TWI353902B - - Google Patents

Download PDF

Info

Publication number
TWI353902B
TWI353902B TW96112202A TW96112202A TWI353902B TW I353902 B TWI353902 B TW I353902B TW 96112202 A TW96112202 A TW 96112202A TW 96112202 A TW96112202 A TW 96112202A TW I353902 B TWI353902 B TW I353902B
Authority
TW
Taiwan
Prior art keywords
micro
grinding structure
tool shaft
microsphere
abrasive particles
Prior art date
Application number
TW96112202A
Other languages
Chinese (zh)
Other versions
TW200841069A (en
Original Assignee
Univ Nat Central
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Central filed Critical Univ Nat Central
Priority to TW96112202A priority Critical patent/TW200841069A/en
Publication of TW200841069A publication Critical patent/TW200841069A/en
Application granted granted Critical
Publication of TWI353902B publication Critical patent/TWI353902B/zh

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Description

1353902 f < 九、發明說明: 【發明所屬之技術領域】1353902 f < IX, invention description: [Technical field to which the invention belongs]

本發明係有關於一種微型球狀磨削結構之製造方 法’尤指一種藉由輸入一高密度能量將一微型工具輛 前端熔化成一微球體,接著進行一複合電鍍以沉積研 磨顆粒’進而形成一可作為研磨或微切削加工之微型 球狀磨削結構。 【先前技術J 科技日益發達,工業界對於精密微小化之模具或 • 微精密加工之需求也日益增加,例如微機電系統 (Micro-Electro-Mechanical System, MEMS )中之微零 件’其中有不少微轴、微孔及微流道等需經由微細加 工完成’因此該微細加工也就成為精密工業不可或缺 之加工法。 在目前微細加工中’最常使用之加工法有雷射加 工(Laser Machining )、電子束加工(Electro Beam Machining, EBM )、超音波加工(uitrasonic Machining, USM )、離子束加工(ion beam machining, IBM )、Ί虫 刻法(Etching )及放電加工(Electrical Discharge Machining, EDM)等,其中該放電加工法係為一種成 本低之加工法,不僅能加工於任何高硬度及高韌性之 ‘電材料,並且可配合其他複合加工製程,例如高頻 抖動研磨、電化學加工(Electro-Chemica丨Machining, 1353902 » * ECM)與磁力研磨(Magnetic Abrasive)等加工法, 以較經濟之加工法製造出高精密度之微零件。The invention relates to a method for manufacturing a micro-spherical grinding structure, in particular to melting a front end of a micro tool into a microsphere by inputting a high-density energy, and then performing a composite plating to deposit abrasive particles to form a It can be used as a micro-spherical grinding structure for grinding or micro-machining. [Prior technology J technology is increasingly developed, the industry is increasingly demanding for precision miniaturized molds or • micro-precision machining, such as micro-parts in Micro-Electro-Mechanical Systems (MEMS). Micro-axis, micro-holes, and micro-flow paths need to be completed by microfabrication'. Therefore, this microfabrication has become an indispensable processing method for precision industry. In the current microfabrication, the most commonly used processing methods are Laser Machining, Electro Beam Machining (EMM), Ultrasonic Machining (USM), and ion beam machining. IBM), Etching, and Electrical Discharge Machining (EDM), etc., which is a low-cost processing method that can be processed not only in any high hardness and high toughness. And can be combined with other composite processing processes, such as high-frequency vibration grinding, electrochemical processing (Electro-Chemica 丨 Machining, 1353902 » * ECM) and magnetic grinding (Magnetic Abrasive) processing methods, to create a higher economical processing method Precision micro-parts.

有關於微型工具成型法方面,絕大多數之研究係 以圓柱、三角柱、四方柱及針狀等微細工具為主,鮮 少有關於微軸前端呈球狀之研究《按中華民國專利公 報編號第569061號之「模具成型方法」,其提到利用 該放電加工法使針狀電極形成一圓球狀以作為模具沖 壓頭之用。另外,亦有許東亞於2004年在j0urnai 〇fRegarding the micro-tool forming method, most of the researches are mainly micro-tools such as cylinders, triangular columns, square columns and needles, and few studies on the front end of the micro-axis are spherical. According to the number of the Republic of China patent publication number The "mold forming method" of No. 569061 mentions that the needle electrode is formed into a spherical shape by the electric discharge machining method as a die punching head. In addition, there are also Xu Dong in 2004 in j0urnai 〇f

Materials Processing Technology,Vol. 149, pp. 597-603 期刊論文中,發表其利用單發放電加工法將微型純嫣 電極前端,製作成微小:圓球狀之微細軸,因其微轴直 徑30微米及球徑40微米,但其軸長為3〇〇微米,因 此長寬比較大而僅作為探針之用。 目前市面上所販售之微小徑球刀之中,其製作方 法上大部分皆以鑽石砂輪機研磨成型,再經由鍍膜製 裎而產生刀具。而直徑約為01毫米或更小之微銑刀 U鑽頭,在加工之後,一但被加工件為凹形圓、凹 弧形圓或圓角等,甚至角度大於18〇度且需要表面精 修加工時,便難以使用一般研磨工具對其進行加工。 卜:市售鑽石研磨工具之中,較高品質之工具為利 用化學氣相沈積法(Chemica丨VaporDep〇sm〇n, CVD) 使工具表面成長鑽石薄膜,雖然該化學氣相沈積法所 成長之鑽石薄獏在其強度、均勻性及緻密度等皆有相 1353902 處理之方法係可為超音波清洗或電解加工。Materials Processing Technology, Vol. 149, pp. 597-603, published in the journal paper, published a micro-pure ruthenium electrode tip using a single-shot electrical discharge process to produce a tiny: spherical micro-axis with a micro-axis diameter of 30 microns. And the ball diameter is 40 microns, but its axial length is 3 〇〇 micron, so the length and width are relatively large and only used as a probe. Among the small diameter ball knives currently on the market, most of the manufacturing methods are made by grinding a diamond grinder, and then a tool is produced by coating. A micro-milling U-bit with a diameter of about 01 mm or less, after machining, once the workpiece is a concave circle, a concave arc or a rounded corner, etc., even an angle greater than 18 degrees and requires surface finishing When processing, it is difficult to process it using a general grinding tool. Bu: Among the commercially available diamond grinding tools, the higher quality tool is to use the chemical vapor deposition method (Chemica丨VaporDep〇sm〇n, CVD) to grow the diamond film on the surface of the tool, although the chemical vapor deposition method has grown. Diamond thin enamel can be ultrasonic cleaning or electrolytic processing in its strength, uniformity and density.

藉此,不僅具有可批量製造、製程簡單、成本低 與高品質等多項優點,並且可用於微模具成型、除毛 邊、表面微銑削及表面微研磨等精微加工,諸如凹型 球面微模具、印刷電路板(Print Circuit Board,PCB )、 生醫檢測用微流道 '微機電线及各種微加工領域之 用’使其擁有加工後表面平整而不需再二次加工之優 勢’此外,其加工面亦比一般球刀來得大可側向進 給加工出底部形狀超過180度之微細槽。 當本發明於運用時,該微型工具軸 — L Jto 夕徑 口工法使其達到所需之形狀尺寸,如放電加工法 lectrical Discharge Machining, EDM )、電化學加工 EleCtr〇_ChemicaI Machining,ECM )、蝕刻法 tching )、雷射加i法(User )及電子束 ^,(EleCtro Beam MacMning,ebm)等。今該加 例放電加工法對該微心具軸2研磨修整為 ㈣進先修整該微型卫具軸2之端面,使其端面 ==行該微型卫具轴2之粗加之加q 2二:所而之搜向尺寸’遂而再進行該微型工具軸 該微;°工’以精確達到所需之徑向尺寸,最後再將 丄。工具軸2之端面中心部位修整出-微小尖端2 當該微型工具軸2加 工至所需之尺寸後 繼續對 1353902 . » 5玄微型工具軸2進行放電加工,此時由端面中心尖端 2 1部位會開始產生放電現象,一直到該尖端2 1於 高溫融炫下’呈微軸前端收縮成微球體3 1,由該微 型工具轴2之型態轉變為該微球工具軸3之型態後, 結束放電加工。此外,該微球體3 JL亦可於凝固成形 後’進一步再於其表面上加工一微溝槽,以作為容屑、 排屑之用。在上述之放電過程間,由於放電現象會由Thereby, not only has the advantages of mass production, simple process, low cost and high quality, but also can be used for micro-molding, burring, surface micro-milling and surface micro-grinding, such as concave spherical micro-mold, printed circuit Print Circuit Board (PCB), micro-channels for biomedical testing, micro-machine wires and various micro-machining fields, which make it possible to have a smooth surface after processing without the need for secondary processing. In addition, its processing surface It is also larger than the general ball knives to feed the micro-grooves with a bottom shape of more than 180 degrees. When the present invention is applied, the micro tool shaft - L Jto sluice method to achieve the desired shape size, such as electric discharge machining (lectrical Discharge Machining, EDM), electrochemical processing EleCtr〇_Chemica I Machining, ECM), Etching method, laser plus I method (User) and electron beam ^, (EleCtro Beam MacMning, ebm). Now, the additional electric discharge machining method grinds the micro-center shaft 2 to (4) trim the end surface of the micro-guard shaft 2 first, so that the end surface == the micro-guard shaft 2 is added by adding q 2 two: The search for the size '遂 and then the micro-tool shaft to the micro; ° work' to accurately reach the required radial size, and finally 丄. The center of the end face of the tool shaft 2 is trimmed out - the tiny tip 2 is continued. After the microtool shaft 2 is machined to the required size, the electric machining of the 1353902 is continued. The discharge phenomenon will start to occur until the tip 21 is condensed at a high temperature to shrink into a microsphere 3, and the shape of the microtool shaft 2 is changed to the shape of the microsphere tool shaft 3. , End of electrical discharge machining. In addition, the microspheres 3 JL may be further processed on the surface thereof after solidification to serve as a chip for chipping and chip evacuation. Between the above discharge processes, due to the discharge phenomenon

兩極間最短距離開始產生,因此該尖端2 1必須置於 端面中心’才能使其於高能量輸入而材料熔化所產生 之内聚收縮作用時,該微球體3 1才得以較不易形成 偏心。 另取一電鍍槽4,且該電鍍槽4内係具有一環狀 陽極4 1 ’將該微球工具軸3浸入電鍍液4 3 ,以各 種不同加工參數,選用2至4微米之鑽石顆粒作為研 磨顆粒4 2以進行電鍍測試;為使該研磨顆粒4 2可 % 1浮於電錢液4 3中’在此電鑛槽4兩側提供-攪拌 器44;並在該電鍍液43中添加一定量之界面活性 劑,以提升該研磨顆粒4 2之沈積量與分散性。當複 • 合電鍍沉積加工完成後,對電極進行表面清潔,以除 去表面殘留之電鍍液4 3,以完成此微型球狀磨削結 * 構5之製作。 綜上所述,本發明係一種微型球狀磨削結構之製 造方法,可有效改善習用之種種缺點,不僅擁有良好 10 1353902 之微量切削與研磨之功能,並能達到良好之表面修整 :文果,具有可批量製造、製程簡單、成本低與高品質 等多項優點,進而使本發明之產生能更進步更實用、 =符合使用者之所須,確已符合發明專利_請之要 件,爰依法提出專利申請。 上所述者,料本發明之較㈣施例而已,The shortest distance between the two poles begins to occur, so that the tip end 21 must be placed at the center of the end face to allow the microspheres 3 1 to be less eccentric when subjected to high energy input and cohesive shrinkage due to melting of the material. Another electroplating tank 4 is taken, and the electroplating tank 4 has an annular anode 4 1 '. The microsphere tool shaft 3 is immersed in the plating solution 4 3 , and diamond particles of 2 to 4 micrometers are selected as various processing parameters. Grinding the particles 4 2 to perform a plating test; in order to make the abrasive particles 4 2 float in the money liquid 4 3 'provide a stirrer 44 on both sides of the electric ore tank 4; and add in the plating solution 43 A certain amount of surfactant is used to increase the deposition amount and dispersibility of the abrasive particles. After the composite plating deposition process is completed, the electrode is surface-cleaned to remove the residual plating solution 4 3 to complete the fabrication of the micro-spherical grinding structure. In summary, the present invention is a manufacturing method of a micro-spherical grinding structure, which can effectively improve various disadvantages of the conventional use, and not only has a good micro-cutting and grinding function of 10 1353902, but also can achieve a good surface finish: It has many advantages such as mass production, simple process, low cost and high quality, which makes the invention more progressive and practical, and meets the needs of users. It has indeed met the invention patents. File a patent application. The above description is based on the (4) application of the present invention.

c定本發明實施之範圍…凡依本發明 =二及發明說明書内容所作之簡單的等效變 與修飾’皆應仍屬本發明專利涵蓋之範圍内。 1353902 【圖式簡單說明】 第1圖,係本發明之製作流程示意圖。 第2圖,係本發明之微型工具軸示意圖。 第3圖,係本發明之微球工具軸示意圖。 第4圖,係本發明之電鍍槽示意圖。 第5圖,係本發明之複合電鍍示意圖。 第6圖,係本發明之微球表面狀態示意圖。The scope of the invention is to be construed as being limited to the scope of the invention. 1353902 [Simple description of the drawings] Fig. 1 is a schematic view showing the production process of the present invention. Figure 2 is a schematic view of the microtool shaft of the present invention. Figure 3 is a schematic view of the microsphere tool shaft of the present invention. Figure 4 is a schematic view of the plating bath of the present invention. Figure 5 is a schematic view of the composite plating of the present invention. Figure 6 is a schematic view showing the surface state of the microspheres of the present invention.

第7圖,係本發明之微型球狀磨削結構示意圖。 【主要元件符號說明】 步驟11〜15 微型工具軸2 尖端2 1 微球工具軸3 微球體3 1 電鍍槽4 環狀陽極4 1 研磨顆粒4 2 電鍍液4 3 攪拌器4 4 微型球狀磨削結構5Figure 7 is a schematic view of the microspherical grinding structure of the present invention. [Description of main component symbols] Steps 11~15 Miniature tool shaft 2 Tip 2 1 Microsphere tool shaft 3 Microsphere 3 1 Plating tank 4 Ring anode 4 1 Abrasive particles 4 2 Plating solution 4 3 Stirrer 4 4 Micro spherical mill Cutting structure 5

Claims (1)

2011/9/29 十、申請專利範圍: KM月Θ曰修正本 1 · 一種微型球狀磨削結構,係包括: 複數個研磨顆粒,該複數個研磨顆粒係定量容 置於一電鍍液中’且該複數個研磨顆粒係可為鑽 石、碳化矽、立體氮化硼或氧化鋁;以及 一微球工具軸,該微球工具軸係用以沉積該複 數個研磨顆粒。 2 依據申請專利範圍第1項所述之微型球狀磨削結 構,其令,該微球工具轴係由一微柄及一微球體所 構成。 3 ·依據申請專利範圍第2項所述之微型球狀磨削結 構,其中’該微球體之基底材料係可為鎢、碳化鎢、 尚速鋼或鶴鋼。 4 ·依據申請專利範圍第2項所述之微型球狀磨削結 構’其中,該微球體之直徑為1〇至3〇〇微米。 5 ·依據申請專利範圍第2項所述之微型球狀磨削結 構’其該微柄之直徑係小於或等於該微球體之 直徑。 . 6 ·依據申請專利範圍第1項所述之微型球狀磨削結 構’其中,該微球工具轴之基體材料係可為鎳、鉻、 銅、鋁、銀、辞及其合金。 13 Γγ 2011/9/29 •依據申請專利範圍第1項所述之微型球狀磨削結 構’其該複數個研磨顆粒之粒徑為至1〇 微米。 8 · —種微型球狀磨削結構之製造方法,至少包括下列 步驟: (Α)選擇一微型工具軸,將該微型工具軸加 工至所需尺寸,並在前端中心修整具有一尖端; (Β)輸入一高密度能量讓該微型工具軸之尖 端處熔化而再凝固形成一微球體,使該微型工具軸 藉此轉變為一微球工具轴; (C) 取一電鍍槽,並在該電鍍槽中容置一含 定量研磨顆粒之電鍍液,其中,該研磨顆粒係可為 鑽石、碳化矽、立體氮化硼或氧化鋁; (D) 對該微球工具軸表面進行複合電鑛以沉 積該研磨顆粒,使該微球工具軸之表面形成一複合 電鍵金屬層;以及; (Ε )對該微球工具轴進行表面清潔與處理, •以完成一微型球狀磨削結構。 9 ·依據申請專利範圍第8項所述之微型球狀磨削結構 之製造方法’其中,該微球體於凝固形成之後,可 進一步於表面加工一微溝槽。 1353902 2011/9/29 1 0 ·依據申請專利範圍第8項所述之微型球狀磨削結 構之製造方法,其中,該高密度能量之加工法係可 為放電加工法(Electrical Discharge Machining, EDM )、電化學加工法(Electro-Chemical Machining, ΕΓΠνΠ、飩刻法 f Etching、、雪射 Λσ 工法(Laser Machining )及電子束加工法(Electro Beam Machining,EBM)。 1 1 ·依據申請專利範圍第8項所述之微型球狀磨削結 構之製造方法,其中,該表面清潔與處理之方法係 可為超音波清洗或電解加工。 1 2 ·依據申請專利範圍第9項所述之微型球狀磨削結 構之製造方法,其中,該微型球狀磨削結構之加工 面圓弧角度係可超過180度。2011/9/29 X. Patent application scope: KM Lunar Amendment 1 • A miniature spherical grinding structure comprising: a plurality of abrasive particles, the plurality of abrasive particles being quantitatively contained in a plating solution And the plurality of abrasive particles can be diamond, tantalum carbide, cubic boron nitride or aluminum oxide; and a microsphere tool shaft for depositing the plurality of abrasive particles. 2 The microspherical grinding structure according to the first aspect of the patent application, wherein the microsphere tool shaft is composed of a micro handle and a microsphere. 3. The microspherical grinding structure according to claim 2, wherein the base material of the microspheres may be tungsten, tungsten carbide, stalwart steel or crane steel. 4. The microspherical grinding structure according to claim 2, wherein the microspheres have a diameter of from 1 to 3 μm. 5. The microspherical grinding structure as described in claim 2, wherein the diameter of the microshank is less than or equal to the diameter of the microsphere. 6. The microspherical grinding structure according to claim 1 wherein the base material of the microsphere tool shaft is nickel, chromium, copper, aluminum, silver, and alloys thereof. 13 Γ γ 2011/9/29 • The micro-spherical grinding structure according to the scope of claim 1 'the particle size of the plurality of abrasive particles is up to 1 μm. 8 - A method for manufacturing a micro-spherical grinding structure, comprising at least the following steps: (Α) selecting a micro tool shaft, machining the micro tool shaft to a desired size, and trimming at the front end center with a tip; Entering a high-density energy to melt the tip of the micro-tool shaft and solidify to form a microsphere, thereby transforming the micro-tool shaft into a micro-sphere tool shaft; (C) taking a plating bath and performing the plating The bath contains a plating solution containing quantitative abrasive particles, wherein the abrasive particles can be diamond, tantalum carbide, cubic boron nitride or aluminum oxide; (D) composite electrowinning of the surface of the microsphere tool shaft for deposition The abrasive particles form a composite key metal layer on the surface of the microsphere tool shaft; and (Ε) surface cleaning and processing the microsphere tool shaft to complete a microspherical grinding structure. 9. The method of manufacturing a microspherical grinding structure according to claim 8, wherein the microspheres are further processed to form a microgroove after solidification. 1353902 2011/9/29 1 0 The manufacturing method of the micro-spherical grinding structure according to claim 8 , wherein the high-density energy processing method is an electrical discharge machining (ElDM) ), Electrochemical Processing (Electro-Chemical Machining, ΕΓΠνΠ, engraving method f Etching, Laser Machining and Electron Beam Machining (EBM). 1 1 · According to the scope of patent application The method for manufacturing a micro-spherical grinding structure according to the item 8, wherein the method for cleaning and treating the surface may be ultrasonic cleaning or electrolytic processing. 1 2 · The microsphere according to the scope of claim 9 The manufacturing method of the grinding structure, wherein the circular arc angle of the working surface of the micro-spherical grinding structure can exceed 180 degrees. 1515
TW96112202A 2007-04-04 2007-04-04 Method of manufacturing miniature ball-shaped grinding structure TW200841069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96112202A TW200841069A (en) 2007-04-04 2007-04-04 Method of manufacturing miniature ball-shaped grinding structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96112202A TW200841069A (en) 2007-04-04 2007-04-04 Method of manufacturing miniature ball-shaped grinding structure

Publications (2)

Publication Number Publication Date
TW200841069A TW200841069A (en) 2008-10-16
TWI353902B true TWI353902B (en) 2011-12-11

Family

ID=44821417

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96112202A TW200841069A (en) 2007-04-04 2007-04-04 Method of manufacturing miniature ball-shaped grinding structure

Country Status (1)

Country Link
TW (1) TW200841069A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201221964A (en) * 2010-11-30 2012-06-01 Metal Ind Res & Dev Ct Columnar body, forming device thereof and forming method thereof
CN102528183A (en) * 2010-12-07 2012-07-04 财团法人金属工业研究发展中心 Cylindrical body and molding device and method thereof
CN110142684B (en) * 2019-07-04 2023-12-26 中国工程物理研究院激光聚变研究中心 Hollow microsphere surface polishing device and method

Also Published As

Publication number Publication date
TW200841069A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
Singh et al. Developments in electrochemical discharge machining: A review on electrochemical discharge machining, process variants and their hybrid methods
Jahan et al. A review on the conventional and micro-electrodischarge machining of tungsten carbide
Hasçalık et al. A comparative study of surface integrity of Ti–6Al–4V alloy machined by EDM and AECG
Chen et al. Development of an extremely thin grinding-tool for grinding microgrooves in optical glass
TWI353902B (en)
Zhang et al. Small-hole machining of ceramic material with electrolytic interval-dressing (ELID-II) grinding
Debnath et al. Wire electrochemical machining process: overview and recent advances
Debnath et al. Non-traditional micromachining processes: opportunities and challenges
Chen et al. Development of a micro diamond grinding tool by compound process
Bains et al. Investigation of surface properties of Al–SiC composites in hybrid electrical discharge machining
Prakash et al. Functional grading of surfaces through hybrid ultrasonic, abrasive water jet, and electric discharge machining processing
Chen et al. A comparative study on the die-sinking EDM performance of bulk metallic glass composites under rough and refined conditions
Ming et al. Wear resistance of copper EDM tool electrode electroformed from copper sulfate baths and pyrophosphate baths
Rajput et al. Review on recent advances, research trends, and gas film in electrochemical discharge-based micromachining
Özerkan et al. Electrochemical small diameter deep hole drilling of powder metal steel
Davim et al. Advanced (non-traditional) machining processes
Hung et al. Micro-hole machining using micro-EDM combined with electropolishing
Habib et al. Performance analysis of EDM electrode fabricated by localized electrochemical deposition for micro-machining of stainless steel
JP2009178770A (en) Method of machining mold member, method of producing the same, extrusion die, method for production of extruding material, and extruding material
Paul et al. Non-conventional micro-machining processes
Rahman et al. Comparative studies in electro-physical processes (ECM & EDM) for circular micro-holes drilling
Batham et al. A review on fabrication, grinding performance and failure of micro-grinding tools
CN105290723B (en) The nontraditional precision machining method of ion source of ion implanter ionization starting the arc chamber assembly
Saleh et al. 1.13 ELID Grinding and EDM for Finish Machining
Gupta et al. Assisted hybrid machining processes

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees