1356170 九、發明說明: 相關申請案之對照參考資料 本申請案係根據並主張2〇〇7年2月16日提申的日本專 利申請案第2007-036536號之優先權,其全部内容被併入在 5 此供參考。 【發Η月所屬之技術領域】 發明領域 此申請案有關一種檢測電路,且更明確是一種安裝在 一電源供應系統的檢測電路。 10 【先前技術】 發明背景 一電手裝置包含一用於將一當作一驅動電源供應器之 可充電電池充電的充電電路。曰本專利公報第3428955號揭 露了一種用於利用供應自一外部電源供應器之充電電流來 15將一可充電電池充電的充電電路。該充電電路之操作現將 參考第1圖來說明。 一充電電路11,其被併入一電子裝置中,係供應有一 來自一被耦合至該電子裝置之輸入電源轉12的DC轉接器 電壓VAC。該充電電路11是一DC/DC轉換器,其從該轉接 20器電壓VAC產生輸出電壓V〇ut並根據一輸出電流i〇ut的一 檢測值或此類者來控制該輸出電壓v〇up具體地’該充電 電路11包含一電流放大器13a,其被耦合至一電阻器ri的兩 端以檢測該輸出電流lorn,及一電流放大器13b,其被耦合 至一電阻器R2的兩端以檢測被供應至一電池BT的充電電 5 1356170 流Ichg。該等電流放大器13a與13b分別被耦合至誤差放大器 14a與14b。該電池BT的端電壓被供應至一誤差放大器14c, 且在該電阻器R1的該等端之間的電壓被供應至一倍增器 15。該倍增器15被耦合至一誤差放大器14d,該倍增器15根 5 據流至該電阻器R1的電流與該電阻器R1的端電壓(即,轉接 器電壓VAC)來檢測供應自該輸入電源轉接器12之總電源 量。然後,該倍增器15輸出一和該電源量成比例的電壓 PWRO。該等誤差放大器I4a至14d根據流至該電阻器R1的 輸出電流lout、流至該電阻器R2的充電電流Ichg、該電池BT 10 的端電壓、及該總電源量(PWR0)來產生控制電流Isc。一脈 寬調變器(PWM) 17根據該控制電流lsc改變一用於起動與 不起動M0S電晶體T1與T2的工作週期,該充電電路11的電 源輸出根據該工作週期而被控制。當電源經由一系統 DC/DC轉換器18從該充電電路11被供應至一系統電路19 15 時,該電池BT係以該充電電流Ichg被充電。 已有對於控制該AC轉接器以控制該輸出電壓的最近 要求。既然這樣’第1圖所示之輸入電源轉接器12内部包含 該PWM 17與該等電晶體T1與T2 (例如,由第1圖中的雙劃 線所繪出之盒子A中所描述的電路部分),其被該pwM 17 20控制。在此一結構中,由該等放大器13a,13b,14a , 14b 及14c與該倍增器15所產生之控制電流isc從該電子裝置被 供應至該輸入電源轉接器12 »該輸入電源轉接器12的輸出 電壓因此被該控制電流Isc所控制。 當該輸入電源轉接器12的輸出電源被控制時,電源資 6 1356170 訊係自該輸入電源轉接器12被提供至該電子裝置。該電源 資訊,作為一電源限制信號PWRM或此類者,從該PWM 17,其被併入該輸入電源轉接器12中,經由一電纜被提供 至該電子裝置的誤差软大器14d。該誤差放大器14d放大了 5在一輸出自該倍增器15的電源檢測信號PWRO與該電源限 制信號PWRM之間的差以產生一誤差電壓。然而,該電纜 包含一電阻成分(寄生電阻)。於是,由於該電親的寄生電 阻,提供至該誤差放大器14d的電源限制信號pWRM是相對 地位準的補償。具體地,提供至該誤差放大器的電源資訊 10之電壓係因該補償量被降低。因此,該電源資訊被錯誤地 傳送,且該電子裝置中的該等電路根據該錯誤的電源資訊 產生該控制電流Isc。結果,一從供應自該輸入電源轉接器 12之電源脫離的錯誤電壓係從該誤差放大器被輸出。 即,產生的控制電流Isc包含一誤差。於是,所需的轉接器 15電壓VAC可能未被精確地供應至該電子裝置31。 t 明内容;J 發明概要 實施例的一個觀點是一種檢測電路,其配置在一電子 裝置中並根據經由-電繞提供自一外部電源供應器之電源 2〇資訊來產生-用於控制由該外部電源供應器所產生之直流 輸入電壓的控制信號。該檢測電路包含有一根據該電瘦的 寄生電阻來產生校i電壓的校正電壓產生電路,一電源 資訊校正電路被輕合至該校正電壓產生電路以便經由該電 .纜接收該電源資訊,該電源資訊校正電路利用該校正電壓 7 來校正該電源資訊並產生校正的電源資訊,一檢測信號產 生電路從該輸入電壓與自該外部電源供應器被供應至該電 子裝置之輸入電流計算出該電子裝置的一總電源量以產生 對應該總電源量的電源檢測信號,—控制信號產生電路 5被輕合至該電源資訊校正電路與該檢測信號產生電路以便 自該校正電源資訊與該電源檢聰號產生該控制信號。 該等實施例的另-觀點是一種包含一產生直流電壓之 2 電源供應器之電源供應系統…電子裝置操作在經由 10電境供應自該外部電源供應器之輸人電壓,該外部電源 -應器包含-產生該輸人電壓且經由該電纜將對應該輸入 電壓之電源資訊提供至該電子裝置的電壓控制電路,該電 =裝置包含_用於根據該電源資訊來產生—控制該輸入電 2控制信號的檢測電路,該檢測電路包含—根據該電纔 15、原-°生電阻來產生校正電壓之校正電壓產生電路。一電 雷、P校正電路雖合至該校正電壓產生電路以便經由該 接收該電源貧訊’其中該電源資訊校正電路利用該校 電塵來校正該電源資訊並產生校正的電源資訊。一檢測 =號產生電路從該輸人„與自該外部電源供應器被供應 20量該電子裝置之輸入電流計算出該電子裝置的—總電源 置’並產生—對應該總電源量的電源檢測信號。—控制信 2產生電路_合至該電源f訊校正電路與該檢測信號產 電路W便根肋校正電源#訊與該電源制信號產生該 控制信號》 該等實施例的又-觀點是一種根據提供自—外部電源 1356170 供應器之電源資訊來控制由該外部電源供應器所產生之直 流輸入電壓的方法包含步驟有經由一電纜來接收該電源資 訊、根據該電纜的一寄生電阻產生校正電壓、利用該校正 電壓來校正該電源資訊以產生校正的電源資訊、從該輸入 5 電壓與供應自該外部電源供應器的輸入電流計算出一電子 ..- 裝置的一總電源量以產生一對應該總電源量的電源檢測信 號、及自該校正電源資訊與該電源檢測信號產生一控制信 號。 • 該等實施例的其它觀點與優點將從以下說明將變得顯 10 而易見。 圖式簡單說明 ' 第1圖是一傳統電源供應系統之概要區塊圖; v 第2圖是根據一較佳實施例的一電源供應系統的概要 區塊圖,及 15 第3圖是第2圖所示之電源供應系統的一概要電路圖。 L實施方式;! ® 較佳實施例之詳細說明 以下揭露說明一種用於精確地產生一控制AC轉接器 - 之輸出電源的控制信號的檢測電路與電源供應系統。 20 在該等圖式中,相似數字處處被用於相似的元件。 根據一個較佳實施例的一電源供應系統現將根據第2 與3圖被說明。 如第2圖所示,該電源供應系統包含一當作外部電源供 應器的AC轉接器21、及一經由一電纜W1被耦合至該AC轉 9 1356170 接器21的電子裝置31。該AC轉接器21是該電子裝置31的一 配件。在一個實施例中,該電纜wi具有一腳尾固定至該AC 轉接器21的第一端及一設有一耦合至該電子裝置31的一連 接器之插頭的第二端。 5 該AC轉接器21被耦合至一 AC電源供應器20,且來自該 AC電源供應|§20之商業AC電壓被供應至該AC轉接器21的 一電壓轉換電路22。該電壓轉換電路22將AC電壓轉換到Dc 電壓並然後將該DC電壓供應至一電壓控制電路23,該電壓 控制電路23根據提供自該電子裝置3丨的控制電流Isc (控制 10信號)從該電壓轉換電路22所產生的DC電壓產生轉接器電 壓VAC。該轉接器電壓VAC,經由該電纜W1,作為輸入電 壓被供應至該電子裝置31。該電壓控制電路23,經由該電 纜W1,將對應供應自該a c轉接器2丨之電源量的電源資訊電 壓VPW (電源資訊)提供至該電子裝置31。 15 該轉接器電壓VAC經由一電阻器R1被供應至一系統 DC/DC轉換器32,一可充電電池(電池)BT經由一電阻器R2 被耦合至該系統DC/DC轉換器32,該系統DC/DC轉換器32 根據該轉接器電壓VAC與供應自該電池BT的電池電壓從該 輸入電壓產生系統電壓¥8。於是,供應自該AC轉接器21 20之電源與供應自該電池BT之電源中的至少一個被供應至— 系統電路33,該系統電路33是一實現該電子裝置之不同功 能的電路。 該電阻器R1與該電阻器R2被耦合至一電池檢測電路 34,該電池檢測電路34被耦合至該電阻器R1的兩端且至一 10 1356170 在該電阻器R2與該電池BT之間的節點,該電池檢測電路34 根據在該電阻器R1兩端之間的電位差來檢測流至該電阻器 R1的電流lout。此外,該電池檢測電路34從在該電阻器R2 兩端之間的電位差(即,電流I〇ut)、該電阻器ri的端電壓 5 (即,轉接器電壓VAC)、及該電源資訊電壓Vpw來檢測該總 輸出電源。該電池檢測電路34亦根據在該電阻器R2兩端之 間的電位差來檢測流至該電阻器R2的電流ichg,該電池檢 測電路34更檢測該電壓(或轉接器電壓VAC)及供應至該系 統DC/DC轉換器32之該電池BT的端電壓。該電池檢測電路 10 34根據該檢測電流、該檢測電壓及該總輸出電源來產生控</ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; Enter 5 for reference. TECHNICAL FIELD OF THE INVENTION This application relates to a detection circuit and, more particularly, to a detection circuit mounted in a power supply system. [Prior Art] Background of the Invention An electric hand device includes a charging circuit for charging a rechargeable battery as a driving power supply. A charging circuit for charging a rechargeable battery using a charging current supplied from an external power supply is disclosed in Japanese Laid-Open Patent Publication No. 3429955. The operation of the charging circuit will now be described with reference to Fig. 1. A charging circuit 11, which is incorporated into an electronic device, is supplied with a DC adapter voltage VAC from an input power source 12 coupled to the electronic device. The charging circuit 11 is a DC/DC converter that generates an output voltage V〇ut from the converter 20 voltage VAC and controls the output voltage according to a detected value of an output current i〇ut or the like. Specifically, the charging circuit 11 includes a current amplifier 13a coupled to both ends of a resistor ri to detect the output current lorn, and a current amplifier 13b coupled to both ends of a resistor R2. The charging power 5 1356170 supplied to a battery BT is detected to flow Ichg. The current amplifiers 13a and 13b are coupled to the error amplifiers 14a and 14b, respectively. The terminal voltage of the battery BT is supplied to an error amplifier 14c, and the voltage between the terminals of the resistor R1 is supplied to a multiplier 15. The multiplier 15 is coupled to an error amplifier 14d that detects the supply of current from the current flowing to the resistor R1 and the terminal voltage of the resistor R1 (ie, the adapter voltage VAC). The total amount of power supplied to the power adapter 12. Then, the multiplier 15 outputs a voltage PWRO proportional to the amount of the power source. The error amplifiers I4a to 14d generate a control current based on an output current lout flowing to the resistor R1, a charging current Ichg flowing to the resistor R2, a terminal voltage of the battery BT10, and the total power supply amount (PWR0). Isc. A pulse width modulator (PWM) 17 changes a duty cycle for starting and not starting the MOS transistors T1 and T2 according to the control current lsc, and the power output of the charging circuit 11 is controlled according to the duty cycle. When power is supplied from the charging circuit 11 to a system circuit 19 15 via a system DC/DC converter 18, the battery BT is charged with the charging current Ichg. There is a recent requirement for controlling the AC adapter to control the output voltage. In this case, the input power adapter 12 shown in FIG. 1 internally includes the PWM 17 and the transistors T1 and T2 (for example, as described in the box A depicted by the double-dashed line in FIG. 1). Circuit part), which is controlled by the pwM 17 20. In this configuration, the control current isc generated by the amplifiers 13a, 13b, 14a, 14b and 14c and the multiplier 15 is supplied from the electronic device to the input power adapter 12 » the input power transfer The output voltage of the device 12 is thus controlled by the control current Isc. When the output power of the input power adapter 12 is controlled, the power source 6 1356170 is supplied from the input power adapter 12 to the electronic device. The power supply information, as a power limit signal PWRM or the like, is incorporated from the PWM 17, which is incorporated into the input power adapter 12, via a cable to the error softener 14d of the electronic device. The error amplifier 14d amplifies the difference between the power supply detection signal PWRO output from the multiplier 15 and the power supply limit signal PWRM to generate an error voltage. However, the cable contains a resistive component (parasitic resistance). Thus, due to the parasitic resistance of the electric pro, the power supply limit signal pWRM supplied to the error amplifier 14d is a relatively accurate compensation. Specifically, the voltage supplied to the power supply information 10 of the error amplifier is reduced by the amount of compensation. Therefore, the power supply information is erroneously transmitted, and the circuits in the electronic device generate the control current Isc based on the erroneous power supply information. As a result, an erroneous voltage that is detached from the power supply supplied from the input power adapter 12 is output from the error amplifier. That is, the generated control current Isc contains an error. Thus, the required adapter 15 voltage VAC may not be accurately supplied to the electronic device 31. An aspect of an embodiment is a detection circuit that is disposed in an electronic device and is generated based on a power supply that is supplied from an external power supply via an electrical winding - for control by the Control signal for the DC input voltage generated by the external power supply. The detecting circuit includes a correction voltage generating circuit for generating a voltage according to the thin parasitic resistance, and a power information correcting circuit is lightly coupled to the correction voltage generating circuit to receive the power information via the electric cable. The information correction circuit uses the correction voltage 7 to correct the power information and generate corrected power information, and a detection signal generation circuit calculates the electronic device from the input voltage and an input current supplied from the external power supply to the electronic device. a total power supply amount to generate a power supply detection signal corresponding to the total power supply amount, the control signal generating circuit 5 is lightly coupled to the power supply information correction circuit and the detection signal generating circuit for self-correcting the power supply information and the power detection signal This control signal is generated. Another aspect of the embodiments is a power supply system including a power supply for generating a DC voltage. The electronic device operates on an input voltage supplied from the external power supply via 10 electrical sources. The device includes - generating the input voltage and supplying power information corresponding to the input voltage to the voltage control circuit of the electronic device via the cable, the electrical device comprising _ for generating according to the power information - controlling the input power 2 A detection circuit for controlling a signal, the detection circuit comprising: a correction voltage generating circuit for generating a correction voltage based on the electric current 15 and the original resistance. A lightning, P correction circuit is coupled to the correction voltage generating circuit for receiving the power supply via the power supply information, wherein the power information correction circuit uses the calibration dust to correct the power information and generate corrected power information. A detection = number generation circuit calculates the power supply from the input and the input current of the electronic device from the external power supply to calculate the total power supply of the electronic device and generates a power supply corresponding to the total power supply. Signal--control signal 2 generating circuit _ coupled to the power source f-correction circuit and the detection signal-generating circuit W rib correction power source # and the power source signal generating the control signal" A method for controlling a DC input voltage generated by an external power supply based on power supply information from a supply source of an external power supply 1356170 includes the steps of receiving the power supply information via a cable, and generating a correction based on a parasitic resistance of the cable Voltage, using the correction voltage to correct the power information to generate corrected power information, calculating an electronic quantity from the input 5 voltage and an input current supplied from the external power supply to generate a total power amount of the device to generate a A power detection signal corresponding to the total power supply amount, and a control signal generated from the corrected power supply information and the power supply detection signal. Other aspects and advantages of the embodiments will become apparent from the following description. Brief Description of the Drawings Figure 1 is a schematic block diagram of a conventional power supply system; v Figure 2 is based on a comparison A schematic block diagram of a power supply system of a preferred embodiment, and FIG. 3 is a schematic circuit diagram of the power supply system shown in Fig. 2. L embodiment; ! ® DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A detection circuit and power supply system for accurately generating a control signal for controlling an output power of an AC adapter. 20 In the drawings, similar numbers are used for similar components. According to a preferred embodiment. An example of a power supply system will now be described in accordance with Figures 2 and 3. As shown in Figure 2, the power supply system includes an AC adapter 21 as an external power supply, and a via W1 via a cable W1. An electronic device 31 coupled to the AC to 9 1356170 connector 21. The AC adapter 21 is an accessory to the electronic device 31. In one embodiment, the cable wi has a foot end secured to the AC adapter The first end of 21 and A second end of a plug coupled to the connector of the electronic device 31 is provided. 5 The AC adapter 21 is coupled to an AC power supply 20, and the commercial AC voltage from the AC power supply | § 20 is a voltage conversion circuit 22 supplied to the AC adapter 21. The voltage conversion circuit 22 converts the AC voltage to a DC voltage and then supplies the DC voltage to a voltage control circuit 23, which is supplied from the voltage control circuit 23 The control current Isc of the electronic device 3 (control 10 signal) generates an adapter voltage VAC from the DC voltage generated by the voltage conversion circuit 22. The adapter voltage VAC is supplied to the interface as an input voltage via the cable W1. The electronic device 31. The voltage control circuit 23 supplies a power supply information voltage VPW (power supply information) corresponding to the amount of power supplied from the ac adapter 2 to the electronic device 31 via the cable W1. 15 The adapter voltage VAC is supplied to a system DC/DC converter 32 via a resistor R1, and a rechargeable battery (battery) BT is coupled to the system DC/DC converter 32 via a resistor R2. The system DC/DC converter 32 generates a system voltage of ¥8 from the input voltage based on the adapter voltage VAC and the battery voltage supplied from the battery BT. Thus, at least one of the power source supplied from the AC adapter 21 20 and the power source supplied from the battery BT is supplied to the system circuit 33, which is a circuit that realizes different functions of the electronic device. The resistor R1 and the resistor R2 are coupled to a battery detection circuit 34 that is coupled to both ends of the resistor R1 and to a 10 1356170 between the resistor R2 and the battery BT. At the node, the battery detecting circuit 34 detects the current lout flowing to the resistor R1 based on the potential difference between both ends of the resistor R1. In addition, the battery detection circuit 34 has a potential difference (ie, current I〇ut) between the two ends of the resistor R2, a terminal voltage 5 of the resistor ri (ie, an adapter voltage VAC), and the power supply information. The voltage Vpw is used to detect the total output power. The battery detection circuit 34 also detects the current ichg flowing to the resistor R2 according to the potential difference between the two ends of the resistor R2. The battery detection circuit 34 further detects the voltage (or the adapter voltage VAC) and supplies it to The terminal voltage of the battery BT of the system DC/DC converter 32. The battery detecting circuit 10 34 generates a control according to the detected current, the detected voltage, and the total output power
制電流Isc,該控制電流ISC經由該電纜wi被供應至該AC轉 接器21的電壓控制電路23。因此,該AC轉接器21的電壓控 制電路23根據輸出自該電池檢測電路34之控制電流Isc來控 制該轉接器電壓VAO 15 現將討論該AC轉接器21之結構的一範例。 如第3圖所示,該電壓轉換電路22的一輸出端被耦合至 一第一電晶體T11的第一端(例如’源極),且該第一電晶體 T11的一第二端(例如,汲極)被耦合至一扼流線圈L1的一第 一端,該扼流線圈L1的一第二端被耦合至該AC轉接器21的 20 一第一輸出端P1,該第一電晶體ΤΙ 1的第二端亦被耦合至一 第二電晶體T12的一第一端(例如,汲極),該第二電晶體T12 的一第二端(例’源極)被耦合至地。該第一電晶體T11的一 控制端(閘極)與該第二電晶體T12的一控制端(閘極)被耦合 至一脈寬調變器(PWM) 24。在一個實施例中,該第一電晶 11 1356170 體Til是-p通道MOS電晶n,且該第二電晶體T12是一N通 道M0S電晶體。如第3圖所示,每個電晶體τι〗,τΐ2呈有 一本體二極體。 該扼流線圈L1的第一端被耦合至一二極體m的陰 5極,且該一極體D1的陽極被耦合至地。該八匸轉接器21的第 一輸出端P1被耗合至一電容器C1的一第一端,且該電容器 C1的一第二端被耦合至地。該AC轉接器21的一第二輸出端 P2被耦合至地,且該AC轉接器21的一第三輸出端p3被耦合 至該PWM 24。該AC轉接器21之第一至第三端ρι至藉由 ίο 6亥電缓wi分別被麵合至該電子裝置的第一至第三端pii至 P13。該扼流線圈L1與該電容器ci形成一平流電路。 該控制電流Isc經由該等第三輸出端?3與?13從該電池 檢測電路34被供應至該PWM 24,該PWM 24亦經由該等第 二端P3與P13將該電源資訊電壓Vpw供應至該電池檢測電 15路34。該PWM 24,在一預定工作週期下,以一互補方式來 起動與不起動該第一電晶體T11與該第二電晶體τΐ2 β該電 晶體Τ11的輸出電流係藉由該第一電晶體T1丨的切換操作而 被控制,該輸出電流係藉由一平流電路(L1與C1)而變平。 當該第一電晶體T11被起動時’該電壓轉換電路22的輸出電 20 壓係經由該電晶體ΤΙ 1被供應至該平流電路(L1與C1)。當該 第—電晶體T11係不起動時,一經過該扼流線圈L1與該二極 體〇1的電流路徑被形成,並且於該第一電晶體T11的起動 期間儲存於該扼流線圈L1的能量被放電至該第一端Ρ1 β 該PWM 24回應該控制電流Isc而改變該工作週期。具 12 1356170 體地’該PWM 24根據該控制電流Isc的電流值來改變該工 作週期以便改變該第一電晶體Til被起動的期間❶輸出自該 AC轉接器21的轉接器電壓VAC係對應於該第一電晶體TU 的起動期間。若該第一晶體Til的起動期間是長的,則儲存 5於該扼流線圈L1的能量增加,且該轉接器電壓VAC上升。 若該第一電晶體T11的起動期間是短的,則儲存於該扼流線 圈L1的能量減少並降低了該轉接器電壓vac。 於疋,该AC轉接器21根據該控制電流isc來改變該轉接 器電壓VAC。當該控制電流Isc不被供應至該ac轉接器21 10時,6亥AC轉接益21產生在最小電壓的轉接器電塵vac。在 此情況下,當耗合至該AC電源供應器20的AC轉接器21被柄 合至該電子裝置31時,該控制電流Isc為0(零)。於是,供應 至e亥電子裝置31的轉接器電壓VAC是最小電壓。這防止了 一大的浪湧電流(inrush current)流至該電子裝置31的電池 15 BT。 在該電子裝置31的該電池檢測電路34之結構現將被說 明。 由該AC轉接器21所產生之轉接器電壓VAC,經由該被 搞合至該電子裝置31的一第一輸入端P11之電阻器Ri,被供 20應至該DC/DC轉換器32。輸出自該AC轉接器21的PWM 24 之電源資訊電壓Vpw經由該電子裝置31的第三端pi3被供 應至該電池檢測電路34。 供應自該AC轉接器21之電流lout流至該電子裝置31的 電阻器R1 ’該電阻器R1的兩端被耦合至該電池檢測電路34 13 1356170 中的—電流放大器41之兩個輸入端,該電流放大器41檢測 流至該電阻器R1的電流lout ’即,該AC轉接器21的輸出電 流’並產生一對應該輸出電流I 〇 u t之檢測值的電流檢測信號 S1 ° —誤差放大器42包含一用於接收該電流檢測信號S1的 5 反相輸入端以及一用於接收一電流參考信號I0UTM,該電 流參考信號I0UTM被設定至一對應該用於該電子裝置31之 總電流量(即,電流lout)的電壓值,該誤差放大器42比較該 電流檢測電路測信號S1與該電流參考信號I0UTM並產生一 對應該比較結果之誤差電壓(第一誤差電壓)。 10 該電阻器R2耦合至該電池BT的兩端被耦合至一誤差 放大器43的兩個輸入端,該電流放大器43檢測流至該電阻 器R2的電流Ichg,即,至該電池BT的充電電流Ichg,並產 生一對應該充電電流Ichg之檢測值的充電電流檢測信號 S2。一誤差放大器44包含一用於接收該充電電流檢測信號 15 S2的反相輸入端以及一用於接收一限流信號IDAC的非反 相輸入端,該限流信號IDAC被設定至對應該電池BT之充電 電流Ichg的電壓值,該誤差放大器44放大了在該充電電流 檢測信號S2之電壓與該限流信號IDAC之電壓之間的差以 便產生一誤差電壓。 20 一在該電阻器R2與該電池BT之間的節點被耦合至一 誤差放大器45的一反相輸入端,一限壓信號VDAC被輸入至 該誤差放大器45的一非反相輸入端’該誤差放大器45放大 在該電池BT之端電壓與該限壓信號VDAC之間的差以便產 生一誤差電壓。 14 該電阻器R1的兩端被耦合至一當作一檢測信號產生電 路的倍增器46,該倍增器46根據該電阻器R1的端電壓來檢 測該轉接器電壓VAC並根據該電阻器幻兩端之間的電壓來 檢測該電子裝置31的總電流量,該倍增祕藉由倍增該轉 接器電壓VAC與該總電流量而獲得該總電源量,然後,該 倍增器46將-對應該總電源量的電源檢測信號PWRO提供 給一誤差放大器47。一當作電源資訊校正電路的操作電路 耦合至該誤差放大器47 ’該電源資訊電壓Vpw係從該 AC轉接器21被供應至該操作電路48,該操作電路48被耦合 至一在一校正電流產生電路49與一當作校正電阻器電路之 電阻器R3之間的節點N1。另外,該操作電路48接收在該節 點N1的電壓作為校正電壓vh。在一個實施例中,該操作電 路48是一加法器電路,其將該校正電壓¥11加至該電源資訊 電壓Vpw,並將指示該相加結果的校正資訊電壓(校正的電 源資訊)Vph供應至該誤差放大器47作為該電源限制信號 PWRIV^在一個實施例中,該校正電壓產生電路係由該電 阻器R3與校正電流產生電路49來形成。 該電阻器R3的電阻值被設定至一和該電繞wi之寄生 電阻成比例的值,該電阻器R3被外部安裝至包含該電池檢 測電路34之半導體裝置。由該電流放大器41所產生之電流 檢測信號S1被提供至該校正電流產生電路49,該校正電流 產生電路4 9根據該電流檢測信號S1來產生一對應該供應自 該AC轉接器21之輸入電流lout的校正電流化,該校正電流ih 流至該電阻器R3。於是,該校正電流產生電路49藉由將該 1356170 校正電壓Vh加至因補償而被降低的電源資訊(電源資訊電 壓Vpw)來產生對應輸出自該PWN 24之電源資訊的電壓之 校正訊電壓Vph。 該誤差放大器47將在供應自該操作電路48之電源限制 5信號P WRM與供應自該倍增器4 6之電源檢測信號pwr〇之 間的差玫大以便一誤差電壓。在此情況下,該操作電路补 輸出該校正資訊電壓Vph其係實質上等於輸出自該pWM 24作為該電源限制信號PWRM的電源資訊之電壓。因此, 該誤差放大器47產生該誤差電壓在一實質上等於輸出自該 10 PWM 24之電源資訊的值。 * —極體Dll,D12,D13及D14的陰極分別輕合至該等 誤差放大器42,44,45及47的該等輸出端’該等二極體D11 至D14之陽極一起被耦合柄合至一電流電壓轉換電路5〇,該 等二極體D11至D14將對應輸出自該等誤差放大器42,44, 15 45及47的該等誤差電壓中之最大者的電流(誤差電流)傳送 至該電流電壓轉換電路50。換言之,該等四個誤差檢測值 中的最大者被提供至該電流電壓轉換電路50。 該電流電壓轉換電路50的輸出端被耦合至一電晶體 T21之控制端(閘極),其形成一定電流源(電流控制電路)。 20 因此,該電流電壓轉換電路50將一和該輸入電流成比例的 輸出電壓供應至該電晶體T21之閘極。在一個實施例中,該 電晶體T21是一P通道MOS電晶體。該轉接器電壓VAC被供 應至該電晶體T21的源極,該電晶體T21的汲極被耦合至該 電子裝置31的一第三端P13,該電子裝置31的一第二端P12 16 1356170 被耦合至地。 该電晶體T21操作為一具有一對應該閘極電壓之電阻 值的電阻器本體,並且能使對應於該電阻值的控制電流Isc 流動。該電晶體T21,其是一P通道m〇S電晶體,在一高閘 5極電壓下指示一大電阻值且在一低閘極電壓下指示一小電 阻值。因此,當該控制電流isc減少時,增加了在該電流電 壓轉換電路50之輸出電壓,即,供應至該電流電壓轉換電 路50的誤差檢測值的增加。另外,在該電流電壓轉換電路 47的輸出電壓或該誤差檢測值的減少增加了該控制電流 10 Isc 。 在一個實施例中,該等誤差放大器42,44,45及47、 該等二極體Dll,D12 ’ D13及D14、及該電晶體T21形成一 控制信號產生電路60。 當該電池BT並未被耦合至該電子裝置31時,供應至該 15誤差放大器45的電池端電壓為〇 (零)。被該誤差放大器44所 檢測之充電電流亦為0。在此情況下,供應至該電流電壓轉 換電路50的誤差檢測值(即,輸入電流)增加。於是,流自該 電晶體T21的控制電流Isc減少。因此,輸出自該AC轉接器 21的電壓控制電路23之轉接器電壓VAC變小。在此一狀態 20 下,當該電池BT被耦合至該電子裝置31時,因為在該電池 BT之端電壓與供應自該AC轉接器21的轉接器電壓VAC之 間的差是小的,所以至該電池BT之浪湧電流的流動被抑制。 在以上的電源供應系統中,該電池檢測電路34作用來 在該操作電源供應電壓減少時,諸如當該電此裝置31停止 17 1356170 ,降低該控制電流Ise。該AC轉接器2ι錢產生一低 接益電MVAC。於是’該電源供應電n極限在該電 池檢測電路34㈣作下倾供,並且賴作情況被缓和。 此外®mc轉接器21將低的轉接器電墨實供應至該 電子裳置3卜所以當該電子裝置31停止操作時高的轉接 器電射AC:料被供絲該電子裝431。因此,防止损害 該電子裝置31中的該等電路。A current Isc is generated, which is supplied to the voltage control circuit 23 of the AC adapter 21 via the cable wi. Therefore, the voltage control circuit 23 of the AC adapter 21 controls the adapter voltage VAO 15 based on the control current Isc outputted from the battery detection circuit 34. An example of the structure of the AC adapter 21 will now be discussed. As shown in FIG. 3, an output terminal of the voltage conversion circuit 22 is coupled to a first end (eg, 'source') of a first transistor T11, and a second end of the first transistor T11 (eg, , a drain is coupled to a first end of a choke coil L1, a second end of the choke coil L1 is coupled to a first output terminal P1 of the AC adapter 21, the first The second end of the crystal ΤΙ 1 is also coupled to a first end (eg, a drain) of a second transistor T12, and a second end (eg, 'source') of the second transistor T12 is coupled to ground . A control terminal (gate) of the first transistor T11 and a control terminal (gate) of the second transistor T12 are coupled to a pulse width modulator (PWM) 24. In one embodiment, the first transistor 11 1356170 body Til is a -p channel MOS transistor n, and the second transistor T12 is an N channel MOS transistor. As shown in Fig. 3, each of the transistors τι, τ ΐ 2 has a body diode. The first end of the choke coil L1 is coupled to the cathode 5 of a diode m, and the anode of the pole D1 is coupled to ground. The first output terminal P1 of the gossip adapter 21 is consuming to a first end of a capacitor C1, and a second end of the capacitor C1 is coupled to ground. A second output P2 of the AC adapter 21 is coupled to ground, and a third output p3 of the AC adapter 21 is coupled to the PWM 24. The first to third ends ρι of the AC adapter 21 are respectively surface-to-close to the first to third terminals pii to P13 of the electronic device by means of ίο6. The choke coil L1 forms a smoothing circuit with the capacitor ci. The control current Isc is via the third outputs? 3 with? The battery detection circuit 34 is supplied to the PWM 24, and the PWM 24 also supplies the power supply information voltage Vpw to the battery detection circuit 15 via the second terminals P3 and P13. The PWM 24, in a complementary manner, starts and does not start the first transistor T11 and the second transistor τΐ2 β in a complementary manner, and the output current of the transistor 11 is controlled by the first transistor T1. The switching operation is controlled by the switching operation, and the output current is flattened by a smoothing circuit (L1 and C1). When the first transistor T11 is activated, the output voltage of the voltage converting circuit 22 is supplied to the smoothing circuit (L1 and C1) via the transistor ΤΙ1. When the first transistor T11 is not activated, a current path passing through the choke coil L1 and the diode 〇1 is formed, and is stored in the choke coil L1 during startup of the first transistor T11. The energy is discharged to the first terminal Ρ1 β. The PWM 24 should control the current Isc to change the duty cycle. 12 13356170 physically 'the PWM 24 changes the duty cycle according to the current value of the control current Isc to change the period during which the first transistor Til is activated ❶ is outputted from the adapter voltage VAC of the AC adapter 21 Corresponding to the starting period of the first transistor TU. If the starting period of the first crystal Til is long, the energy stored in the choke coil L1 increases, and the adapter voltage VAC rises. If the start period of the first transistor T11 is short, the energy stored in the choke coil L1 is reduced and the adapter voltage vac is lowered. In turn, the AC adapter 21 changes the adapter voltage VAC based on the control current isc. When the control current Isc is not supplied to the ac adapter 21 10, the 6-AC AC transfer benefit 21 generates the adapter dust vac at the minimum voltage. In this case, when the AC adapter 21 consuming to the AC power supply 20 is slid to the electronic device 31, the control current Isc is 0 (zero). Thus, the adapter voltage VAC supplied to the e-electronic device 31 is the minimum voltage. This prevents a large inrush current from flowing to the battery 15 BT of the electronic device 31. The structure of the battery detecting circuit 34 at the electronic device 31 will now be described. The adapter voltage VAC generated by the AC adapter 21 is supplied to the DC/DC converter 32 via the resistor Ri that is coupled to a first input terminal P11 of the electronic device 31. . The power information voltage Vpw output from the PWM 24 of the AC adapter 21 is supplied to the battery detecting circuit 34 via the third terminal pi3 of the electronic device 31. The current supplied from the AC adapter 21 flows to the resistor R1 of the electronic device 31. Both ends of the resistor R1 are coupled to the two inputs of the current amplifier 41 of the battery detection circuit 34 13 1356170. The current amplifier 41 detects the current lout ' flowing to the resistor R1, that is, the output current of the AC adapter 21' and generates a pair of current detection signals S1 ° which should output the detected value of the current I 〇ut - an error amplifier 42 includes a 5 inverting input for receiving the current detecting signal S1 and a receiving current reference signal IOUTM, which is set to a total amount of current that should be used for the electronic device 31 ( That is, the voltage value of the current lout), the error amplifier 42 compares the current detecting circuit detecting signal S1 with the current reference signal IOUTM and generates a pair of error voltages (first error voltage) to be compared. 10 The resistor R2 is coupled to both ends of the battery BT coupled to two inputs of an error amplifier 43, which senses the current Ichg flowing to the resistor R2, ie, the charging current to the battery BT Ichg, and generates a pair of charging current detection signals S2 that should be detected by the charging current Ichg. An error amplifier 44 includes an inverting input for receiving the charging current detection signal 15 S2 and a non-inverting input for receiving a current limiting signal IDAC, the current limiting signal IDAC being set to correspond to the battery BT The voltage value of the charging current Ichg amplifies the difference between the voltage of the charging current detecting signal S2 and the voltage of the current limiting signal IDAC to generate an error voltage. a node between the resistor R2 and the battery BT is coupled to an inverting input of an error amplifier 45, and a voltage limiting signal VDAC is input to a non-inverting input of the error amplifier 45. The error amplifier 45 amplifies the difference between the voltage at the terminal of the battery BT and the voltage limiting signal VDAC to generate an error voltage. 14 The two ends of the resistor R1 are coupled to a multiplier 46 which acts as a detection signal generating circuit, and the multiplier 46 detects the adapter voltage VAC according to the terminal voltage of the resistor R1 and according to the resistor illusion The voltage between the two ends is used to detect the total current amount of the electronic device 31. The multiplication is obtained by multiplying the adapter voltage VAC and the total current amount, and then the multiplier 46 will The power supply detection signal PWRO, which should be the total amount of power, is supplied to an error amplifier 47. An operational circuit as a power information correction circuit is coupled to the error amplifier 47'. The power information voltage Vpw is supplied from the AC adapter 21 to the operational circuit 48, the operational circuit 48 being coupled to a calibration current A node N1 is formed between the circuit 49 and a resistor R3 which acts as a correction resistor circuit. Further, the operation circuit 48 receives the voltage at the node N1 as the correction voltage vh. In one embodiment, the operation circuit 48 is an adder circuit that adds the correction voltage ¥11 to the power supply information voltage Vpw, and supplies a correction information voltage (corrected power supply information) Vph indicating the addition result. The error amplifier 47 is used as the power supply limiting signal PWRIV. In one embodiment, the correction voltage generating circuit is formed by the resistor R3 and the correction current generating circuit 49. The resistance value of the resistor R3 is set to a value proportional to the parasitic resistance of the electric winding wi, and the resistor R3 is externally mounted to the semiconductor device including the battery detecting circuit 34. The current detection signal S1 generated by the current amplifier 41 is supplied to the correction current generation circuit 49, and the correction current generation circuit 49 generates a pair of inputs which should be supplied from the AC adapter 21 based on the current detection signal S1. The current of the current lout is corrected, and the correction current ih flows to the resistor R3. Then, the correction current generating circuit 49 generates the correction signal voltage Vph corresponding to the voltage of the power supply information output from the PWN 24 by adding the 1356170 correction voltage Vh to the power supply information (power information voltage Vpw) which is reduced by the compensation. . The error amplifier 47 amplifies the difference between the power supply limit 5 signal P WRM supplied from the operation circuit 48 and the power supply detection signal pwr 供应 supplied from the multiplier 46 to an error voltage. In this case, the operation circuit complements the correction information voltage Vph which is substantially equal to the voltage output from the pWM 24 as the power supply information of the power supply restriction signal PWRM. Therefore, the error amplifier 47 produces the error voltage at a value substantially equal to the power supply information output from the 10 PWM 24. * - the cathodes of the polar bodies D11, D12, D13 and D14 are respectively coupled to the output terminals of the error amplifiers 42, 44, 45 and 47. The anodes of the diodes D11 to D14 are coupled together to the anode. a current-voltage conversion circuit 5?, the diodes D11 to D14 transmit the current (error current) corresponding to the largest of the error voltages output from the error amplifiers 42, 44, 15 45 and 47 to the current Current-voltage conversion circuit 50. In other words, the largest of the four error detection values is supplied to the current voltage conversion circuit 50. The output of the current-to-voltage conversion circuit 50 is coupled to a control terminal (gate) of a transistor T21 which forms a constant current source (current control circuit). Therefore, the current-voltage conversion circuit 50 supplies an output voltage proportional to the input current to the gate of the transistor T21. In one embodiment, the transistor T21 is a P-channel MOS transistor. The adapter voltage VAC is supplied to the source of the transistor T21. The drain of the transistor T21 is coupled to a third terminal P13 of the electronic device 31. A second terminal P12 16 1356170 of the electronic device 31 Is coupled to the ground. The transistor T21 operates as a resistor body having a pair of resistance values corresponding to the gate voltage, and can cause a control current Isc corresponding to the resistance value to flow. The transistor T21, which is a P-channel m〇S transistor, indicates a large resistance value at a high gate voltage and indicates a small resistance value at a low gate voltage. Therefore, when the control current isc is decreased, the output voltage of the current voltage conversion circuit 50, that is, the increase of the error detection value supplied to the current voltage conversion circuit 50 is increased. Further, the output voltage of the current-voltage conversion circuit 47 or the decrease of the error detection value increases the control current 10 Isc . In one embodiment, the error amplifiers 42, 44, 45 and 47, the diodes D11, D12' D13 and D14, and the transistor T21 form a control signal generating circuit 60. When the battery BT is not coupled to the electronic device 31, the battery terminal voltage supplied to the 15 error amplifier 45 is 〇 (zero). The charging current detected by the error amplifier 44 is also zero. In this case, the error detection value (i.e., input current) supplied to the current-voltage conversion circuit 50 is increased. Thus, the control current Isc flowing from the transistor T21 is reduced. Therefore, the adapter voltage VAC output from the voltage control circuit 23 of the AC adapter 21 becomes small. In this state 20, when the battery BT is coupled to the electronic device 31, the difference between the voltage at the terminal of the battery BT and the adapter voltage VAC supplied from the AC adapter 21 is small. Therefore, the flow of the surge current to the battery BT is suppressed. In the above power supply system, the battery detecting circuit 34 functions to lower the control current Ise when the operating power supply voltage is reduced, such as when the device 31 is stopped 17 1356170. The AC adapter 2 generates a low power MVAC. Thus, the power supply n limit is dumped by the battery detecting circuit 34 (4), and the situation is alleviated. In addition, the ® mc adapter 21 supplies the low adapter electro-ink to the electronic slap 3, so when the electronic device 31 stops operating, the high-conductor electro-optic AC: is supplied with the wire. . Therefore, the circuits in the electronic device 31 are prevented from being damaged.
該實施例的電源供應系統具有說明在下的該等優點。The power supply system of this embodiment has these advantages as explained below.
⑴該校正電流產生電路49根據該電流檢測信號31產 10 f和供應自該AC轉接器21之電流成比例的校正電流Ih,該 校正電流Ih流至該校正電阻器R3。結果,該校正電流產生 電路49,在該校正電流產生電路49與該電阻器们之間的節 點N1’產生實質上要等於因該钱Wl的寄生電阻所導致的 電源資訊電MVPW的補償量(從地位準轉移的電壓量)之校 15正電壓Vh。該操作電路48藉由將該校正電壓^加至該電源 資訊vpw來蓋生該校正資訊電墨Vph。另外,該操作電路牝 將該校正資訊電壓Vph供應至該誤差放大器47作為該電源 限制信號PWRM。即,該操作電路48,藉由利用該校正電 壓vh,產生該電源限制信號PWRM,其是對應於輸出自該 2〇 PWM 24的電源資訊之電壓,以便校正該電源資訊電壓X Vpw,其已被補償且被降低。於是,該誤差放大器们根據 精確的電源資訊(電源資訊電壓Vpw)來產生該誤差電壓。結 果,該電池檢測電路34產生該控制電流Isc而沒有可能因誃 電欖W1的寄生電阻所導致之誤差。 Λ(1) The correction current generating circuit 49 generates a correction current Ih proportional to the current supplied from the AC adapter 21 based on the current detection signal 31, and the correction current Ih flows to the correction resistor R3. As a result, the correction current generating circuit 49 generates a compensation amount of the power information MVPW substantially equal to the parasitic resistance of the money W1 at the node N1' between the correction current generating circuit 49 and the resistor ( The voltage from the status of the standard transfer voltage) is 15 positive voltage Vh. The operation circuit 48 covers the correction information ink Vph by adding the correction voltage to the power information vpw. Further, the operation circuit 牝 supplies the correction information voltage Vph to the error amplifier 47 as the power supply restriction signal PWRM. That is, the operation circuit 48 generates the power supply limit signal PWRM by using the correction voltage vh, which is a voltage corresponding to the power supply information output from the 2 〇 PWM 24, so as to correct the power information voltage X Vpw, which has been Compensated and reduced. Thus, the error amplifier generates the error voltage based on accurate power supply information (power information voltage Vpw). As a result, the battery detecting circuit 34 generates the control current Isc without an error which may be caused by the parasitic resistance of the battery W1. Λ
< S 18 (2) s玄AC轉接器21根據該控制電流isc來改變該轉接器 電壓VAC。當該控制電流Isc不被供應至該aC轉接器21實施 例,5玄ac轉接器21產生在最小電壓的轉接器電壓vac。因 此,當該AC轉接器21,其被耦和至該AC電源供應器2〇,被 耦合至該電子裝置31時,因為該控制電流Isc為〇(零),所以 該轉接器電壓VAC在最小電壓下被供應至該電子裝置31。 於是,一大的浪湧電流被防止流至耦合至該電子裝置31的 電池BT。 (3) 當該電池BT未被耦合至該電子裝置31時,供應至該 誤差放大器45的電池端電壓與被該誤差放大器料所檢測之 充電電流為0。在此狀態下,供應至該電流電壓轉換電路5〇 的輸入電流是大的。於是,流自該電晶體T21的控制電流isc 是小的。因此,該AC轉接器21之電壓控制電路23輸出一低 的轉接器電壓VAC。在此一狀態下當該電池Βτ被耦合至該 電子裝置31時,因為在該電池BT之端電壓與供應自該 轉接器21的轉接器電壓VAC之間的差是小的,所以至該電 池BT之浪勇的流動被抑制。 ⑷’在該操作電源供應電壓 減少時,諸如當該電子裝置31停止操作時,操作來降低該 控制電流以。該AC轉接器21然:後產生—低的轉接器電壓 VAC。於是’該㈣供應電㈣—極限㈣電池檢測電路 34操作期間被提供,並且該等操作情況被緩和。此外,該 AC轉接器21將低的轉接器電壓%供應至該電子裝置/ 3!。於是,當《子裝置31停止操作時,高的轉接㈣壓 vac不被供應m子裝置31。這防止了該電子裝置31中 的該等電路被損害。 對於嫻熟此技藝應是明顯的是,本發明在不脫離發明 的精神或範圍下係可以許多其它特定形式來實施。 在以上實施例中,該電阻器R3 (校正電阻器電路)可被 配置在包含該電檢測電路34之半導體裝置(晶片)。該校正電 阻器電路係可形成自多晶石夕或可藉由一 M〇s電晶體來形 成。當該電阻器元件係藉由一M0S電晶體來形成時,該電 阻益疋件的閘極電壓(即,該%^^電晶體的導通電阻)係根 據該電纜W1的寄生電阻來被控制。 在以上實施例中,取代—單一電阻器R3,該校正電阻 器電路係可藉由多數個電阻器元件(多晶梦或M 〇 s電晶體) 來形成。既然這樣’一個或更多個電阻器元件係根據該電 纜W1的寄生電阻來選擇。 在以上實施例中’取代利用該校正電阻器R3,該校正 電壓Vh係可藉由調整該輸出自該電流放大糾的電流檢測 化號si來產生。既然這樣,該校正電壓vh係可根據該電纜 W1的寄生電阻’藉由改變位準調整的增益來被改變。 在以上實施例中,該電纜W1的末端不需被固定至該 AC轉接器21 °例如,當因配置連接器在該電_兩端時所 需時,該電纜可被耦合至該AC轉接器與該子裝置。 在以上實施例中,該控制電流Isc係從該電子裝置31的 電池檢測電路34被供應至該AC轉接器21。另外,當該控制 電流1SC為零時’該AC轉接器21的電壓控制電路23將該轉接 1356170 器電壓VAC設定在該最小電壓。這程序係可藉由該電池檢 測電路來執行。既然這樣,該控制電流Isc係從該AC轉接器 被供應至該電池檢測電路。 在以上實施例中,該轉接器電壓VAC不需是和該控制 5電流1sc成比例。該控制電流Isc與該轉接器電壓VAC之間的 關係自可依所需而改變。 在以上實施例中,該電流電壓轉換電路5〇的輸出電壓 可被用作該控制信號代替該控制電流j s c。 在以上實施例中,該控制信號產生電路6〇係可由該誤 10差放大器47、該二極體D14、該電流電壓轉換電路5〇、及該 電晶體T21來形《。最好的是,該控制信號產生電路仙係由 該等誤差放大器42與47、該等二極體Du與D14、該電流電 壓轉換電路50、及該電晶體T21來形成。當該電子裝置^ 包含該電池BT時,最好的是,該控制信號產生電路6〇係由 15該等誤差放大器42,44,45及47、該等二極體DU,m2, D13及D14、該電流電壓轉換電路5〇、及該電晶體τ2ι來形 成。 該AC轉接器與該電子裝置之電路結構並不限於以上 實施例之電路結構。 20 【闽式簡單說明】 第1圖是一傳統電源供應系統之概要區塊圖; 第2圖是根據-較佳實施例的一電源供應系統的概要 區塊圖;及 第3圖是第2圖所示之電源供應系統的—概要電路圖。 21 1356170 【主要元件符號說明】 11...充電電路 44,45…誤差放大器< S 18 (2) The s-channel AC adapter 21 changes the adapter voltage VAC in accordance with the control current isc. When the control current Isc is not supplied to the aC adapter 21 embodiment, the 5 ac ac adapter 21 generates the adapter voltage vac at the minimum voltage. Therefore, when the AC adapter 21, which is coupled to the AC power supply 2, is coupled to the electronic device 31, since the control current Isc is 〇 (zero), the adapter voltage VAC It is supplied to the electronic device 31 at a minimum voltage. Thus, a large surge current is prevented from flowing to the battery BT coupled to the electronic device 31. (3) When the battery BT is not coupled to the electronic device 31, the battery terminal voltage supplied to the error amplifier 45 and the charging current detected by the error amplifier material are zero. In this state, the input current supplied to the current-voltage conversion circuit 5A is large. Thus, the control current isc flowing from the transistor T21 is small. Therefore, the voltage control circuit 23 of the AC adapter 21 outputs a low adapter voltage VAC. In this state, when the battery Βτ is coupled to the electronic device 31, since the difference between the voltage at the terminal of the battery BT and the adapter voltage VAC supplied from the adapter 21 is small, The flow of the battery BT wave is suppressed. (4) 'When the operation power supply voltage is decreased, such as when the electronic device 31 stops operating, it is operated to lower the control current. The AC adapter 21 then produces a low adapter voltage VAC. Thus, the (four) supply power (four) - limit (four) battery detection circuit 34 is provided during operation, and the operation conditions are alleviated. In addition, the AC adapter 21 supplies a low adapter voltage % to the electronic device / 3!. Thus, when the sub-device 31 stops operating, the high transfer (four) pressure vac is not supplied to the m sub-device 31. This prevents the circuits in the electronic device 31 from being damaged. It should be apparent that the invention may be embodied in many other specific forms without departing from the spirit and scope of the invention. In the above embodiment, the resistor R3 (correction resistor circuit) can be disposed in the semiconductor device (wafer) including the electric detecting circuit 34. The correction resistor circuit can be formed from polycrystalline or may be formed by a M〇s transistor. When the resistor element is formed by a MOS transistor, the gate voltage of the resistor (i.e., the on-resistance of the transistor) is controlled in accordance with the parasitic resistance of the cable W1. In the above embodiment, instead of a single resistor R3, the correction resistor circuit can be formed by a plurality of resistor elements (polycrystalline dream or M 〇 s transistor). In this case, the one or more resistor elements are selected in accordance with the parasitic resistance of the cable W1. In the above embodiment, instead of using the correction resistor R3, the correction voltage Vh can be generated by adjusting the output current from the current amplification correction signal si. In this case, the correction voltage vh can be changed by changing the gain of the level adjustment according to the parasitic resistance of the cable W1. In the above embodiment, the end of the cable W1 need not be fixed to the AC adapter 21 °, for example, when required to configure the connector at the electrical end, the cable can be coupled to the AC turn The connector and the sub-device. In the above embodiment, the control current Isc is supplied from the battery detecting circuit 34 of the electronic device 31 to the AC adapter 21. Further, when the control current 1SC is zero, the voltage control circuit 23 of the AC adapter 21 sets the switch 1356170 voltage VAC at the minimum voltage. This procedure can be performed by the battery detection circuit. In this case, the control current Isc is supplied from the AC adapter to the battery detecting circuit. In the above embodiment, the adapter voltage VAC need not be proportional to the control 5 current 1sc. The relationship between the control current Isc and the adapter voltage VAC can be varied as desired. In the above embodiment, the output voltage of the current-voltage conversion circuit 5A can be used as the control signal instead of the control current j s c . In the above embodiment, the control signal generating circuit 6 can be shaped by the erroneous amplifier 47, the diode D14, the current-voltage converting circuit 5, and the transistor T21. Preferably, the control signal generating circuit is formed by the error amplifiers 42 and 47, the diodes Du and D14, the current voltage converting circuit 50, and the transistor T21. When the electronic device includes the battery BT, it is preferable that the control signal generating circuit 6 is composed of 15 of the error amplifiers 42, 44, 45 and 47, the diodes DU, m2, D13 and D14. The current-voltage conversion circuit 5〇 and the transistor τ2ι are formed. The circuit configuration of the AC adapter and the electronic device is not limited to the circuit configuration of the above embodiment. 20 [Simplified description of the simplification] Fig. 1 is a schematic block diagram of a conventional power supply system; Fig. 2 is a schematic block diagram of a power supply system according to the preferred embodiment; and Fig. 3 is the second block The schematic diagram of the power supply system shown in the figure. 21 1356170 [Description of main component symbols] 11...Charging circuit 44,45...Error amplifier
12.. .輸入電源轉接器 13 & 13b...電流放大器 14M4b,14c,14d...誤差放大器 15.. .倍增器 17.. .脈寬調變器(PWM) 18…系統DC/DC轉換器 19.. .系統電路 20.. . AC電源供應器 21…外部電源供應器 22.. .電壓轉換電路 23.. .電壓控制電路 24…脈寬調變器(PWM) 31.. .電子裝置 32…系統DC/DC轉換器 33.. .系統電路 34.. .電池檢測電路 41.. .電流放大器 42.. .誤差放大器 43.. .電流放大器 46.. .倍增器 47.. .誤差放大器 48.. .操作電路 49.. .校正電流產生電路 50.. .電流電壓轉換電路(I-V) 60.. .控制信號電路 BT...可充電電池 W1...電纜 C1...電容器 D1,D11-D14".二1¾ 體 L1...扼流線圈 R1,R2,R3...電阻器 Tl,T2...MOS 電晶體 T11...第一電晶體 T12...第二電晶體 T21...電晶體 P1·.·第一(輸出)端 P2··.第二(輸出)端 P3··.第三(輸出)端 22 1356170 P11…第一(輸入)端 S1...電流檢測信號 P12···第二(输入)端 S2...充電電流檢測信號 P13·..第三(输入)端 ιουτΜ…電流參考信號 N1...節點 IDAC…限流信號 Ih...校正電流 VDAC…限壓信號 lout...輸入電流 PWRO…電源檢測信號 Ichg...充電電流 PWRM...電源限制信號 Isc...控制電流 Vref...比較參考信號 VAC...直流輸入電壓 Vpw...電源貢訊電壓 Vh…校正電壓 Vph...校正電源資訊 VS...系統電壓 Vout...輸出電壓 2312.. Input Power Adapter 13 & 13b... Current Amplifier 14M4b, 14c, 14d... Error Amplifier 15.. Multiplier 17. Pulse Width Modulator (PWM) 18... System DC /DC converter 19.. System circuit 20.. AC power supply 21... External power supply 22.. Voltage conversion circuit 23. Voltage control circuit 24... Pulse width modulation (PWM) 31. Electronic device 32...System DC/DC converter 33.. System circuit 34.. Battery detection circuit 41.. Current amplifier 42.. Error amplifier 43.. Current amplifier 46.. Multiplier 47 .. . Error amplifier 48.. Operation circuit 49.. Correction current generation circuit 50.. Current voltage conversion circuit (IV) 60.. Control signal circuit BT... Rechargeable battery W1... Cable C1 ...capacitor D1, D11-D14". two 13⁄4 body L1... choke coil R1, R2, R3... resistor Tl, T2... MOS transistor T11... first transistor T12. .. 2nd transistor T21...transistor P1·.·first (output) terminal P2·.. second (output) terminal P3··. third (output) terminal 22 1356170 P11...first (input ) Terminal S1... Current detection signal P12···Second (input) terminal S2... Charging current detection No. P13·.. third (input) terminal ιουτΜ...current reference signal N1...node IDAC...current limiting signal Ih...correction current VDAC...voltage limiting signal lout...input current PWRO...power detection signal Ichg. ..Charging current PWRM...Power limit signal Isc...Control current Vref...Comparative reference signal VAC...DC input voltage Vpw...Power supply voltage Vh...Correction voltage Vph...Correction power information VS...system voltage Vout...output voltage 23