑 處理該扭轉奈米碳管線。在該有機溶劑揮發時產生的表 面張力的作用下,處理後的扭轉奈米碳管線中相鄰的奈 米碳管藉由凡德瓦爾力緊密結合,使該扭轉奈米碳管線 的比表面積減小,密度及強度增大。 [0017] 製備扭轉奈米碳管線及非扭轉奈米碳管線所用的奈米碳 管膜可為藉由採用一拉伸工具自一奈米碳管陣列直接拉 取而獲得,所述奈米碳管膜為透明或半透明,且所述奈 米碳管膜中的多數奈米碳管藉由凡德瓦爾力相連。所述 奈米碳管膜的結構及其製備方法請參見範守善等人於 2007年2月9日申請的,於2008年8月13公開的第 〇9714971 产單编號 A0101 1013309999-0 第8頁/共28頁 Γ375944 .CN1 01239712A號大陸公開專利申請(申請^— ,鴻富錦精密工業(深圳)有限公司)。 [_請參閱圖2,所述第-電極142和第二電極144藉由外接導 $149與所述訊號輸入裝置12的兩端電連接,用於將所述 訊號輸入裝置12產生的訊號傳輸到所述發聲元件14中。 所述第-電極142和第二電極144亦可起到支樓所述發聲 元件14的作用。該第-電極142和第二電極144由導電材 。 料形成’其具體形狀結構不限。具體地,該第-電極142 和第二電極144的材料可選擇為金屬、導電膠、奈米碳管 、細錫氧化物(ITO) I。該第一電極142和第二電極 144的形狀可選擇為層狀、棒狀、塊狀或其他形狀中的一 種。 _本實施例中,該第一電極142和第二電極144為棒狀金屬 電極。所述發聲元件14中,每個奈米碳管線狀結構14〇的 兩端分別與所述第一電極142和第二電極144電連接,並 藉由所述第一電極142和第二電極144固定。由於所述第 -電極142和第二電極144間隔設置,所述發聲元件糾 • 用於發聲裝置10時能接人-定的阻值避免短路現象產生 。㈣奈Μ管具有極大的比表面積,纽德瓦爾力的 作用下,該奈米喊管線狀結構140本身有报好的黏附性, 故採用該奈米碳營線狀結構14〇作發聲時,所述第 -電極142和第二電極144與所述奈米碳管線狀結構14〇 之間可以直接黏附固定,並形成很好的電接觸。 陶另外,所述第-電極142和第二電極144與所述發聲元件 14之間還可以進一步包括一導電黏結層(圖未示)。所述 09714971#單編號A01〇l 第9頁/共28頁 1013309999-0 T^75Q44_i . 101年.08月15日按正替换頁 導電黏結層可設置於所述發聲元件14與第一電極142和第 二電極144相接觸的表面。所述導電黏結層在實現第一電 極142和第二電極144與所述發聲元件14電接觸的同時, 還可以使所述第一電極142和第二電極144與所述發聲元 件14更好地固定。本實施例中,所述導電黏結層材料為 銀膠。 [0021] 所述支撐結構16主要起支撐作用,其形狀不限,任何具 有確定形狀的物體,如一牆壁或桌面,均可作為本發明 第一實施例中的支撐結構16。具體地,所述支撐結構16 可以為一平面結構或一曲面結構,並具有一表面。此時 ,該發聲元件14直接設置並貼合於該支撐結構16的表面 。由於該發聲元件14整體藉由支撐結構16支撐,故該發 聲元件14可以承受強度較強的訊號輸入,從而具有較高 的發聲強度。 [0022] 該支撐結構16的材料不限,可以為一硬性材料,如金剛 石、玻璃或石英。所述支撐結構16的材料還可為一柔性 材料,如塑膠或樹脂。優選地,該支撐結構16的材料應 具有較好的絕熱性能,從而防止該發聲元件14產生的熱 量被該支撐結構16過度地吸收,從而無法達到加熱周圍 介質進而發聲的目的。另外,該支撐結構16應具有一較 為粗糙的表面,從而可以使設置於其表面的發聲元件14 與空氣或其他外界介質具有更大的接觸面積,進而可在 一定程度上改善所述發聲裝置10的發聲效果。 [0023] 可以理解,所述第一電極142和第二電極144可起到支撐 所述發聲元件14的作用。當所述發聲元件14可實現自支 09714971^^^^ A0101 第10頁/共28頁 1013309999-0 1.375944 101年.08月15日梭正替換頁 撐時,所述支撐結構16為一可選擇結構。具體地,當上 述發聲元件14由複數個奈米碳管線狀結構140交織構成一 具有自冬撐的層狀結構時,該支撐結構16為一可選擇結 構。 [0024] 所述訊號輸入裝置12可以為音頻電訊號輸入裝置、光訊 號輸入裝置、電訊號輸入裝置及電磁波訊號輸入裝置等 。相應地,所述訊號輸入裝置12輸入的訊號不限,包括 電磁波訊號、交流電訊號、音頻電訊號及光訊號等。可 以理解,所述訊號輸入裝置12輸入的訊號與所述發聲裝 置10的具體應用有關,如:當所述發聲裝置10應用於收 音機時,所述訊號輸入裝置12輸入的訊號為電磁波;當 所述發聲裝置10應用於耳機時,所述訊號輸入裝置12輸 入的訊號為交流電訊號或音頻電訊號。本實施例中,所 述訊號輸入裝置12為電訊號輸入裝置。 [0025] 可以理解,根據訊號輸入裝置12的不同,所述第一電極 142、第二電極144及外接導線149為可選擇的結構。當 輸入訊號為光或電磁波等訊號時,所述訊號輸入裝置12 可直接輸入訊號給所述發聲元件14,無需第.一電極142、 第二電極144及外接導線149。 [0026] 上述發聲裝置10在使用時,所述發聲元件14由複數個平 行排列的奈米碳管線狀結構140組成,每個奈米碳管線狀 結構140的直徑為50微米。由於該奈米碳管線狀結構140 具有較小的單位面積熱容和較大的散熱表面,在輸入訊 號後,該奈米碳管線狀結構140可迅速升降溫,產生週期 性的溫度變化,並和周圍介質快速進行熱交換,從而週 09714971 产單編號 A〇101 第11頁/共28頁 1013309999-0 101年.08月15日惨正餅頁 期性的改變周圍介質的密度,使周圍介質週期性膨脹和 收縮,進而發出聲音。所述奈米碳管線狀結構14〇為該發 聲元件14的最小發聲單元,而該發聲元件14的功率為其 最小發聲單元的功率之和,故,該發聲元件14包括的奈 米碳管線狀結構140越多,其功率越大。另外,本發明實 施例中的奈米碳管線狀結構140具有較高的韌性和機械強 度’所述奈米碳管線狀結構140可方便地製成各種形狀和 尺寸的發聲裝置10 ’該發聲裝置10可方便地應用於各種 可發聲的裝置中’如音響' 手機、MP3 'MP4、電視、電 腦等電子領域及其他發聲裝置10中。所述介質可以為液 態介質或者氣態介質,本實施例中,該介質為氣態介質 [0027] 本實施例中,該發聲裝置10的發聲元件14為一平面結構 的發聲元件’其包括5個平行排列的奈米碳管線狀結構 140 ’奈米碳管線狀結構ι4〇之間的間距為1厘米,該奈米 碳管線狀結構140的直徑為5〇微米。給該發聲元件14輸入 50伏特的交流電訊號,在距離其丨厘米處測量可得:所述 發聲元件14聲壓級最高可達95分貝,最低為5〇分貝;發 聲頻率範圍為100赫茲至1〇萬赫茲以上。故所述發聲裝置 10具有一定的發聲強度,且頻率範圍比較寬,有著非常 理想的發聲效果。 [0028] 請參閱圖5,本發明第二實施例提供一種發聲裝置2〇。該 發聲裝置20包括一訊號輸入裝置22、一發聲元件24、一 第一電極242、一第二電極244、一第三電極246及一第 四電極248。 09714971 产單編號 A〇101 第丨2頁/共28頁 1013309999-0 1375944 [0029] [0030] 10Ϊ年.08月15日俊正擁頁 本實施例中,所述發聲元件24與第一實施例中的發聲元 件14結構相同。該發聲元件24包括至少一個奈米碳管線 狀結構240。本實施例中,該發聲元件24為複數個奈米碳 官線狀結構240 »該複數個奈米碳管線狀結構24〇環繞所 述第一電極242、第二電極244、第三電極246及第四電 極248設置。 本發明第二實施例t的發聲裝置2〇與第一實施例中的發 聲裝置10的結構基本相同,區別在於,本發明第二實施 例中的發聲裝置20包括四個電極,即第一電極242、第二 電極244、第三電極246和第四電極248。所述第一電極 242、第二電極244、第三電極246和第四電極248均為棒 狀金屬電極,且平行間隔設置於至少兩個平面内。所述 發聲元件24包括複數個奈米碳管線狀結構24〇,該複數個 奈米碳管線狀結構240環繞所述第一電極242、第二電極 244、第三電極246和第四電極248設置並與所述第一電 極242、第一電極244、第三電極246和第西電極248分別 電連接,形成一環形發聲元件24。任意兩個相鄰的電極 均分別與所述訊號輸入裝置22的兩端電連接,以使位於 相鄰電極之間的發聲元件24接入輸入訊號。具體地,先 將不相鄰的兩個電極用外接導線249連接後與所述訊號輸 入裝置22的一端電連接,剩下的兩個電極用外接導線Mg 連接後與所述訊號輸入裝置22的另一端電連接。本發明 實施例中,可先將所述第一電極242和第三電極246用外 接導線249連接後與所述訊號輸入裝置22的一端電連接, 再將所述第二電極244和第四電極248用外接導線249連 09714971#單編號 A0101 第13頁/共28頁 1013309999-0 1375944 [0031] [0032] [0033] [0034] 09714971^^^^ 101年08月15日核正替換頁 接後與所述訊號輸入裝置22的另一端電連接。上述連接 方式可實現相鄰電極之間的奈米碳管線狀結構240的並聯 。並聯後的奈米碳管線狀結構240具有較小的電阻,可降 低工作電壓。且,上述連接方式可使所述發聲元件24具 有較大的輻射面積,且發聲強度得到增強,可實現環繞 發聲效果》另外,當所述發聲元件24的面積較大時,所 述第一電極242、第二電極244、第三電極246和第四電 極248亦可進一步起到支撐所述發聲元件24的作用。 可以理解,所述第一電極242、第二電極244、第三電極 246和第四電極248亦可與所述發聲元件24設置在同一平 面内。所述設置在同一平面内的各電極的連接方式與上 述電極的連接方式相同或相似。 可以理解,在本實施例中可設置複數個電極,其數量不 限’只需確保任意兩個相鄰的電極均分別與所述訊號輸 入裝置22的兩端電連接即可。 請參閱圖6,本發明第三實施例提供一種發聲裝置30,該 發聲裝置30包括一訊號輸入裝置32,一發聲元件34,一 支撐結構36。所述發聲元件34設置於所述支撐結構36上 。所述訊號輸入裝置32包括一電磁波發生器322及一調製 裝置324。該訊號輸入裝置32輸入電磁波訊號326給所述 發聲元件34。所述訊號輸入裝置32為一電磁波訊號輸入 裝置。本實施例中’所述梦聲元件34與第一實施例中的 發聲元件14結構相同。 所述電磁波發生器322與該發聲元件34相對且間隔設置, A〇l°l 第14頁/共28頁 1013309999-0 1375944 101年.08月15日核正者^頁~| 用於提供一電磁波。所述調製裝置324設置於該電磁波發 生器322與發聲元件34之間,用於對所述電磁波進行強度 或頻率的調製,使該電磁波的強度或頻率發生變化,從 而產生一載有音頻資訊的電磁波訊號326。該電磁波訊號 326的波長範圍包括無線電波、紅外線、可見光、紫外線 、微波、X射線及7射線等。該電磁波訊號326的平均功 率密度在l//W/mm2至20W/mm2範圍内。該電磁波訊號326 的強度或頻率可不斷變化,從而能夠使作為發聲元件34 的奈米碳管線狀結構吸收該電磁波訊號326間歇加熱空氣 ,使空氣不斷膨脹收縮,進而持續發出聲音。該電磁波 訊號326的強度不能太弱亦不能太強,當電磁波訊號326 太弱時無法提供足夠的能量使發聲元件34發聲,當該電 磁波訊號326太強時則會使該發聲元件34遭到破壞。優選 的,該電磁波發生器322為一雷射發生器。該雷射發生器 可以為半導體雷射器、氣體雷射器、固體雷射器或染料 雷射器。從上述雷射發生器發出的電磁波為一光波,該 光波的波長範圍為紫外至遠紅外區域。經過調製裝置324 的調製,該光波轉變為一光訊號。該光訊號的平均功率 密度約為1 OmW/mm2。 [0035] 具體地,所述調製裝置324可以與所述電磁波發生器322 集成設置,或者設置於所述電磁波發生器322產生的電磁 波的傳播路徑上。當該調製裝置324與所述電磁波發生器 322集成設置時,該調製裝置324直接控制所述.電磁波發 生器322發出的電磁波的強度和頻率,從而使該電磁波發 生器322直接產生與電訊號的變化成比例的電磁波訊號 〇9?14971#"單編號A0101 第I5頁/共28頁 1013309999-0 1375944 101年.08月15日修至 326。當該調製裝置324設置於所述電磁波的傳播路徑上 時,該電磁波發生器322產生的電磁波經過該調製裝置 324後轉換成為一電磁波訊號326 ° [0036] 當所述電磁波發生器322為〆雷射發生器,且所述調製裝 置324與該雷射發生器集成設置時’該調製裝置324藉由 一調製驅動電路直接控制該雷射發生器的雷射泵浦源從 而實現對該雷射的調製;或者於該雷射發生器的諧振腔 内設置調製元件改變諧振腔參數,從而改變雷射發生器 的雷射輸出特性實現對該雷射的調製。當該調製裝置324 設置於所述雷射的傳播路徑上時,該調製裝置324可為一 電光晶體。 [〇〇37] 該訊號輸入裝置32與發聲元件34之間的距離不限,然應 保證從該訊號輸入裝置32發出的電磁波訊號326能夠傳遞 立該發聲元件34表面。另外,當該電磁波訊號326為一光 訊號’且該訊號輸入裝置32與該發聲元件34距離較遠時 ,該訊號輸入裝置32可以進一步包括一光纖,該光纖一 端與所述訊號輸入裝置32連接,另一端延伸至所述發聲 元件34附近,從而使上述電磁波訊號326藉由光纖遠距離 傳遞至發聲元件34表面。當該訊號輸入裝置32包括一光 殲時,所述調製裝置324可設置於光纖的起始端或結束端 〇 [0038]所述支撐結構36主要起支撐作用,其形狀不限,任何具 有確疋形狀的物體’如一牆壁或桌面,均可作為本發明 第一實施例中的支撐結構36。具體地,該支撐結構36可 以為平面或曲面結構,並具有一表面。此時,該發聲 祕 A〇10 0971497 1013309999-0 1375944 f 101年.08月15日梭正替g頁 元件34直接設置並貼合於該支撐結構36的表面上。由於 該發聲元件34整體藉由支撐結構36支撐,故該發聲元件 34可以承受強度較高的電磁波訊號326輪入,從而具有較 高的發聲強度。另外,該支撐結構36亦可以為一框架結 構、杆狀結構或不規則形狀結構。此時,該發聲元件34 部分與該支撐結構36相接觸,其餘部分懸空設置。此種 設置方式可以使該發聲元件34與空氣或周圍介質更好地 進行熱交換。該發聲元件34與空氣或周圍介質接觸面積 更大’熱交換速度更快’故·具有更好的發聲效率。 [0039] 所述支樓結構36的材料不限’可以為—硬性材料,如金 剛石、玻璃、石英或木質材料。另外’所述支揮結構% 的材料還可為-柔性材料’如Μ'樹脂或紙質材料。 優選地,該支標結構36的材料應具有較好的絕熱性能, 從而防止《聲元件34產生的熱量被該切結觸過度 吸收,從而無法達到加熱空氣發聲的目的。另外,支 樓結構36優選為具有一較粗縫的表面的支擇結構,從而 可以使設置於上述支樓結構36表面的發聲元件^與空氣 或其他外界介質具有更大的接觸面積。 [0040] 本發明第三實施例的發聲裝置30的發聲元件以採用奈米 碳管線狀結構構成’該奈米碳管線狀結構包括複數個奈 Μ管’㈣奈收接近絕對黑體= 從而使發聲元件34對-於各種波長的電磁波具有均一的吸 收特性。糾,奈純管具有較Μ單位面積熱容和較 大的散熱面積。故’當發聲元件34中的奈米碳管受到如 雷射等電磁波的照射時,奈米破營因吸收光能而被激發 09714971^單編號 A0101 第17頁/共28頁 1013309999-01.375944 10th Anniversary: August 15th Shuttle Replacement Page, Invention Description: [Technical Field] [0001] The present invention relates to a sounding device, and more particularly to a sounding device based on a thermoacoustic effect. [Prior Art] [0002] The sounding device generally consists of a signal input device and a sounding component, and the signal input device inputs a signal to the sounding component to emit a sound. The sounding element of the prior art is typically a speaker. The speaker is an electroacoustic device that converts an electrical signal into an acoustic signal. Specifically, the speaker can convert a range of audio electric power signals into a audible sound that is small in distortion and has a sufficient sound pressure level. There are many types of previous speakers, which are classified according to their working principles: electric speakers, electromagnetic speakers, electrostatic speakers, and piezoelectric speakers. Although their work is different, it is generally caused by mechanical vibration to push the surrounding air, causing the air medium to fluctuate and realize the "electric-force-sound" conversion. Most of them use diaphragm vibration to make sound, and the structure is more complicated. [0003] At the beginning of the twentieth century, a concept of thermoacoustic elements based on thermoacoustic effects was proposed, see the document "The Thermophone", Edward C. Wente, Phys. Rev, Vol.XIX » No. 4 > pp 333-345 (1921) and "On Some Thermal Effects of Electric Currents", William Henry Preece, Proceedings of the Royal Society of London, Vol. 30, (1879-1881), pp 408-411 (1880). The thermoacoustic element achieves sound generation by introducing an alternating current into a metal foil or wire. The metal foil or wire must have a small heat 9791411^^ A〇101 Page 3 / 28 pages 1013309999-0 T375944__ [101^ 083⁄4 15? Capacitance 'thin thickness' and can be generated internally The heat is quickly transferred to the surrounding gaseous medium. When the alternating current is passed through the metal box or wire, the metal foil or wire can rapidly rise and fall with the change of the alternating current intensity and rapidly exchange heat with the surrounding gaseous medium to move the gas medium molecules to the surrounding gas. The density of the medium also changes, which in turn emits sound waves. [0004] HD Arnold and IB Crandal 1 also introduce a simple thermo-acoustic device. See 'The thermophone as a precision source of sound" , HD Arnold, IB Crandall, Phys. Rev. L 10, 22-38 (1917). Referring to Fig. 1, the sound emitting device 100 uses a platinum sheet as the sounding element 102, and the thickness of the platinum sheet is 〇. 7 μm. The sounding element 1〇2 is fixed by a jig 104. The sounding element 1〇2 and the jig 04 are disposed on the surface of the substrate 108. The current lead 1〇6 is electrically connected to the sound emitting element 1〇2 for inputting an electrical signal to the sound emitting element 102. The sounding frequency of the sounding element 1〇2 is closely related to its heat capacity per unit area. If the heat capacity per unit area is large, the sound frequency range is narrow and the intensity is low; if the heat capacity per unit area is small, the sound frequency range is wide and the strength is high. In order to obtain sound waves having a wider audible frequency range and a higher intensity, it is required that the heat capacity per unit area of the sound emitting element 102 is as small as possible. Due to the limitation of the material itself, the thickness of the metal platinum sheet can only reach 0. 7 micrometers, and the heat capacity per unit area of the 7 micron thick platinum sheet can only reach 2. 0x1 〇 _ 4 joules per square centimeter Kelvin. Due to the limitation of the heat capacity per unit area of the material, the sounding frequency of the sounding element 1〇2 is only up to 4 kHz in the south. The sounding element 1〇2 has a narrow sounding frequency and a low sound intensity, which is not directly perceived by the human ear. Page 4 of 28 〇9714971 Lu single number A0101 1013309999-0 1-375944 101. August 15 correction replacement page [0005] In summary, the sounding element 102 has a narrow sound frequency range, and The sounding intensity of the sounding element 102 is low, and it is difficult for the human ear to directly perceive it. SUMMARY OF THE INVENTION [0006] In view of the above, it is necessary to provide a sounding device based on a thermoacoustic effect with a wide range of sounding frequencies and high sounding intensity. [0007] A sounding device includes a sound emitting component and a signal input device. The sounding element comprises at least one nanocarbon line-like structure. The signal input device inputs a signal to the nanocarbon line-like structure, causing the carbon nanotube linear structure to change the density of the surrounding medium to emit sound waves. [0008] Compared with the prior art, the sounding device has the following advantages: since the nanocarbon line-like structure has a small heat capacity per unit area and a large specific surface area, the sounding element has a rapid temperature rise and a small thermal hysteresis. The heat exchange speed is fast, so the sounding device composed of the nano carbon pipeline structure can emit sound in a wide frequency range, has a good sounding effect, and has a high sound intensity, which can be directly perceived by the human ear. To. [Embodiment] Hereinafter, a sound emitting device according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. [0010] Please refer to FIG. 2, a first embodiment of the present invention provides a sounding device 10, which includes a signal input device 12, a sounding component 14, a support structure 16, a first electrode 142, and a second The electrode 144 » the first electrode 142 and the second electrode 144 are spaced apart and electrically connected to the signal input device 12 . The support structure 16 supports the sounding element 14, the first electrode 142 and the second electrode 144. [0011] The sounding element 14 includes at least one nano carbon line-like structure 140, the nano-09714971# single number A〇101 page 5 / total 28 pages 1013309999-0 1375944 _ 'August 15th, 2010 nuclear replacement The sheet of carbon carbon line structure 140 includes at least one nano carbon line. The heat capacity per unit area of the nanocarbon line-like structure 140 is less than 5. 0x1 (Γ5 joules). The heat capacity per unit area of the carbon nanotube-like structure 140 is less than 2. 0x1 (Γ4 joules per square centimeter Kelvin, preferably, the heat capacity per unit area of the nanocarbon line-like structure 140 is less than 5. 0x1 (Γ5 joules) Each square centimeter Kelvin. The diameter of the nanocarbon line-like structure 140 is not limited and can be adjusted according to practical applications. When the nanocarbon line-like structure 140 is applied to a thermoacoustic element, the contact area with air is larger, and the sound is emitted. The higher the strength, since the nanocarbon pipeline structure 140 is composed of a nano carbon pipeline, and the nanocarbon pipeline includes a plurality of carbon nanotubes, and the carbon nanotubes have high toughness and mechanical strength, The sounding element 14 including at least one nanocarbon line-like structure 140 has higher toughness and mechanical strength. When the sounding element 14 includes a plurality of nanocarbon line-like structures 140, the plurality of nanocarbon line-like structures The 140 can be arranged in parallel or in a crosswise manner, or can be interwoven to form a layered sounding element. [0012] In this embodiment, the sounding element 14 includes a plurality of parallel arrays. The nanocarbon line structure 140 has a diameter of 50 micrometers. The nanocarbon line structure 140 is the smallest sounding unit of the sounding element 14, and the unit area of the sounding element 14 The heat capacity is the same as the heat capacity per unit area of the nanocarbon line-like structure 140, and the heat capacity per unit area of the sound generating element 14 is less than 2.0 x 10_4 joules per square centimeter Kelvin. [0013] The nano carbon line structure 140 includes at least one The nano carbon line has a diameter of 0.5 nm to 100 μm. When the nano carbon line structure 140 includes only one nano carbon line, the nano carbon line may be a twisted nanometer. Carbon line or non-twisted nano carbon line "When the nano carbon line structure 140 includes a plurality of carbon carbon lines, the carbon nanotubes 097141^^^^ Α0101 Page 6 of 28 pages 1013309999-0 1375944 101. The revised replacement page may be a twisted nanocarbon line, a non-twisted nanocarbon line, or a combination of the two. Specifically, when the nanocarbon line-like structure 140 includes a plurality of nanocarbon lines The multi-nano carbon pipeline The nano carbon line-like structure forming a bundle structure may be arranged in parallel along an axis, or may be twisted around the same axis to form a twisted carbon nanotube-like structure. [0014] The nano carbon line structure 140 The nanometer to 50 The diameter of the double-walled carbon nanotube is 1.0 nm to 50 nm, and the diameter of the multi-walled carbon nanotube is 1.5 nm to 50 nm. [0015] Please refer to FIG. The non-twisted nanocarbon pipeline includes a plurality of carbon nanotubes arranged along the axial direction of the nanocarbon pipeline. Specifically, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotube segments, the plurality of carbon nanotube segments being connected by a van der Waals force, and each of the carbon nanotube segments includes a plurality of mutually parallel and by Van der Valli is a tightly coupled carbon nanotube. The carbon nanotube fragments have any length, thickness, uniformity and shape. The length of the non-twisted nanocarbon line is not limited, and the diameter may be from 0.5 nm to 100 μm. The non-twisted nanocarbon line can be obtained by treating the carbon nanotube membrane with an organic solvent. Specifically, the organic solvent is used to impregnate the entire surface of the carbon nanotube film, and the plurality of carbon nanotubes parallel to each other in the carbon nanotube film are used by the surface tension generated when the organic solvent is volatilized. Van der Waals forces are tightly combined to shrink the carbon nanotube membrane into a non-twisted nanocarbon line. The organic solvent may be a volatile organic solvent such as ethanol, methanol, acetone, dichloroethane or gas, and ethanol is used in this embodiment. Non-twisted nanocarbon pipeline treated by organic solvent and non-zero 7# single number A0101 1013309999-0 page 7 / 28 pages T375Q44_ August 15, 2010 nuclear replacement page organic solvent treated nanocarbon Compared with the tubular film, its specific surface area is reduced and the viscosity is lowered. The non-twisted nano carbon pipeline obtained by the organic solvent treatment and the preparation method thereof can be specifically referred to the CN1 982209A filed on December 16, 2005 by Fan Shoushan et al. Mainland open patent application (applicant: Tsinghua University; Hongfujin Precision Industry (Shenzhen) Co., Ltd.). [0016] The twisted nanocarbon line is obtained by twisting both ends of the carbon nanotube film in opposite directions by a mechanical force. Referring to Figure 4, the twisted carbon nanotube wire comprises a plurality of carbon nanotubes arranged axially helically around the carbon nanotube line. Specifically, the twisted nanocarbon pipeline includes a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected by a van der Waals force, and each of the carbon nanotube segments includes a plurality of parallel and mutually Deval's tightly integrated carbon nanotubes. The carbon nanotube segments have any length, thickness, uniformity, and shape. 5纳米至100微米。 The twisted carbon nanotubes are not limited in length, the diameter may be from 0.5 nm to 100 microns. Further, the twisted nanocarbon line may be treated with an organic solvent. Under the action of the surface tension generated by the volatilization of the organic solvent, the adjacent carbon nanotubes in the treated torsion nanocarbon pipeline are closely combined by van der Waals force, so that the specific surface area of the twisted nanocarbon pipeline is reduced. Small, increased density and strength. [0017] The carbon nanotube film used for preparing the twisted nanocarbon pipeline and the non-twisted nanocarbon pipeline can be obtained by directly pulling from a carbon nanotube array by using a stretching tool, the nanocarbon The tubular membrane is transparent or translucent, and most of the carbon nanotubes in the carbon nanotube membrane are connected by van der Waals force. The structure of the carbon nanotube film and the preparation method thereof can be found in the application No. 9714971, which was filed on February 9, 2008 by Fan Shoushan et al., and the production order number A0101 1013309999-0 8 pages / a total of 28 pages Γ 375944 . CN1 01239712A mainland public patent application (application ^ -, Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd.). [00] Referring to FIG. 2, the first electrode 142 and the second electrode 144 are electrically connected to both ends of the signal input device 12 by an external guide $149 for transmitting the signal generated by the signal input device 12 to In the sounding element 14. The first electrode 142 and the second electrode 144 may also function as the sounding element 14 of the branch. The first electrode 142 and the second electrode 144 are made of a conductive material. The material formation 'its specific shape structure is not limited. Specifically, the material of the first electrode 142 and the second electrode 144 may be selected from a metal, a conductive paste, a carbon nanotube, and a fine tin oxide (ITO) I. The shape of the first electrode 142 and the second electrode 144 may be selected from one of a layer shape, a rod shape, a block shape, or the like. In the present embodiment, the first electrode 142 and the second electrode 144 are rod-shaped metal electrodes. In the sound emitting element 14, two ends of each of the nanocarbon line-like structures 14A are electrically connected to the first electrode 142 and the second electrode 144, respectively, and the first electrode 142 and the second electrode 144 are fixed. Since the first electrode 142 and the second electrode 144 are spaced apart, the sound emitting element can be used for the sounding device 10 to receive a constant resistance value to avoid short circuit. (4) The nai tube has a large specific surface area. Under the action of Newdwar force, the nano-speaking line structure 140 itself has a good adhesion, so when the nano carbon camp line structure 14 is used for sounding, The first electrode 142 and the second electrode 144 and the nanocarbon line-like structure 14A can be directly adhered and fixed, and form a good electrical contact. In addition, the first electrode 142 and the second electrode 144 and the sound emitting element 14 may further include a conductive adhesive layer (not shown). The 09914971# single number A01〇l page 9/28 pages 1013309999-0 T^75Q44_i. 101. August 15th, according to the positive replacement page, the conductive adhesive layer can be disposed on the sounding element 14 and the first electrode 142. A surface in contact with the second electrode 144. The conductive bonding layer can further improve the first electrode 142 and the second electrode 144 and the sound emitting element 14 while achieving electrical contact between the first electrode 142 and the second electrode 144 and the sound emitting element 14. fixed. In this embodiment, the conductive bonding layer material is silver paste. [0021] The support structure 16 mainly serves as a support, and its shape is not limited. Any object having a certain shape, such as a wall or a table top, can be used as the support structure 16 in the first embodiment of the present invention. Specifically, the support structure 16 may be a planar structure or a curved structure and has a surface. At this time, the sound emitting element 14 is directly disposed and attached to the surface of the support structure 16. Since the sounding element 14 is entirely supported by the support structure 16, the sounding element 14 can withstand strong signal input and thus have a high sounding intensity. [0022] The material of the support structure 16 is not limited and may be a hard material such as diamond, glass or quartz. The material of the support structure 16 can also be a flexible material such as plastic or resin. Preferably, the material of the support structure 16 should have better thermal insulation properties, thereby preventing the heat generated by the sound-emitting element 14 from being excessively absorbed by the support structure 16, thereby failing to achieve the purpose of heating the surrounding medium and further sounding. In addition, the support structure 16 should have a relatively rough surface, so that the sound-emitting element 14 disposed on the surface thereof can have a larger contact area with air or other external medium, thereby improving the sound-emitting device 10 to a certain extent. The sound effect. [0023] It will be appreciated that the first electrode 142 and the second electrode 144 may function to support the sound emitting element 14. When the sounding element 14 can realize the self-supporting 09914971 ^^^^ A0101 page 10 / 28 pages 1013309999-0 1.375944 101. August 15th when the shuttle is replacing the page support, the support structure 16 is an optional structure. Specifically, when the above-described sounding element 14 is interwoven by a plurality of nanocarbon line-like structures 140 to form a layered structure having self-twisting, the supporting structure 16 is an optional structure. [0024] The signal input device 12 can be an audio signal input device, an optical signal input device, a telecommunication input device, and an electromagnetic wave signal input device. Correspondingly, the signal input by the signal input device 12 is not limited, and includes electromagnetic wave signals, alternating current signals, audio signals, and optical signals. It can be understood that the signal input by the signal input device 12 is related to the specific application of the sounding device 10, for example, when the sounding device 10 is applied to a radio, the signal input by the signal input device 12 is an electromagnetic wave; When the sound emitting device 10 is applied to a headphone, the signal input by the signal input device 12 is an alternating current signal or an audio signal. In this embodiment, the signal input device 12 is an electrical signal input device. [0025] It can be understood that, according to the signal input device 12, the first electrode 142, the second electrode 144 and the external lead 149 are optional structures. When the input signal is a signal such as light or electromagnetic wave, the signal input device 12 can directly input a signal to the sound emitting element 14, without the first electrode 142, the second electrode 144 and the external wire 149. When the sounding device 10 is in use, the sounding element 14 is composed of a plurality of parallel carbon nanotube-like structures 140 each having a diameter of 50 micrometers. Since the nanocarbon pipeline structure 140 has a small heat capacity per unit area and a large heat dissipation surface, the nanocarbon pipeline structure 140 can rapidly rise and fall after inputting a signal, generating periodic temperature changes, and Quickly exchange heat with the surrounding medium, thus week 09714971 production order number A〇101 page 11 / total 28 pages 1013309999-0 101 years. August 15th, the tragic pie page period changes the density of the surrounding medium to make the surrounding medium Periodically expands and contracts, which in turn makes a sound. The nanocarbon line-like structure 14 is the minimum sounding unit of the sounding element 14, and the power of the sounding element 14 is the sum of the powers of the minimum sounding unit. Therefore, the sounding element 14 includes a nano carbon line. The more the structure 140, the greater its power. In addition, the nanocarbon line-like structure 140 in the embodiment of the present invention has high toughness and mechanical strength. The nanocarbon line-like structure 140 can be conveniently fabricated into sounding devices 10 of various shapes and sizes. 10 can be conveniently applied to various sound-emitting devices such as 'sound' mobile phones, MP3 'MP4, televisions, computers and other electronic fields and other sounding devices 10. The medium may be a liquid medium or a gaseous medium. In this embodiment, the medium is a gaseous medium. [0027] In this embodiment, the sounding element 14 of the sounding device 10 is a planar structure sounding element, which includes 5 parallels. The arrangement of the aligned nanocarbon line-like structures 140' nanocarbon line-like structure ι4〇 is 1 cm, and the diameter of the nanocarbon line-like structure 140 is 5 〇 microns. A 50 volt AC signal is input to the sounding element 14 and is measured at a distance of 丨 cm: the sounding element 14 has a sound pressure level of up to 95 decibels and a minimum of 5 〇 decibels; the vocal frequency ranges from 100 Hz to 1 More than 10,000 Hz. Therefore, the sounding device 10 has a certain sounding intensity and a wide frequency range, and has a very good sounding effect. Referring to FIG. 5, a second embodiment of the present invention provides a sounding device 2A. The sounding device 20 includes a signal input device 22, a sound emitting element 24, a first electrode 242, a second electrode 244, a third electrode 246, and a fourth electrode 248. 09714971 Production Order No. A〇101 Page 2 of 28 Page 1013309999-0 1375944 [0030] [0030] 10th Anniversary, August 15th, Junsheng, in the embodiment, the sounding element 24 and the first embodiment The sounding elements 14 in the same structure are identical. The sounding element 24 includes at least one nanocarbon line-like structure 240. In this embodiment, the sound emitting element 24 is a plurality of nano carbon official line structures 240. The plurality of nano carbon line-like structures 24 surround the first electrode 242, the second electrode 244, and the third electrode 246. The fourth electrode 248 is disposed. The sounding device 2 of the second embodiment t of the present invention has substantially the same structure as the sounding device 10 of the first embodiment, except that the sounding device 20 of the second embodiment of the present invention includes four electrodes, that is, the first electrode. 242. Second electrode 244, third electrode 246, and fourth electrode 248. The first electrode 242, the second electrode 244, the third electrode 246, and the fourth electrode 248 are all rod-shaped metal electrodes, and are disposed in parallel at least two planes. The sounding element 24 includes a plurality of nanocarbon line-like structures 24, and the plurality of nanocarbon line-like structures 240 are disposed around the first electrode 242, the second electrode 244, the third electrode 246, and the fourth electrode 248. And electrically connected to the first electrode 242, the first electrode 244, the third electrode 246 and the west electrode 248, respectively, to form an annular sounding element 24. Any two adjacent electrodes are electrically connected to both ends of the signal input device 22, respectively, so that the sounding element 24 located between adjacent electrodes is connected to the input signal. Specifically, the two electrodes that are not adjacent are first connected to the one end of the signal input device 22 by the external wires 249, and the remaining two electrodes are connected to the signal input device 22 by the external wires Mg. The other end is electrically connected. In the embodiment of the present invention, the first electrode 242 and the third electrode 246 may be connected to the one end of the signal input device 22 by connecting the external wires 249, and then the second electrode 244 and the fourth electrode are connected. 248 with external wire 249 connected 09714971# single number A0101 page 13 / total 28 pages 1013309999-0 1375944 [0031] [0033] [0034] 09714971 ^ ^ ^ ^ 101 years of August 10 nuclear replacement page It is then electrically connected to the other end of the signal input device 22. The above connection method enables parallel connection of the nanocarbon line-like structures 240 between adjacent electrodes. The parallel carbon nanotube-like structure 240 has a small electrical resistance to reduce the operating voltage. Moreover, the above connecting manner can make the sound emitting element 24 have a large radiation area, and the sounding intensity is enhanced, and the surrounding sounding effect can be realized. In addition, when the area of the sound emitting element 24 is large, the first electrode The second electrode 244, the third electrode 246, and the fourth electrode 248 may further function to support the sound emitting element 24. It can be understood that the first electrode 242, the second electrode 244, the third electrode 246 and the fourth electrode 248 can also be disposed in the same plane as the sound emitting element 24. The manner in which the electrodes disposed in the same plane are connected is the same as or similar to the manner in which the electrodes are connected. It can be understood that a plurality of electrodes can be disposed in the present embodiment, the number of which is not limited. It is only necessary to ensure that any two adjacent electrodes are electrically connected to both ends of the signal input device 22, respectively. Referring to FIG. 6, a third embodiment of the present invention provides a sounding device 30. The sounding device 30 includes a signal input device 32, a sound emitting element 34, and a support structure 36. The sounding element 34 is disposed on the support structure 36. The signal input device 32 includes an electromagnetic wave generator 322 and a modulation device 324. The signal input device 32 inputs an electromagnetic wave signal 326 to the sounding element 34. The signal input device 32 is an electromagnetic wave signal input device. The dream element 34 in the present embodiment has the same structure as the sound element 14 in the first embodiment. The electromagnetic wave generator 322 is opposite to and spaced apart from the sound emitting element 34, A〇l°l 14th page/28 pages 1013309999-0 1375944 101. August 15th nuclear positive ^page~| Electromagnetic waves. The modulating device 324 is disposed between the electromagnetic wave generator 322 and the sound emitting element 34 for modulating the intensity or frequency of the electromagnetic wave to change the intensity or frequency of the electromagnetic wave, thereby generating an audio information. Electromagnetic wave signal 326. The wavelength range of the electromagnetic wave signal 326 includes radio waves, infrared rays, visible light, ultraviolet rays, microwaves, X-rays, and 7 rays. The electromagnetic wave signal 326 has an average power density in the range of l//W/mm2 to 20 W/mm2. The intensity or frequency of the electromagnetic wave signal 326 can be constantly changed, so that the nanocarbon line-like structure as the sounding element 34 can absorb the electromagnetic wave signal 326 to intermittently heat the air, so that the air continuously expands and contracts, thereby continuously emitting sound. The intensity of the electromagnetic wave signal 326 should not be too weak or too strong. When the electromagnetic wave signal 326 is too weak, it cannot provide sufficient energy to make the sounding element 34 sound. When the electromagnetic wave signal 326 is too strong, the sounding element 34 is destroyed. . Preferably, the electromagnetic wave generator 322 is a laser generator. The laser generator can be a semiconductor laser, a gas laser, a solid laser or a dye laser. The electromagnetic wave emitted from the above laser generator is a light wave having a wavelength ranging from ultraviolet to far infrared. After modulation by the modulation device 324, the light wave is converted into an optical signal. The optical signal has an average power density of about 1 OmW/mm2. [0035] Specifically, the modulation device 324 may be integrated with the electromagnetic wave generator 322 or disposed on a propagation path of electromagnetic waves generated by the electromagnetic wave generator 322. When the modulating device 324 is integrated with the electromagnetic wave generator 322, the modulating device 324 directly controls the intensity and frequency of the electromagnetic wave emitted by the electromagnetic wave generator 322, so that the electromagnetic wave generator 322 directly generates the electrical signal. The proportion of the electromagnetic wave signal 〇9?14971#"single number A0101 page I5/28 pages 1013309999-0 1375944 101 years. August 15th to 326. When the modulation device 324 is disposed on the propagation path of the electromagnetic wave, the electromagnetic wave generated by the electromagnetic wave generator 322 is converted into an electromagnetic wave signal by the modulation device 324. [0036] When the electromagnetic wave generator 322 is a thunder Shooting the generator, and when the modulation device 324 is integrated with the laser generator, the modulation device 324 directly controls the laser pump source of the laser generator by a modulation drive circuit to realize the laser Modulation; or modulating elements in the cavity of the laser generator to change the cavity parameters, thereby changing the laser output characteristics of the laser generator to achieve modulation of the laser. When the modulating means 324 is disposed on the propagation path of the laser, the modulating means 324 can be an electro-optic crystal. [〇〇37] The distance between the signal input device 32 and the sound emitting element 34 is not limited, but it is ensured that the electromagnetic wave signal 326 emitted from the signal input device 32 can transmit the surface of the sound generating element 34. In addition, when the electromagnetic wave signal 326 is an optical signal 'and the signal input device 32 is far away from the sound emitting element 34, the signal input device 32 may further include an optical fiber, and one end of the optical fiber is connected to the signal input device 32. The other end extends to the vicinity of the sound emitting element 34 such that the electromagnetic wave signal 326 is transmitted to the surface of the sound emitting element 34 over a long distance by the optical fiber. When the signal input device 32 includes an aperture, the modulation device 324 can be disposed at the beginning end or the end end of the optical fiber. [0038] The support structure 36 mainly serves as a support, and the shape thereof is not limited, and any one has a certain A shaped object such as a wall or table top can be used as the support structure 36 in the first embodiment of the present invention. Specifically, the support structure 36 can be a planar or curved structure and has a surface. At this time, the vocal secret A 〇 10 0971497 1013309999-0 1375944 f 101. On the 15th of August, the shuttle is directly disposed on the surface of the support structure 36. Since the sound generating element 34 is entirely supported by the support structure 36, the sound generating element 34 can withstand the high-intensity electromagnetic wave signal 326 to be rotated, thereby having a high sounding intensity. Alternatively, the support structure 36 can be a frame structure, a rod structure or an irregular shape structure. At this time, the sound generating element 34 is partially in contact with the support structure 36, and the remaining portion is suspended. This arrangement allows for better heat exchange of the sound producing element 34 with air or surrounding medium. The sound emitting element 34 has a larger contact area with air or surrounding medium 'the heat exchange rate is faster', so that it has better sound emission efficiency. [0039] The material of the branch structure 36 is not limited to a hard material such as diamond, glass, quartz or wood material. Further, the material of the % of the support structure may also be a flexible material such as a resin or a paper material. Preferably, the material of the support structure 36 should have better thermal insulation properties, thereby preventing the heat generated by the acoustic element 34 from being excessively absorbed by the tangential contact, thereby failing to achieve the purpose of heating the air. In addition, the structure 36 is preferably a support structure having a relatively thick surface so that the sounding element provided on the surface of the above-mentioned branch structure 36 has a larger contact area with air or other external medium. [0040] The sounding element of the sounding device 30 of the third embodiment of the present invention is constructed by using a nanocarbon pipeline-like structure. The nanocarbon line-like structure includes a plurality of naitubes (four) and close to an absolute black body = thereby making a sound Element 34 has uniform absorption characteristics for electromagnetic waves of various wavelengths. Correction, the neat tube has a heat capacity per unit area and a larger heat dissipation area. Therefore, when the carbon nanotubes in the sound-emitting element 34 are irradiated by electromagnetic waves such as lasers, the nano-barrier is excited by the absorption of light energy. 09714971^Single number A0101 Page 17 of 28 1013309999-0
101年08月15日修正替換頁 ’並使。及收的光能全部或部分轉變為熱。進而奈米碳管 線狀結構的溫度迅速升高,並和周圍的空氣或其他介質 進行迅逮的熱交換。如果照射的電磁波經過週期性的強 度調製’則在奈米碳管内彥生週期性的溫度變化’從而 使奈米碳管線狀結構周圍的介質亦產生週期性的溫度變 化’使得周圍介質的密度亦產生週期性的變化,從而造 成周圍空氣或其他介質迅速的膨脹和收縮,從而發出聲 音。 [0041] 與先前技術相比較,所述發聲裝置具有以下優點:其一 ’由於奈米碳管線狀結構具有較小的單位面積熱容和較 大的比表面積,故該發聲元件具有升溫迅速、熱滯後小 、熱交換速度快的特點,故該奈米碳管線狀結構組成的 發聲裝置可以發出較寬頻率範圍内的聲音,具有較好的 發聲效果,且其發聲強度較高。其二,由於奈米碳管具 有較好的機械強度和韌性,該奈米碳管線狀結構包括複 數個奈米碳管,其機械強度較高,穩定性好,故由奈米 碳s線狀結構組成的發聲元件具有較好的機械強度和韌 性,耐用性較好。其三,由於奈米碳管線狀結構具有較 大的長徑比,且該奈米碳管線狀結構可以構成各種結構 的發聲7C件,從而有利於製偫各種形狀、尺寸的發聲裝 置,進而方便地應用於各種領域。 [0042] 综上所述’本發明確已符合發明專利之要件,遂依法提 出專财請。惟,以上所述者僅為本發明之較佳實施例 ’自不能以此限制本案之中請專利範圍。舉凡習知本案 技藝之人士援依树明之精神_之#效修飾或變化, 09714971 产單编號 A0101 第18頁/共28頁 1013309999-0 1375944 101:年.08月15日核正替換頁 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0043] 圖1係先前技術中發聲裝置的結構示意圖。 [0044] 圖2係本發明第一實施例發聲裝置的結構示意圖。 [0045] 圖3係本發明第一實施例發聲裝置中的奈米碳管線狀結構 中非扭轉奈米碳管線的掃描電鏡照片。 [0046] 圖4係本發明第一實施例發聲裝置中的奈米碳管線狀結構 中扭轉奈米碳管線的掃描電鏡照片。 [0047] 圖5係本發明第二實施例發聲裝置的結構示意圖。 [0048] 圖6係本發明第三實施例發聲裝置的結構示意圖。 【主要元件符號說明】 [0049] 發聲裝置:10、20 [0050] 訊號輸入裝置:12、22、32 [0051] 發聲元件:14、24、34 [0052] 支撐結構:16、36 δ [0053] 奈米碳管線狀結構:140、240 [0054] 第一電極:142、242 [0055] 第二電極:144、244 [0056] 外接導線:149、249 [0057] 第三電極:246 [0058] 第四電極:248 0971497#單編號 Α〇101 第19頁/共28頁 1013309999-0 T375944 101年08月15日按正替換頁 [0059] 電磁波發生器:322 [0060] 調製裝置:324 [0061] 電磁波訊號:326 09714971^單编號 A〇101 第20頁/共28頁 1013309999-0Amendment page on August 15, 101. 'And make. The light energy received is converted into heat in whole or in part. Furthermore, the temperature of the carbon nanotube linear structure rises rapidly and exchanges heat with the surrounding air or other medium. If the irradiated electromagnetic wave undergoes periodic intensity modulation 'there is a periodic temperature change in the carbon nanotubes', so that the medium around the nanocarbon line-like structure also produces periodic temperature changes', so that the density of the surrounding medium is also Produces periodic changes that cause the surrounding air or other medium to rapidly expand and contract, producing a sound. [0041] Compared with the prior art, the sounding device has the advantage that the sound-emitting element has a rapid temperature rise due to the small heat capacity per unit area and a large specific surface area of the nanocarbon line-like structure. The thermal hysteresis is small and the heat exchange speed is fast. Therefore, the sound generating device composed of the nano carbon line-like structure can emit sound in a wide frequency range, has a good sounding effect, and has a high sounding intensity. Second, because the carbon nanotubes have good mechanical strength and toughness, the nanocarbon pipeline structure includes a plurality of carbon nanotubes, which have high mechanical strength and good stability, so the nano carbon s linear structure The composed sound element has good mechanical strength and toughness and good durability. Thirdly, since the nanocarbon pipeline-like structure has a large aspect ratio, and the nanocarbon pipeline-like structure can constitute various sounding 7C members, it is advantageous for making sounding devices of various shapes and sizes, and is convenient. It is used in various fields. [0042] In summary, the present invention has indeed met the requirements of the invention patent, and the special fund is required according to law. However, the above description is only a preferred embodiment of the present invention, and the scope of the patent application in this case cannot be limited. Anyone who knows the skill of this case can support the spirit of Yi Shuming _ _ effect modification or change, 09714971 production order number A0101 page 18 / total 28 pages 1013309999-0 1375944 101: year. August 15th nuclear replacement page It should be covered by the following patent application. BRIEF DESCRIPTION OF THE DRAWINGS [0043] FIG. 1 is a schematic structural view of a sounding device in the prior art. 2 is a schematic structural view of a sounding device according to a first embodiment of the present invention. 3 is a scanning electron micrograph of a non-twisted nanocarbon line in a nanocarbon line-like structure in a sound generating device according to a first embodiment of the present invention. 4 is a scanning electron micrograph of a twisted nanocarbon line in a nanocarbon line-like structure in a sound generating device according to a first embodiment of the present invention. 5 is a schematic structural view of a sound emitting device according to a second embodiment of the present invention. 6 is a schematic structural view of a sounding device according to a third embodiment of the present invention. [Main component symbol description] [0049] Sounding device: 10, 20 [0050] Signal input device: 12, 22, 32 [0051] Sounding element: 14, 24, 34 [0052] Support structure: 16, 36 δ [0053 Nano carbon line structure: 140, 240 [0054] First electrode: 142, 242 [0055] Second electrode: 144, 244 [0056] External wires: 149, 249 [0057] Third electrode: 246 [0058] ] Fourth electrode: 248 0971497#单号Α〇101 Page 19/Total 28 page 1013309999-0 T375944 101 August, 2011 Press the replacement page [0059] Electromagnetic wave generator: 322 [0060] Modulation device: 324 [ 0061] Electromagnetic wave signal: 326 09714971^Single number A〇101 Page 20/Total 28 pages 1013309999-0