1354145 九、發明說明: 【發明所屬之技術領域】 - 本發明係有關於一種液晶顯示器元件及其製造方法 特別有關於一種整合反射式液晶顯示器及自發光元件的顯 示器元件及其製造方法。 【先前技術】 φ 液晶顯示器(liquid crystal display ’簡稱LCD)具有』午夕 的優點’例如體積小、重量輕、低電力消耗等等。因此, LCD已經廣泛地被應用於手提式電腦、行動電話等電子產 品。亦即’液晶顯示器技術正朝向輕、薄、且易於押帶的 領域。傳統半反穿式(trans-flective LCD)的液晶顯示器其原 理即是利用日光下以反射式液晶操作,室内則以穿透^液 晶操作之原理,但傳統半穿半反式液晶顯示器之開口率較 低(例如50%) ’且具有背光模組重量以及體積之考量。 鲁 k者自發光元件技術興起’例如有機發光顯示元件 (organic light emitting device ’ 簡稱 OLED) ’ 使得顯示元件 的能量使用效率得以提高,並使得元件可以更輕薄。然而, 自發光元件的對比度在周圍光亮度較強時,會受到環境光 的影響而變差,此現象稱淡化(washout)效應。繁於自發光 元件的對比度會受到環境光亮度的影響,業界亟需一種在 任何環境光條件底下都能有良好對比度的自發光顯示裝 置。 美國第US 2004/0164292號早期公開專利申請案中揭 0949-A21780TWF(N2) : P51950084TW:wayne 5 1354145 露一種結合自發光元件的反射式液晶顯示器元件,利用有 機發光元件做為反射式液晶顯示器的背光源,改善反射式 液晶顯示器在較暗的環境光源下的亮度及對比。第1圖係 顯示習知技術結合自發光元件的反射式液晶顯示器元件的 剖面示意圖。請參閱第1圖,一反射電極22、一有機發光 層24、一透明電極26依序形成於一基底10上。反射電極 22、有機發光層24、透明電極26構成有機發光元件20做 為反射式液晶顯示器的背光源。一保護層28設置於透明電 極26上。 一液晶顯示器30包括一第一偏光板31設置於一第二 基板32外側。一畫素電極33設置於第二基板32上。一第 三基板36對向於第二基板32。第二偏光板37設置於第三 基板36的外側。共同電極35設置於第三基板36上。一液 晶層34夾置於第二基板32與第三基板36之間。於穿透模 式時,背光模組所發出的光61穿透液晶顯示器30而顯像。 而於反射模式時,環境光62可穿透液晶顯示器30,被反 射電極22反射63再經液晶顯示器30而顯像。 美國專利早期公開第US. Pub. No. 2002/0196387與US. Pub. No. 2003/0201960號揭露一種反射式液晶在自發光元 件上。然而,在周圍環境光較弱時,自發光元件結構發出 的光需經過液晶結構,且必需結合偏光片與彩色濾光片, 致使自發光的光性質受到改變。另一方面,在周圍環境光 較亮時,雖然外界光可利用自發光元件的反射電極到達液 晶元件,然而仍會造成光的吸收,並且,反射式液晶的亮 0949-A21780TWF(N2):P51950084TW:wayne 6 1354145 態與暗態對外界光的吸收程度不同,所以對比度會有明顯 改變。是故,外界光被自發光元件吸收的問題會大幅影響 影像顯示的表現。 . 【發明内容】 有鑑於此,本發明係提供一種結合自發光元件與反射 式顯示器元件之堆疊結構,可避免自發光元件在周圍光亮 ^ 度較強時,出現淡化(washout)效應,並且,可以改善反射 式液晶在周圍光亮度較弱時對比度不高的缺點。 本發明係結合反射式液晶元件與自發光元件,使成為 一個在任何環境光條件底下都能呈現例如100: 1以上之高 對比度的顯示裝置。 本發明係提供一種反射式液晶元件與自發光元件之製 造方法,其液晶製程與自發光元件製程分開實施,可避免 製作反射式液晶顯示器之高溫製程使自發光元件產生劣 Φ 化,以有效提升整個元件的良率。 本發明提供一種自發光反射式液晶顯示元件,包括一 液晶顯示元件,至少包括一第一基板,及一液晶層位於第 -一基板上,其中液晶層係為一液晶包覆層所包覆。一自發 .光顯不元件從液晶顯不兀件之液晶層側和液晶顯不元件結 合,以構成自發光反射式液晶顯示元件。 本發明提供一種自發光反射式液晶顯示元件,包括一 橫向電場液晶顯示元件,至少包括一第一基板。一液晶層 位於第·一基板上’用以控制液晶層之液晶分子的橫向電场 0949-A21780TWF(N2):P51950084TW;wayne 7 1354145 第一電極和橫向電場第二電極,其中液晶層係為一液晶包 覆層所包覆。一自發光顯示元件從液晶顯示元件之液晶層 側和液晶顯示元件結合,以構成自發光反射式液晶顯示元 件,其中在穿透模式時,橫向電場液晶顯示元件係關閉, 而由自發光顯示元件顯示影像,在反射模式時,自發光顯 示元件係關閉,而由橫向電場液晶顯示元件藉由外部環境 光反射通過液晶層顯示影像。 本發明提供一種自發光反射式液晶顯示元件之製造方 法,包括形成一液晶顯示元件和形成一自發光顯示元件, 其中形成液晶顯示元件之步驟至少包括:提供一第一基 板;形成一透明電極於第一基板上;形成一液晶層於透明 電極上;形成一液晶包覆層,包覆液晶層;形成一自發光 顯示元件。形成自發光顯示元件之步驟至少包括:提供一 第二基板;形成一自發光顯示元件於第二基板上;及形成 一保護層於有機發光元件上。在分別製作好自發光顯示元 件和液晶顯示元件後,係將兩者由内側組合,以形成自發 光反射式液晶顯示元件,其中第一基板和第二基板間不形 成有額外的基板。 【實施方式】 以下將以實施例詳細說明做為本發明之參考,且範例 係伴隨著圖式說明之。在圖式或描述中,相似或相同之部 分係使用相同之圖號。在圖式中,實施例之形狀或是厚度 可擴大,以簡化或是方便標示。圖式中各元件之部分將以 0949-A21780TWF(N2):P51950084TW;wayne 8 1354145 mode),在反射模式中,如第3B圖所示,自發光顯示元件 2〇2係關閉,利用外部環境光224穿過液晶層216,經由反 射電極214反射,而控制液晶層216之液晶分子之方向, 而使使液晶顯示元件204顯示影像,在此,需注意的是, ’ 自發光顯示元件202之各層’亦即陽極206、發光層208、 陰極210、保護層212和/或其它所必需層的厚度必需相當 薄,以減少反射模式下,對外部環境光之吸收而影響元件 鲁 200之亮度。 第4圖係顯示根據本發明實施例的自發光反射式液晶 顯示器的製造方法流程圖。第5圖係顯示根據第4圖之流 程圖所製作之自發光反射式液晶顯示元件的示意圖。請注 意’本實施例係先將自發光顯示元件,反射式液晶顯示器 元件分開製作’再將兩者組合。首先,請參閱第4圖並搭 配第5圖’首先製作液晶顯示器元件592,於步驟S402中, 提供一第一基板502’於步驟S404中,形成一透明電極5〇4 φ 於第一基板502上。接著’於步驟S406中,形成一圖案化 之光阻間隙子506於透明電極504上,於步驟S408中,形 成一配向層(未繪示)於透明電極和間隙子506上。後續, _ 於步驟S410中’形成一液晶層508於配向層上,接著,於 步驟S412中,形成一液晶包覆層510於液晶層508上。 另外’分開製作自發光顯示元件590,首先,於步驟 S460中’提供一第二基板560,接著,於步驟S462中,形 成一有機發光元件562於第一基板450上,包括形成一透 明陰極(未繪示)於第二基板560上,形成一發光層(未綠示) 0949-A21780TWF(N2);P51950084TW:wayne 10 1354145 於透明陰極上,以及形成一透明陽極(未繪示)於發光層 上。於步驟S464中,形成一保護層564於有機發光元件 562 上。 ' 在完成反射式液晶顯示元件592和自發光顯示元件 • 590後,於步驟S470中,組合液晶顯示元件592和自發光 顯示元件590,後續,於步驟S480中,形成一反射層或吸 收層584於第一基板之底面上。 I 以下將以實施範例詳細的描述本發明之自發光反射式 液晶顯示器,需注意的是,在此實施範例中,自發光反射 式液晶顯示器之反射式液晶顯示元件和自發光顯示元件係 分開製作,最後再進行組合,以避免製作反射式液晶顯示 器之高溫製程使自發光元件產生劣化。 第6圖係顯示本發明一實施例自發光反射式液晶顯示 器600之剖面圖,請注意,本實施例之自發光顯示元件602 和液晶顯示元件604皆為主動式,請參照第6圖,首先製 φ 作反射式液晶顯示元件602,但本發明不限於此,亦可以 先製作自發光顯示元件604,亦即兩者係分開製作,如第6 圖所示,提供一第一基板606,其可以為玻璃基板,較佳 為低鹼或是無鹼玻璃基板。接著,形成一液晶層608於第 一基板606上,後續,形成一液晶包覆層610包覆液晶層 608,在本實施例中,液晶包覆層610係可為高分子所組 成,以下將配合圖示詳細說明液晶包覆層610之製作方法。 第7A圖和第7B圖係顯示本發明一實施例形成液晶包 覆層610包覆液晶層608之製程,如第7A圖所示,以一 0949-A21780TWF(N2):P51950084TW;wayne 11 1354145 喷墨裝置702滴注液晶704於第一基板606上,其中液晶 704係包括液晶分子708 ’且添加有單體7〇6(monomer), 較佳者,此單體706係為可照光產生聚合反應之高分子單 體’例如 Norland [http://www.norlandprod.com/]所生產之 . N〇A_65。在本發明之一實施例中,可使滴注之液晶7〇4對 應於相對應之畫素或是次晝素。接者’如第7B圖所示, 以备、外光照射裝置710對添加單體706(monomer)之液晶 鲁 704照射紫外(UV)光’使高分子單體聚合而析出於液晶層 608液滴表面,而形成液晶包覆層61 〇。 第8A圖和第8B圖係顯示本發明另一實施例形成液晶 包覆層610包覆液晶層608之製程,請參照第8A圖,首 先’以黃光微影製程形成高分子所組成之間隙子 802(polymer wall)於第一基板606上,進行晝素區隔,接 著,毯覆性的塗佈液晶808於第一基板上606,其中液晶 808係包括液晶分子806,且添加有單體804(monomer), φ 較佳者,此單體804亦為Norland所生產之NOA-65。接者, 請參照第8B圖,以紫外光照射裝置810對添加單體 804(monomer)之液晶照射紫外(UV)光,使高分子單體聚合 而析出於液晶層608液滴表面,而形成液晶包覆層610於 液晶層608上。 另外,在本發明之又另一實施例中,可利用例如PDMS 離型膜(未繪示)與灑有間隙子的基板貼附後注入含有高分 子單體的液晶,之後照UV光使高分子單體聚合後於邊界 析出,再將離型膜去除即形成單基板之液晶元件。 0949-A21780TWF(N2):P51950084TW;wayne 1354145 請再參照第6圖,接著,進行製作自發光顯示元件 604,請注意,在本實施例中自發光顯示元件6〇4係為有機 電激發光顯示元件。首先,提供一第二基板612,第二芙 板612可以為玻璃基板,其較佳為低鹼或是無鹼坡璃美 . 板。例如Mo之閘極614和儲存電容下電極616形成於第 二基板612上。例如氮化矽或是氧化矽之閘極介電層 覆蓋閘極614、儲存電容下電極616和第二基板61 — —例 φ 如多晶矽或是單晶矽之半導體層620形成於閘極614上方 之閘極介電層618上,半導體層620上之兩側分別形成有 一源極622和一汲極624。另外,和源極622/汲極624位 於同一層之儲存電容上電極626係形成於儲存電容下電極 616上方之閘極介電層618上,其中儲存電容上電極626、 儲存電容下電極616和兩者間之閘極介電層618係構成一 儲存電容器(storage capacitor),而上述閘極614、半導體層 620、閘極介電層618、源極622和汲極624係構成一薄膜 φ 電晶體(thin film transistor,以下可簡稱 tft)。 一例如氮化石夕之保護層028係覆蓋源極622、汲極624 和儲存電容上電極626,另外,一例如銦錫氧化物(indium • tin oxide,以下可簡稱IT0)之透明電極63〇係形成於保護 層628上,其中透明電極630係分別藉由位於保護層628 中之插塞632、634電性連接TFT之汲極624和/或儲存電 容之儲存電容上電極626 ’在本發明之—實施例中,部份 之透明電極630係可供作有機電激發光顯示元件6〇4之陽 才虽0 0949-A21780TWF{N2);P51950084TW:wayne 13 1354145 後續,形成一發光層636於部份陽極63〇上,在本發 明之一實施例中,發光層636可包括電洞注入層、電洞傳 輸層、有機發光材料層、電子傳輸層和電子注入層(未繪 示),接著,形成一陰極638於發光層636上,請注意若有 • 必要的話,陰極638和發光層630之側壁係有隔絕層64〇 隔絕。其後,形成例如氮化石夕之保護層642於部份陰極638 上’接著’形成一橫向電場第一電極644和一橫向電場第 • 一電極646於保護層642上,為增加元件之光的穿透率, 松向電場第一電極644和橫向電場第二電極646較佳為透 明材料例如銦錫氧化物(ιτο)或是銦鋅氧化物(indium zinc oxide’以下可簡稱IZO)所組成,或是其亦可以由厚度很薄 之金屬所組成(例如厚度可介於1 〇〜30nm,以減少影響元件 之光穿透)。 在此需注意的是,橫向電場第一電極644和橫向電場 第二電極646係不穿過發光層636電性連接上述TFT之例 φ 如汲極624之電極(此部份為繪示),而由此TFT藉由橫向 電場第一電極644和橫向電場第二電極646控制液晶層之 液晶分子,但本發明不限於此,圖示中之TFT係可用於控 -制有機電激發光顯示元件604,而橫向電場第一電極644 和橫向電場第二電極646係電性連接另一 TFT(未繪示), 而控制液晶層之液晶分子。 最後,將分別製作好之自發光顯示元件604和液晶顯 示元件602由其内側面接合,並形成一反射電極692於第 一基板606之外側面’而形成本發明一實施例之自發光反 0949-A21780TWF(N2);P51950084TW; wayne 14 1354145 射式液晶顯示元件600 ’其中當週遭環境較暗時,可使用 發光模式(emissive mode),其中自發光顯示元件604係開 啟,亦即發光層63 6兩側之1¾極63 0和/或陰極63 8係施加 電壓而使發光層636發光,使自發光顯示元件604顯示畫 • 面’而當週遭環境較亮時’可使用反射模式(reflective mode),使自發光顯示元件604關閉,利用外部環境光690 穿過液晶層608,經由反射電極692反射,而藉由控制液 φ 晶層608之液晶分子之方向,使自發光反射式液晶顯示元 件600之液晶顯示元件602顯示影像。 第9A圖係顯示本發明另一實施例自發光反射式液晶 顯示器900之剖面圖,相對於上述實施例,本實施例之自 發光顯示元件904和液晶顯示元件902皆為被動式,請參 照第9A圖’首先製作液晶顯示元件902,但本發明不限於 此,亦可以先製作自發光顯示元件904,亦即兩者係分開 ‘作’如第9 A圖所示’ ^供一第一基板906,第一基板 φ 906可以為玻璃基板,其較佳為低鹼或是無鹼玻璃基板, 接著’形成一液晶驅動第一電極908於第一基板906上, 為減少影響元件之光的穿透率,液晶驅動第一電極908較 • 佳為透明材料例如ΙΤΟ或是ΙΖΟ所組成,或是其亦可以由 厚度很薄之金屬所組成(例如厚度可介於1 〇〜3〇nm)。 後續,形成一液晶層910於液晶驅動第一電極908 上’並形成一液晶包覆層912包覆液晶層910,在本發明 之較佳實施例中,液晶包覆層912係為高分子單體聚合而 析出於液晶層910表面’其製作方法係類似於上述實施 0949-A21780TWF(N2):P51950084TW;wayne 1354145 例,在此不詳細描述。 接著,製作自發光顯示元件904 ’提供一第二基板 914,第二基板914可以為玻璃基板,其較佳為低驗或是無 鹼玻璃基板,後續,形成陽極916於第二基板914上’其1354145 IX. Description of the Invention: [Technical Field] The present invention relates to a liquid crystal display element and a method of manufacturing the same, and more particularly to a display element incorporating a reflective liquid crystal display and a self-luminous element, and a method of fabricating the same. [Prior Art] The liquid crystal display (LCD) has the advantage of "the midnight" such as small size, light weight, low power consumption, and the like. Therefore, LCDs have been widely used in electronic products such as portable computers and mobile phones. That is, 'liquid crystal display technology is facing the field of light, thin, and easy to carry. The traditional trans-flective LCD liquid crystal display is based on the principle of using reflective liquid crystal in sunlight, and the principle of penetrating liquid crystal in the room, but the aperture ratio of the conventional transflective liquid crystal display. Lower (eg 50%) 'and has the weight and size of the backlight module. The rise of self-luminous element technology, such as an organic light emitting device (OLED), has improved the energy use efficiency of the display element and made the element lighter and thinner. However, the contrast of the self-luminous element is deteriorated by the influence of ambient light when the brightness of the surrounding light is strong, and this phenomenon is called a washout effect. The contrast of self-illuminating components is affected by the brightness of the ambient light, and there is a need in the industry for a self-luminous display device that has good contrast under any ambient light conditions. U.S. Patent Application Publication No. 2004/0164292, the disclosure of which is incorporated herein by reference in its entirety, the disclosure of the disclosure of the entire disclosure of the disclosure of the disclosure of The backlight improves the brightness and contrast of the reflective LCD in a dark ambient light source. Fig. 1 is a schematic cross-sectional view showing a reflective liquid crystal display element of a conventional technique in combination with a self-luminous element. Referring to FIG. 1, a reflective electrode 22, an organic light-emitting layer 24, and a transparent electrode 26 are sequentially formed on a substrate 10. The reflective electrode 22, the organic light-emitting layer 24, and the transparent electrode 26 constitute the organic light-emitting element 20 as a backlight of the reflective liquid crystal display. A protective layer 28 is disposed on the transparent electrode 26. A liquid crystal display 30 includes a first polarizing plate 31 disposed outside a second substrate 32. A pixel electrode 33 is disposed on the second substrate 32. A third substrate 36 is opposed to the second substrate 32. The second polarizing plate 37 is disposed outside the third substrate 36. The common electrode 35 is disposed on the third substrate 36. A liquid crystal layer 34 is interposed between the second substrate 32 and the third substrate 36. In the penetrating mode, the light 61 emitted by the backlight module penetrates the liquid crystal display 30 for development. In the reflective mode, the ambient light 62 can penetrate the liquid crystal display 30, be reflected 63 by the reflective electrode 22, and be developed by the liquid crystal display 30. A reflective liquid crystal is disclosed on a self-luminous element, as disclosed in U.S. Patent Publication No. 2002/0196387 and U.S. Pub. No. 2003/0201960. However, when the ambient light is weak, the light emitted from the self-luminous element structure needs to pass through the liquid crystal structure, and it is necessary to combine the polarizer and the color filter, so that the self-illuminating light property is changed. On the other hand, when the ambient light is bright, although the external light can reach the liquid crystal element by using the reflective electrode of the self-luminous element, the absorption of light is still caused, and the reflective liquid crystal is bright 0949-A21780TWF(N2): P51950084TW :wayne 6 1354145 State and dark state absorb different degrees of external light, so the contrast will change significantly. Therefore, the problem that external light is absorbed by the self-illuminating element greatly affects the performance of the image display. SUMMARY OF THE INVENTION In view of the above, the present invention provides a stacking structure combining a self-luminous element and a reflective display element, which can prevent a self-lighting element from having a washout effect when the ambient light brightness is strong, and It can improve the disadvantage that the reflective liquid crystal does not have high contrast when the ambient light brightness is weak. The present invention combines a reflective liquid crystal element and a self-luminous element to provide a display device capable of exhibiting a high contrast ratio of, for example, 100:1 or higher under any ambient light conditions. The invention provides a method for manufacturing a reflective liquid crystal element and a self-luminous element, wherein the liquid crystal process and the self-luminous component process are separately implemented, and the high-temperature process of the reflective liquid crystal display can be avoided to cause the self-luminous component to be inferiorly Φ, thereby effectively improving The yield of the entire component. The present invention provides a self-luminous reflective liquid crystal display device comprising a liquid crystal display device comprising at least a first substrate, and a liquid crystal layer on the first substrate, wherein the liquid crystal layer is covered by a liquid crystal coating layer. A spontaneous light-emitting element is combined with a liquid crystal display element from a liquid crystal layer side of a liquid crystal display member to constitute a self-luminous reflective liquid crystal display element. The present invention provides a self-luminous reflective liquid crystal display device comprising a lateral electric field liquid crystal display element comprising at least a first substrate. a liquid crystal layer is located on the first substrate. A lateral electric field for controlling liquid crystal molecules of the liquid crystal layer. 0949-A21780TWF(N2): P51950084TW; wayne 7 1354145 a first electrode and a second electrode of a transverse electric field, wherein the liquid crystal layer is a The liquid crystal coating layer is coated. A self-luminous display element is combined with a liquid crystal display element from a liquid crystal layer side of the liquid crystal display element to constitute a self-luminous reflective liquid crystal display element, wherein in the penetrating mode, the lateral electric field liquid crystal display element is turned off, and the self-luminous display element is turned off. The image is displayed. In the reflective mode, the self-luminous display element is turned off, and the horizontal electric field liquid crystal display element reflects the image through the liquid crystal layer by external ambient light reflection. The invention provides a method for manufacturing a self-luminous reflective liquid crystal display device, comprising: forming a liquid crystal display element and forming a self-luminous display element, wherein the step of forming the liquid crystal display element comprises at least: providing a first substrate; forming a transparent electrode Forming a liquid crystal layer on the transparent electrode; forming a liquid crystal coating layer covering the liquid crystal layer; forming a self-luminous display element. The step of forming the self-luminous display element includes at least: providing a second substrate; forming a self-luminous display element on the second substrate; and forming a protective layer on the organic light emitting element. After the self-luminous display elements and the liquid crystal display elements are separately fabricated, the two are combined from the inside to form an auto-reflective liquid crystal display element in which an additional substrate is not formed between the first substrate and the second substrate. [Embodiment] The following is a detailed description of the embodiments, and the examples are illustrated with the accompanying drawings. In the drawings or descriptions, similar or identical parts use the same drawing number. In the drawings, the shape or thickness of the embodiment may be expanded to simplify or facilitate the marking. Part of each element in the figure will be 0949-A21780TWF(N2): P51950084TW; wayne 8 1354145 mode). In the reflection mode, as shown in Fig. 3B, the self-luminous display element 2〇2 is turned off, using external ambient light. 224 passes through the liquid crystal layer 216 and is reflected by the reflective electrode 214 to control the direction of the liquid crystal molecules of the liquid crystal layer 216, so that the liquid crystal display element 204 displays an image. Here, it is noted that the layers of the self-luminous display element 202 The thickness of the anode 206, the luminescent layer 208, the cathode 210, the protective layer 212, and/or other necessary layers must be relatively thin to reduce the absorption of external ambient light in the reflective mode, which affects the brightness of the component. Fig. 4 is a flow chart showing a method of manufacturing a self-luminous reflective liquid crystal display according to an embodiment of the present invention. Fig. 5 is a view showing a self-luminous reflective liquid crystal display element fabricated in accordance with the flow chart of Fig. 4. Note that in the present embodiment, the self-luminous display element and the reflective liquid crystal display element are separately fabricated and then combined. First, referring to FIG. 4 and referring to FIG. 5, 'the liquid crystal display element 592 is first fabricated. In step S402, a first substrate 502' is provided. In step S404, a transparent electrode 5?4? is formed on the first substrate 502. on. Then, in step S406, a patterned photoresist spacer 506 is formed on the transparent electrode 504. In step S408, an alignment layer (not shown) is formed on the transparent electrode and the spacer 506. Subsequently, a liquid crystal layer 508 is formed on the alignment layer in step S410, and then, in step S412, a liquid crystal cladding layer 510 is formed on the liquid crystal layer 508. In addition, the self-luminous display element 590 is separately fabricated. First, a second substrate 560 is provided in step S460. Then, in step S462, an organic light-emitting element 562 is formed on the first substrate 450, including forming a transparent cathode ( Not shown) on the second substrate 560, forming a light-emitting layer (not shown) 0949-A21780TWF (N2); P51950084TW: wayne 10 1354145 on the transparent cathode, and forming a transparent anode (not shown) on the light-emitting layer on. In step S464, a protective layer 564 is formed on the organic light emitting element 562. After the reflective liquid crystal display element 592 and the self-luminous display element 590 are completed, the liquid crystal display element 592 and the self-luminous display element 590 are combined in step S470, and subsequently, in step S480, a reflective layer or an absorbing layer 584 is formed. On the bottom surface of the first substrate. The self-luminous reflective liquid crystal display of the present invention will be described in detail below with reference to the embodiments. It should be noted that in this embodiment, the reflective liquid crystal display element and the self-luminous display element of the self-luminous reflective liquid crystal display are separately fabricated. Finally, the combination is performed to avoid the high-temperature process of manufacturing the reflective liquid crystal display to cause deterioration of the self-luminous element. 6 is a cross-sectional view showing a self-luminous reflective liquid crystal display 600 according to an embodiment of the present invention. Please note that the self-luminous display element 602 and the liquid crystal display element 604 of the present embodiment are both active, please refer to FIG. φ is used as the reflective liquid crystal display element 602. However, the present invention is not limited thereto, and the self-luminous display element 604 may be fabricated first, that is, the two are separately fabricated. As shown in FIG. 6, a first substrate 606 is provided. It may be a glass substrate, preferably a low alkali or alkali-free glass substrate. Then, a liquid crystal layer 608 is formed on the first substrate 606, and a liquid crystal cladding layer 610 is formed to cover the liquid crystal layer 608. In this embodiment, the liquid crystal cladding layer 610 can be composed of a polymer. A method of fabricating the liquid crystal cladding layer 610 will be described in detail with reference to the drawings. 7A and 7B are diagrams showing a process for forming a liquid crystal coating layer 610 covering a liquid crystal layer 608 according to an embodiment of the present invention. As shown in FIG. 7A, a 0949-A21780TWF (N2): P51950084TW; wayne 11 1354145 is sprayed. The ink device 702 drops the liquid crystal 704 onto the first substrate 606, wherein the liquid crystal 704 includes liquid crystal molecules 708' and is added with a monomer 〇6 (monomer). Preferably, the monomer 706 is photopolymerizable. The polymer monomer 'for example, N〇A_65 produced by Norland [http://www.norlandprod.com/]. In an embodiment of the invention, the liquid crystal 7〇4 of the instillation can be made to correspond to a corresponding pixel or a secondary element. As shown in FIG. 7B, the external light irradiation device 710 irradiates the liquid crystal 704 with the monomer 706 (monomer) with ultraviolet (UV) light to polymerize the polymer monomer to precipitate the liquid crystal layer 608 liquid. The surface is dropped to form a liquid crystal cladding layer 61. 8A and 8B are diagrams showing a process for forming a liquid crystal coating layer 610 covering the liquid crystal layer 608 according to another embodiment of the present invention. Referring to FIG. 8A, first, a spacer 802 composed of a polymer formed by a yellow light lithography process is formed. A polymer wall is disposed on the first substrate 606, and then a blanket coating liquid crystal 808 is applied on the first substrate 606. The liquid crystal 808 includes liquid crystal molecules 806 and is added with a monomer 804 ( Monomer), φ Preferably, this monomer 804 is also NOA-65 produced by Norland. Referring to FIG. 8B, ultraviolet light (UV) light is applied to the liquid crystal to which the monomer 804 (monomer) is added by the ultraviolet light irradiation device 810, and the polymer monomer is polymerized to be deposited on the surface of the liquid crystal layer 608 to form a droplet. The liquid crystal cladding layer 610 is on the liquid crystal layer 608. In addition, in still another embodiment of the present invention, a liquid crystal containing a polymer monomer may be injected by, for example, a PDMS release film (not shown) and a substrate sprinkled with a spacer, and then irradiated with UV light. After the molecular monomer is polymerized, it is precipitated at the boundary, and the release film is removed to form a liquid crystal element of a single substrate. 0949-A21780TWF(N2): P51950084TW; wayne 1354145 Please refer to FIG. 6 again, and then, the self-luminous display element 604 is fabricated. Note that in the present embodiment, the self-luminous display element 6〇4 is an organic electroluminescent display. element. First, a second substrate 612 is provided. The second plate 612 may be a glass substrate, which is preferably a low alkali or alkali-free glass plate. For example, the gate 614 of Mo and the lower electrode 616 of the storage capacitor are formed on the second substrate 612. For example, a gate dielectric layer covering a gate 614, a storage capacitor lower electrode 616, and a second substrate 61, such as a tantalum nitride or tantalum oxide, is formed over the gate 614, such as a polysilicon or a single crystal germanium semiconductor layer 620. On the gate dielectric layer 618, a source 622 and a drain 624 are formed on both sides of the semiconductor layer 620. In addition, a storage capacitor upper electrode 626 located in the same layer as the source 622/drain 624 is formed on the gate dielectric layer 618 above the storage capacitor lower electrode 616, wherein the storage capacitor upper electrode 626, the storage capacitor lower electrode 616, and The gate dielectric layer 618 forms a storage capacitor, and the gate 614, the semiconductor layer 620, the gate dielectric layer 618, the source 622 and the drain 624 form a thin film φ. Thin film transistor (hereinafter referred to as tft). For example, the protective layer 028 of the nitride nitride covers the source electrode 622, the drain 624 and the storage capacitor upper electrode 626, and a transparent electrode 63 such as indium tin oxide (hereinafter referred to as IT0) Formed on the protective layer 628, wherein the transparent electrode 630 is electrically connected to the drain 624 of the TFT and/or the storage capacitor upper electrode 626 ' of the storage capacitor by the plugs 632, 634 in the protective layer 628, respectively. In the embodiment, a portion of the transparent electrode 630 is available as an organic electroluminescent display element 6〇4, although 0 0949-A21780TWF{N2); P51950084TW: wayne 13 1354145, a light-emitting layer 636 is formed. In one embodiment of the present invention, the light-emitting layer 636 may include a hole injection layer, a hole transport layer, an organic light-emitting material layer, an electron transport layer, and an electron injection layer (not shown). A cathode 638 is formed over the luminescent layer 636. Please note that if necessary, the cathode 638 and the sidewalls of the luminescent layer 630 are insulated by a barrier layer 64. Thereafter, a protective layer 642, such as a nitride, is formed on the cathode 638 to form a transverse electric field first electrode 644 and a transverse electric field first electrode 646 on the protective layer 642 for increasing the light of the element. The transmittance, the loose electric field first electrode 644 and the transverse electric field second electrode 646 are preferably composed of a transparent material such as indium tin oxide (ιτο) or indium zinc oxide (hereinafter referred to as IZO). Or it may be composed of a thin metal (for example, the thickness may be between 1 〇 and 30 nm to reduce the light penetration of the component). It should be noted that the horizontal electric field first electrode 644 and the lateral electric field second electrode 646 are not electrically connected to the TFT of the TFT 636, such as the electrode of the drain 624 (this part is shown). Therefore, the TFT controls the liquid crystal molecules of the liquid crystal layer by the transverse electric field first electrode 644 and the lateral electric field second electrode 646, but the invention is not limited thereto, and the TFT in the illustration can be used for the control-made organic electroluminescent display element. 604, the transverse electric field first electrode 644 and the transverse electric field second electrode 646 are electrically connected to another TFT (not shown) to control the liquid crystal molecules of the liquid crystal layer. Finally, the separately fabricated self-luminous display element 604 and the liquid crystal display element 602 are bonded from the inner side thereof, and a reflective electrode 692 is formed on the outer side of the first substrate 606 to form a self-luminous anti-zero 949 according to an embodiment of the present invention. -A21780TWF(N2); P51950084TW; wayne 14 1354145 The liquid crystal display element 600' wherein the ambient light environment is dark, an emissive mode can be used, wherein the self-luminous display element 604 is turned on, that is, the light emitting layer 63 6 The two sides of the 13⁄4 pole 63 0 and/or the cathode 63 8 are applied with a voltage to cause the light-emitting layer 636 to emit light, so that the self-luminous display element 604 displays the picture surface 'When the ambient environment is brighter', the reflective mode can be used. The self-luminous display element 604 is turned off, the external ambient light 690 is passed through the liquid crystal layer 608, and reflected by the reflective electrode 692, and the self-luminous reflective liquid crystal display element 600 is controlled by controlling the direction of the liquid crystal molecules of the liquid crystal layer 608. The liquid crystal display element 602 displays an image. FIG. 9A is a cross-sectional view showing a self-luminous reflective liquid crystal display 900 according to another embodiment of the present invention. The self-luminous display element 904 and the liquid crystal display element 902 of the present embodiment are passive with respect to the above embodiment, please refer to section 9A. FIG. 1 is first made of the liquid crystal display element 902, but the present invention is not limited thereto, and the self-luminous display element 904 may be fabricated first, that is, the two are separated as 'as shown in FIG. 9A' for a first substrate 906. The first substrate φ 906 may be a glass substrate, which is preferably a low-alkali or alkali-free glass substrate, and then 'forms a liquid crystal to drive the first electrode 908 on the first substrate 906, in order to reduce the penetration of light that affects the element. The liquid crystal driving first electrode 908 is preferably composed of a transparent material such as tantalum or niobium, or it may be composed of a thin metal (for example, a thickness of 1 〇 to 3 〇 nm). Subsequently, a liquid crystal layer 910 is formed on the liquid crystal driving first electrode 908 and a liquid crystal cladding layer 912 is formed to cover the liquid crystal layer 910. In the preferred embodiment of the present invention, the liquid crystal cladding layer 912 is a polymer single layer. The method of fabricating the surface of the liquid crystal layer 910 is similar to the above-described implementation of 0949-A21780TWF (N2): P51950084TW; Wayne 1354145, which is not described in detail herein. Next, a self-luminous display element 904' is fabricated to provide a second substrate 914. The second substrate 914 can be a glass substrate, preferably a low-voltage or alkali-free glass substrate, and subsequently, an anode 916 is formed on the second substrate 914. its
後’形成一發光層918於1¼極916上’在本發明之一實施 例中,發光層918可包括電洞注入層、電洞傳輸層、有機 發光材料層、電子傳輸層和電子注入層(未繪示),接著, 形成一陰極920於發光層918上,為減少影響元件之光的 穿透率’陰極920和陽極916較佳為透明材料例如IT〇咬 是ΙΖΟ所組成,或是其亦可以由厚度很薄之金屬所組成(例 如厚度可介於10~30nm),接著,形成例如氮化矽之保護層 922包覆陰極920、發光層918和陽極916。 °曰 後、.貝,形成一液日日驅動第二電極924於保護層922牙 或第二基板914上,同樣的,為減少影響元件之光 σ/ 率,液晶驅動第二電極924較佳為透明材料例如ΐτ〇 IZO所組成,或是其亦可以由厚度很薄之金屬所組/疋 請注意,在此實施例中’液晶顯示元件9〇2係 、 動顯不兀件’易言之’液晶驅動第一電極9〇8 ‘曰' 被 第二電極924係、為互相垂直之電極,而形成竺;:動 (matrix),藉由提供電壓於液晶驅動第一電極9 :二陣 動第二電極924控制晝素電容,使位於晝素中的:曰“:驅 排列狀態產生旋轉,而蚊該晝素之透光度 ;2 像。 心叩顯不影 最後,將分別製作好之自發光顯示Μ·㈣晶_ 0949-A21780TWF(N2):P5195〇〇84TW:wayne 1354145 示元件902由其内側面接合,並形成一反射電極992於第 一基板906之外側面,而形成本發明一實施例之自發光反 射式液晶顯示元件900,其中當週遭環境較暗時,可使用 發光模式(emissive mode) ’自發光顯示元件904係開啟, 亦即發光層兩側之陽極916和/或陰極92〇係施加電壓而使 發光層918發光,使自發光顯示元件顯示904晝面,而當 週遭環境較亮時,可使用反射模式(reflective mode),使自 發光顯示元件904係關閉’利用外部環境光穿過液晶層 910 ’經由反射電極992反射,而控制液晶層910之液晶分 子之方向,而使自發光反射式液晶顯示元件900之液晶顯 示元件902顯示影像。 請注意,本實施例亦可變化,請參照第9B圖,液晶驅 動第二電極924亦可是在製作液晶顯示元件902時形成於 液晶包覆層上912。 第10A圖係顯示本發明又另一實施例自發光反射式液 晶顯示器1000之剖面圖,相對於上述實施例,本實施例之 自發光顯示元件1004係為被動式,而液晶顯示元件1〇〇2 係為主動式,請參照第10A圖,首先製作液晶顯示元件 1002 ’但本發明不限於此,亦可以先製作自發光顯示元件 1004,亦即兩者係分開製作,如第i〇A圖所示,提供—第 一基板1012,第一基板1012可以為玻璃基板,其較佳為 低驗或是無驗玻璃基板。 第一基板1012上可以形成有例如Mo之閘極10丨4和 儲存電容下電極1016。一例如氮化石夕或是氧化石夕之閘極介 0949-A21780TWF(N2);P51950084TW:wayne 17 1354145 電層1018覆蓋閘極1〇14、儲存電交 ^ lmo y 仔€合下電極1016和第一基 板1012,一例如多晶矽或是單晶矽 / 於閘極1014上方之閘極介電層i 丄日1020形 .^ . . , v 丨018上,半導體層1020After forming a light-emitting layer 918 on the 11⁄4 pole 916, in an embodiment of the present invention, the light-emitting layer 918 may include a hole injection layer, a hole transport layer, an organic light-emitting material layer, an electron transport layer, and an electron injection layer ( A cathode 920 is formed on the light-emitting layer 918 to reduce the transmittance of the light that affects the element. The cathode 920 and the anode 916 are preferably made of a transparent material such as an IT bite, or It may also be composed of a metal having a very small thickness (for example, a thickness of 10 to 30 nm), and then a protective layer 922 such as tantalum nitride is formed to coat the cathode 920, the light-emitting layer 918, and the anode 916. After the 曰, 贝, a liquid is formed to drive the second electrode 924 on the protective layer 922 or the second substrate 914. Similarly, in order to reduce the light σ/rate of the influencing element, the liquid crystal driving the second electrode 924 is preferably. It is composed of a transparent material such as ΐτ〇IZO, or it can also be composed of a metal having a very thin thickness. Note that in this embodiment, the 'liquid crystal display element 9 〇 2 system, the moving display element' is easy to say. The 'liquid crystal driving first electrode 9 〇 8 '曰' is a second electrode 924, which is a mutually perpendicular electrode, and forms a 竺;: a matrix, which is driven by a liquid crystal to drive the first electrode 9: two arrays The second electrode 924 controls the halogen capacitor so that it is located in the element: "": the state of the drive is rotated, and the light of the mosquito is the light; 2 image. The heart is not visible, and will be separately produced. The self-luminous display Μ·(4) crystal _ 0949-A21780TWF (N2): P5195 〇〇 84TW: wayne 1354 145 The element 902 is joined by its inner side surface, and a reflective electrode 992 is formed on the outer side of the first substrate 906 to form the present A self-luminous reflective liquid crystal display element 900 according to an embodiment of the invention, wherein the week When the environment is dark, the self-luminous display element 904 can be turned on by using an emissive mode, that is, the anode 916 and/or the cathode 92 on both sides of the light-emitting layer are applied with a voltage to cause the light-emitting layer 918 to emit light, so that the self-luminous light is emitted. The display element displays 904 facets, and when the surrounding environment is brighter, the reflective mode can be used to cause the self-luminous display element 904 to be turned off 'with external ambient light passing through the liquid crystal layer 910' via the reflective electrode 992, and The liquid crystal display element 902 of the self-luminous reflective liquid crystal display device 900 is controlled to display an image. The present embodiment may also be modified. The liquid crystal display element 902 may be formed on the liquid crystal coating layer 912. Fig. 10A is a cross-sectional view showing still another embodiment of the self-luminous reflective liquid crystal display 1000 of the present invention, with respect to the above embodiment, the embodiment The self-luminous display element 1004 is passive, and the liquid crystal display element 1〇〇2 is active. Please refer to FIG. 10A to first make a liquid crystal display. The component 1002' is not limited thereto, and the self-luminous display element 1004 may be fabricated first, that is, the two are separately fabricated. As shown in FIG. ii, the first substrate 1012 may be provided. The first substrate 1012 may be The glass substrate is preferably a low-inspection or non-inspective glass substrate. The first substrate 1012 may be formed with, for example, a gate electrode 10丨4 of Mo and a lower electrode 1016 of a storage capacitor. For example, a nitride or a oxidized stone Gate dielectric 0949-A21780TWF (N2); P51950084TW: wayne 17 1354145 Electrical layer 1018 covers gate 1〇14, storage electrical connection ^ lmo y A small lower electrode 1016 and first substrate 1012, such as polycrystalline germanium or single crystal矽 / gate dielectric layer i above gate 1014 丄 day 1020 shape. ^ . . , v 丨018, semiconductor layer 1020
上之兩心別形成有-源極1G22和—沒極胸另外和 : = 022/沒極,位於同一層之儲存電容上電極刪 ㈣,於儲存電容下電極贿上方之閘極介電層麵 上丄其中儲存電容上電極聰、儲存電容下電極刪和 兩者間之閘極介電豸1018係構成—儲存電容器(伽啡 capac敝),而上述閘極1G14、半導體層咖、閘極介電 層1 〇 18、源極i 022和没極i 024係構成一薄膜電晶雖^ 舰的刪⑹,以下可簡稱TFT)。—例如氮切之保護層 1〇28係覆蓋源極1022、汲極1〇24和儲存電容上電極 1026,另外,一例如IT〇之透明電極1〇3〇係形成於保護 層1028上,其中透明電極1030係分別藉由位於保護層 1028中之插塞1032、1034電性連接TFT之汲極1〇24和/ 或儲存電容之儲存電容上電極1026,在本發明之一實施例 中,透明電極1030係包括橫向電場第一電極1〇3〇a和一橫 向電場第二電極1030b,為減少影響元件之光的穿透率, 橫向電場第一電極1030a和橫向電場第二電極i〇3〇b較佳 為透明材料例如ITO或是IZO所組成,或是其亦可以由厚 度很’專之金屬所組成(例如厚度可介於10〜3Onm),需注音的 疋TFT藉由橫向電場第一電極1 〇3Oa和橫向電場第二電極 1030b控制後續形成之液晶層之液晶分子。 接著,以例如使用喷墨裝置進行滴注的方式,形成— 0949-A21780TWF(N2);P51950084TW:wayne 1354145 液晶層1100於橫向電場第一電極1030a、橫向電場第二電 極1030b和部份保護層1028上,後續,使高分子單體聚合 而析出於液晶層液滴表面,形成液晶包覆層11〇2覆蓋液晶 層1100,此製程係類似於上述實施例,在此不詳細描述。 • 接著’製作自發光顯示元件1004,提供一第二基板 1200,第二基板1200可以為玻璃基板,其較佳為低鹼或是 無鹼玻璃基板,後續,形成陽極12〇2於第二基板12〇〇上, 鲁 其後,形成一發光層1於陽極上,在本發明之一實施例 中,發光層1204可包括電洞注入層、電洞傳輸層、有機發 光材料層、電子傳輸層和電子注入層(未繪示),接著,形 成一陰極1104於發光層上’為減少影響元件之光的穿透 率,陰極1104和1%極1202較佳為透明材料例如[το或是 IZO所組成,或是其亦可以由厚度很薄之金屬所組成(例如 厚度可介於10〜30nm),接著,形成例如氮化矽之保護層 1206包覆發光層1206、陽極1202和陰極ι1〇4。 • 最後,將分別製作好之自發光顯示元件1 〇 〇 4和液晶顯 示元件1002由其内侧面接合,並形成—反射電極19〇〇於 第一基板1012之外侧,而形成本發明一實施例之自發光反 射式液晶顯示元件1000,其中當週遭環境較暗時,可使用 發光模式(emissive mode),自發光顯示元件1〇〇4係開啟, 亦即發光層1204兩侧之陽極1202和/或陰極11〇4係施加 電壓而使發光層1204發光,使自發光顯示元件1〇〇4顯示 畫面,而當週遭環境較亮時,可使用反射模式(reflecdve mode),使自發光顯示元件1004關閉,利用外部環境光穿 0949-A21780TWF(N2);P51950084TW;wayne 19 1354145 過液晶層1100,經由反射電極1900反射,而藉由控制液 晶層1100之液晶分子之方向,而使液晶顯示元件1002顯 示影像。 請注意,本實施例亦可變化,請參照第10B圖,自發 光顯示元件1004之陽極1104亦可是在製作液晶顯示元件 時形成於液晶包覆層1206上。 根據上述實施例,本發明結構與傳統半反穿液晶顯示 器比較起來,可大幅降低背光模組的體積與重量,並且由 於自發光元件與反射式液晶元件整合於同一製程當中,將 可以避免兩元件產生疊影(parallax)而相互影響影像品質, 此外,本設計可補足自發光元件在周圍光亮度較強時影像 被淡化(washout)的缺點,另外,本發明實施例提出的製程 技術係使液晶製程與自發光元件製程分開實施,可避免製 作反射式液晶顯示器之高溫製程使自發光元件產生劣化, 以有效提升整個元件的良率。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。The two hearts on the top are formed - source 1G22 and - no pole chest and: = 022 / no pole, the storage capacitor on the same layer, the electrode is deleted (four), on the gate dielectric level above the electrode under the storage capacitor丄 The upper electrode of the storage capacitor, the lower electrode of the storage capacitor, and the gate dielectric 豸1018 between the two constitute a storage capacitor (gamma capsule), and the gate 1G14, the semiconductor layer, the gate dielectric Layer 1 〇18, source i 022, and immersion i 024 constitute a thin film electro-crystal, although the ship is deleted (6), hereinafter referred to as TFT). - for example, a nitrogen-cut protective layer 1 〇 28 covers the source 1022, the drain 1 〇 24 and the storage capacitor upper electrode 1026, and a transparent electrode 1 〇 3 such as IT 形成 is formed on the protective layer 1028, wherein The transparent electrode 1030 is electrically connected to the drain 1 〇 24 of the TFT and/or the storage capacitor upper electrode 1026 of the storage capacitor by the plugs 1032 and 1034 respectively located in the protective layer 1028. In an embodiment of the invention, the transparent electrode 1030 is transparent. The electrode 1030 includes a transverse electric field first electrode 1〇3〇a and a transverse electric field second electrode 1030b. To reduce the transmittance of light affecting the element, the transverse electric field first electrode 1030a and the transverse electric field second electrode i〇3〇 b is preferably composed of a transparent material such as ITO or IZO, or it may be composed of a metal having a very specific thickness (for example, a thickness of 10 to 3 Onm), and the 疋TFT to be phonetic is first by a transverse electric field. The electrode 1 〇3Oa and the lateral electric field second electrode 1030b control the liquid crystal molecules of the subsequently formed liquid crystal layer. Next, a liquid crystal layer 1100 is formed in a transverse electric field first electrode 1030a, a lateral electric field second electrode 1030b, and a partial protective layer 1028 by, for example, performing an instillation using an inkjet device. Then, the polymer monomer is polymerized to precipitate on the surface of the droplet of the liquid crystal layer, and the liquid crystal coating layer 11 2 is formed to cover the liquid crystal layer 1100. This process is similar to the above embodiment and will not be described in detail herein. • Next, a self-luminous display element 1004 is formed to provide a second substrate 1200. The second substrate 1200 may be a glass substrate, preferably a low-alkali or alkali-free glass substrate, and subsequently formed an anode 12〇2 on the second substrate. 12 〇〇, after the formation of a light-emitting layer 1 on the anode, in an embodiment of the invention, the light-emitting layer 1204 may include a hole injection layer, a hole transport layer, an organic light-emitting material layer, an electron transport layer And an electron injecting layer (not shown), and then forming a cathode 1104 on the light emitting layer 'to reduce the transmittance of the light that affects the element, the cathode 1104 and the 1% pole 1202 are preferably transparent materials such as [το or IZO The composition may be composed of a thin metal (for example, a thickness of 10 to 30 nm), and then a protective layer 1206 such as tantalum nitride may be formed to cover the light-emitting layer 1206, the anode 1202, and the cathode ι1. 4. Finally, the separately fabricated self-luminous display elements 1 and 4 and the liquid crystal display element 1002 are bonded from the inner side thereof, and the reflective electrode 19 is formed on the outer side of the first substrate 1012 to form an embodiment of the present invention. The self-luminous reflective liquid crystal display element 1000, wherein when the surrounding environment is dark, an emissive mode can be used, and the self-luminous display elements 1 〇〇 4 are turned on, that is, the anodes 1202 and/or on both sides of the luminescent layer 1204. Or the cathode 11〇4 applies a voltage to cause the light-emitting layer 1204 to emit light, so that the self-luminous display element 1〇〇4 displays a picture, and when the surrounding environment is bright, the self-luminous display element 1004 can be made using a reflection mode (reflecdve mode). Turning off, the external liquid light is used to display the liquid crystal display element 1002 by using the external environment light to pass through 0949-A21780TWF (N2); P51950084TW; wayne 19 1354145 through the liquid crystal layer 1100, reflecting through the reflective electrode 1900, and by controlling the direction of the liquid crystal molecules of the liquid crystal layer 1100. image. Please note that this embodiment can also be modified. Referring to Fig. 10B, the anode 1104 of the self-luminous display element 1004 can also be formed on the liquid crystal cladding layer 1206 when the liquid crystal display element is fabricated. According to the above embodiment, the structure of the present invention can greatly reduce the volume and weight of the backlight module compared with the conventional semi-transparent liquid crystal display, and since the self-luminous element and the reflective liquid crystal element are integrated in the same process, two components can be avoided. The image is generated by the parallax and affects the image quality. In addition, the design can complement the self-luminous component, and the image is washed out when the brightness of the surrounding light is strong. The process is separately implemented from the self-illuminating device process, which can avoid the high-temperature process of the reflective liquid crystal display to degrade the self-luminous component, so as to effectively improve the yield of the entire component. While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.
(S 0949-A21780TWF(N2):P51950084TW:wayne 20 1354145 【圖式簡單說明】 第1圖係顯示習知技術結合自發光元件的反射式液晶 顯示器元件的剖面示意圖。 第2圖係顯示本發明一實施例將自發光顯示元件和反 射式液晶顯不元件結合之剖面不意圖。 第3A圖係顯示本發明一實施例自發光反射式液晶顯 示元件發光模式下操作示意圖。 第3B圖係顯示本發明一實施例自發光反射式液晶顯 示元件反射模式下操作示意圖。 第4圖係顯示根據本發明實施例的自發光反射式液晶 顯示器的製造方法流程圖。 第5圖係顯示根據第4圖之流程圖所製作的結合自發 光顯示元件的反射式液晶顯示器元件的示意圖。 第6圖係顯示本發明一實施例自發光反射式液晶顯示 元件之剖面示意圖。 第7A〜7B圖係顯示本發明一實施例液晶包覆層包覆液 晶層製程之剖面示意圖。 第8A〜8B圖係顯示本發明另一實施例液晶包覆層包覆 液晶層製程之剖面示意圖。 第9A圖係顯示本發明另一實施例自發光反射式液晶 顯示元件之剖面示意圖。 第9B圖係顯示本發明又另一實施例自發光反射式液 晶顯示元件之剖面示意圖。 第10A圖係顯示本發明另一實施例自發光反射式液晶 0949-A21780TWF(N2);P51950084TW;wayne 21 1354145 592〜液晶顯示器元件; 600〜自發光反射式液晶顯示器; 602〜自發光顯示元件; 604〜液晶顯示元件;(S 0949-A21780TWF(N2): P51950084TW: wayne 20 1354145 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing a reflective liquid crystal display element of a conventional technique in combination with a self-luminous element. Fig. 2 is a view showing the present invention The embodiment is not intended to combine the self-luminous display element and the reflective liquid crystal display element. Fig. 3A is a schematic view showing the operation of the self-luminous reflective liquid crystal display element in an illumination mode according to an embodiment of the present invention. FIG. 4 is a flow chart showing a method of manufacturing a self-luminous reflective liquid crystal display according to an embodiment of the present invention. FIG. 5 is a flow chart showing a method according to FIG. FIG. 6 is a schematic cross-sectional view showing a self-luminous reflective liquid crystal display device according to an embodiment of the present invention. FIGS. 7A to 7B are diagrams showing an embodiment of the present invention. FIG. 8A-8B show another embodiment of the present invention. FIG. 9A is a schematic cross-sectional view showing a self-luminous reflective liquid crystal display device according to another embodiment of the present invention. FIG. 9B is a view showing still another embodiment of the present invention. A schematic cross-sectional view of a liquid crystal display device. Fig. 10A is a view showing another embodiment of the present invention, a self-luminous reflective liquid crystal 0949-A21780TWF (N2); P51950084TW; wayne 21 1354145 592~ liquid crystal display element; 600~ self-luminous reflective liquid crystal display 602~ self-luminous display element; 604~ liquid crystal display element;
606〜第一基板; 610〜液晶包覆層; 614〜問極; 618〜閘極介電層; 622〜源極; 626〜儲存電容上電極; 630〜透明電極; 634〜插塞; 638〜陰極; 642〜保護層; 646〜橫向電場苐二電極, 692〜反射電極; 704~液晶; 708〜液晶分子, 802〜間隙子; 608〜液晶層, 612〜第二基板; 616〜儲存電容下電極; 620〜半導體層; 624〜汲極; 628〜保護層; 632〜插塞; 636〜發光層; 640〜隔絕層; 644〜橫向電場第一電極 690〜外部環境光; 702〜喷墨裝置; 706〜單體; 710〜紫外光照射裝置; 804〜單體; 806〜液晶分子; 808〜液晶; 810〜紫外光照射裝置; 600〜自發光反射式液晶顯示元件; 900〜自發光反射式液晶顯示器; 902〜液晶顯示元件; 904〜自發光顯示元件; 906〜第一基板; 908〜液晶驅動第一電極 0949-A21780TWF(N2):P51950084TW:wayne 23 1354145 910〜液晶層; 912〜液晶包覆層; 914〜第二基板; 916〜陽極; 918〜發光層; 920〜陰極; 922〜保護層; 924〜液晶驅動第二電極 1000~自發光反射式液晶顯示器;606~first substrate; 610~liquid crystal cladding layer; 614~question pole; 618~gate dielectric layer; 622~source; 626~ storage capacitor upper electrode; 630~transparent electrode; 634~plug; 638~ Cathode; 642~protective layer; 646~ lateral electric field 苐 two electrodes, 692~reflecting electrode; 704~liquid crystal; 708~ liquid crystal molecule, 802~gap; 608~ liquid crystal layer, 612~ second substrate; 616~ storage capacitor Electrode; 620~ semiconductor layer; 624~dip; 628~protective layer; 632~plug; 636~ luminescent layer; 640~isolated layer; 644~transverse electric field first electrode 690~ external ambient light; 702~ inkjet device 706~ monomer; 710~ ultraviolet light irradiation device; 804~ monomer; 806~liquid crystal molecule; 808~liquid crystal; 810~ ultraviolet light irradiation device; 600~ self-luminous reflective liquid crystal display element; 900~ self-luminous reflection type Liquid crystal display; 902~ liquid crystal display element; 904~ self-luminous display element; 906~first substrate; 908~ liquid crystal drive first electrode 0949-A21780TWF (N2): P51950084TW: wayne 23 1354145 910~ liquid crystal layer; Layer; 914~ second substrate; 916~ anode; 918~ emitting layer; 920~ cathode; 922~ protective layer; 924~ 1000 to the second electrode of the liquid crystal driving self-luminous reflective liquid crystal display;
1002〜液晶顯示元件; 1012〜第一基板; 1016〜儲存電容下電極; 1020〜半導體層; 1024〜汲極; 1028〜保護層; 1030a〜橫向電場第一電極; 1030b〜橫向電場第二電極; 1032〜插塞; 1100〜液晶層; 1104〜陰極; 1202〜陽極; 1206〜發光層; 1004〜自發光顯示元件; 1014〜閘極; 1018〜閘極介電層; 1022〜源極; 1026〜儲存電容上電極; 1030〜透明電極; 1034〜插塞; 1102〜液晶包覆層; 1200〜第二基板; 1204〜發光層; 1900〜反射電極。 0949-A21780TWF(N2):P51950084TW:wayne1002~liquid crystal display element; 1012~first substrate; 1016~ storage capacitor lower electrode; 1020~ semiconductor layer; 1024~dip; 1028~protective layer; 1030a~transverse electric field first electrode; 1030b~transverse electric field second electrode; 1032~plug; 1100~liquid crystal layer; 1104~cathode; 1202~anode; 1206~ luminescent layer; 1004~ self-luminous display element; 1014~gate; 1018~gate dielectric layer; 1022~source; 1026~ Storage capacitor upper electrode; 1030~transparent electrode; 1034~plug; 1102~liquid crystal coating layer; 1200~second substrate; 1204~ luminescent layer; 1900~reflecting electrode. 0949-A21780TWF(N2): P51950084TW: wayne