TWI354177B - Lens driving mechanism - Google Patents

Lens driving mechanism Download PDF

Info

Publication number
TWI354177B
TWI354177B TW97104555A TW97104555A TWI354177B TW I354177 B TWI354177 B TW I354177B TW 97104555 A TW97104555 A TW 97104555A TW 97104555 A TW97104555 A TW 97104555A TW I354177 B TWI354177 B TW I354177B
Authority
TW
Taiwan
Prior art keywords
lens
electromagnet
coil
shifting mechanism
group
Prior art date
Application number
TW97104555A
Other languages
Chinese (zh)
Other versions
TW200935157A (en
Original Assignee
E Pin Optical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Pin Optical Industry Co Ltd filed Critical E Pin Optical Industry Co Ltd
Priority to TW97104555A priority Critical patent/TWI354177B/en
Publication of TW200935157A publication Critical patent/TW200935157A/en
Application granted granted Critical
Publication of TWI354177B publication Critical patent/TWI354177B/en

Links

Landscapes

  • Lens Barrels (AREA)

Description

鏡頭套筒(lens holder ) 22 鏡頭移位機構(lens driving mechanism) 3 線圈(conductor coil)31 電磁鐵組(electromagnet parts)32 電磁鐵(I ) (electromagnet 1)321 電磁鐵(II ) (electromagnet 1)322 電磁鐵(III ) (electromagnet 1)323 電磁鐵(IV ) (electromagnet IV)324 導電片(electric plate)33 線圈電極(coil pad)34 電磁鐵電極(electromagnet pad)3 5 電磁鐵(I )電極(electromagnet I pad)3 51 電磁鐵(II )電極(electromagnetIIpad)352 電磁鐵(III )電極(electromagnet III pad)3 5 3 電磁鐵(IV )電極(electromagnet IV pad)3 54 電磁鐵心(electOmagnet ferrite)36 彈簧(spring element ) 38 八、本案若有化學式時,請揭示最能顯示發明特徵的化 學式:(無) 九、發明說明: 【發明所屬之技術領域】 本發明係有關一種鏡頭移位機構,係應用於一自動對 焦或變焦之鏡頭組,尤指一種利用線圈及電磁鐵,並藉二 者之間所產生之電磁力以驅動並控制鏡頭進行滑動移位 者。 【先前技術】 目前使用之數位相機、具拍攝功能的手機、筆記型電 1354177 腦等手持式電子裝置上,常設有一可自動對焦 (auto-focusing,簡稱 AF )或變焦(zooming )之微型 鏡頭模組(compact camera module,簡稱CCM),而該鏡 頭模組基本上包含·· 一由上蓋(upper cover)及底蓋(bottom cover)所形成的容腔(housing); —鏡頭(lens )其由鏡片 群(lens group)及一鏡頭套筒(lens holder )組成,可套設在 容腔内並可在中心軸方向上前後滑動移位;及一鏡頭移位 機構(lens displacement mechanism),或稱為制動器 (actuator ),其主要用以驅動該鏡頭在中心轴上產生移 位動作,藉以達成自動對焦或變焦之功效。 常見之鏡頭移位機構的設計如一種稱為壓電馬達 (piezoelectric motor ),其係利用廢電 (piezoelectric)材料原理形成,如US7, 212, 358、 US2003/0227560 、JP2006-293083、JP2006-101611 等;但一 般所使用之壓電材料無法耐受迴焊(refl〇w)作業之高溫 (約260 °C )’或耐受高溫之特別壓電材料又相當昂貴, 故不利於量產化或降低製造成本。又一種稱為音圈馬達 (voice coil motor,簡稱VCM)者,其係利用線圈、声 鐵、與彈性件(如彈簧或彈片)配合形成,如 · US7, 262, 927、US7,196, 978、US7, 002, 879、US6, 961,090、 US6,687,062 、 US20070133110 、 JP2005037865 、 JP2005258355、W02007026830等,該等習知技術大部分係 利用線圈與永久磁鐵(permanent magnet)配組使用,如圖 1 j如在線圈31之内圍或外圍環狀排列設置一個或數個永 久磁鐵70,使線圈31通電後產生磁場,而可與由一個或數 個永久磁鐵70所建立之磁場及磁極之間形成向上或向: 電磁。力以驅動鏡頭移動;但永久磁鐵在迴焊高溫時(約 260 C )將會使磁鐵退磁。因此上述習用之壓電馬達與音 圈馬達在組裝時皆不可使用迴焊方式,致在量產效率上受 4 到限制。再者,有一種是利用形狀記憶合金(shaped memory alloy ’簡稱SMA )之鏡頭移位機構,其係利用 SMA之熱縮冷漲之特性以作為制動器(actuator )之驅動 力源’如 US 6, 307, 678B2、US 6,449,434B1、 US2007058070 、 US2007047938 、 JP2005275270 、 JP2005195998等,然而,SMA熱縮冷漲的動作較慢,無法 簡易達成即時自動對焦或變焦之功效。 對於高畫質需求的使用者,在低照度的環境為維持相 當優秀的行動力與拍照品質,防手震(Anti shake)功能已 漸受相當重視。在習知技術中,防手震技術主要透過幾個 方式來達成,如成像元件CCD以機械支架藉由補償運動來 抵銷震動過程中所導致的影像模糊化影響,或如在鏡顯設 有機械式結構消除手震,或以軟體計算補償的方式,或= 高感光度能力,或採用兩個陀螺儀來進行對成像元件CCD 的水平與垂直震動偵測,並利用磁力推動來進行補償動 等’如EP1729509 、 US20070292119 、 US20070009243 、 JP08122840 、 JP11305280 、 JP11220651 等。 使用電磁力為鏡頭移位機構之主要動力來源,具有其 方便性與通用性’為能在迴焊高溫時(約26〇。〇)磁力不 受破壞,雖可使用特殊材料製成耐高溫永久磁鐵,但其因 之了為價格過於昂貴,其因之二磁力較弱,故無法普及使 用,因此發展新技術以解決鏡頭移位機構迴焊問題, 迫切所需。 "” 【發明内容】 本發明主要目的在於提供一種鏡頭移位機構,其係利 用線圈(conductorcoil )及相對於線圈排列於線圈周圍之 電磁鐵組(electromagnetset)所組成,其中線圈係固設於鏡頭 套筒上,當線圈受力移動時可使鏡頭套筒及其上的鏡片群 沿中心軸移動;鏡頭移位機構之電磁鐵組通以電流後可在 1354177 »1 * * 電磁鐵端面產生N極或S極電磁力,使線圈通電後產生電 磁力’其電磁力方向可由安培右手定律而決定,致趨使鏡 * 頭沿中心軸移動,而達成鏡片群移動之變焦目的;或當對 線圈施以不同方向之電流,可控制鏡頭以前進或後退之方 向,以適用於一自動對焦或變焦之鏡頭模組;藉此結構可 耐迴焊(reflow )高溫而可提高量產化,以改良習知技術 使用永久磁鐵無法使用迴焊製程之困難。 本發明再一目的在於提供一種鏡頭移位機構,其中電 φ 磁鐵組係由複數個電磁鐵所構成,其具有防手震功能,可 ,由控制各電磁鐵之電流大小或電流方向,使線圈通電後 f到不同電磁力作用,致使鏡頭的光軸與鏡頭模組之中心 j產生一偏移角度而可對向被攝物件,達成防手震之自動 對焦或變焦效果。 步,發明又一目的在於提供一種鏡頭移位機構,其進一 elem鏡碩或其鏡頭套筒上配置一彈簧(spring 生作’使當線圈與電磁鐵組之間的電磁力消失或不產 ^ 使時,該彈簧可對鏡頭套筒提供一相對之回復力,以 • ^%碩回復至原平衡狀態或原位而達成自動對寒、或變焦 【實施方式】 下列ί使本發明更加明確詳實,茲列舉較佳實施例並配合 圖不,將本發明之結構及其技術特徵詳述如後: 位棬^發明以下所揭示之實施例,乃是針對本發明鏡頭移 之皆之主要構成元件而作說明,因此本發明以下所揭示 一】,雖是應用於一自動對焦或變焦鏡頭模組中,但就 明所尨ί自動對焦或變焦功能之鏡頭模組而言,除了本發 局不之鏡頭移位機構外,其他結構乃屬一般通知之技 6 1354177 術,因此一般在此領域中熟悉此 明所揭示自動對焦或變焦鏡頭模組之玆= 發 模組之各構成元件是可以進行許多zm、或變焦鏡頭 變更的,例如:該鏡頭模組中°由上蓋^ 至等效 夕拟业科钋姑尤阳法丨l r田上盍及底盍所形成的容腔 °又制’也就是鏡頭模組之内部空間設計並 不限制;或峰片群及1頭套筒組成之鏡頭的整體形狀 或結構型態也不限制,如該鏡片群可包含由單一鏡片或數 個鏡片構成之鏡片群,且單一鏡片或鏡片群一般可先容設Lens holder 22 lens driving mechanism 3 coil (conductor coil) 31 electromagnet parts 32 electromagnet (I ) (electromagnet 1) 321 electromagnet (II ) (electromagnet 1 )322 Electromagnet (III) (electromagnet 1) 323 Electromagnet (IV) (electromagnet IV) 324 Electrical plate 33 Coil pad 34 Electromagnet pad 3 5 Electromagnet (I) Electromagnet I pad 3 51 Electromagnet (II) Electrode (electromagnet IIpad) 352 Electromagnet (III) Electrode (electromagnet III pad) 3 5 3 Electromagnet (IV) Electrode (electromagnet IV pad) 3 54 Electromagnet core (electOmagnet ferrite 36 spring element 38 VIII. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: (none) 9. Description of the invention: [Technical field of the invention] The present invention relates to a lens shifting mechanism It is applied to an autofocus or zoom lens group, especially a coil and an electromagnet, and is driven and controlled by the electromagnetic force generated between the two. Displacement by sliding the lens. [Prior Art] Currently used digital cameras such as digital cameras, mobile phones with shooting functions, and notebook-type 1354177 brains, there is a miniature lens module with auto-focusing (AF) or zooming. A compact camera module (CCM), and the lens module basically includes a housing formed by an upper cover and a bottom cover; a lens The lens group and a lens holder are sleeved in the cavity and can be slidably displaced back and forth in the direction of the central axis; and a lens displacement mechanism, or It is an actuator, which is mainly used to drive the lens to produce a shifting action on the central axis, thereby achieving the effect of autofocus or zoom. A common lens shifting mechanism is designed, for example, as a piezoelectric motor, which is formed using the principle of a piezoelectric material such as US 7,212,358, US 2003/0227560, JP2006-293083, JP2006-101611. Etc.; however, the piezoelectric materials generally used cannot withstand the high temperature (about 260 °C) of reflow (ref 〇 w) operation or the special piezoelectric materials that are resistant to high temperatures are quite expensive, which is not conducive to mass production or Reduce manufacturing costs. Another type of voice coil motor (VCM) is formed by using a coil, a sound iron, and an elastic member such as a spring or a spring piece, such as US 7,262,927, US 7,196, 978. US 7, 002, 879, US 6, 961, 090, US 6,687, 062, US20070133110, JP2005037865, JP2005258355, W02007026830, etc., most of these conventional techniques use coils and permanent magnets, as shown in Figure 1. If one or a plurality of permanent magnets 70 are arranged in a ring shape around the circumference or the periphery of the coil 31, the coil 31 is energized to generate a magnetic field, and can be formed between the magnetic field and the magnetic pole established by the one or several permanent magnets 70. Up or toward: Electromagnetic. The force drives the lens to move; however, the permanent magnet will demagnetize the magnet when reflowing at a high temperature (about 260 C). Therefore, the conventional piezoelectric motor and the voice coil motor cannot be reflowed during assembly, and the mass production efficiency is limited to four. Furthermore, there is a lens shifting mechanism using a shape memory alloy (SMA), which utilizes the heat-shrinking property of SMA as a driving force source for an actuator such as US 6, 307, 678B2, US 6,449,434B1, US2007058070, US2007047938, JP2005275270, JP2005195998, etc. However, the SMA heat shrinking action is slow, and it is impossible to achieve instant autofocus or zoom effect. For users with high image quality, in order to maintain relatively good mobility and photo quality in a low-light environment, the anti-shake function has received considerable attention. In the prior art, the anti-shake technique is mainly achieved in several ways, such as the imaging element CCD uses a mechanical support to compensate for the image blurring caused by the vibration process by compensating the motion, or as shown in the mirror display. Mechanical structure eliminates jitter, or compensates by software, or = high sensitivity, or uses two gyroscopes to detect horizontal and vertical vibration of imaging element CCD, and uses magnetic push to compensate Etc. 'EP1729509, US20070292119, US20070009243, JP08122840, JP11305280, JP11220651, etc. The use of electromagnetic force is the main source of power for the lens shifting mechanism, with its convenience and versatility. 'The magnetic force can be destroyed at high temperatures (about 26 〇. 〇) during reflow soldering, although special materials can be used to make high temperature resistant permanent Magnets, but they are too expensive, because they are weaker in magnetic force, so they cannot be used universally. Therefore, it is urgent to develop new technologies to solve the problem of re-welding of lens shifting mechanisms. The main object of the present invention is to provide a lens shifting mechanism which is composed of a coil (conductor coil) and an electromagnet set arranged around the coil with respect to the coil, wherein the coil system is fixed to On the lens sleeve, when the coil is moved by force, the lens sleeve and the lens group thereon can be moved along the central axis; the electromagnet group of the lens shifting mechanism can be generated by the electromagnet end face at 1354177 »1 * * electromagnet end face N-pole or S-pole electromagnetic force, the electromagnetic force is generated when the coil is energized. The direction of the electromagnetic force can be determined by the right-hand rule of Ampere, which tends to move the mirror head along the central axis to achieve the zooming purpose of the lens group movement; or when The coil is applied with current in different directions to control the lens in the direction of forward or backward to apply to an autofocus or zoom lens module. The structure can be reflow-resistant and can be mass-produced. It is a modification of the prior art that it is difficult to use a permanent magnet without using a reflow process. It is still another object of the present invention to provide a lens shifting mechanism in which an electric φ magnet group is provided. It is composed of a plurality of electromagnets, which has anti-shake function. It can control the current magnitude or current direction of each electromagnet to make the coil energize and react to different electromagnetic forces, so that the optical axis of the lens and the lens module are The center j generates an offset angle to achieve an anti-shake autofocus or zoom effect against the object. Step, another object of the invention is to provide a lens shifting mechanism that enters an elem mirror or a lens sleeve thereof A spring is placed on the spring to make the relative force of the lens sleeve provide a relative restoring force when the electromagnetic force between the coil and the electromagnet group disappears or is not produced. The original balance state or in-situ to achieve automatic cold, or zoom [Embodiment] The following is a more detailed and detailed description of the present invention, the preferred embodiment and the accompanying drawings, the structure and technical features of the present invention are described in detail as The following embodiments are disclosed for the main constituent elements of the lens shifting of the present invention. Therefore, the present invention is disclosed below, although it is applied to an automatic In the focus or zoom lens module, but in the lens module of the autofocus or zoom function, except for the lens shifting mechanism of the present invention, the other structure is the general notification technique 6 1354177. Therefore, it is generally known in the art that the constituent elements of the autofocus or zoom lens module disclosed in the present invention can be changed by many zm or zoom lenses, for example, the lens module is covered by the upper cover. ^ To the equivalent of the evening 拟 拟 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤 尤The overall shape or structure of the lens composed of the cylinder is not limited, for example, the lens group may comprise a lens group consisting of a single lens or a plurality of lenses, and a single lens or lens group may generally be accommodated.

在一固定件内而再與一鏡頭套筒結合形成一鏡頭;或本發 明線圈與電磁鐵組之個別的線圈匝(如m )數、線圈内徑 (或線圈内徑截面積)、線圈高度、電磁鐵内線圈高度或 電流進出方向及大小等也不限制,且可依據必歐-沙瓦定 律(Biot-SavartLaw)及相關安培右手定律計算式計算,如下 列式(1)及式(2) °Forming a lens in a fixing member and then combining with a lens sleeve; or the number of individual coils (such as m) of the coil and electromagnet group of the present invention, the inner diameter of the coil (or the inner diameter of the coil), and the height of the coil The height of the coil in the electromagnet or the direction and size of the current in and out is not limited, and can be calculated according to the calculation formula of Biot-Savart Law and related right-handed law, such as the following formula (1) and formula (2) ) °

B = ^[ 4π J F = ffxBB = ^[ 4π J F = ffxB

Idl 乂 f (1) (2) 其中’ 5為磁通量密度’从為真空導磁率 (permeability )/為線圈電流(^卩),/是線段長度,广 是距離,F是受力大小。由式(1)與式(2)可分別計算本 發明電磁鐵的磁通量密度以及線圈受力大小藉以配合鏡頭 之重量以設計最佳驅動力。 參考圖2、3所示,其係本發明一實施例之立體示意 圖,本發明鏡頭移位機構3主要包含一線圈31及一電磁鐵 組32,其中,該線圈31係固設於鏡頭2之鏡頭套筒22上以 與鏡片群(lensgroup)21共同組成一連動體而可同步移動’ 該電磁鐵組32係由複數個電磁鐵如圖3所示321〜324構 成且保持固定不動;使用時,可藉控制器(圖2、3中未 7 1354177 圖4所示)如相機之控制器以對線圈31及電磁 出不同方向(流入或流出)或不同大小之電流, 磁作用可在電磁鐵組32之各電磁鐵321〜324的 力:其磁力之大小及方向則由輪入之電流大小 " 制,而線圈31輸入電流後依據安培右手定律產 ^電磁力,可計算出線圈31受電磁力之大小及受力方向, f圈31將因受力沿鏡射心軸Ζ轴運動,以達自動對焦或 ,焦效果。說明如圖4,利用相機之控制器37輸出電流 後,經由電磁鐵電極35連接至電磁鐵組32之電磁鐵(】) 321及電磁鐵(ΙΠ) 323 (可同時包含電磁鐵(π) 322 ,電磁鐵(IV) 324 ),則電磁鐵(I ) 321及電磁鐵 (ΙΠ)α 323之電磁鐵心36的端面可產生電磁作用若輸入 之電流方向為逆時針,則電磁鐵心36在朝向鏡頭中心軸ζ 的端面會產生Ν極電磁;當相機之控制器37輸出電流後, 經由線圈電極34連接至線圈31時,線圈31會產生磁場,若 輸入線圈31電流為逆時針方向,線圈31則產生電磁力,若 輸入線圈31電流為逆時針方向,則線圈31會受到向物侧之 電磁力,將帶動鏡頭2向物側方向移動。 本發明鏡頭移位機構3進一步可分別控制電磁鐵組32 中各電磁鐵321〜324之電流大小或電流方向,以控制各 電磁鐵所產生磁力(或電磁強度)之大小,使線圈31通電 後因與各電磁鐵(如321〜324 )之間的電磁力大小不 同,致受到不平衡的電磁力作用,使鏡頭2之光軸會與鏡 頭中心軸Ζ軸產生一角度’使鏡頭2可偏移該角度以對向 被攝物體;玆以圖5為例說明’鏡頭移位機構3之電磁鐵 組32係由電磁鐵(I ) 321及電磁鐵(ΠΙ) 323所組成, 若控制電磁鐵組32之電磁鐵(I ) 321及電磁鐵(III) 323 ’使具有不同的電流大小時,電磁鐵(J ) 321及電 磁鐵(III) 323之電磁力不同,線圈31通過電流後,將受 s 8 1354177 到電磁鐵321及電磁鐵(III) 323之不同電磁 平衡的電磁力作用,使鏡頭2之光軸會與鏡頭中、f生不 產生一角度,使鏡頭2可對向被攝物體,達軸 $「々亍震功能。Idl 乂 f (1) (2) where '5 is the magnetic flux density' from the vacuum permeability (permeability) / is the coil current (^卩), / is the length of the line segment, is the distance, and F is the force. From equations (1) and (2), the magnetic flux density of the electromagnet of the present invention and the magnitude of the force applied to the coil can be separately calculated to match the weight of the lens to design an optimum driving force. 2 and 3, which are perspective views of an embodiment of the present invention, the lens shifting mechanism 3 of the present invention mainly includes a coil 31 and an electromagnet group 32, wherein the coil 31 is fixed to the lens 2 The lens sleeve 22 is combined with a lens group 21 to form a linkage body and can be synchronously moved. The electromagnet group 32 is composed of a plurality of electromagnets as shown in FIG. 3 and is fixed and fixed; Can be controlled by the controller (not shown in Figure 2, Figure 3, 3, 354, 177, Figure 4), such as the camera controller to the coil 31 and electromagnetic out of different directions (inflow or outflow) or different magnitudes of current, magnetic action can be in the electromagnet The force of each of the electromagnets 321 to 324 of the group 32: the magnitude and direction of the magnetic force are determined by the current of the wheel, and the coil 31 inputs the current and generates the electromagnetic force according to the right-hand rule of Ampere, and the coil 31 can be calculated. The size of the magnetic force and the direction of the force, the f-ring 31 will be moved by the force along the axis of the mirror axis to achieve autofocus or coke effect. 4, after the current is output by the controller 37 of the camera, the electromagnet (321) 321 and the electromagnet (ΙΠ) 323 are connected via the electromagnet electrode 35 to the electromagnet group 32 (the electromagnet (π) 322 can be included at the same time. , the electromagnet (IV) 324 ), the electromagnet (I ) 321 and the end face of the electromagnet core 36 of the electromagnet (ΙΠ) α 323 can generate electromagnetic action. If the input current direction is counterclockwise, the electromagnet core 36 is facing the lens. The end face of the central axis 会 generates a bucking electromagnetic; when the controller 37 of the camera outputs a current, when the coil electrode 34 is connected to the coil 31, the coil 31 generates a magnetic field, and if the current of the input coil 31 is counterclockwise, the coil 31 When the electromagnetic force is generated, if the current of the input coil 31 is counterclockwise, the coil 31 receives the electromagnetic force to the object side, and the lens 2 is moved in the object side direction. The lens shifting mechanism 3 of the present invention can further control the current magnitude or current direction of each of the electromagnets 321 to 324 in the electromagnet group 32 to control the magnitude of the magnetic force (or electromagnetic strength) generated by each electromagnet, so that the coil 31 is energized. Because of the different electromagnetic force between each electromagnet (such as 321~324), it is affected by the unbalanced electromagnetic force, so that the optical axis of the lens 2 will produce an angle with the axis of the lens center axis. The angle is shifted to the object to be photographed. As shown in FIG. 5, the electromagnet group 32 of the lens shifting mechanism 3 is composed of an electromagnet (I) 321 and an electromagnet (ΠΙ) 323. Group 32 electromagnet (I) 321 and electromagnet (III) 323 ' have different electromagnetic currents, electromagnet (J) 321 and electromagnet (III) 323 have different electromagnetic forces, and after coil 31 passes current, According to the electromagnetic force of different electromagnetic balance of s 8 1354177 to electromagnet 321 and electromagnet (III) 323, the optical axis of lens 2 will not produce an angle with the lens, so that lens 2 can be photographed oppositely. Object, up to the axis "" shock function.

前述之電磁鐵組32之電磁鐵心36為利用軟 (ferrite )製成;該軟磁材料具有易磁化且易 性,其在電磁鐵組32通電後中非常容易被磁化的特 線集中於電磁鐵心36端面,但當電磁鐵組32不:=磁力 磁鐵心36之磁力也隨即消失,也就是軟磁材料電 磁化的能力;而目前軟磁材料主要成份可為高二二保持 鐵、軟鐵)、含碳量很低的鋼、矽鋼、鐵鎳合金&鐵(熟 Alloy 或 Permalloys)、鎂鋅合金(Mg_Znall〇)^ : (Ni-Znalloy)、錳鋅合金(Mn_Znalloy)、或金屬破璃¥°金 (metallic glass)等,均可耐受迴焊高溫,可依據不 選擇。 °』目的而The electromagnet core 36 of the electromagnet group 32 described above is made of ferrite; the soft magnetic material has easy magnetization and is easy to concentrate on the electromagnet core 36 after the electromagnet group 32 is energized. End face, but when the electromagnet group 32 does not: = the magnetic force of the magnetic core 36 disappears, that is, the ability of the soft magnetic material to be electromagneticized; while the main components of the soft magnetic material can be high-two retaining iron, soft iron, and carbon A very low amount of steel, niobium steel, iron-nickel alloy & iron (cooked Alloy or Permalloys), magnesium-zinc alloy (Mg_Znall〇) ^ : (Ni-Znalloy), manganese-zinc alloy (Mn_Znalloy), or metal broken glass (metallic glass), etc., can withstand reflow high temperature, can not be selected. °"

本發明鏡頭移位機構3進一步可在鏡頭2上配置一 有回復彈性功能的彈簧38,當線圈31或電磁鐵組32之的 電磁力消失時,該彈簧38可對鏡片群21提供一相對之^復 力,也就是對鏡頭2提供一與所產生電磁力相反之彈簧 力,用以將鏡片群21回復至電磁力作用前之原位;至於該 彈簧38之彈性型態如壓縮式(c〇mpressi〇n )彈簧或伸張式 (extension )彈簣、結構型態如線圈彈簧或非線圈彈簧二 數目或設立位置等並不限制,可隨鏡頭模組2之設計需要 或線圈31的運動方向而改變。 本發明線圈31或電磁鐵組32之線圈繞設型態、電流方 向、電磁鐵組32之電磁鐵數目及彈簧37型式等可隨需要而 作不同選擇。 <第一實施例 > 具有四個電磁鐵之鏡頭移位機構 參考圖2、3所示,本實施例之鏡頭移位機構3可應 1354177 用於一小型相機之自動對焦或對焦鏡頭模組1中’該鏡頭 模組1為lOmmxlOmm之方型模組,其中該鏡頭模組1基· 本上至少包含上蓋11及底蓋12所形成的容腔,供一鏡頭2 可在容腔内之中心軸Z方向上滑動移位;該鏡頭2 一般, 含一由單一鏡片或數個鏡片構成之鏡片群21以及一供容設 該鏡片群21之鏡頭套筒22,也就是鏡片群21及鏡頭套筒22 是組成一可同步移動的鏡頭2,且套設在容腔内而可在中 心軸Z上以前進或後退(朝向物側或朝向像側)滑動移 位。 • 本發明之鏡頭移位機構3包含:一線圈31、一電磁鐵 組32、一導電片33、一線圈電極34及一電磁鐵電極35 ;其 中,線圈31係固設於鏡頭2之鏡頭套筒22上以與鏡片群 (lensgroup)21共同組成一連動體而可同步移動;該電磁鐵 組32係由數個電磁鐵如電磁鐵(I ) 321、電磁鐵(Π ) 322、電磁鐵(in) 323及電磁鐵(IV) 324等四個電磁 鐵構成且保持固定不動;又相機之控制器(如圖4之控制 器37 )可輸出不同方向或不同大小之電流(流入或流出) 經由電磁鐵電極35包含電磁鐵(I )電極351、電磁饊 _( II )電極352、電磁鐵(III)電極353及電磁鐵(IV) 電極354,分別輸入電磁鐵組32之各電磁鐵,本實扼例之 電磁鐵組32如圖2所示包含電磁鐵(I) 321、電磁鐵 (Π ) 322、電磁鐵(III) 323及電磁鐵(IV) 324等四 個電磁鐵’係以90度方位均勻佈設並固定於線圈31之外 圍。當控制器37輸出電流(h、Ι2、ι3、14 )經由各電磁 鐵電極35進入電磁鐵組32之各電磁鐵321〜324時’藉由 電磁作用,可在各電磁鐵321〜324之電磁鐵心36產生N 極或S極之磁力,此磁力之大小及方向則由輸入之電流大 小及方向所控制,本實施例中該四個電磁鐵321〜324之 磁力相當,且電磁鐵心36之N極均為朝向鏡頭之中心軸 10 Ϊ磁i者,為使f磁鐵組32之電磁效率最強,太眘 電磁鐵(I ) 321、電磁鐵( :取強,本實施例之 323及電磁鐵(IV) 324之電磁鐵心36堂,磁鐵(111) 材質。 ㈣鐵〜36鄉使时鋼片為 控制器37輸出電流I經由線圈雷 33進入線圈31時,電流方向為二=4與連接之導電片 律,則線圈31受向上方向(物側方向)二带依據右手定 鏡頭套筒22與鏡月組21沿鏡頭中心力’連同使 3 輸出電流1方向為順時針方向,線圈 31依據法拉第右手轉,則線關受向下方向(像側方 向)之電磁力,連同使鏡頭套筒22與鏡片赞21沿鏡頭中心 軸Ζ向下(像侧方向)移動;如此可達成移動鏡頭而達成 對焦之目的。 當控制器37切斷輸出電流I時,線圈31不再產生磁 場’線圈31不再受到電磁力之作用,鏡頭2則不再移動; 或當控制器37切斷輸出電流I!、ι2、ι3、14時,電磁鐵 321、322、323、324不再產生磁力,鏡頭2則不再移 動。表一為本實施例使用電流之方向及電流大小。 表一、本實施例使用電流之方向及電流大小 電流安培/方向 鏡頭向物側移動 鏡頭向像側移動 I (線圈電流) 150mA 逆時針 150mA 順時針 I!(電磁鐵電流) 75mA逆時針 75mA逆時針 h 75mA逆時針 75mA逆時針 h 75mA逆時針 75mA逆時針 u 75mA逆時針 75mA逆時針 1354177 且為係以彈酱鋼製成之線圈彈簧 且為壓縮式彈* *係讀於鏡片群21與上蓋u #2圈上之力量移動時,將帶動鏡頭套 清22及鏡片群21白上移動,此時將壓迫 當線圈3!切斷電流後,向上電磁力消失,彈酱=壓 迫而回復原狀,將推動鏡頭2回復原位。 丹又! <第二實施例>具有三個電磁鐵之鏡頭移位機構 參考圖6所示,本實施例之鏡頭移位機構3係應 小型相機之自動對焦或對焦鏡頭模組丨中,該鏡頭模組 為8mmx8mm之圓型模組,包含:一線圈31、一電磁鐵 、屯32、一導電片33、一線圈電極34、一電磁鐵電極35 ;其 了,電磁鐵組32係由三個電磁鐵所構成,包含電磁鐵,、 —(1 ) 321、電磁鐵(II ) 322及電磁鐵(ΠΙ) 323,該 〜個電磁鐵係以120度方位均勻佈設於線圈31外圍並固^ ^動,當控制器37輸出電流(h、I2、:^)經由各電磁 €極35進入電磁鐵組32中各電磁鐵321、322、323,及 控制器37輸出電流I經由線圈電極34及相連接之導電片% 而進入線圈31時,則線圈31受向上方向(物側方向)之電 罐力’連同使鏡頭套筒22與鏡片組21沿鏡頭中心轴ζ向上 (物側方向)移動;若當控制器37切斷輸出電流,則線圈 31不再受電磁力。表二為本實施例使用電流之方向及電谅 大小。 ^實施例使用電流之方向及電流大 1安培/方向 鏡頭向物側移動 _鏡頭向像側移命j t圈電流) 150mA 逆時針 150mA 逆時斜 1磁鐵電流) 100mA 順時針 100mA 順時針 100mA 順時針 100mA 順時針 12 '1The lens shifting mechanism 3 of the present invention can further configure a spring 38 having a resilient function on the lens 2. When the electromagnetic force of the coil 31 or the electromagnet group 32 disappears, the spring 38 can provide a relative lens group 21. ^Reinforcement, that is, providing the lens 2 with a spring force opposite to the generated electromagnetic force for returning the lens group 21 to the original position before the electromagnetic force acts; as for the elastic type of the spring 38, such as compression type (c 〇mpressi〇n) spring or extension magazine, structural type such as coil spring or non-coil spring number or set position is not limited, may be required with the design of the lens module 2 or the direction of movement of the coil 31 And change. The winding pattern of the coil 31 or the electromagnet group 32 of the present invention, the current direction, the number of electromagnets of the electromagnet group 32, and the type of the spring 37 can be selected as needed. <First Embodiment> Lens shifting mechanism having four electromagnets Referring to Figs. 2 and 3, the lens shifting mechanism 3 of the present embodiment can be used for an autofocus or focus lens mode of a compact camera. In the group 1 'the lens module 1 is a square module of lOmmxlOmm, wherein the lens module 1 base comprises at least a cavity formed by the upper cover 11 and the bottom cover 12, for a lens 2 to be in the cavity The lens shaft is slidably displaced in the Z direction; the lens 2 generally includes a lens group 21 composed of a single lens or a plurality of lenses, and a lens sleeve 22 for accommodating the lens group 21, that is, the lens group 21 and The lens sleeve 22 is a lens 2 that constitutes a synchronous movement, and is sleeved in the cavity to be slidably displaced on the central axis Z by forward or backward (toward the object side or toward the image side). The lens shifting mechanism 3 of the present invention comprises: a coil 31, an electromagnet group 32, a conductive sheet 33, a coil electrode 34 and an electromagnet electrode 35; wherein the coil 31 is fixed to the lens cover of the lens 2 The cylinder 22 is synchronously moved with a lens group 21 to form a linkage body; the electromagnet group 32 is composed of a plurality of electromagnets such as an electromagnet (I) 321, an electromagnet (Π) 322, and an electromagnet ( In) 323 and electromagnet (IV) 324 and other four electromagnets are formed and remain fixed; and the camera controller (such as controller 37 in Figure 4) can output currents in different directions or different sizes (inflow or outflow) via The electromagnet electrode 35 includes an electromagnet (I) electrode 351, an electromagnetic 饊 (II) electrode 352, an electromagnet (III) electrode 353, and an electromagnet (IV) electrode 354, and is input to each electromagnet of the electromagnet group 32, respectively. As shown in FIG. 2, the electromagnet group 32 of the embodiment includes four electromagnets (I) 321 , electromagnet (Π) 322, electromagnet (III) 323, and electromagnet (IV) 324, which are 90 The degree of orientation is evenly laid and fixed to the periphery of the coil 31. When the output current (h, Ι2, ι3, 14) of the controller 37 enters the electromagnets 321 to 324 of the electromagnet group 32 via the electromagnet electrodes 35, 'electromagnetic force can be applied to the electromagnets 321 to 324. The core 36 generates a magnetic force of the N pole or the S pole. The magnitude and direction of the magnetic force are controlled by the magnitude and direction of the input current. In this embodiment, the magnetic forces of the four electromagnets 321 324 324 are equivalent, and the core of the electromagnet core 36 The poles are all toward the central axis of the lens 10 Ϊ magnetic i, in order to make the electromagnetic efficiency of the f magnet group 32 the strongest, too careful electromagnet (I) 321, electromagnet (: strong, 323 and electromagnet in this embodiment ( IV) 324 electromagnet core 36, magnet (111) material. (4) Iron ~ 36 township when the steel sheet is the controller 37 output current I through the coil lightning 33 into the coil 31, the current direction is two = 4 and the connection of the conductive In the case of the film, the coil 31 is subjected to the upward direction (object side direction) according to the right hand fixed lens sleeve 22 and the mirror group 21 along the lens center force 'to make the 3 output current 1 direction clockwise, and the coil 31 according to the Faraday right hand Turn, the line is closed in the downward direction (image side direction) The electromagnetic force, together with moving the lens sleeve 22 and the lens 21 along the center axis of the lens downward (image side direction); thus achieving the purpose of moving the lens to achieve focusing. When the controller 37 cuts off the output current I, the coil 31 no longer generates a magnetic field' coil 31 is no longer subjected to electromagnetic force, lens 2 is no longer moving; or when controller 37 cuts off output currents I!, ι2, ι3, 14, electromagnets 321, 322, 323, 324 no longer generates magnetic force, and lens 2 no longer moves. Table 1 shows the direction of current and current used in this embodiment. Table 1. This embodiment uses current direction and current magnitude. Current amperage/direction lens moves lens to object side. Moving to the image side I (coil current) 150mA Counterclockwise 150mA Clockwise I! (electromagnet current) 75mA counterclockwise 75mA counterclockwise h 75mA counterclockwise 75mA counterclockwise h 75mA counterclockwise 75mA counterclockwise u 75mA counterclockwise 75mA counterclockwise 1354177 And it is a coil spring made of elastic sauce steel and is a compression type bomb * * when the force of the lens group 21 and the upper cover u #2 circle is moved, the lens cover 22 and the lens group 21 are moved to move white. ,this When the current is pressed, the current is removed, and the upward electromagnetic force disappears. The bomb sauce = pressure and returns to the original state, and the lens 2 is pushed back to the original position. Dan again! <Second embodiment> With three electromagnets The lens shifting mechanism is shown in FIG. 6. The lens shifting mechanism 3 of the present embodiment is an autofocus or focusing lens module of a compact camera. The lens module is a round module of 8 mm x 8 mm, and includes: a coil. 31. An electromagnet, a crucible 32, a conductive sheet 33, a coil electrode 34, and an electromagnet electrode 35. The electromagnet group 32 is composed of three electromagnets, including an electromagnet, and (1) 321 , electromagnet ( II ) 322 and electromagnet ( ΠΙ ) 323 , the electromagnet is evenly arranged on the periphery of the coil 31 in a 120 degree direction and fixed, when the controller 37 outputs current (h, I2, : ^) Entering each of the electromagnets 321, 322, 323 in the electromagnet group 32 via the electromagnetic electrodes 35, and the output current I of the controller 37 enters the coil 31 via the coil electrode 34 and the connected conductive sheet %, then the coil 31 The electric tank force 'in the upward direction (object side direction) together with the lens sleeve 22 Slice group lens 21 along the central axis direction ζ (object-side direction); when the controller 37 off if the output current of the coil 31 is no longer subjected to electromagnetic force. Table 2 shows the direction of current usage and the size of the power for this embodiment. ^Example uses current direction and current is large 1 amp / direction lens moves to the object side _ lens shifts to the image side jt loop current) 150 mA counterclockwise 150 mA counterclockwise 1 magnet current) 100 mA clockwise 100 mA clockwise 100 mA clockwise 100mA clockwise 12 '1

S 1354177 I3 100mA 順時針 100mA 順時針 <第三實施例 > 具有防手震功能之鏡頭移位機構 參考圖2所示,本發明之鏡頭移位機構3係可應用於 一自動對焦或對焦鏡頭模組1中,且進一步可設計成獨立 控制電磁鐵組32之電磁鐵之磁力大小,以使鏡頭2之光軸 與鏡頭模組1之中心軸Z之間產生一個角度偏移,使鏡頭 2可對向被攝物體(object ),藉以達成防手震功能。於 本實施例中,鏡頭移位機構3包含:一線圈31、一電磁鐵 組32、一導電片33、一線圈電極34、一電磁鐵電極35 ;其 中,相機之控制器(如圖3之控制器37)可輸出不同方向 或不同大小之電流(流入或流出)經由電磁鐵電極35輸入 電磁鐵組32中,在本實施例,電磁鐵組32係由四個電磁鐵 所構成,包含電磁鐵(I ) 321、電磁鐵(II ) 322、電 磁鐵(III) 323及電磁鐵(IV) 324等四個電磁鐵,該四 個電磁鐵321〜324係以90度方位均勻佈設並固定於線圈 31外圍,當控制器37輸出電流(h、12、13、14 )經由四 組電磁鐵電極35 (電磁鐵I電極351、電磁鐵II電極 352、電磁鐵III電極353、電磁鐵IV電極354 )進入電磁 鐵(I ) 321、電磁鐵(II ) 322、電磁鐵(III) 323及 電磁鐵(IV) 324,藉由電磁作用,可在各電磁鐵321〜 324之電磁鐵心36產生N極或S極之磁力,此磁力之大小 及方向則由輸入之電流大小及方向所控制,本實施例中該 四個電磁鐵321〜324之電磁力可分別控制,可為N極均 為朝向鏡頭之中心,也可單獨控制使單一個電磁鐵之S極 朝向鏡頭之中心。本實施例使用之電磁鐵321〜324之電 磁鐵心36為使用鐵鎳合金(Permalloys)所製成,鐵鎳合金導 磁性低且具有高度的電磁敏感度,當對電磁鐵321〜324 通以快速變換的電流時,可快速的反應電磁力,以利於獨S 1354177 I3 100mA clockwise 100mA clockwise <third embodiment> lens shifting mechanism with anti-shake function Referring to Fig. 2, the lens shifting mechanism 3 of the present invention can be applied to an autofocus or focus The lens module 1 is further configured to independently control the magnetic force of the electromagnet of the electromagnet group 32 to cause an angular offset between the optical axis of the lens 2 and the central axis Z of the lens module 1 to make the lens 2 The object can be directed to the object to achieve the anti-shake function. In this embodiment, the lens shifting mechanism 3 includes: a coil 31, an electromagnet group 32, a conductive sheet 33, a coil electrode 34, and an electromagnet electrode 35; wherein, the controller of the camera (as shown in FIG. 3) The controller 37) can output currents (inflow or outflow) of different directions or different sizes into the electromagnet group 32 via the electromagnet electrode 35. In the embodiment, the electromagnet group 32 is composed of four electromagnets, including electromagnetic Four electromagnets, such as iron (I) 321 , electromagnet (II ) 322, electromagnet (III) 323, and electromagnet (IV) 324, are uniformly arranged and fixed in a 90-degree orientation. On the periphery of the coil 31, when the controller 37 outputs current (h, 12, 13, 14) through the four sets of electromagnet electrodes 35 (electromagnet I electrode 351, electromagnet II electrode 352, electromagnet III electrode 353, electromagnet IV electrode 354) The electromagnet (I) 321 , the electromagnet (II ) 322 , the electromagnet ( III ) 323 , and the electromagnet ( IV ) 324 are generated to generate an N pole at the electromagnet core 36 of each of the electromagnets 321 to 324 by electromagnetic action. Or the magnetic force of the S pole. The magnitude and direction of this magnetic force are large by the input current. And the direction is controlled, in this embodiment, the electromagnetic forces of the four electromagnets 321 324 324 can be separately controlled, and the N poles are all toward the center of the lens, or can be separately controlled so that the S pole of the single electromagnet faces the lens. center. The electromagnet core 36 of the electromagnets 321 to 324 used in this embodiment is made of Permalloys, and the iron-nickel alloy has low magnetic permeability and high electromagnetic sensitivity, and is fast to the electromagnets 321 to 324. When the current is changed, the electromagnetic force can be quickly reacted to facilitate the independence

13 立控制每個電磁鐵的電磁力大小》 如圖5,電磁鐵(Ϊ ) 321與電磁鐵(冚)323為才 對佈位於180度方位,如圖5所示;當使用者柏^ 二^ 震動時,被攝物相對偏離鏡頭中心軸Z軸,向X軸方^ 動,為補足此震動量,此時可由控制器37對電磁鐵, 321與電磁鐵(III) 323施以不同電流,如對電磁 (I ) 321施以較小電流、對電磁鐵(冚)犯3施 電流;此時線圈31將受到電磁鐵(321及電磁权八 (III) 323之間不同電磁力致產生不平衡的受力 鏡頭2之光軸可相對在該受力方向產生—偏移角度θ 使鏡頭2朝向被攝物’以達防手震之目的。表 例使用電流之方向及電流大小。 4 Λ &13 control the electromagnetic force of each electromagnet. As shown in Figure 5, the electromagnet (Ϊ) 321 and the electromagnet (冚) 323 are located at 180 degrees, as shown in Figure 5; ^ When shaking, the subject is relatively offset from the Z axis of the lens center axis, and is moved to the X axis. To compensate for this vibration amount, the controller 37 can apply different currents to the electromagnet, 321 and the electromagnet (III) 323. For example, if the electromagnetic (I) 321 is applied with a small current and the electromagnet (冚) is subjected to 3 currents; at this time, the coil 31 will be subjected to different electromagnetic forces between the electromagnet (321 and the electromagnetic right eight (III) 323. The optical axis of the unbalanced force-bearing lens 2 can be generated relative to the direction of the force--the offset angle θ makes the lens 2 face the subject' to prevent the shaking. The table uses the direction of the current and the magnitude of the current. Λ &

13 75mA逆時針 90mA逆時針13 75mA counterclockwise 90mA counterclockwise

U --—--- 75mA逆時針 —電^Ϊ if * 可由控制器37對第 —Γ鐵323施以不同方向的電流,第 =ί時線圈31除受到朝向物側(或朝 鐵以卜電磁鐵321與第三電磁 力,隸二 羞生向下(朝向χ轴)之分 使鏡頭2之絲產生-角度0,而使鏡頭2朝向被攝 1354177 物,以達防手震快速控制之目的。表四為使用電流之方向 及電流大小。 表四、快速控制目的之電流方向及電流大小 電流方向/安培 鏡頭向物側移動且鏡頭光軸與中心軸 形成向下的角度1.2度 I 150mA 逆時針 I. 90mA 逆時針 12 75mA 逆時針 L· 60mA 順時針 14 75mA 逆時針 本發明之結構設計與習知技術比較,至少具有下列優 點: &lt; 1 &gt;、本發明之鏡頭移位機構3係使用電磁鐵以取 代永久磁鐵,可耐迴焊高溫,可提高量產化之可能性。 &lt; 2 &gt;、本發明之鏡頭移位機構3可獨立控制電磁鐵 組32中各電磁鐵,使其具有防手震功能。 以上所述僅為本發明的較佳實施例,對本發明而言僅 是說明性的,而非限制性的;本專業技術人員理解,在本 發明權利要求所限定的精神和範圍内可對其進行許多改 變,修改,甚至等效變更,但都將落入本發明的保護範圍 内。 【圖式簡單說明】 圖1係先前技術之鏡頭移位機構之立體示意圖。 圖2係本發明之鏡頭移位機構實施例之立體示意圖。 圖3係本發明之鏡頭移位機構說明圖。 圖4係本發明之鏡頭移位機構之對焦說明圖。 圖5係本發明之鏡頭移位機構之防手震說明圖。U ------ 75 mA counterclockwise - electric ^ Ϊ if * The controller 37 can apply the current in different directions to the first Γ 323, and the coil 31 is biased toward the object side (or toward the iron) The electromagnet 321 and the third electromagnetic force, the second shivering downward (toward the x-axis), causes the lens 2 to produce an angle of -0, and the lens 2 is directed toward the photographed 1354177 to achieve rapid control of the anti-shake. Table 4. The direction and current of the current are used in Table 4. Table 4. Current direction and current magnitude for fast control purposes Current direction/ Ampere lens moves to the object side and the lens optical axis forms a downward angle with the central axis 1.2 degrees I 150mA Counterclockwise I. 90 mA Counterclockwise 12 75 mA Counterclockwise L·60 mA Clockwise 14 75 mA Counterclockwise The structural design of the present invention has at least the following advantages as compared with the prior art: &lt;1 &gt;, the lens shifting mechanism 3 of the present invention An electromagnet is used instead of a permanent magnet, which is resistant to reflow high temperature and can increase the possibility of mass production. <2> The lens shifting mechanism 3 of the present invention can independently control each electromagnet in the electromagnet group 32, Make it anti-shake function The present invention is only the preferred embodiment of the present invention, and is intended to be illustrative, and not restrictive, and it is understood by those skilled in the art that Many changes, modifications, and even equivalents are intended to fall within the scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a perspective view of a lens shifting mechanism of the prior art. Figure 2 is a lens shift of the present invention. 3 is a perspective view of a lens shifting mechanism of the present invention. Fig. 4 is an explanatory view of a lens shifting mechanism of the present invention. Fig. 5 is an anti-shake of the lens shifting mechanism of the present invention. Illustrating.

15 1354177 圖6係本發明之鏡頭移位機構之第二實施例立體示意圖。 【主要元件符號說明】 鏡頭模組(lens module) 1 上蓋(upper cover) 11 底蓋(bottom cover) 12 鏡頭(lens)2 鏡片群(lens group)21 鏡頭套筒(lens holder ) 22 鏡頭移位機構(lens driving mechanism) 3 線圈(conductor coil)31 電磁鐵組(electromagnet parts)3 2 電磁鐵(I ) (electromagnet 1)321 電磁鐵(II ) (electromagnet 1)322 電磁鐵(III ) (electromagnet 1)323 電磁鐵(IV ) (electromagnet IV)324 導電片(electric plate)3 3 線圈電極(coil pad)34 電磁鐵電極(electromagnet pad)3 5 電磁鐵 I 電極(electromagnetIpad)351 電磁鐵 II 電極(eleclxomagnet II pad)352 電磁鐵III 電極(electromagnet III pad)3 53 電磁鐵IV 電極(electromagnet IV pad)3 54 電磁鐵心(electromagnet ferrite)3 6 控制器(controller)37 彈簀(spring element ) 38 永久磁鐵(permanent magnet)70 1615 1354177 Figure 6 is a perspective view of a second embodiment of the lens shifting mechanism of the present invention. [Main component symbol description] Lens module 1 Upper cover 11 Bottom cover 12 Lens 2 Lens group 21 Lens holder 22 Lens shift Lens driving mechanism 3 coil (conductor coil) 31 electromagnet parts 3 2 electromagnet (I ) (electromagnet 1) 321 electromagnet (II ) (electromagnet 1) 322 electromagnet (III ) (electromagnet 1 )323 Electromagnet (IV) (electromagnet IV) 324 Conductor plate 3 3 Coil pad 34 Electromagnet pad 3 5 Electromagnet I electrode (electromagnet Ipad) 351 Electromagnet II electrode (eleclxomagnet II pad) 352 Electromagnet III electrode 3 53 Electromagnet IV pad 3 54 Electromagnet ferrite 3 6 Controller 37 Spring element 38 Permanent magnet ( Permanent magnet)70 16

Claims (1)

1354177 十、申請專利範圍: 1. 一種鏡頭移位機構,其係適用於一自動對焦或變焦鏡頭 模組,該鏡頭模組至少包含一容腔、一鏡頭及一鏡頭移 位機構,其中該鏡頭係包含一鏡片群及一鏡頭套筒並套 設在容腔内而可在中心軸上朝接近或遠離物之方向滑動 移位;其特徵在於:該鏡頭移位機構係利用一線圈及相 對於線圈排列於線圈周圍外方之一電磁鐵組構成,其中 該線圈係固設在鏡頭之外圍並與鏡頭結合成一可同步滑 動移位之鏡頭連動體;該電磁鐵組係由複數個電磁鐵構 成且在鏡頭模組内保持固定不動,藉此,當線圈及電磁 鐵組分別輸入電流後,可藉線圈與電磁鐵組之間所產生 之電磁力以驅動鏡頭在中心軸方向上進行滑動移位。 2. 如申請專利範圍第1項所述之鏡頭移位機構,其中該電 磁鐵組之各電磁鐵係等角度均勻佈設在線圈之周圍,且 各電磁鐵之電磁鐵心的一端面係垂直面向鏡頭中心軸。 3. 如申請專利範圍第1項所述之鏡頭移位機構,其中該鏡 頭在中心軸方向上被驅動滑動移位之前進或後退係由輸 入線圈之電流方向所控制。 4. 如申請專利範圍第1項所述之鏡頭移位機構,其中該複 數個電磁鐵進一步可施以不同大小或方向之電流,藉以 控制鏡頭光軸與鏡頭模組之中心軸之間的角度。 5. 如申請專利範圍第1項項所述之鏡頭移位機構,其進一 步可在鏡頭上配置一彈簧,當線圈與電磁鐵組電磁力消 失時,該彈簧可對鏡頭提供回復力以使鏡頭回復至原 位。 6. 如申請專利範圍第5項所述之鏡頭移位機構,其中該彈 簧可為壓縮式彈簧或伸張式彈簧。 17 (S &gt;1354177 X. Patent application scope: 1. A lens shifting mechanism, which is suitable for an autofocus or zoom lens module, the lens module includes at least a cavity, a lens and a lens shifting mechanism, wherein the lens The utility model comprises a lens group and a lens sleeve which are sleeved in the cavity and can be slidably displaced on the central axis in the direction of approaching or away from the object; wherein the lens shifting mechanism utilizes a coil and is opposite to the lens The coil is arranged in an electromagnet group outside the coil, wherein the coil is fixed on the periphery of the lens and combined with the lens to form a lens linkage that can be synchronously sliding and displaced; the electromagnet group is composed of a plurality of electromagnets And remaining in the lens module, thereby, when the coil and the electromagnet group respectively input current, the electromagnetic force generated between the coil and the electromagnet group can be used to drive the lens to slide in the direction of the central axis. . 2. The lens shifting mechanism according to claim 1, wherein each of the electromagnets of the electromagnet group is evenly disposed around the coil, and an end surface of each electromagnet core is vertically facing the lens. The central axis. 3. The lens shifting mechanism according to claim 1, wherein the lens is driven to slide in the direction of the central axis, and the forward or backward is controlled by the current direction of the input coil. 4. The lens shifting mechanism of claim 1, wherein the plurality of electromagnets further apply currents of different sizes or directions to control an angle between a lens optical axis and a central axis of the lens module. . 5. The lens shifting mechanism according to claim 1, wherein the lens is further provided with a spring on the lens, and when the electromagnetic force of the coil and the electromagnet group disappears, the spring can provide a restoring force to the lens to make the lens Revert to the original position. 6. The lens shifting mechanism of claim 5, wherein the spring is a compression spring or a tension spring. 17 (S &gt;
TW97104555A 2008-02-05 2008-02-05 Lens driving mechanism TWI354177B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97104555A TWI354177B (en) 2008-02-05 2008-02-05 Lens driving mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97104555A TWI354177B (en) 2008-02-05 2008-02-05 Lens driving mechanism

Publications (2)

Publication Number Publication Date
TW200935157A TW200935157A (en) 2009-08-16
TWI354177B true TWI354177B (en) 2011-12-11

Family

ID=44866505

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97104555A TWI354177B (en) 2008-02-05 2008-02-05 Lens driving mechanism

Country Status (1)

Country Link
TW (1) TWI354177B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427350B (en) * 2010-07-27 2014-02-21 Tdk Taiwan Corp Electromagnetic driving apparatus for lens
TWI456253B (en) * 2010-10-15 2014-10-11 Tdk Taiwan Corp Anti-shock tilt correction structure of auto focus module
KR101314652B1 (en) * 2012-03-30 2013-10-07 자화전자(주) Controlling apparatus for operating camera module and method thereof

Also Published As

Publication number Publication date
TW200935157A (en) 2009-08-16

Similar Documents

Publication Publication Date Title
KR102365928B1 (en) Auto focus and optical imagestabilization in a compact folded camera
US8817397B2 (en) Lens actuator
US9448382B2 (en) Electromagnetic actuators for digital cameras
TWI288258B (en) Auto-focusing device for lens
WO2014029296A1 (en) Structure for voice coil motor providing controllable lens tilt capability
TWI417567B (en) Photographing module
JP2009229789A (en) Lens displacement mechanism for automatic focus or zoom lens module
TW201140187A (en) Lens driving apparatus
JP5201587B2 (en) Lens drive device
JP4719107B2 (en) Lens drive device
JP2010091894A (en) Drive device and lens drive device
CN101520541A (en) Lens shifting mechanism
TWI354177B (en) Lens driving mechanism
TWM345248U (en) Lens driving mechanism
CN107085275B (en) Lens driving device
TWI303512B (en) Auto focusing and zooming device, actuator and voice coil motor thereof
JP2011027947A (en) Optical unit
TW201120474A (en) Photographing module with optical zoom
CN101551507A (en) Lens driving mechanism using electromagnets
JP2005141188A (en) Focus-changing device of digital camera for cellular phone
TWM339015U (en) Lens driving mechanism using electromagnet
JP2009080328A (en) Lens drive device
CN201166728Y (en) Lens drifting mechanism
TWI354183B (en)
TWM339001U (en) Lens displacement mechanism by using dual coils

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees