TW200935157A - Lens driving mechanism - Google Patents

Lens driving mechanism

Info

Publication number
TW200935157A
TW200935157A TW97104555A TW97104555A TW200935157A TW 200935157 A TW200935157 A TW 200935157A TW 97104555 A TW97104555 A TW 97104555A TW 97104555 A TW97104555 A TW 97104555A TW 200935157 A TW200935157 A TW 200935157A
Authority
TW
Taiwan
Prior art keywords
lens
electromagnet
coil
current
shifting mechanism
Prior art date
Application number
TW97104555A
Other languages
Chinese (zh)
Other versions
TWI354177B (en
Inventor
teng-jian You
Shi-Bin Wu
Original Assignee
E Pin Optical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Pin Optical Industry Co Ltd filed Critical E Pin Optical Industry Co Ltd
Priority to TW97104555A priority Critical patent/TWI354177B/en
Publication of TW200935157A publication Critical patent/TW200935157A/en
Application granted granted Critical
Publication of TWI354177B publication Critical patent/TWI354177B/en

Links

Landscapes

  • Lens Barrels (AREA)

Abstract

A lens driving mechanism applicable to an autofocus or zooming lens module comprises: a housing; a lens consisting of a lens group and a lens holder, the lens being slid-able along the central axis in the housing; and a lens driving mechanism for driving the sliding movement of the lens. The lens driving mechanism is mainly consisted of a conductor coil and a plurality of electromagnets correspondingly disposed around the conductor coil, wherein the conductor coil is fixed on the lens holder and is synchronously movable with the lens. The electromagnet set is consisted of a plurality of electromagnets and is maintained still. When each electromagnet is conducted with current, an N pole or S pole electromagnetic field can be formed on the surface of the electromagnet; when the conductor coil is conducted with current, an electromagnetic force can be produced to drive the lens holder moving along the central axis so as to achieve the purpose of zooming by the lens group movement. Furthermore, a spring element can be disposed in the lens driving mechanism to balance or to recover the lens holder to its original position. In addition, the current of each electromagnet can be individually controlled to control the magnitude of the magnetic force produced by each electromagnet so as to adjust the angle of the lens holder and to provide a shockproof function. The lens driving mechanism of this invention does not contain permanent magnets, so the lens module can sustain the high temperature in a reflow process, increasing the possibility of mass production.

Description

200935157 鏡頭套筒(lens holder ) 22 鏡頭移位機構(lens driving mechanism) 3 線圈(conductor coil)31 電磁鐵組(electromagnet parts)32 電磁鐵(I ) (electromagnet 1)321 電磁鐵(II ) (electromagnet 1)322 電磁鐵(III ) (electromagnet 1)323 電磁鐵(IV ) (electromagnet IV)324 導電片(electric plate)3 3 ^ 線圈電極(coil pad)34 電磁鐵電極(electromagnet pad)3 5 電磁鐵(I )電極(electromagnetIpad)351 電磁鐵(II)電極(electromagnetIIpad)352 電磁鐵(III )電極(electromagnet III pad)3 5 3 電磁鐵(IV)電極(electromagnet rv pad)354 電磁鐵心(electromagnet ferrite)36 彈簧(spring element ) 38 八、本案若有化學式時,請揭示最能顯示發明特徵的化 © 學式:(無) 九、發明說明: 【發明所屬之技術領域】 本發明係有關一種鏡頭移位機構,係應用於一自動對 焦或變焦之鏡頭組,尤指一種利用線圈及電磁鐵,並藉二 者之間所產生之電磁力以驅動並控制鏡頭進行滑動移位 者。 【先前技術】 目前使用之數位相機、具拍攝功能的手機、筆記型電 200935157 腦等手持式電子裝置上’常設有一可自動對焦 (auto-focusing,簡稱 AF )或變焦(zooming )之微型 鏡頭模組(compact camera module,簡稱CCM),而該鏡 頭模組基本上包含:一由上蓋(uppercover)及底蓋(bottom cover)所形成的容腔(housing); —鏡頭(lens )其由鏡片 群(lensgroup)及一鏡頭套筒(lensholder)組成,可套設在 容腔内並可在中心轴方向上前後滑動移位;及一鏡頭移位 機構(lens displacement mechanism),或稱為制動器 (actuator ),其主要用以驅動該鏡頭在中心軸上產生移 位動作,藉以達成自動對焦或變焦之功效。 ❹ 常見之鏡頭移位機構的設計如一種稱為壓電馬達 (piezoelectric motor ),其係利用壓電 (piezoelectric)材料原理形成,如 US7, 212, 358、 US2003/0227560 、JP2006-293083、JP2006-101611 等;但一 般所使用之壓電材料無法耐受迴焊(refl〇w)作業之高溫 (約260 °C ),或耐受高溫之特別壓電材料又相當昂貴, 故不利於量產化或降低製造成本。又一種稱為音圈馬達 (voice coil motor ’簡稱VCM)者,其係利用線圈、磁 鐵、與彈性件(如彈簧或彈片)配合形成,如 ❹ US7, 262, 927、US7,196, 978、US7, 002, 879、US6, 961,〇9〇、 US6,687,062 、 US20070133110 、 JP2005037865 、 JP2005258355、W02007026830等,該等習知技術大部分係 利用線圈與永久磁鐵(permanent magnet)配組使用,如圖 1,如在線圈31之内圍或外圍環狀排列設置一個或數個永 久磁鐵70,使線圈31通電後產生磁場,而可與由一個或數 個永久磁鐵70所建立之磁場及磁極之間形成向上或向下之 電磁。力以驅動鏡頭移動;但永久磁鐵在迴焊高溫時(約 260 ΐ)將會使磁鐵退磁。因此上述習用之壓電馬達與音 圈馬達在組裝時皆不可使用迴悍方式,致在量產效率1受 4 200935157 到限制。再者,有一種是利用形狀記憶合金(shaped memory alloy,簡稱SMA )之鏡頭移位機構,其係利用 SMA之熱縮冷ί張之特性以作為制動器(aCfuat〇r )之驅 力源,如 US 6,307,678B2、US 6,449,434B1、 US2007058070 、 US2007047938 、 jp2〇〇5275270 、 JP2005195998等,然而,SMA熱縮冷漲的動作較慢,盞 簡易達成即時自動對焦或變焦之功效。 …“ 對於尚畫質需求的使用者,在低照度的環境為維 當優秀的行動力與拍照品質,防手震(Anti shake)功 ❹200935157 Lens holder 22 lens driving mechanism 3 coil (conductor coil) 31 electromagnet parts 32 electromagnet (I ) (electromagnet 1) 321 electromagnet (II ) (electromagnet 1) 322 Electromagnet (III) (electromagnet 1) 323 Electromagnet (IV) (electromagnet IV) 324 Conductive plate 3 3 ^ Coil pad 34 Electromagnet pad 3 5 Electromagnet (I) Electrode (electromagnet Ipad) 351 Electromagnet (II) Electrode (electromagnet IIpad) 352 Electromagnet (III) Electrode (electromagnet III pad) 3 5 3 Electromagnet (IV) Electrode (electromagnet rv pad) 354 Electromagnet ferrite 36 spring element 38 VIII. If there is a chemical formula in this case, please reveal the best way to show the characteristics of the invention. ▪ Learning: (None) Invention: Technical Field of the Invention The present invention relates to a lens shift. The position mechanism is applied to an autofocus or zoom lens group, especially a coil and an electromagnet, and the electromagnetic force generated between the two is used to drive And controlling the lens by sliding displacement. [Prior Art] The digital camera with a digital camera, a mobile phone with a shooting function, and a hand-held electronic device such as a notebook computer 200935157 brain are currently equipped with a micro lens module with auto-focusing (AF) or zooming (zooming). A compact camera module (CCM), the lens module basically comprises: a housing formed by an upper cover and a bottom cover; a lens (lens) of the lens group (lensgroup) and a lens holder (lensholder), can be sleeved in the cavity and can slide back and forth in the direction of the central axis; and a lens displacement mechanism, or actuator ), which is mainly used to drive the lens to produce a shifting action on the central axis, thereby achieving the effect of autofocus or zoom.常见 The design of a common lens shifting mechanism is called a piezoelectric motor, which is formed by the principle of piezoelectric materials, such as US 7,212,358, US2003/0227560, JP2006-293083, JP2006- 101611, etc.; but the piezoelectric materials generally used cannot withstand the high temperature of reflow (ref 〇 w) operation, or the special piezoelectric materials that withstand high temperatures are quite expensive, which is not conducive to mass production. Or reduce manufacturing costs. Another type of voice coil motor (VCM) is formed by using a coil, a magnet, and an elastic member such as a spring or a spring, such as US 7,262,927, US 7,196,978. US7, 002, 879, US6, 961, 〇9〇, US6,687,062, US20070133110, JP2005037865, JP2005258355, W02007026830, etc., most of these conventional techniques use coils and permanent magnets, as shown in the figure. 1. If one or several permanent magnets 70 are arranged in a ring shape around the circumference or the periphery of the coil 31, the coil 31 is energized to generate a magnetic field, and can be connected with the magnetic field and the magnetic pole established by the one or several permanent magnets 70. Forms an upward or downward electromagnetic. The force drives the lens to move; however, the permanent magnet will demagnetize the magnet when reflowing at a high temperature (about 260 ΐ). Therefore, the conventional piezoelectric motor and the voice coil motor cannot be used in the assembly mode, and the mass production efficiency is limited to 4 200935157. Furthermore, there is a lens shifting mechanism using a shape memory alloy (SMA), which utilizes the characteristics of the heat shrinkage of the SMA as a driving source of the brake (aCfuat〇r), such as US 6,307,678B2, US 6,449,434B1, US2007058070, US2007047938, jp2〇〇5275270, JP2005195998, etc. However, the SMA heat shrinking action is slower, and it is easy to achieve instant autofocus or zoom effect. ..." For users who are still in need of quality, in the low-light environment, it is excellent in action and quality, and anti-shake.

漸受相當重視。在習知技術中,防手震技術主要透過幾個 方式來達成,如成像元件CCD以機械支架藉由補償運動來 抵銷震動過程中所導致的影像模糊化影響,或如在鏡頭設 f機械式結構消除手震,或以軟體計算補償的方式,或= 高感光度能力,或採用兩個陀螺儀來進行對成像元件CCD 的水平與垂直震動偵測,並利用磁力推動來進行補償動 等’如EP1729509 、 US20070292119 、 US20070009243 、 JP08122840 、 JP11305280 、见11220651 等。 使用電磁力為鏡頭移位機構之主要動力來源,具有其 方便性與通用性,為能在迴焊高溫時(約26〇 〇c) ^力不 受破壞,雖可使用特殊材料製成耐高溫永久磁鐵,但其因 之一為價格過於昂貴,其因之二磁力較弱’故無法普及使 用,因此發展新技術以解決鏡頭移位機構迴焊問題,將為 迫切所需。 ’’ 【發明内容】 本發明主要目的在於提供一種鏡頭移位機構,其係利 用線圈(conductorcoil )及相對於線圈排列於線圈周圍之 電磁鐵組(electromagnet set)所組成,其中線圈係固設於鏡頭 套筒上,當線圈受力移動時可使鏡頭套筒及其上的鏡片群 沿中心軸移動;鏡頭移位機構之電磁鐵組通以電流後可在 5 200935157 電磁鐵端面產生N極或s極電磁力,使線圈通電後產生電 磁力,其電磁力方向可由安培右手定律而決定,致趨使鏡 頭沿中心軸移動,而達成鏡片群移動之變焦目的;或當對 線圈施以不同方向之電流,可控制鏡頭以前進或後退之方 向,以適用於一自動對焦或變焦之鏡頭模組;藉此結構可 耐迴焊(reflow )高溫而可提高量產化,以改良習知技術 使用永久磁鐵無法使用迴焊製程之困難。 本發明再一目的在於提供一種鏡頭移位機構,其中電 磁鐵組係由複數個電磁鐵所構成,其具有防手震功能,可 ,由控制各電磁鐵之電流大小或電流方向,使線圈通電後 广到不同電磁力作用,致使鏡頭的光軸與鏡頭模組之中心 軸產生一偏移角度而可對向被攝物件,達成防手震之自動 對焦或變焦效果。 τΐίΐΐ:!的ί於提供一種鏡頭移位機構,其進一 步可在鏡頭或其鏡頭套筒上配置一彈簧( ίΠίίί圈與電磁鐵組之間的電磁力,消失或不產 ^作用時,該彈簧可對鏡頭套筒提供—相對之回復力,以 ❹=鏡頭回復至原平衡狀態或原㈣達成自動對焦或變焦 效果0 【實施方式】 之訾ϋ躂Γfs兒明,因此本發日月以下所揭示 對焦或變焦銑頭模組中,但就 月所和之鏡頭移位機構外,其他結構乃屬—般通知之技 位機=以: 而言,除了本發 6 200935157 術,因此一般在此領域中熟悉此項技藝之人士瞭解, 明所揭示自動:焦或變焦鏡頭模組之構成元件::限2 以下所揭示之實施例結構,也就是該自動對焦或變焦 各=元件是可以進行許多改變、修改、甚至等效 變”:該鏡頭模組中由上蓋及底蓋所形成的容腔 之形狀设汁並不限制,也就是鏡頭模組之内部空間設計並 θ ;f由鏡片群及一鏡頭套筒組成之鏡頭的整體形狀 或t構型態也不限制,如該鏡片群可包含由單一鏡片或數 個鏡片構成之鏡片群,且單一鏡片或鏡片群一般可先容設 在一固定件内而再與一鏡頭套筒結合形成一鏡頭;或本發 明線圈與電磁鐵組之個別的線圈匝(扣爪)數、線圈内徑 (或線圈内徑截面積)、線圈高度、電磁鐵内線圈高度或 電流進出方向及大小等也不限制,且可依據必歐-沙瓦定 律(Biot-SavartLaw)及相關安培右手定律計算式計算,如下 列式(1)及式(2)Gradually received considerable attention. In the prior art, the anti-shake technique is mainly achieved in several ways, such as the imaging element CCD mechanically supporting the motion to compensate for the image blurring caused by the vibration process, or as in the lens setting machine The structure eliminates jitter, or compensates by software, or = high sensitivity, or uses two gyroscopes to detect horizontal and vertical vibration of the imaging element CCD, and uses magnetic push to compensate. 'eg EP1729509, US20070292119, US20070009243, JP08122840, JP11305280, see 11220651, etc. The use of electromagnetic force is the main power source of the lens shifting mechanism. It has the convenience and versatility. It can be used for high temperature resistance (about 26〇〇c). Permanent magnets, but one of them is too expensive, and because of its weak magnetic force, it cannot be widely used. Therefore, it is urgent to develop new technologies to solve the problem of re-welding of the lens shifting mechanism. The main object of the present invention is to provide a lens shifting mechanism which is composed of a coil (conductor coil) and an electromagnet set arranged around the coil with respect to the coil, wherein the coil system is fixed to On the lens sleeve, when the coil is moved by force, the lens sleeve and the lens group thereon can be moved along the central axis; the electromagnet group of the lens shifting mechanism can generate an N pole on the end face of the 5 200935157 electromagnet after passing the current s pole electromagnetic force, the electromagnetic force is generated after the coil is energized, and the direction of the electromagnetic force can be determined by the right-hand rule of Ampere, which tends to move the lens along the central axis to achieve the zooming purpose of the lens group movement; or when the coil is applied in different directions The current can control the lens in the direction of forward or backward to apply to an autofocus or zoom lens module; the structure can be reflow resistant to high temperature and can be mass-produced to improve the use of conventional technology. The difficulty of using a reflow process for permanent magnets. A further object of the present invention is to provide a lens shifting mechanism, wherein the electromagnet group is composed of a plurality of electromagnets, which have an anti-shake function, and can control the current magnitude or current direction of each electromagnet to energize the coil. After the wide electromagnetic force is applied, the optical axis of the lens and the central axis of the lens module are offset from each other to achieve an anti-shake autofocus or zoom effect. ΐ ΐ ΐΐ ! 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供Can provide the lens sleeve - relative restoring force, ❹ = lens return to the original balance state or the original (four) to achieve auto focus or zoom effect 0 [Embodiment] 訾ϋ跶Γ fs children, so the following days Revealing the focus or zoom milling head module, but in addition to the lens shifting mechanism of the month and the other, the structure is a general notification of the technical position machine = in terms of: In addition to the present invention, 200935157, therefore generally Those skilled in the art who are familiar with the art understand that the automatic components of the focus or zoom lens module are disclosed: Limit 2 The structure of the embodiment disclosed below, that is, the autofocus or zoom each component can be performed many times. Change, modification, and even equivalent change: the shape of the cavity formed by the upper cover and the bottom cover in the lens module is not limited, that is, the internal space design of the lens module and θ; And the overall shape or t configuration of the lens composed of a lens sleeve is not limited, for example, the lens group may comprise a lens group consisting of a single lens or a plurality of lenses, and a single lens or lens group can generally be firstly accommodated in a fixing member is combined with a lens sleeve to form a lens; or the number of individual coils (claws) of the coil and electromagnet group of the present invention, the inner diameter of the coil (or the inner diameter of the coil), the height of the coil, The coil height or current in and out direction of the electromagnet is not limited, and can be calculated according to Biot-Savart Law and related right-handed law, such as the following formulas (1) and (2)

B M xr ⑴ (2)B M xr (1) (2)

F = lfxB Ο 其中,丑為磁通量密度,枸為真空導磁率 (permeability )/為線圈電流(Amp),/是線段長度,严 是距離,尸是受力大小。由式(1)與式(2)可分別計算本 發明電磁鐵的磁通量密度以及線圈受力大小藉以配合鏡頭 之重量以設計最佳驅動力。 參考圖2、3所示,其係本發明一實施例之立體示意 圖,本發明鏡頭移位機構3主要包含一線圈31及一電磁鐵 組32,其中,該線圈31係固設於鏡頭2之鏡頭套筒22上以 與鏡片群(lensgroup)21共同組成一連動體而可同步移動; 該電磁鐵組32係由複數個電磁鐵如圖3所示321〜324構 成且保持固定不動;使用時,可藉控制器(圖2、3中未 200935157 示,可參考圊4所示)如相機之控制器以對線圈31及電磁 鐵組32輸出不同方向(流入或流出)或不同大小之電流, 而藉由電磁作用可在電磁鐵組32之各電磁鐵321〜324的 端面產生磁力,其磁力之大小及方向則由輸入之電流大小 及方向所控制;而線圈31輸入電流後依據安培右手定律產 生電磁力,可計算出線圈31受電磁力之大小及受力方向, 線圈31將因受力沿鏡頭中心軸Z軸運動,以達自動對焦或 變焦效果。說明如圖4,利用相機之控制器37輸出電流 後,經由電磁鐵電極35連接至電磁鐵組32之電磁鐵(I ) 321及電磁鐵(III) 323 (可同時包含電磁鐵(II) 322 及電磁鐵(IV) 324 ),則電磁鐵(I ) 321及電磁鐵 (III) 323之電磁鐵心36的端面可產生電磁作用,若輸入 之電流方向為逆時針,則電磁鐵心36在朝向鏡頭中心軸Z 的端面會產生N極電磁;當相機之控制器37輸出電流後, 經由線圈電極34連接至線圈31時,線圈31會產生磁場,若 輸入線圈31電流為逆時針方向,線圈31則產生電磁力,若 輸入線圈31電流為逆時針方向,則線圈31會受到向物侧之 電磁力,將帶動鏡頭2向物側方向移動。 本發明鏡頭移位機構3進一步可分別控制電磁鐵組32 中各電磁鐵321〜324之電流大小或電流方向,以控制各 電磁鐵所產生磁力(或電磁強度)之大小,使線圈31通電 後因與各電磁鐵(如321〜324 )之間的電磁力大小不 同,致受到不平衡的電磁力作用,使鏡頭2之光軸會與鏡 頭中心軸Z軸產生一角度,使鏡頭2可偏移該角度以對向 被攝物體;玆以圖5為例說明,鏡頭移位機構3之電磁鐵 組32係由電磁鐵(I ) 321及電磁鐵(III) 323所組成, 若控制電磁鐵組32之電磁鐵(I ) 321及電磁鐵(III) 323,使具有不同的電流大小時,電磁鐵(I ) 321及電 磁鐵(III) 323之電磁力不同,線圈31通過電流後,將受 8 200935157 到電磁鐵321及電磁鐵(ΙΠ) 323之不同電磁力所產 平衡的電磁力作用’使鏡頭2之光轴會與鏡頭中心柄不 產生一角度,使鏡頭2可對向被攝物體,達防手震功能輛F = lfxB Ο where ugly is the magnetic flux density, 枸 is the vacuum permeability (permeability) / is the coil current (Amp), / is the length of the line segment, strictly the distance, the corpse is the force. From equations (1) and (2), the magnetic flux density of the electromagnet of the present invention and the magnitude of the force applied to the coil can be separately calculated to match the weight of the lens to design an optimum driving force. 2 and 3, which are perspective views of an embodiment of the present invention, the lens shifting mechanism 3 of the present invention mainly includes a coil 31 and an electromagnet group 32, wherein the coil 31 is fixed to the lens 2 The lens sleeve 22 is combined with the lens group 21 to form a linkage body and can be synchronously moved; the electromagnet group 32 is composed of a plurality of electromagnets as shown in FIG. 3 and is fixed and fixed; The controller (shown in FIG. 2 and FIG. 3 is not shown in 200935157, which can be referred to as 圊4), such as the controller of the camera, outputs different directions (inflow or outflow) or different currents to the coil 31 and the electromagnet group 32, The electromagnetic force can generate magnetic force on the end faces of the electromagnets 321 to 324 of the electromagnet group 32, and the magnitude and direction of the magnetic force are controlled by the magnitude and direction of the input current; and the coil 31 inputs the current according to the right-hand rule of Ampere. The electromagnetic force is generated, and the magnitude of the electromagnetic force and the direction of the force applied to the coil 31 can be calculated. The coil 31 will be moved along the Z-axis of the lens center axis by force to achieve an autofocus or zoom effect. 4, after the current is output by the controller 37 of the camera, the electromagnet (I) 321 and the electromagnet (III) 323 of the electromagnet group 32 are connected via the electromagnet electrode 35 (the electromagnet (II) 322 can be included at the same time. And the electromagnet (IV) 324), the electromagnet (I) 321 and the electromagnet (III) 323 of the end face of the electromagnet core 36 can generate electromagnetic action, if the input current direction is counterclockwise, the electromagnet core 36 is facing the lens The end face of the central axis Z generates N-pole electromagnetic; when the controller 37 of the camera outputs a current, when the coil electrode 34 is connected to the coil 31, the coil 31 generates a magnetic field, and if the current of the input coil 31 is counterclockwise, the coil 31 When the electromagnetic force is generated, if the current of the input coil 31 is counterclockwise, the coil 31 receives the electromagnetic force to the object side, and the lens 2 is moved in the object side direction. The lens shifting mechanism 3 of the present invention can further control the current magnitude or current direction of each of the electromagnets 321 to 324 in the electromagnet group 32 to control the magnitude of the magnetic force (or electromagnetic strength) generated by each electromagnet, so that the coil 31 is energized. Because of the different electromagnetic force between each electromagnet (such as 321~324), it is affected by the unbalanced electromagnetic force, so that the optical axis of the lens 2 will be at an angle with the Z axis of the lens central axis, so that the lens 2 can be biased. The angle is shifted to the object to be photographed. As shown in FIG. 5, the electromagnet group 32 of the lens shifting mechanism 3 is composed of an electromagnet (I) 321 and an electromagnet (III) 323. Group 32 electromagnet (I) 321 and electromagnet (III) 323, when different current magnitudes, electromagnet (I) 321 and electromagnet (III) 323 have different electromagnetic forces, and after coil 31 passes current, By the electromagnetic force of 8 200935157 to the different electromagnetic force of the electromagnet 321 and the electromagnet (ΙΠ) 323, the optical axis of the lens 2 will not produce an angle with the center handle of the lens, so that the lens 2 can be photographed oppositely. Object, anti-shock function

前述之電磁鐵組幻之電磁鐵心36為利用軟磁材科 (ferrite )製成;該軟磁材料具有易磁化且易退磁 性’其在電磁鐵組32通電後中非常容易被磁化,可= 線集中於電磁鐵心36端面’但當電磁鐵組32不通電時,力 磁鐵心36之磁力也隨即消失,也就是軟磁材料本身無保= 磁化的能力;而目前軟磁材料主要成份可為高純度= 鐵、軟鐵)、含碳量很低的鋼、矽鋼、鐵鎳合金(Fe_Ni “、、 Alloy 或 Permalloys}、鎂鋅合金(Mg_Zn all〇y )、錄辞上 (Ni-Zn alloy)、猛鋅合金(Mn-Zn alloy)、或金屬玻 ^ (metallic glass)等,均可耐受迴焊高溫,可依據不同目 選擇。 本發明鏡頭移位機構3進一步可在鏡頭2上配置一具 有回復彈性功能的彈簧38,當線圈31或電磁鐵組32之間^ 電磁力消失時,該彈簧38可對鏡片群21提供一相對之回復 力,也就是對鏡頭2提供一與所產生電磁力相反之彈簧 ° 力,用以將鏡片群21回復至電磁力作用前之原位;至於誃 彈簧38之彈性型態如壓縮式(c〇mpressi〇n )彈簧或伸張式 (extension )彈簧、結構型態如線圈彈簧或非線圈彈簧、 數目或設立位置等並不限制,可隨鏡頭模纟且2之設計需 或線圈31的運動方向而改變。 本發明線圈31或電磁鐵組32之線圈繞設型態、電流方 向、電磁鐵組32之電磁鐵數目及彈簧37型式等可隨需要而 作不同選擇。 <第一實施例 > 具有四個電磁鐵之鏡頭移位機構 參考圖2、3戶斤示,本實施例之鏡頭移位機構3可應 200935157 用於一小型相機之自動對焦或對焦鏡頭模組1中,該鏡頭 模組1為l〇mm X 10mm之方型模組,其中該鏡頭模组1基 本上至少包含上蓋11及底蓋12所形成的容腔,供一鏡頭2 可在容腔内之中心軸Z方向上滑動移位;該鏡頭2 —般包 含一由單一鏡片或數個鏡片構成之鏡片群21以及一供容設 該鏡片群21之鏡頭套筒22,也就是鏡片群21及鏡頭套筒22 是組成一可同步移動的鏡頭2,且套設在容腔内而可在中 心軸Z上以前進或後退(朝向物侧或朝向像侧)滑動移 位。 φ 本發明之鏡頭移位機構3包含:一線圈31、一電磁鐵 組32、一導電片33、一線圈電極34及一電磁鐵電極35 ;其 中,線圈31係固設於鏡頭2之鏡頭套筒22占以與鏡片群 (lensgroup)21共同組成一連動體而可同步移動;該電磁鐵 組32係由數個電磁鐵如電磁鐵(I ) 321、電磁鐵(π) 322、電磁鐵(ΠΙ ) 323及電磁鐵(IV ) 324等四個電磁 鐵構成且保持固定不動,又相機之控制器(如圖4之控制 器37 )可輸出不同方向或不同大小之電流(流入或流出) 經由電磁鐵電極35包含電磁鐵(I )電極351、電磁鐵 (II )電極352、電磁鐵(III)電極353及電磁鐵(IV) 電極354,分別輸入電磁鐵組32之各電磁鐵,本實施例之 電磁鐵組32如圖2所示包含電磁鐵(I) 321、電磁鐵 (II) 322、電磁鐵(III) 323及電磁鐵(Iv) 324等四 個電磁鐵,係以90度方位均勻佈設並固定於線圈31之外 圍。當控制器37輸出電流(I〗、I:、L、l4)經由各電磁 鐵電極35進入電磁鐵組32之各電磁鐵321〜324時,藉由 電磁作用,可在各電磁鐵321〜324之電磁鐵心%產生N 極或S極之磁力,此磁力之大小及方向則由輸入之電流大 小及方向所控制,本實施例中該四個電磁鐵321〜324之 磁力相當,且電磁鐵心36之N極均為朝向鏡頭之中心軸 200935157 Z。再者,為使電磁鐵組32之電磁效率最強,本實施例之 電磁鐵(I ) 321、電磁鐵(II ) 322、電磁鐵(III) 323及電磁鐵(IV) 324之電磁鐵心36選擇使用矽鋼片為 材質。 控制器37輸出電流I經由線圈電極34與連接之導電片 33進入線圈31時,電流方向為逆時針方向,依據右手定 律,則線圈31受向上方向(物側方向)之電磁力,連同使 鏡頭套筒22與鏡片組21沿鏡頭中心軸Z向上(物侧方向) 移動;若當控制器37輸出電流I方向為順時針方向,線圈 ❹ 31,依據法拉第右手定律,則線圈31受向下方向(像侧方 向)之電磁力,連同使鏡頭套筒22與鏡片群21沿鏡頭中心 軸Z向下(像侧方向)移動;如此可達成移動鏡頭而達成 對焦之目的。 當控制器37切斷輸出電流I時,線圈31不再產生磁 場,線圈31不再受到電磁力之作用,鏡頭2則不再移動; 或當控制器37切斷輸出電流I!、12、13、14時,電磁鐵 321、322、323、324不再產生磁力,鏡頭2則不再移 動。表一為本實施例使用電流之方向及電流大小。 表一、本實施例使用電流之方向及電流大小 電流安培/方向 鏡頭向物側移動 鏡頭向像侧移動 I (線圈電流) 150mA 逆時針 150mA 順時針 Il(電磁鐵電流) 75mA逆時針 75mA逆時針 h 75mA逆時針 75 mA逆時針 h 75mA逆時針 75mA逆時針 I4 75mA逆時針 75mA逆時針 11 200935157 又本實施例使用之彈簧38係以彈簧鋼製成之線圈彈簧 且為壓縮式彈簧,其係安排於鏡片群21與上蓋11之間,當 線圈31通以電流後受到向上之力量移動時,將帶動鏡頭套 筒22及鏡片群21向上移動,此時將壓迫彈簧38產生變形; 當線圈31切斷電流後,向上電磁力消失,彈簧38不再受壓 迫而回復原狀,將推動鏡頭2回復原位。 <第二實施例 > 具有三個電磁鐵之鏡頭移位機構 參考圖6所示,本實施例之鏡頭移位機構3係應用於 0 一小型相機之自動對焦或對焦鏡頭模組1中,該鏡頭模組 1為8mm X 8mm之圓型模組,包含·· 一線圈31、一電磁鐵 組32、一導電片33、一線圈電極34、一電磁鐵電極35 ;其 中,電磁鐵組32係由三個電磁鐵所構成,包含電磁鐵 (I ) 321、電磁鐵(II ) 322及電磁鐵(III) 323,該 三個電磁鐵係以120度方位均勻佈設於線圈31外圍並固定 不動,當控制器37輸出電流(I!、12、13 )經由各電磁鐵 電極35進入電磁鐵組32中各電磁鐵321、322、323,及 控制器37輸出電流I經由線圈電極34及相連接之導電片33 而進入線圈31時,則線圈31受向上方向(物侧方向)之電 © 磁力,連同使鏡頭套筒22與鏡片組21沿鏡頭中心軸Z向上 (物側方向)移動;若當控制器37切斷輸出電流,則線圈 31不再受電磁力。表二為本實施例使用電流之方向及電流 大小。 表二、本實施例使用電流之方向及電流大小 電流安培/方向 鏡頭向物側移動 鏡頭向像侧移動 I (線圈電流) 150mA 逆時針 150mA 逆時針 Il(電磁鐵電流) 100mA 順時針 100mA 順時針 h 100mA 順時針 100mA 順時針 12 200935157The aforementioned electromagnet group phantom electromagnet core 36 is made of soft magnetic material (ferrite); the soft magnetic material has easy magnetization and is easy to demagnetize 'it is very easy to be magnetized after the electromagnet group 32 is energized, and can be concentrated At the end face of the electromagnet core 36, but when the electromagnet group 32 is not energized, the magnetic force of the force magnet core 36 also disappears, that is, the soft magnetic material itself has no ability to protect magnetization; and the main component of the soft magnetic material can be high purity = iron , soft iron), steel with very low carbon content, niobium steel, iron-nickel alloy (Fe_Ni ", Alloy or Permalloys}, magnesium-zinc alloy (Mg_Zn all〇y), Ni-Zn alloy, zinc Alloy (Mn-Zn alloy), or metallic glass, etc., can withstand the high temperature of reflow, and can be selected according to different purposes. The lens shifting mechanism 3 of the present invention can further configure a resilience on the lens 2 The function of the spring 38, when the electromagnetic force between the coil 31 or the electromagnet group 32 disappears, the spring 38 can provide a relative restoring force to the lens group 21, that is, provide the lens 2 with an electromagnetic force opposite to that generated. Spring force for mirroring The group 21 returns to the original position before the electromagnetic force acts; as for the elastic type of the cymbal spring 38, such as a compression type (c〇mpressi〇n) spring or an extension spring, a structural type such as a coil spring or a non-coil spring, The number or the setting position and the like are not limited, and may vary depending on the design of the lens and the design of the coil 31 or the direction of movement of the coil 31. The coil of the coil 31 or the electromagnet group 32 of the present invention is wound around, current direction, and electromagnet group. The number of electromagnets of 32 and the type of spring 37 can be differently selected as needed. <First Embodiment> Lens shifting mechanism having four electromagnets Referring to Figs. 2 and 3, the lens of this embodiment The shifting mechanism 3 can be used in the autofocus or focus lens module 1 of a compact camera. The lens module 1 is a square module of l〇mm X 10mm, wherein the lens module 1 basically includes at least The upper cover 11 and the bottom cover 12 form a cavity for sliding the lens 2 in the direction of the central axis Z in the cavity; the lens 2 generally comprises a lens group 21 composed of a single lens or a plurality of lenses. And a mirror for housing the lens group 21 The sleeve 22, that is, the lens group 21 and the lens sleeve 22, constitutes a synchronously movable lens 2, and is sleeved in the cavity to be advanced or retracted on the central axis Z (toward the object side or toward the image side) The lens shifting mechanism 3 of the present invention comprises: a coil 31, an electromagnet group 32, a conductive sheet 33, a coil electrode 34 and an electromagnet electrode 35; wherein the coil 31 is fixed to The lens sleeve 22 of the lens 2 occupies a linkage body with the lens group 21 to be synchronously movable; the electromagnet group 32 is composed of a plurality of electromagnets such as an electromagnet (I) 321 and an electromagnet (π). 322, electromagnet (ΠΙ) 323 and electromagnet (IV) 324 and other four electromagnets are formed and remain fixed, and the controller of the camera (such as controller 37 in Fig. 4) can output currents of different directions or different sizes ( The electromagnet electrode 35 includes an electromagnet (I) electrode 351, an electromagnet (II) electrode 352, an electromagnet (III) electrode 353, and an electromagnet (IV) electrode 354, which are respectively input to the electromagnet group 32. The electromagnet, the electromagnet group 32 of the present embodiment is included as shown in FIG. Magnets (I) 321, an electromagnet (II) 322, an electromagnet (III) 323, and an electromagnet (Iv) 324 and other four electromagnets, lines laid at 90 degrees azimuthal uniformity and coil 31 is fixed to the outside circumference. When the output current (I, I:, L, l4) of the controller 37 enters the electromagnets 321 to 324 of the electromagnet group 32 via the electromagnet electrodes 35, the electromagnets 321 to 324 can be used by electromagnetic action. The magnet core generates a magnetic force of the N pole or the S pole. The magnitude and direction of the magnetic force are controlled by the magnitude and direction of the input current. In the embodiment, the magnetic forces of the four electromagnets 321 324 324 are equivalent, and the electromagnet core 36 The N poles are all toward the center axis of the lens 200935157 Z. Furthermore, in order to maximize the electromagnetic efficiency of the electromagnet group 32, the electromagnets (I) 321 , the electromagnets (II) 322, the electromagnets (III) 323 and the electromagnets (IV) 324 of the electromagnet core 36 of the present embodiment are selected. Use steel sheet as material. When the output current I of the controller 37 enters the coil 31 via the coil electrode 34 and the connected conductive sheet 33, the current direction is counterclockwise, and according to the right-hand law, the coil 31 is subjected to the electromagnetic force in the upward direction (object side direction) together with the lens. The sleeve 22 and the lens group 21 move upward (object side direction) along the lens center axis Z; if the controller 37 outputs the current I direction in the clockwise direction, the coil ❹ 31, according to Faraday's right-hand law, the coil 31 is subjected to the downward direction The electromagnetic force (like the side direction), together with moving the lens sleeve 22 and the lens group 21 downward (in the image side direction) along the lens center axis Z, achieves the purpose of moving the lens to achieve focusing. When the controller 37 cuts off the output current I, the coil 31 no longer generates a magnetic field, the coil 31 is no longer subjected to the electromagnetic force, the lens 2 no longer moves; or when the controller 37 cuts off the output current I!, 12, 13 At 1400, the electromagnets 321, 322, 323, and 324 no longer generate magnetic force, and the lens 2 no longer moves. Table 1 shows the direction and current magnitude of the current used in this embodiment. Table 1. In this embodiment, the direction and current of the current are used. The current amperage/direction lens moves toward the object side. The lens moves to the image side. I (coil current) 150mA counterclockwise 150mA clockwise Il (electromagnet current) 75mA counterclockwise 75mA counterclockwise h 75mA counterclockwise 75 mA counterclockwise h 75mA counterclockwise 75mA counterclockwise I4 75mA counterclockwise 75mA counterclockwise 11 200935157 The spring 38 used in this embodiment is a coil spring made of spring steel and is a compression spring. Between the lens group 21 and the upper cover 11, when the coil 31 is subjected to an upward force by the current, the lens sleeve 22 and the lens group 21 are driven to move upward, and the compression spring 38 is deformed; when the coil 31 is cut After the current is interrupted, the upward electromagnetic force disappears, and the spring 38 is no longer pressed and returned to its original state, which will push the lens 2 back to its original position. <Second Embodiment> A lens shifting mechanism having three electromagnets is shown in Fig. 6. The lens shifting mechanism 3 of the present embodiment is applied to an autofocus or focus lens module 1 of a small camera. The lens module 1 is a round module of 8 mm X 8 mm, comprising a coil 31, an electromagnet group 32, a conductive sheet 33, a coil electrode 34, and an electromagnet electrode 35; wherein, the electromagnet group The 32-series is composed of three electromagnets, and includes an electromagnet (I) 321, an electromagnet (II) 322, and an electromagnet (III) 323. The three electromagnets are uniformly disposed on the periphery of the coil 31 and fixed in a 120-degree orientation. When the controller 37 outputs currents (I!, 12, 13), the electromagnets 32 enter the electromagnets 32, 322, and 323 of the electromagnet group 32, and the controller 37 outputs the current I via the coil electrodes 34 and the phases. When the conductive sheet 33 is connected and enters the coil 31, the coil 31 is subjected to an electric force in an upward direction (object side direction), and the lens sleeve 22 and the lens group 21 are moved upward (object side direction) along the lens center axis Z; If the controller 37 cuts off the output current, the coil 31 is no longer electromagnetically . Table 2 shows the direction and current of the current used in this embodiment. Table 2, this embodiment uses the direction of current and current. The current amperage/direction lens moves toward the object side. The lens moves to the image side. I (coil current) 150mA counterclockwise 150mA counterclockwise Il (electromagnet current) 100mA clockwise 100mA clockwise h 100mA clockwise 100mA clockwise 12 200935157

100mA 順時針100mA clockwise

100mA100mA

Ο 具有防手震功能之鏡頭移位機構 一自動對示,本發明之鏡頭移位機構3係可應用於 控制電磁^ =焦鏡頭模組1中,且進—步可設計成獨立 與鏡碩模組、1之電磁鐵之磁力大小,以使鏡頭2之光軸 2可對向祜搞,中心軸z之間產生一個角度偏移,使鏡頭 本實祐γ丨,攝物體(〇bject ),藉以達成防手震功能。於 組32,鏡頭移位機構3包含:一線圈31、一電磁鐵 中, 導電片33、一線圈電極34、一電磁鐵電極35 ;其 咬’相機之控制器(如圖3之控制器37)可輸出不同方向 ;不同大小之電流(流入或流出)經由電磁鐵電極35輸入 ^磁鐵組32中,在本實施例,電磁鐵組32係由四個電磁鐵 斤構成,包含電磁鐵(I ) 321、電磁鐵(π ) 322、電 石兹鐵(III) 323及電磁鐵(ιν) 324等四個電磁鐵,該四 個電磁鐵321〜324係以90度方位均勻佈設並固定於線圈 31外圍,當控制器3*7輸出電流(I丨、ι2、ι3、14 )經由四 組電磁鐵電極35 (電磁鐵I電極hi、電磁鐵Π電極 352、電磁鐵πΐ電極353、電磁鐵IV電極354 )進入電磁 鐵(I ) 321、電磁鐵(π ) 322、電磁鐵(ΙΠ) 323及 電磁鐵(IV) 324,藉由電磁作用,可在各電磁鐵321〜 324之電磁鐵心36產生Ν極或S極之磁力,此磁力之大小 及方向則由輸入之電流大小及方向所控制,本實施例中該 四個電磁鐵321〜324之電磁力可分別控制,可為N極均 為朝向鏡頭之中心,也可單獨控制使單一個電磁鐵之S極 朝向鏡頭之中心。本實施例使用之電磁鐵321〜324之電 磁鐵心36為使用鐵鎳合金(PermaU〇ys)所製成,鐵鎳合金導 磁性低且具有高度的電磁敏感度,當對電磁鐵321〜324 通以快速變換的電流時,可快速的反應電磁力,以利於獨 13 200935157 立控制每個電磁鐵的電磁力大小。 如圖5,電磁鐵(I ) 321與電磁鐵(III) 323為相 對佈位於180度方位,如圖5所示;當使用者持相機向上 震動時,被攝物相對偏離鏡頭中心軸Z軸,向X軸方向移 動,為補足此震動量,此時可由控制器37對電磁鐵(I ) 321與電磁鐵(III) 323施以不同電流,如對電磁鐵 (I ) 321施以較小電流、對電磁鐵(III) 323施以較大 電流;此時線圈31將受到電磁鐵(I ) 321及電磁鐵 (III) 323之間不同電磁力致產生不平衡的受力作用,使 ❹ 鏡頭2之光軸可相對在該受力方向產生一偏移角度Θ,而 使鏡頭2朝向被攝物,以達防手震之目的。表三為本實施 例使用電流之方向及電流大小。 表三、本實施例使用電流之方向及電流大小 電流方向/安培 鏡頭向物侧移動且鏡頭光軸與中心軸 形成向下的角度1.2度 I (線圈電流) 150mA 逆時針 Il(電磁鐵電流) 60mA逆時針 h 75mA逆時針 13 90mA逆時針 I4 75mA逆時針 更進一步,為能更快速控制,此時可由控制器37對第 一電磁鐵321與第三電磁鐵323施以不同方向的電流,第 一電磁鐵321施以逆時針方向的電流、第三電磁鐵323施 以順時針方向的電流;此時線圈31除受到朝向物侧(或朝 向像侧)之電磁力外,也受到第一電磁鐵321與第三電磁 鐵323不同方向的電磁力,產生向下(朝向X軸)之分 力,使鏡頭2之光軸產生一角度0,而使鏡頭2朝向被攝 14 200935157 物,以達防手震快速控制之目的。表四為使用電流之方向 及電流大小。 表四、快速控制目的之電流方向及電流大小 電流方向/安培 鏡頭向物側移動且鏡頭光軸與中心軸 形成向下的角度1.2度 I 150mA 逆時針 II 90mA 逆時針 I2 75mA 逆時針 13 60mA 順時針 14 75mA 逆時針 本發明冬結構設計與習知技術比較,至少具有下列優 點: < 1 >、本發明之鏡頭移位機構3係使用電磁鐵以取 代永久磁鐵,可耐迴焊高溫,可提高量產化之可能性。 < 2 >、本發明之鏡頭移位機構3可獨立控制電磁鐵 組32中各電磁鐵,使其具有防手震功能。 以上所述僅為本發明的較佳實施例,對本發明而言僅 是說明性的,而非限制性的;本專業技術人員理解,在本 發明權利要求所限定的精神和範圍内可對其進行許多改 變,修改,甚至等效變更,但都將落入本發明的保護範圍 内。 【圖式簡單說明】 圖1係先前技術之鏡頭移位機構之立體示意圖。 圖2係本發明之鏡頭移位機構實施例之立體示意圖。 圖3係本發明之鏡頭移位機構說明圖。 圖4係本發明之鏡頭移位機構之對焦說明圖。 圖5係本發明之鏡頭移位機構之防手震說明圖。 200935157 圖6係本發明之鏡頭移位機構之第二實施例立體示意圖。 【主要元件符號說明】 鏡頭模組(lens module) 1 上蓋(upper cover) 11 底蓋(bottom cover) 12 鏡頭(lens)2 鏡片群(lens group)21 鏡頭套筒(lensholder) 22 鏡頭移位機構(lens driving mechanism) 3 線圈(conductor coil)31 電磁鐵組(electromagnet parts)32 電磁鐵(I ) (electromagnet 1)321 電磁鐵(II ) (electromagnet 1)322 電磁鐵(III ) (electromagnet 1)323 電磁鐵(IV ) (electromagnet IV)324 導電片(electric plate)3 3 線圈電極(coil pad)34 電磁鐵電極(electromagnet pad)3 5 電磁鐵 I 電極(electromagnetIpad)351 電磁鐵 II 電極(electromagnet II pad)352 電磁鐵 III 電極(electromagnet III pad)353 電磁鐵IV 電極(electromagnet IV pad)3 54 電磁鐵心(electromagnet ferrite)30 控制器(controller)37 彈簧(spring element ) 38 永久磁鐵(permanent magnet)70镜头 The lens shifting mechanism with anti-shake function is automatically shown. The lens shifting mechanism 3 of the present invention can be applied to the control electromagnetic lens module 1 and can be designed to be independent and mirrored. The magnetic force of the module and the electromagnet of 1 so that the optical axis 2 of the lens 2 can be opposite to each other, and an angular offset is generated between the central axes z, so that the lens is actually γ 丨, and the object (〇bject) In order to achieve anti-shake function. In the group 32, the lens shifting mechanism 3 comprises: a coil 31, an electromagnet, a conductive sheet 33, a coil electrode 34, and an electromagnet electrode 35; the bite of the camera controller (such as the controller 37 of FIG. 3) Different directions can be output; different magnitudes of current (inflow or outflow) are input into the magnet group 32 via the electromagnet electrode 35. In the present embodiment, the electromagnet group 32 is composed of four electromagnets, including an electromagnet (I). 321, electromagnet (π) 322, electromagnet iron (III) 323 and electromagnet (ιν) 324 and other four electromagnets, the four electromagnets 321 to 324 are evenly arranged and fixed to the coil 31 at a 90-degree orientation. On the periphery, when the controller 3*7 outputs current (I丨, ι2, ι3, 14) through the four sets of electromagnet electrodes 35 (electromagnet I electrode hi, electromagnet Π electrode 352, electromagnet π ΐ electrode 353, electromagnet IV electrode) 354) Entering the electromagnet (I) 321 , the electromagnet (π ) 322 , the electromagnet ( ΙΠ ) 323 , and the electromagnet ( IV ) 324 , by electromagnetic action, the electromagnet core 36 of each of the electromagnets 321 to 324 can be generated. The magnetic force of the pole or S pole. The magnitude and direction of this magnetic force are the magnitude of the input current. In this embodiment, the electromagnetic forces of the four electromagnets 321 to 324 can be separately controlled, and the N poles are all toward the center of the lens, or can be individually controlled so that the S pole of the single electromagnet faces the center of the lens. . The electromagnet core 36 of the electromagnets 321 to 324 used in this embodiment is made of iron-nickel alloy (PermaU〇ys), and the iron-nickel alloy has low magnetic permeability and high electromagnetic sensitivity, and is connected to the electromagnets 321 to 324. When the current is changed rapidly, the electromagnetic force can be quickly reacted to facilitate the control of the electromagnetic force of each electromagnet. As shown in FIG. 5, the electromagnet (I) 321 and the electromagnet (III) 323 are in a 180 degree orientation with respect to the opposite cloth, as shown in FIG. 5; when the user shakes the camera upward, the subject is relatively offset from the lens center axis Z axis. , moving in the X-axis direction, in order to make up the amount of vibration, at this time, the controller 37 can apply different currents to the electromagnet (I) 321 and the electromagnet (III) 323, such as applying less to the electromagnet (I) 321 The current and the electromagnet (III) 323 are subjected to a large current; at this time, the coil 31 is subjected to an unbalanced force caused by different electromagnetic forces between the electromagnet (I) 321 and the electromagnet (III) 323, so that ❹ The optical axis of the lens 2 can generate an offset angle 相对 relative to the direction of the force, and the lens 2 is directed toward the object for the purpose of preventing hand shake. Table 3 shows the direction and current of the current used in this embodiment. Table 3, this embodiment uses the direction of the current and the current magnitude. The current direction/amperage lens moves toward the object side and the lens optical axis forms a downward angle with the central axis at 1.2 degrees I (coil current) 150 mA counterclockwise Il (electromagnet current) 60 mA counterclockwise h 75 mA counterclockwise 13 90 mA counterclockwise I4 75 mA counterclockwise further, in order to enable faster control, the first electromagnet 321 and the third electromagnet 323 can be applied with current in different directions by the controller 37, An electromagnet 321 applies a current in a counterclockwise direction, and a third electromagnet 323 applies a current in a clockwise direction. At this time, the coil 31 receives the electromagnetic force toward the object side (or toward the image side), and is also subjected to the first electromagnet 321 The electromagnetic force in a different direction from the third electromagnet 323 generates a downward force (toward the X-axis), causing the optical axis of the lens 2 to generate an angle of 0, and the lens 2 is directed toward the photographed 14 200935157 to reach the hand The purpose of rapid control of the earthquake. Table 4 shows the direction and current of the current used. Table 4, Current direction and current magnitude for fast control purposes Current direction / Ampere lens moves to the object side and the lens optical axis forms a downward angle with the central axis 1.2 degrees I 150mA Counterclockwise II 90mA Counterclockwise I2 75mA Counterclockwise 13 60mA Smooth Hour hand 14 75 mA counterclockwise The winter structure design of the present invention has at least the following advantages compared with the prior art: < 1 > The lens shifting mechanism 3 of the present invention uses an electromagnet instead of a permanent magnet to withstand reflow high temperature. Can increase the possibility of mass production. < 2 > The lens shifting mechanism 3 of the present invention can independently control each of the electromagnets in the electromagnet group 32 to have an anti-shake function. The above is only the preferred embodiment of the present invention, and is intended to be illustrative, and not restrictive, and it is understood by those skilled in the art that Many changes, modifications, and even equivalents may be made without departing from the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view of a lens shifting mechanism of the prior art. 2 is a perspective view of an embodiment of a lens shifting mechanism of the present invention. Fig. 3 is an explanatory view of a lens shifting mechanism of the present invention. Fig. 4 is an explanatory view of the focus of the lens shifting mechanism of the present invention. Fig. 5 is an explanatory view of the anti-shake of the lens shifting mechanism of the present invention. 200935157 Fig. 6 is a perspective view showing a second embodiment of the lens shifting mechanism of the present invention. [Main component symbol description] Lens module 1 Upper cover 11 Bottom cover 12 Lens 2 Lens group 21 Lens sleeve 22 Lens shift mechanism (lens driving mechanism) 3 coil (conductor coil) 31 electromagnet parts (electromagnet parts) 32 electromagnet (I ) (electromagnet 1) 321 electromagnet (II ) (electromagnet 1) 322 electromagnet (III ) (electromagnet 1) 323 Electromagnet (IV) (electromagnet IV) 324 electric plate 3 3 coil electrode 34 electromagnet pad 3 5 electromagnet I electrode (electromagnet Ipad) 351 electromagnet II electrode (electromagnet II pad )352 Electromagnet III electrode 353 Electromagnet IV pad 3 54 Electromagnet ferrite 30 Controller 37 Spring element 38 Permanent magnet 70

Claims (1)

200935157 十、申請專利範圍: 1. 一種鏡頭移位機構,其係適用於一自動對焦或變焦鏡頭 模組,該鏡頭模組至少包含一容腔、一鏡頭及一鏡頭移 位機構’其中該鏡頭係包含一鏡片群及一鏡頭套筒並套 設在容腔内而可在中心軸上朝接近或遠離物之方向滑動 移位;其特徵在於:該鏡頭移位機構係利用一線圈及相 ,於線圈排列於線圈周圍外方之一電磁鐵組構成,其中 2線圈係固設在鏡頭之外圍並與鏡頭結合成 一可同步滑 ,移位之鏡頭連動體;該電磁鐵組係由複數個電磁鐵構 j且在鏡頭模組内保持固定不動,藉此,當線圈及電磁 t分別輸入電流後,可藉線圈與電磁鐵組之間所產生 ^磁力以驅動鏡頭在中心軸方向上進行滑動移位。 .磁編f專,範圍第1項所述之鏡頭移位機構,其中該電 夂、且之各電磁鐵係等角度均勾佈設在線圈之周圍,且 3 ί申Ϊΐίΐ磁鐵心的一端面係垂直面向鏡頭中心軸。 頭項所述之鏡頭移位機構’其中該鏡 入線圈之電流;滑動移位之前進或後退係由輸 數圍f1項所述之鏡頭移位機構,其中該複 5.如申= f貝模組之中心軸之間的角度。 步可在鏡頭:配置4 J所位機構,其進- 位。 簧了對鏡碩提供回復力以使鏡頭回復至原 17200935157 X. Patent application scope: 1. A lens shifting mechanism, which is suitable for an autofocus or zoom lens module, the lens module includes at least a cavity, a lens and a lens shifting mechanism, wherein the lens The invention comprises a lens group and a lens sleeve disposed in the cavity and slidably displaced on the central axis toward or away from the object; wherein the lens shifting mechanism utilizes a coil and a phase, The coil is arranged in an electromagnet group arranged outside the coil, wherein the two coils are fixed on the periphery of the lens and combined with the lens to form a synchronously sliding, displaced lens linkage; the electromagnet group is composed of a plurality of electromagnetics The iron structure j is kept fixed in the lens module, so that when the coil and the electromagnetic t respectively input current, the magnetic force generated between the coil and the electromagnet group can be used to drive the lens to slide in the direction of the central axis. Bit. The lens shifting mechanism of the first aspect, wherein the electric cymbal and each of the electromagnets are hooked around the coil, and the end face of the magnet core is Vertically facing the center axis of the lens. The lens shifting mechanism of the head item, wherein the current is injected into the coil; the sliding shift is forward or backward by the lens shifting mechanism described in the item of the number f1, wherein the complex 5. The angle between the central axes of the modules. Steps can be in the lens: configure the 4 J position mechanism, its advance position. The spring provides a resilience to the mirror to restore the lens to the original 17
TW97104555A 2008-02-05 2008-02-05 Lens driving mechanism TWI354177B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97104555A TWI354177B (en) 2008-02-05 2008-02-05 Lens driving mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97104555A TWI354177B (en) 2008-02-05 2008-02-05 Lens driving mechanism

Publications (2)

Publication Number Publication Date
TW200935157A true TW200935157A (en) 2009-08-16
TWI354177B TWI354177B (en) 2011-12-11

Family

ID=44866505

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97104555A TWI354177B (en) 2008-02-05 2008-02-05 Lens driving mechanism

Country Status (1)

Country Link
TW (1) TWI354177B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427350B (en) * 2010-07-27 2014-02-21 Tdk Taiwan Corp Electromagnetic driving apparatus for lens
TWI456253B (en) * 2010-10-15 2014-10-11 Tdk Taiwan Corp Anti-shock tilt correction structure of auto focus module
US9019423B2 (en) 2012-03-30 2015-04-28 Jahwa Electronics Co., Ltd. Apparatus and method of controlling drive of camera module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427350B (en) * 2010-07-27 2014-02-21 Tdk Taiwan Corp Electromagnetic driving apparatus for lens
TWI456253B (en) * 2010-10-15 2014-10-11 Tdk Taiwan Corp Anti-shock tilt correction structure of auto focus module
US9019423B2 (en) 2012-03-30 2015-04-28 Jahwa Electronics Co., Ltd. Apparatus and method of controlling drive of camera module
TWI490586B (en) * 2012-03-30 2015-07-01 Jahwa Electronics Co Ltd Apparatus and method of controlling drive of camera module

Also Published As

Publication number Publication date
TWI354177B (en) 2011-12-11

Similar Documents

Publication Publication Date Title
KR102365928B1 (en) Auto focus and optical imagestabilization in a compact folded camera
WO2014029296A1 (en) Structure for voice coil motor providing controllable lens tilt capability
TWI288258B (en) Auto-focusing device for lens
JP2009229789A (en) Lens displacement mechanism for automatic focus or zoom lens module
JP4923226B2 (en) Lens driving device and coil winding method
JP5201587B2 (en) Lens drive device
WO2007026830A1 (en) Lens drive device
JP5421782B2 (en) Lens drive device
TW201107786A (en) Photographing module
JP4719107B2 (en) Lens drive device
JP2010091894A (en) Drive device and lens drive device
TW200941110A (en) Electromagnet for lens driving mechanism thereof
CN101520541A (en) Lens shifting mechanism
JP3144821U (en) Lens drive device using electromagnet thrust
TW200935157A (en) Lens driving mechanism
JP2013182165A (en) Lens barrel and optical device
JP2012103558A (en) Lens drive device, autofocus camera and camera-equipped mobile terminal
TWM345248U (en) Lens driving mechanism
JP6626729B2 (en) Lens drive
JP2011027947A (en) Optical unit
TWM339015U (en) Lens driving mechanism using electromagnet
TWM339001U (en) Lens displacement mechanism by using dual coils
TWI354183B (en)
JP2009080328A (en) Lens drive device
CN201166728Y (en) Lens drifting mechanism

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees