TWI353618B - Pixel structure of display and display apparatus - Google Patents

Pixel structure of display and display apparatus Download PDF

Info

Publication number
TWI353618B
TWI353618B TW96146915A TW96146915A TWI353618B TW I353618 B TWI353618 B TW I353618B TW 96146915 A TW96146915 A TW 96146915A TW 96146915 A TW96146915 A TW 96146915A TW I353618 B TWI353618 B TW I353618B
Authority
TW
Taiwan
Prior art keywords
layer
substrate
light
cathode
anode
Prior art date
Application number
TW96146915A
Other languages
Chinese (zh)
Other versions
TW200834644A (en
Inventor
Jung Yu Li
Shih Pu Chen
Yi Ping Lin
Wei Chin Lin
Lian Yi Cho
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW96146915A priority Critical patent/TWI353618B/en
Publication of TW200834644A publication Critical patent/TW200834644A/en
Application granted granted Critical
Publication of TWI353618B publication Critical patent/TWI353618B/en

Links

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Description

P55950076TWC4 22306-4twf.doc/n 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種發光元件,且特別是有關於一種 電子發射式發光元件及其應用。 【先前技術】 目前量產的光源裝置或顯示裝置中主要應用兩大類 的發光結構,包括: 1·氣體放電光源:應用於例如電漿面板或氣體放電燈 上’主要利用陰極與陽極之間的電場,使充滿於放 電腔内的氣體游離’藉由輝光放電(glow discharge) 的方式使電子撞擊氣體後產生躍遷並發出紫外 光’而同樣位於放電腔内的螢光層吸收紫外光後便 發出可見光。 2.場發射光源:應用於例如奈米碳管場發射顯示器 專,主要疋k供一超咼真空的環境,並且在陰極上 製作奈米碳材的電子發射端(electr〇n emitter),以 利用電子發射端中高深寬比的微結構幫助電子克 服陰極的功函數(work fUncti〇n)而脫離陰極。此 外,在銦錫氧化物(ITO)製成的陽極上塗佈螢光 層’以藉由陰極與陽極之_高電場使電子由陳 ,奈米碳管逸出。如此,電子可在真空環境中“ 陽極上的螢光層,以發出可見光。 ^而,上述兩種發光結構皆有其缺點。舉例 里又到料絲射後較朗題,目此對於 而言,因 體放電光 1353618 P55950076TWC4 22306-4twf.d〇c/n 源内的材料選用需有特殊要求。此外, 光機制歷經兩道過程才纟巧减放電的發 大,如果難从’故能4的損耗較 大果過程中而產生電聚,則更為耗電 陰極上成長或塗佈均勾的電子發射端,: 子類陰極結構的技術尚未成熟,且遇到電 子發射端的均勻度與生產良率不佳的_。此外 光源的陰極與1¾極的間距需控制财, ^BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a light-emitting element, and more particularly to an electron-emitting light-emitting element and its use. [Prior Art] Currently, two types of light-emitting structures are mainly used in mass-produced light source devices or display devices, including: 1. Gas discharge light source: applied to, for example, a plasma panel or a gas discharge lamp, mainly using a cathode and an anode. The electric field causes the gas filled in the discharge chamber to be freed by a glow discharge to cause the electrons to collide with the gas to generate a transition and emit ultraviolet light. The fluorescent layer also located in the discharge chamber absorbs the ultraviolet light and then emits Visible light. 2. Field emission light source: applied to, for example, a carbon nanotube field emission display, mainly for providing an environment in which a vacuum is applied, and an electron emitter (nectr〇n emitter) of a nano carbon material is formed on the cathode to The use of a high aspect ratio microstructure in the electron-emitting end helps the electrons overcome the work function of the cathode (work fUncti〇n) and leave the cathode. Further, a phosphor layer is coated on an anode made of indium tin oxide (ITO) to cause electrons to escape from the Chen and N carbon nanotubes by a high electric field between the cathode and the anode. In this way, the electrons can "expose the phosphor layer on the anode in a vacuum environment to emit visible light. ^, the above two kinds of light-emitting structures have their disadvantages. In the example, the wire is shot after the shot, for the sake of Due to the special requirements of the material selection in the source discharge light 1353618 P55950076TWC4 22306-4twf.d〇c/n. In addition, the optical mechanism undergoes two processes before it happens to reduce the discharge, if it is difficult to The electron emission is generated when the loss is large, and the electron emission end of the cathode is grown or coated. The technology of the sub-class cathode structure is not mature, and the uniformity and production of the electron-emitting end are encountered. Poor rate _. In addition, the distance between the cathode of the light source and the 13⁄4 pole needs to control the wealth, ^

困難,也姆增加製作的成本。 /、度的封裝 【發明内容】 本發明是關於—種具有良好發光效率並且易於 的顯不晝素1構’由電子發射式發S元件所構成。 本發明還關於-種顯示裝置,應用上述之電子發射式 發光元件來作為顯示晝素,用以提供良好的顯示品H 可降低製作時的成本與複雜度。Difficulties also increase the cost of production. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron-emitting S element having a good luminous efficiency and being easy to be used. Further, the present invention relates to a display device which uses the above-described electron-emitting light-emitting element as a display element for providing a good display product H, which can reduce the cost and complexity in production.

為具體描述本發明的内容,在此提出一麵示装置的 晝素結構包括一第一基板與一第二基板。多個陰極結構 層位於該第-基板上。第二基板是一光穿透材料。多個 陽極結構層位於第二基板上,其中陽極結構是一光穿透導 電材料。第一基板與第二基板是相面對,使該些陰極結構 層與該些陽極結構層分別對準。一分隔結構位於第一基板 與第二基板之間,分別將該些陽極結構層與該些陰極二構 層對應分隔,以構成多個空間。多個螢光層分別位於該些 陽極結構層無些陰極結構層之間。—低壓氣體分別填二 該些空間。低壓氣體層有一電子平均自由路徑,允許至少 6 1353618 P55950076TWC4 22306-4twf.doc/n 足夠數量的電子在-操作電壓下直接撞擊螢光層。 . 此外本發明提出—麵示裝置,具有P車列排列的多 .麵示晝素’其巾每-顯示晝素包括—電子發射式發光元 件’該電子發射式發光元件包括—陰極結構層;—陽極結構 層;-螢光層’配置於該陰極結構層與該陽極結構層之間 以及-低壓氣體,配置於極與該陽極之間,用以誘導 該陰極均勻發出多個電子。其中低壓氣體有一電子平均自 ㈣徑’允許至少足_量的電子在-操作碰下直接撞 W 擊該螢光層。 纟發明又提出—種顯示裝置,包括-第-基板與一第 二基板。多個陰極結構層位於第一基板i,構成二維陣列。 第二基板是-光穿透材料。多個陽極結構層位於該第二基 板上,其中該些陽極結構層是—光穿透導電材料,其中該 第-基板與該第二基板是相面對,使該些陰極結構層與該 些陽極結構層分別對準。一分隔結構位於該第一基板與該 第二基板之間’分別將該些陽極結構層與該些陰極結構層 籲義分隔,以構成多個空間。多個螢光層分別位於該些陽 極結構層與該些陰極結構層之間。一低壓氣體分別填入該 些空間,其中該低壓氣體層有—電子平均自由路徑,允許 至少足夠數1的電子在-操作電壓下直接撞擊該營光層。 多個驅動單元設置於該第—基板與該第二基板至少立一 上’該用控制該二維陣列的該些晝素,以施加對應的該操 作電壓,而產生輝度灰階。 7 1353618 P55950076TWC4 22306-4twf.doc/n 基於上述,本發明利用稀薄的氣體將電子由陰極輕易 導出,因此可避免在陰極上製作電子發射端可能產生的問 題。另外,由於所使用的為稀薄的氣體,因此電子的平均 自由路徑(mean free path)較大,還是有大量電子在撞擊氣 體前就可直接與螢光層反應而發出光線,此一過程並不會 產生輝光放電。換言之,本發明的電子發射式發光元件^ 有較高的發光效率,且製作容易並具有較佳的生產良率了 為讓本發明之上述和其他目的、特徵和優點能更明顯To specifically describe the contents of the present invention, it is proposed herein that the halogen structure of the device comprises a first substrate and a second substrate. A plurality of cathode structure layers are on the first substrate. The second substrate is a light penetrating material. A plurality of anode structure layers are on the second substrate, wherein the anode structure is a light penetrating conductive material. The first substrate and the second substrate are facing each other, and the cathode structure layers are respectively aligned with the anode structure layers. A partition structure is disposed between the first substrate and the second substrate, and the anode structure layers are respectively separated from the cathode two-layer layers to form a plurality of spaces. A plurality of phosphor layers are respectively located between the anode structure layers and some cathode structure layers. - The low pressure gas fills the spaces separately. The low pressure gas layer has an electron mean free path that allows at least 6 1353618 P55950076TWC4 22306-4twf.doc/n a sufficient number of electrons to directly strike the phosphor layer at the operating voltage. In addition, the present invention proposes a face-up device having a plurality of P-array arrays, the surface of which exhibits a halogen-containing light-emitting element, and the electron-emitting light-emitting element includes a cathode structure layer; An anode structure layer; a phosphor layer is disposed between the cathode structure layer and the anode structure layer and a low pressure gas disposed between the pole and the anode for inducing the cathode to uniformly emit a plurality of electrons. The low-pressure gas has an electron average from (four) diameter 'allowing at least a sufficient amount of electrons to directly hit the phosphor layer under the operation. The invention also proposes a display device comprising a -th substrate and a second substrate. A plurality of cathode structure layers are located on the first substrate i to form a two-dimensional array. The second substrate is a light penetrating material. a plurality of anode structure layers are disposed on the second substrate, wherein the anode structure layers are light transmissive conductive materials, wherein the first substrate and the second substrate are opposite each other, and the cathode structure layers are The anode structure layers are aligned separately. A partition structure is located between the first substrate and the second substrate. The anode structure layer and the cathode structure layer are respectively separated from each other to form a plurality of spaces. A plurality of phosphor layers are respectively located between the anode structure layers and the cathode structure layers. A low pressure gas is separately filled into the spaces, wherein the low pressure gas layer has an electron mean free path that allows at least a sufficient number of electrons to directly strike the camping layer at the operating voltage. A plurality of driving units are disposed on the first substrate and the second substrate. The plurality of driving units are configured to control the two elements of the two-dimensional array to apply the corresponding operating voltage to generate a luminance gray scale. 7 1353618 P55950076TWC4 22306-4twf.doc/n Based on the above, the present invention utilizes a thin gas to easily conduct electrons from the cathode, thereby avoiding the problem that the electron-emitting end can be formed on the cathode. In addition, since the thin gas is used, the average free path of the electrons is large, and a large amount of electrons can directly react with the fluorescent layer to emit light before hitting the gas, and the process is not Glow discharge will occur. In other words, the electron-emitting light-emitting device of the present invention has higher luminous efficiency, is easy to manufacture, and has better production yield. The above and other objects, features and advantages of the present invention are more apparent.

易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說 明如下。 、D 【實施方式】 本發明所提出的電子發射式發光元件兼具傳統氣體 放電光源與場發射光源的優點,且克服了這兩種傳统發光 結構的缺點。請參照圖〗所繪示的上述兩種傳統發光二構 與本發明之電子發射式發光元件的發光機制比較圖。更詳 細地說,習知的氣體輝光放電光源利用陰極與陽極之間的 電場,使充滿於放電腔内的氣體游離,藉由氣體導 式使電子郷其絲H分顿產生紫料,㈣光層吸= 紫外光後發iii可見光。此外,f知的場發射統是在超高 真空的環境t,藉由陰極上之電子發射端的高深寬比結構 來幫助電子克服陰極的功函數碰離陰極。其後,電子料 由陰極與陽極之間的高電場自陰極的電子發射端逸出^ 撞擊陽極上的f光層,叫出可見光。也就是說,榮光層 8 1353618 P55950076TWC4 22306-4twf.doc/n 的材料依照設計機制的需要可以採用可發出可見光紅外 • 光、或是紫外光等的材料。 ,與上述知發光機制不_是,本發_電子發 射式發光兀件不需形成電子發射端,而是利用稀薄的氣體 將電子由陰極輕易導出,並使電子直接與勞光層反應 出光線。 •,相較於習知的氣體輝光放電光源,本發明之電子發射 式發光元件内所填充之氣體的量僅需要能將電子由陰極導 出即可$會產生輝光放電’且並非利用紫夕卜光照射榮光 層,產生光線’因此不需擔心元件内的材料被紫外光照射 的衰減問題。由實驗與理論驗證我們得知,本發明之電子 發射式發光元件内的氣體較為稀薄,因此電子的平均自由 路徑可以達到約5mm或5mm以上。換言之,大部分的電 子在撞擊氣體的分子前便會直接撞擊到螢光層,而發出光 線。此外,本發明之電子發射式發光元件不需經由^道過 • 程來產生光線,因此發光效率較高,也可減少能量損耗。 另一方面,相較於習知的場發射光源,需要在陰極上 形成作為電子發射端的微結構,此微結構在大面積的製程 控制困難。最常使用到的微結構是奈米碳管(以此⑽ nanotube),在陰極的塗佈上有碳管長短不一與聚集成叢的 問題,使得其發光面有暗點存在,發光均勻性不佳一直是 場發射光源的技術瓶頸與成本來源。本發明之電子發射式 發光元件可以藉由氣體來將電子由陰極均勻導出、需^ 9 1353618 P55950076TWC4 22306-4twf.doc/n 構:可使π電子發射式發光面板的發 光句勻f達到75/。的程度,解轉 發光均勾性難以提升的瓶頸。因此可以大幅節 本,製程上也較為簡單。此外,本發明之電子;It will be understood that the preferred embodiments are described below in detail with reference to the accompanying drawings. D. Embodiments The electron-emitting type light-emitting element proposed by the present invention has the advantages of a conventional gas discharge source and a field emission source, and overcomes the disadvantages of the two conventional light-emitting structures. Please refer to the comparison diagram of the above two conventional light-emitting two-frames and the light-emitting mechanism of the electron-emitting light-emitting element of the present invention. In more detail, the conventional gas glow discharge source utilizes an electric field between the cathode and the anode to free the gas filled in the discharge chamber, and the gas guides the electrons to smash the H to produce a purple material. (4) Light Layer suction = iii visible light after ultraviolet light. In addition, the known field emission system is in an ultra-high vacuum environment t, which helps the electrons to overcome the cathode's work function against the cathode by the high aspect ratio structure of the electron-emitting end on the cathode. Thereafter, the electron material escapes from the electron-emitting end of the cathode by a high electric field between the cathode and the anode, and strikes the f-light layer on the anode to emit visible light. That is to say, the materials of the glory layer 8 1353618 P55950076TWC4 22306-4twf.doc/n can be made of materials capable of emitting visible light infrared light or ultraviolet light according to the design mechanism. And the above-mentioned known illuminating mechanism is not _ _, the present _ electron-emitting illuminating element does not need to form an electron-emitting end, but uses a thin gas to easily lead electrons from the cathode, and allows the electron to directly react with the light layer . • Compared with the conventional gas glow discharge source, the amount of gas filled in the electron-emitting light-emitting device of the present invention only needs to be able to derive electrons from the cathode to generate a glow discharge, and does not utilize the purple bud. Light illuminates the glory layer and produces light' so there is no need to worry about the attenuation of the material inside the component being exposed to ultraviolet light. It has been experimentally and theoretically verified that the gas in the electron-emitting light-emitting device of the present invention is relatively thin, so that the average free path of electrons can be about 5 mm or more. In other words, most of the electrons hit the fluorescent layer directly before the molecules that hit the gas, and emit light. Further, the electron-emitting type light-emitting element of the present invention does not need to pass through the process to generate light, so that the light-emitting efficiency is high and the energy loss can be reduced. On the other hand, compared with the conventional field emission light source, it is necessary to form a microstructure as an electron-emitting end on the cathode, which is difficult to control in a large-area process. The most commonly used microstructure is a carbon nanotube (the (10) nanotube). On the coating of the cathode, there are problems of the length and length of the carbon tube, so that the light-emitting surface has dark spots and uniformity of illumination. Poorness has always been a technical bottleneck and cost source for field emission sources. The electron-emitting light-emitting element of the present invention can uniformly conduct electrons from the cathode by gas, and requires a light-emitting sentence of the π-electron emission type light-emitting panel to reach 75/. . The extent of the solution is a bottleneck that is difficult to improve. Therefore, it is possible to save a lot of money and the process is relatively simple. Further, the electron of the present invention;

=件内填充稀義氣體,因此不需超高真空度環境,可避 ^進灯超尚真空度封裝時所遇到的_。另外,經由實驗 又知’本發明之電子發射式發光元件藉由氣體的幫助可 以使啟始電塵(turn οη她age)降至約〇顿叫,遠低於一 般場發射光源鬲達1〜3ν/μηι的啟始電壓值。 再者’依據已知的Child-Langmuir方程式,將本發明 之電子發射式發光元件的實際相關數據代人計算,可以得 出本發明之f子發射式發光元件的陰極暗區分佈範圍約在 10〜25公分(cm)之間,遠大於陽極與陰極的間距。換言之, 在陽極與陰極之間的幾乎不會產生電聚狀態的氣體,因此 可以確疋本發明之電子發射式發光元件並非彻電衆機制= The part is filled with a rare gas, so there is no need for an ultra-high vacuum environment, which avoids the _ encountered when the lamp is over-vacuum. In addition, it has been experimentally known that the electron-emitting illuminating element of the present invention can reduce the starting electric dust (about turn) to about 〇 叫, which is much lower than the general field emission light source by the help of gas. The starting voltage value of 3ν/μηι. Furthermore, according to the known Child-Langmuir equation, the actual correlation data of the electron-emitting light-emitting element of the present invention can be calculated by hand, and it can be concluded that the cathode dark region distribution range of the f-sub-emissive light-emitting device of the present invention is about 10 Between ~25 cm (cm), much larger than the distance between the anode and the cathode. In other words, there is almost no gas in the electropolymerization state between the anode and the cathode, and therefore it is possible to confirm that the electron-emitting light-emitting element of the present invention is not a mechanism

發光,而是利用氣體導電的方式導出陰極的電子,再由電 子直接與螢光層作用而發光。 請參考圖2,其緣示本發明之電子發射式發光元件的 基本架構。如圖2所示,電子發射式發光元件2〇〇主要包 括陽極210、陰極220、氣體230以及螢光層24〇,其中氣 體230位於陽極210與陰極220之間,且氣體23()受到電 場作用後會產生適量的帶正電離子2〇4,用以誘導陰極22〇 發出多個電子202。值得注意的是,本發明之氣體23〇所 存在之環境的氣壓介於8xl〇-i托爾(的的至1〇-3托爾(t〇rr), 1353618 P55950076TWC4 22306-4twf.doc/n 較佳者,此氣壓例如介於2xUT2托爾(torr)至ΙΟ·3托爾(torr) 或是2父1〇-2托爾(切订)至1.5乂1〇-1托爾(切1:1*)。此外,螢光層 240配置於電子202的移動路徑上,以與電子202作用而 發出光線L。 在本實施例中,螢光層240例如是被塗佈在陽極210 的表面。此外,陽極210例如是由一透明導電氧化物Instead of illuminating, the electrons of the cathode are derived by means of gas conduction, and then the electrons directly act on the phosphor layer to emit light. Referring to Fig. 2, there is shown the basic structure of the electron-emitting light-emitting device of the present invention. As shown in FIG. 2, the electron-emitting light-emitting element 2A mainly includes an anode 210, a cathode 220, a gas 230, and a phosphor layer 24, wherein the gas 230 is located between the anode 210 and the cathode 220, and the gas 23() is subjected to an electric field. After the action, an appropriate amount of positively charged ions 2〇4 is generated to induce the cathode 22 to emit a plurality of electrons 202. It is worth noting that the atmosphere of the gas of the present invention is in the environment of 8xl 〇-i tor (to 1 〇 -3 tor (t〇rr), 1353618 P55950076TWC4 22306-4twf.doc/n Preferably, the pressure is, for example, between 2xUT2 torr (torr) to ΙΟ3 tor (torr) or 2 parent 1〇-2 tor (cut) to 1.5乂1〇-1 tor (cut 1 In addition, the phosphor layer 240 is disposed on the moving path of the electrons 202 to emit light L with the electrons 202. In the present embodiment, the phosphor layer 240 is coated on the surface of the anode 210, for example. In addition, the anode 210 is, for example, a transparent conductive oxide.

(Transparent Conductive Oxide,TCO)所製成,以使光線 L 穿過陽極210射出電子發射式發光元件200,其中可以選 用的透明導電氧化物例如是銦錫氧化物(;ΙΤΟ)、氟摻雜氧化 錫(FTO)或銦鋅氧化物(ΙΖ0)等常見的材質。當然,在其他 實施例中,陽極210或陰極220也可以是由金屬或其他具 有良好導電性的材質製作而成。 本發明所使用的氣體230可以是氮(Ν2)、氦(He)、氖 (Ne)、氬(Ar)、氣(Kr)、氙(Xe)等惰性氣體,或是氫氣(¾)、 二氧化碳(C〇2)等解離後具有良好導電性能的氣體,或是氧 (〇2)、空氣(Air)等一般氣體。此外,藉由選擇螢光層240 的種類’可以使電子發射式發光元件2〇〇發出可見光、紅 外線或紫外線等不同類型的光線。 除了圖2所繪示的實施例之外,本發明為了提高發光 效率’更可以在陰極上形成容易產生電子的材料,用以提 供額外的電子源。如圖3所繪示的本發明另一實施例的電 子發射式發光元件300 ’其陰極320上例如形成有二次電 子源材料層(secondary electron source material layer)322。 此二次電子源材料層322的材質可以為氧化鎂(MgO)、三 1353618 P55950076TWC4 22306-4twf.doc/n 氧化二錢(Tb203)、三氧化二鑭(La2〇3)或二氧化鈽(Ce〇2)。 由於導電氣體330會產生游離的離子3〇4,且離子3〇4帶 正電荷,會遠離陽極310而朝向陰極32〇移動,因此當離 子304撞擊陰極320上的二次電子源材料層322時,便可 產生額外的二次電子302’。較多的電子(包括原有的電子 302與二次電子302,)與螢光層34〇作用,便有助於增加發 光效率。值得注意的是,此二次電子源材料層322不僅有 助於產生二次電子,更可以保護陰極32〇避免受到離子3〇4 的過度轟擊。 此外,本發明亦可以選擇在陽極或陰極其中之一或同 時在陽極與陰極上形成類似場發射光源之電子發射端的結 構,用以降低電極上的工作電壓,更容易產生電子。圖 4A-4C即分別續·示本發明多種具有誘發放電結構的電子 發射式發光元件,其中以相同的標號表示類似的構件,而 對於這些構件不會重複說明。 如圖4A所示’電子發射式發光元件4〇〇a的陰極42〇 上形成有一誘發放電結構452,其例如是金屬材、奈米碳 管(carbon nanotube)、奈米碳壁(carb〇n nanowau)、奈米孔 隙碳材(carbon nanoporous)、柱狀氧化鋅(Zn〇)、氧化辞 (ZnO)材等所構成的微結構《又、誘發放電結構452也可以 再結合增加前述的二次電子源材料層。此外,氣體430位 於陽極410與陰極420之間,而螢光層440配置於陽極410 表面。藉由誘發放電結構452可以降低陽極410與陰極420 之間工作電壓’更容易產生電子402。電子402與螢光層 12 1353618 P55950076TWC4 22306-4twf.doc/n 440作用,便可以產生光線L。 圖4B所繪示的電子發射式發光元件400b與圖4A所 繪示者類似,較明顯的差異處乃是改為在陽極410上配置 誘發放電結構454,而此誘發放電結構454如同前述,可 為金屬材、奈米碳管(carbon nanotube)、奈米碳壁(carbon nanowall)、奈米孔隙碳材(carb〇n nanoporous)、柱狀氧化鋅 (ZnO)、氧化鋅(ZnO)材等所構成的微結構。又、誘發放電 結構452也可以再結合增加前述的二次電子源材料層。此 外’螢光層440則是配置於誘發放電結構454上。 圖4C則是繪示兼具誘發放電結構454與452的一種 電子發射式發光元件400c,其中誘發放電結構454配置於 陽極410上’螢光層440配置於誘發放電結構454上,而 誘發放電結構452配置於陰極420上。氣體430則位於陽 極410與陰極420之間。 上述之多種具有誘發放電結構452與/或454的電子發 射式發光元件400a、400b或400c更可以整合如圖3所繪 示之二次電子源材料層322的設計,而在陰極420上形^ 二次電子源材料層,若陰極420上已形成有誘發放電結構 454,則可以使二次電子源材料層覆蓋誘發放電結構454。 如此,不僅可以降低陽極410與陰極420之間的工作電壓, 使電子402的產生更為容易,也可以藉由二次電子源材料 層增加電子402的數量,提高發光效率。 ,、 本發明所提出的電子發射式發光元件作為發光結 構,可以具有不同的型態。圖5〜圖6分別繪示應用本發明 13 P55950076TWC4 22306-4twf.doc/n 之電子發射式發光元件的幾種不同外型的發光結構β 圖5所示為另一種水平發射式(ΐη_ρΐ&η6 emission 的發光結構600’主要是將陽極61〇、陰極62〇以及螢光層 640配置在一基板(substrate)68〇上’此基板68〇例如是一 玻璃基板’而陽極610與陰極62〇的材質例如是金屬、銦 錫氧化物或銦鋅氧化物等常見的透明導電氧化物或其他具 有良好導電性的材質製作而成。螢光層640位於陽極610 與陰極620之間’藉由氣體630所誘發的電子602會穿過 螢光層640,使其發出光線L·。本發明之氣體630所存在 之環境的氣壓如同前述,可介於8χ1〇-ι托爾⑼汀)至1〇_3托 爾(t〇rr)’較佳者’此氣壓介於2xl0_2托爾(torr)至1〇-3托爾 (tory)與ΐ.5χΐ〇 1托爾(t〇rr)。實際的氣體壓力與操作電壓依 陰陽極距離、氣體種類與結構不同而異。另外,本發明所 ,用的氣體630可以是&(氮)、氦(He)、氖(Ne)、氬(Ar)、 乱(Kr)、氙(Xe)等惰性氣體,或是氫氣(η〗)、二氧化碳(c〇2) 等解離後具有良好導電性能的氣體,或是氧⑽、空氣(Air) 等=般氣體。此外,藉由選擇螢光層64〇的種類,可以使 ,光、構600發出可見光、紅外線或紫外線等不同類型的 光線.。至於如何維持封閉的氣體環境例如可以藉由一般的 技術達成,其細節於此不予詳述。 關於其他元件的相關說明請參照前述實施 再重複贅述。 值得注意的是,上述圖5的發光結構僅為舉例之用, '非用以限定本發崎能應狀發光結構的㈣。在其他 1353618 P55950076TWC4 22306-4twf.doc/n 實施例中,例如更可依據不同的考量,將上述之發光結構 結合圖3的二次電子源材料層322或4A〜4C的誘發放電結 構452與454 ’以滿足不同的需求。 本發明之電子發射式發光元件更可用於製作一光源 裝置,其例如是由前述多個實施例中的任一種電子發射式 發光元件所組成,用以提供一光源。圖6繪示為依據本發 明之一實施例的一種光源裝置。如圖6所示,光源裝置8〇〇 包括陣列排列的多個電子發射式發光元件8〇〇a,用以提供 一面光源s。本實施例所選用的電子發射式發光元件8〇〇a 的設計例如包括前述多個實施例中的任何一種。舉例而 吕,光源裝置800可以採用類似圖5之發光結構600的設 計,而在一基板880上製作多組陽極81〇、陰極82〇以及 螢光層840的結構,以達到大型化的目的。 當然’上述所提出的各種電子發射式發光元件亦可應 用於顯示裝置上。圖7繪示為依據本發明之一實施例的一 種顯示裝置。如圖7所示,顯示裴置9〇〇的每一顯示晝素 902是由一電子發射式發光元件所構成,以藉由多個顯示 晝素902組成一顯示圖框,顯示靜態或動態晝面。由於是 以電子發射式發光元件作為顯示晝素9〇2,因此電子發射 式發光元件中例如是採用可發出紅光、綠光與藍光的螢光 層,以構成红色顯示畫素尺、綠色顯示晝素G以及藍色顯 不畫素B,進而達到全彩的顯示效果。另外,如圖8所示, 另一種顯示裝置900’的紅光、綠光與藍光的畫素陣列的安 排可依實際的設計而定,以達到色彩灰階的顯示。又,依 15 1353618 P55950076TWC4 22306-4twf.doc/n 設計需要,其也可以再增加一色光’例如是检色(〇range, 〇) 光的晝素,配合紅、綠、藍晝素,構成一晝素單元的結構。 圖9繪示為依據本發明之一實施例的一種顯示裝置的 晝素結構。參閱圖9,一般而言,顏色是由紅、綠、藍的 三個原色,依照相對的亮度灰階達成。實施例是以三個畫 素對應紅、綠、藍的晝素為例做說明。 利用前述的技術來設計,畫素結構例如可以包括第一 基板1000與一第二基板1〇〇2。多個陰極結構層1〇〇4,位 於第一基板1000上。第二基板1002是一光穿透材料。多 個陽極結構層1010位於第二基板1002上,其中陽極結構 1010是一光穿透導電材料。第一基板1000與第二基板1〇〇2 是相面對,使陰極結構層1004與陽極結構層1〇1〇分別對 準。一分隔結構1012位於第一基板1〇〇〇與第二基板1〇〇2 之間,分別將陽極結構層1010與陰極結構層1〇〇4對應分 隔’以構成多個空間。多個螢光層l〇〇8a、1008b、i〇〇8c 为別位於陽極結構層1010與陰極結構層1004之間。一低 壓氣體1006分別填入那些空間。低壓氣體1〇〇6有一電子 平均自由路徑,允許至少足夠數量的電子在一操作電壓下 直接撞擊螢光層l〇〇8a、1008b、1008c。 於此,螢光層1008a、螢光層1008b與螢光層i008c 例如分別不同的材料,經激發後發出紅光、綠光、藍光。 至於分別晝素的氣體的氣壓值,可以是都相同或是分別不 同,其是設計上以及實際操作的變化。當然,如果顯示器 僅是要求單一顏色的顯示,則螢光層的材料配置也可以有 1353618 P55950076TWC4 22306-4twf.doc/n 不同安排。 圖10繪示為依據本發明之另一實施例的一種顯示裝 置的晝素結構。參閱圖10,例如採用圖6的設計原則,配 合圖9的結構達成顯示裝置的設計,但是不是唯一的選 擇。在圖9的顯示裝置,其二個電極結構1〇〇4、1〇1〇是分 別在不同的下基板1000與上基板1〇〇2。在圖1〇中,二個 電極結構1004’、1010’以及在電極之間的螢光層1〇〇8a,、 1008b’、1008c’是同侧,例如位於基板1〇〇〇上。基板1〇〇〇 例如具有光反射的功能。依照螢光材料的選擇可以發出不 同顏色的可見光,產生所要的混合色彩。 由於圖像需要利用輝度灰階的變化來顯示。所需要的 色彩是由紅光、綠光、藍光的相對輝度灰階來決定。因此 每個晝素的灰階需要一些機制來調整。圖繪示為依 據本發明之一實施例的輝度灰階控制機制。參閱圖U,依 照氣體的氣壓與施加電壓的不同,會產生不同反應的電 流。一般而言,以2xl0_2torr的氣壓而言,其電流與施加 電壓大致上是成線性關係。另外啟始電壓也會因氣壓不同 而有變化。另外參閱12,施加電壓的大小也意味撞擊營光 層的電子的數量多少以及撞擊的能量。單位面積的輝度也 與施加電壓大致上是成線性關係,可藉由改變施加的電壓 來改變灰階值,以組合出所要的色彩。 基於氣體的反應,對於選定的氣壓值下,可以得到實 際施加電壓與灰階的關係,做為灰階修正的資料。 例如取圖9或圖10的紅綠藍三個晝素做為一晝素單 17 1353618 P55950076TWC4 22306-4twf.doc/n 元,其對應灰階的電壓可藉由驅動器來驅動。參閱圖13, 顯示裝置1300以二維陣列的驅動方式為基礎,包含有多個 驅動器1302、1306在對應的基板上,分別以二個方向來控 制晝素的陽極結構與陰極結構。驅動器13〇2有多條控制電 路1304例如耦接到對應行(c〇iumn)的多個晝素的陽極(或 陰極),驅動器1306有多條控制電路1308例如耦接到對應 列(row)的多個晝素的陰極(或陽極)。藉由控制電路(Transparent Conductive Oxide, TCO) is formed to emit light L through the anode 210 to emit the electron-emitting light-emitting element 200, wherein an optional transparent conductive oxide such as indium tin oxide (?), fluorine-doped oxidation Common materials such as tin (FTO) or indium zinc oxide (ΙΖ0). Of course, in other embodiments, the anode 210 or the cathode 220 may also be made of metal or other material having good electrical conductivity. The gas 230 used in the present invention may be an inert gas such as nitrogen (Ν2), helium (He), neon (Ne), argon (Ar), gas (Kr), xenon (Xe), or hydrogen (3⁄4), carbon dioxide. (C〇2) A gas having good electrical conductivity after dissociation, or a general gas such as oxygen (〇2) or air (Air). Further, by selecting the kind ' of the fluorescent layer 240', the electron-emitting light-emitting element 2 can emit different types of light such as visible light, infrared rays or ultraviolet rays. In addition to the embodiment illustrated in Fig. 2, in order to improve the luminous efficiency, the present invention can form a material which is easy to generate electrons on the cathode to provide an additional electron source. The electron-emitting light-emitting element 300' of another embodiment of the present invention as shown in Fig. 3 has, for example, a secondary electron source material layer 322 formed on the cathode 320 thereof. The material of the secondary electron source material layer 322 may be magnesium oxide (MgO), three 1353618 P55950076TWC4 22306-4twf.doc/n oxidized divalent (Tb203), antimony trioxide (La2〇3) or ceria (Ce 〇 2). Since the conductive gas 330 generates free ions 3〇4, and the ions 3〇4 are positively charged, they move away from the anode 310 toward the cathode 32〇, so when the ions 304 strike the secondary electron source material layer 322 on the cathode 320. , an additional secondary electron 302' can be generated. More electrons (including the original electron 302 and secondary electrons 302) interact with the phosphor layer 34 to help increase the light-emitting efficiency. It is worth noting that this secondary electron source material layer 322 not only helps to generate secondary electrons, but also protects the cathode 32 from excessive bombardment by the ions 3〇4. Furthermore, the present invention may alternatively form a structure similar to one of the anode or the cathode or the electron-emitting end of the field-emitting source on the anode and the cathode to lower the operating voltage on the electrode and to generate electrons more easily. 4A-4C are respectively a plurality of electron-emitting type light-emitting elements having an induced discharge structure of the present invention, wherein like members are denoted by the same reference numerals, and the description thereof will not be repeated. As shown in FIG. 4A, an evoked discharge structure 452 is formed on the cathode 42 of the electron-emitting light-emitting element 4A, which is, for example, a metal material, a carbon nanotube, or a carbon wall. Microstructure composed of nanowau), carbon nanoporous, columnar zinc oxide (Zn〇), oxidized (ZnO) material, etc. Further, the induced discharge structure 452 can be combined to increase the aforementioned second Electron source material layer. Further, gas 430 is located between anode 410 and cathode 420, and phosphor layer 440 is disposed on the surface of anode 410. The electrons 402 are more easily generated by inducing the discharge structure 452 to reduce the operating voltage between the anode 410 and the cathode 420. The electron 402 and the fluorescent layer 12 1353618 P55950076TWC4 22306-4twf.doc/n 440 can generate light L. The electron-emitting light-emitting element 400b illustrated in FIG. 4B is similar to that illustrated in FIG. 4A. The more obvious difference is that the induced discharge structure 454 is disposed on the anode 410, and the induced discharge structure 454 is as described above. It is a metal material, a carbon nanotube, a carbon nanowall, a carb〇n nanoporous, a columnar zinc oxide (ZnO), or a zinc oxide (ZnO) material. The microstructure of the structure. Further, the induced discharge structure 452 may be combined with the addition of the aforementioned secondary electron source material layer. Further, the phosphor layer 440 is disposed on the induced discharge structure 454. 4C illustrates an electron-emitting light-emitting element 400c having both induced discharge structures 454 and 452, wherein the induced discharge structure 454 is disposed on the anode 410. The phosphor layer 440 is disposed on the induced discharge structure 454 to induce a discharge structure. 452 is disposed on the cathode 420. Gas 430 is located between anode 410 and cathode 420. The above-mentioned plurality of electron-emitting light-emitting elements 400a, 400b or 400c having induced discharge structures 452 and/or 454 can further integrate the design of the secondary electron source material layer 322 as shown in FIG. 3, and form a shape on the cathode 420. In the secondary electron source material layer, if the induced discharge structure 454 has been formed on the cathode 420, the secondary electron source material layer may be covered with the induced discharge structure 454. Thus, not only the operating voltage between the anode 410 and the cathode 420 can be lowered, but the generation of the electrons 402 can be made easier, and the number of electrons 402 can be increased by the secondary electron source material layer to improve the luminous efficiency. The electron-emitting light-emitting element proposed by the present invention may have different types as the light-emitting structure. 5 to FIG. 6 respectively show light-emitting structures of several different shapes of an electron-emitting type light-emitting element to which the present invention 13 P55950076TWC4 22306-4twf.doc/n is applied. FIG. 5 shows another horizontal emission type (ΐη_ρΐ&η6) The emission structure 600' of the emission is mainly to arrange the anode 61 〇, the cathode 62 〇 and the phosphor layer 640 on a substrate 68 ' 'this substrate 68 〇 is, for example, a glass substrate ′ and the anode 610 and the cathode 62 〇 The material is made of a common transparent conductive oxide such as metal, indium tin oxide or indium zinc oxide or other material having good conductivity. The phosphor layer 640 is located between the anode 610 and the cathode 620 'by gas 630 The induced electrons 602 will pass through the phosphor layer 640 to emit light L. The gas pressure of the environment in which the gas 630 of the present invention is present may be between 8χ1〇-ι (9) and 1〇_ 3 Tor (t〇rr) 'better' this pressure is between 2xl0_2 tor (torr) to 1〇-3 tor (tory) and ΐ.5χΐ〇1 tor (t〇rr). The actual gas pressure and operating voltage will vary depending on the anode-anode distance, gas type and structure. In addition, the gas 630 used in the present invention may be an inert gas such as & (nitrogen), helium (He), neon (Ne), argon (Ar), chaos (Kr), xenon (Xe), or hydrogen ( η〗), carbon dioxide (c〇2), etc., which have good electrical conductivity after dissociation, or oxygen (10), air (Air), etc. Further, by selecting the type of the phosphor layer 64, it is possible to cause the light and the structure 600 to emit different types of light such as visible light, infrared light or ultraviolet light. How to maintain a closed gas environment can be achieved, for example, by general techniques, the details of which are not described in detail herein. For the description of other components, please refer to the above implementation and repeat them. It should be noted that the above-mentioned light-emitting structure of FIG. 5 is only used as an example, and 'four' is not used to define the light-emitting structure of the present. In other 1353618 P55950076TWC4 22306-4twf.doc/n embodiments, the above-described light emitting structure may be combined with the secondary electron source material layer 322 of FIG. 3 or the induced discharge structures 452 and 454 of 4A to 4C, for example, according to different considerations. 'To meet different needs. The electron-emitting light-emitting device of the present invention can be further used to fabricate a light source device, which is composed, for example, of any of the foregoing embodiments, to provide a light source. FIG. 6 illustrates a light source device in accordance with an embodiment of the present invention. As shown in Fig. 6, the light source device 8A includes a plurality of electron-emitting light-emitting elements 8a arranged in an array to provide a light source s. The design of the electron-emitting light-emitting element 8〇〇a selected for the present embodiment includes, for example, any of the foregoing various embodiments. For example, the light source device 800 can adopt a design similar to the light-emitting structure 600 of FIG. 5, and a plurality of sets of the anode 81 〇, the cathode 82 〇, and the fluorescent layer 840 are formed on a substrate 880 for the purpose of large-scale. Of course, the various electron-emitting light-emitting elements proposed above can also be applied to display devices. Figure 7 is a diagram showing a display device in accordance with an embodiment of the present invention. As shown in FIG. 7, each display element 902 of the display device 9 is composed of an electron-emitting light-emitting element to form a display frame by a plurality of display elements 902, displaying static or dynamic 昼. surface. Since the electron-emitting type light-emitting element is used as the display element 9〇2, for example, a fluorescent layer capable of emitting red light, green light, and blue light is used in the electron-emitting light-emitting element to form a red display pixel scale and a green display. The alizarin G and the blue color do not show the prime B, and the full color display effect is achieved. In addition, as shown in Fig. 8, the arrangement of the pixel arrays of red, green and blue light of another display device 900' may be determined according to the actual design to achieve color gray scale display. In addition, according to the design requirements of 15 1353618 P55950076TWC4 22306-4twf.doc/n, it can also add one color light, such as the color of the light (检range, 〇) light, combined with red, green and blue sputum, to form a The structure of the unit. FIG. 9 is a diagram showing a pixel structure of a display device according to an embodiment of the present invention. Referring to Figure 9, in general, the colors are three primary colors of red, green, and blue, which are achieved in accordance with the relative brightness gray scale. The embodiment is illustrated by taking three pixels of red, green and blue as examples. Designed using the aforementioned techniques, the pixel structure may include, for example, a first substrate 1000 and a second substrate 1〇〇2. A plurality of cathode structure layers 1 〇〇 4 are located on the first substrate 1000. The second substrate 1002 is a light transmissive material. A plurality of anode structure layers 1010 are disposed on the second substrate 1002, wherein the anode structure 1010 is a light transmissive conductive material. The first substrate 1000 and the second substrate 1〇〇2 face each other, and the cathode structure layer 1004 and the anode structure layer 1〇1 are respectively aligned. A partition structure 1012 is located between the first substrate 1 〇〇〇 and the second substrate 1 〇〇 2, and respectively separates the anode structure layer 1010 from the cathode structure layer 1 〇〇 4 to constitute a plurality of spaces. The plurality of phosphor layers 10a, 1008b, and i8c are located between the anode structure layer 1010 and the cathode structure layer 1004. A low pressure gas 1006 fills in those spaces, respectively. The low pressure gas 1〇〇6 has an electron mean free path that allows at least a sufficient amount of electrons to directly strike the phosphor layers l8a, 1008b, 1008c at an operating voltage. Here, the phosphor layer 1008a, the phosphor layer 1008b, and the phosphor layer i008c are, for example, different materials, and are excited to emit red light, green light, and blue light. As for the gas pressure values of the respective halogen gases, they may all be the same or different, which are design and actual operation changes. Of course, if the display only requires a single color display, the material configuration of the phosphor layer can also be 1353618 P55950076TWC4 22306-4twf.doc/n different arrangements. Figure 10 is a diagram showing the structure of a pixel device of a display device in accordance with another embodiment of the present invention. Referring to Fig. 10, for example, using the design principles of Fig. 6, the configuration of Fig. 9 is used to achieve the design of the display device, but is not the only option. In the display device of Fig. 9, the two electrode structures 1〇〇4, 1〇1〇 are different from the lower substrate 1000 and the upper substrate 1〇〇2, respectively. In Fig. 1A, the two electrode structures 1004', 1010' and the phosphor layers 1?8a, 1008b', 1008c' between the electrodes are on the same side, for example, on the substrate 1?. The substrate 1 〇〇〇 has a function of light reflection, for example. Depending on the choice of fluorescent material, visible light of different colors can be emitted to produce the desired mixed color. Since the image needs to be displayed using the change in luminance grayscale. The required color is determined by the relative luminance gray scale of red, green, and blue light. Therefore, the gray level of each element requires some mechanism to adjust. The figure is illustrated as a luminance gray scale control mechanism in accordance with an embodiment of the present invention. Referring to Figure U, depending on the gas pressure and the applied voltage, different reactive currents are generated. In general, the current is approximately linear with the applied voltage in terms of the gas pressure of 2xl0_2torr. In addition, the starting voltage will also vary depending on the air pressure. Referring also to 12, the magnitude of the applied voltage also means the amount of electrons striking the camping layer and the energy of the impact. The luminance per unit area is also substantially linear with the applied voltage, and the gray scale value can be changed by changing the applied voltage to combine the desired colors. Based on the gas-based reaction, the relationship between the actual applied voltage and the gray scale can be obtained for the selected gas pressure value as a gray scale correction data. For example, the red, green and blue elements of FIG. 9 or FIG. 10 are used as a single element 17 1353618 P55950076TWC4 22306-4twf.doc/n, and the voltage corresponding to the gray level can be driven by the driver. Referring to Fig. 13, display device 1300 is based on a two-dimensional array of driving methods including a plurality of drivers 1302, 1306 on respective substrates for controlling the anode and cathode structures of the halogen in two directions. The driver 13〇2 has a plurality of control circuits 1304 coupled to, for example, an anode (or cathode) of a plurality of cells of a corresponding row, and the driver 1306 has a plurality of control circuits 1308 coupled to, for example, corresponding rows. The cathode (or anode) of multiple halogens. Control circuit

與控制電路1308選擇交叉的晝素131〇,以施加對應灰 值的電壓。 ^ 就被動式的驅動機制而言,例如以時間分割的機制, 以掃插線關框單位,依序顯示掃描線。由於人的眼睛由 :見覺暫留現象’在-定時間内依序顯示所有的掃描線組成 =像。於此,由於第-條掃描縣與最後—條掃描線仍由 二:^ ’因此為了更調整其Μ差易,可以安排第-條掃 描顯線較焭,而依序漸低亮度。The intersection of the pixel 131 选择 is selected with the control circuit 1308 to apply a voltage corresponding to the gray value. ^ In the case of a passive driving mechanism, for example, a time division mechanism is used to sequentially display scan lines in a sweep line unit. Since the human eye consists of: seeing the persistence phenomenon, all the scan line components are displayed in sequence for a certain time = image. In this case, since the first-scanning county and the last-scanning line are still two:^', in order to adjust the difference, it is possible to arrange the first-scanning display line to be more ambiguous, and gradually lower the brightness.

上述的驅動機制是以被動方式來調整。另外也可以採 用主動方式來驅動。參閱圖14,顯示裝置刚以二 =的驅動方式為基礎,包含有多個驅動器丨術、丨侧在 ^ 個方向來控制畫素的陽極結構與陰 “mm多條控制電路例如祕㈣應行的 如t ),驅動器14G4有多條控制電路例 ==多個晝素的陰極(或陽極)。藉由控制電 ,擇父又的晝素,以施加對應灰 驅動機制的不同是每個晝素1406除了包含電以 1353618 P55950076TWC4 22306-4twf.doc/n 外還有開關控制單元1408。開關控制單元14〇8例如可以 有薄膜電晶體(TFT, Thin Film Transistor)單元,接受驅動器 的控制,來開啟或關閉晝素,以及其發光亮度的控制。 月1J述的驅動機制的細節,應可為一般習此技藝者可了 解,利用本發明的畫素結構與發光機制做實際的設計規 劃,其細節不於此描述。 另外,所舉的多個實施例,可相互做適當組合,不限 於特定的實施方式。 乡示上所述,本發明所提出的電子發射式發光元件及應 用此元件的光源裝置與顯示裝置具有節省能源、發光效率 高、響應時間(response time)短、容易製造且環保(不含汞) 等特色,因此可以提供市場另一種光源裝置與顯示裝置的 選擇。與習知的發光結構相較,本發明所提出的電子發射 式發光元件結構簡單,陰極只需為平面結構便可正常運 作,相關的一次電子源材料層或誘發放電結構只是選擇性 的,並非必要元件。此外,本發明之電子發射式發光元件 不需要進行超高真空封裝,可簡化生產製程並有利於大面 積生產。 另一方面,本發明之電子發射式發光元件的陰極可為 金屬’因此可提高反射率並增加亮度與發光效率。此外, 電子發射式發光元件所發出的光波長視螢光層種類而定, 可因應光源裝置或顯示裝置等不同用途,而設計不同波長 範圍的光源。另外’本發明之電子發射式發光元件可設計 為平面(planar)光源、線型(unear)光源或點(spot)光源,可 19 1353618 P55950076TWC4 22306-4twf.doc/n 光源裝置(例如背光模組或照明燈具)等不 雖然本發明已啸佳實施例揭露如上,狀並非用以 限定本發明,任何關領財具有通f知财,在不脫離 本發明之精神和範_ ’當可作些狀更動與麟,因此 本發明之保護範圍當視後附之申請專利範圍所界定者為 準。 ”·、The above driving mechanism is adjusted in a passive manner. It can also be driven in an active way. Referring to Fig. 14, the display device is based on the driving mode of the second=, including a plurality of actuators, the anode side in the direction of the anode to control the pixel structure and the negative "mm multiple control circuits such as secret (4) should be For example, t), the driver 14G4 has a plurality of control circuits == a plurality of halogen cathodes (or anodes). By controlling the electric power, the father's other elements are applied to apply the corresponding gray driving mechanism. The element 1406 has a switch control unit 1408 in addition to the electric 1335318 P55950076TWC4 22306-4twf.doc/n. The switch control unit 14〇8 can have, for example, a thin film transistor (TFT) unit, which is controlled by the driver. Turning on or off the halogen, and controlling the brightness of the light. The details of the driving mechanism described in the month 1J should be understood by those skilled in the art, using the pixel structure and the light-emitting mechanism of the present invention to make an actual design plan. The details are not described herein. In addition, the various embodiments may be combined with each other in an appropriate manner, and are not limited to the specific embodiments. The electron-emitting type light-emitting element proposed by the present invention is described above. The light source device and the display device using the device have the characteristics of energy saving, high luminous efficiency, short response time, easy manufacture, and environmental protection (excluding mercury), so that another light source device and display device can be selected in the market. Compared with the conventional light-emitting structure, the electron-emitting light-emitting element proposed by the invention has a simple structure, and the cathode only needs to be a planar structure to operate normally, and the related primary electron source material layer or the induced discharge structure is only selective. Further, the electron-emitting type light-emitting element of the present invention does not require an ultra-high vacuum package, which simplifies the production process and facilitates large-area production. On the other hand, the cathode of the electron-emitting light-emitting element of the present invention may be a metal. 'Therefore, the reflectance can be increased and the brightness and luminous efficiency can be increased. In addition, the wavelength of light emitted by the electron-emitting light-emitting element depends on the type of the fluorescent layer, and can be designed in different wavelength ranges depending on the light source device or the display device. Light source. In addition, the electron-emitting light-emitting element of the present invention can be designed to be flat (planar) light source, unear light source or spot light source, 19 1353618 P55950076TWC4 22306-4twf.doc/n light source device (such as backlight module or lighting fixture), etc., although the invention has been disclosed As above, the form is not intended to limit the present invention, and any related property has the knowledge of the invention, and the scope of protection of the present invention is attached thereto without departing from the spirit and scope of the present invention. The scope defined in the scope of application for patents shall prevail. "·,

【圖式簡單説明】 圖1所繪示傳統發光結構與本發明之電子發射式發光 元件的發光機制比較圖。 圖2繪示本發明之電子發射式發光元件的基本架構。 圖3繪示本發明另一實施例的電子發射式發光元件。 圖4A〜4C分別繪示本發明多種具有誘發放電結構的 電子發射式發光元件。 圖5繪示應用本發明之電子發射式發光元件的幾種不 同外型的發光結構。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a comparison of a light-emitting mechanism of a conventional light-emitting structure and an electron-emitting light-emitting element of the present invention. Fig. 2 is a view showing the basic structure of an electron-emitting type light-emitting element of the present invention. 3 is a diagram showing an electron emission type light-emitting element according to another embodiment of the present invention. 4A to 4C respectively show various electron-emitting light-emitting elements of the present invention having an induced discharge structure. Fig. 5 is a view showing a plurality of different types of light-emitting structures of an electron-emitting type light-emitting element to which the present invention is applied.

符合顯示裝置 同用途的需求 圖6繪示為依據本發明之一實施例的一種光源裝置。 圖7〜8繪示為依據本發明之實施例的顯示裝置。 圖9〜10繪示為依據本發明之實施例的顯示裝置的畫 素結構。 圖11〜12繪示為依據本發明之一實施例的輝度灰階控 制機制。 圖13〜14繪示為依據本發明之一實施例的種顯示裝 1353618 P55950076TWC4 22306^twf.doc/n 【主要元件符號說明】 200、300、400a、400b、400c :電子發射式發光元件 202、302、402、502、602、702 :電子 204、304、504、704 :離子 210、310、410、510、610、710、810 :陽極 220、320、420、520、620、720、820 :陰極 230、330、430、530、630、730 :氣體 240、340、440、540、640、740、840 :榮光層 322 :二次電子源材料層 452、454 :誘發放電結構 500、600、700 :發光結構 560 :間隙物 570 :密閉空間 680、880 :基板 800 :光源裝置 800a :電子發射式發光元件 900 :顯示裝置 902:顯示晝素 1000:第一基板 1002 :第二基板 1004、1004’:陰極結構層 1006 :低壓氣體 1008a、1008b、1008c :榮光層 1008a’、1008b’、l〇〇8c,:螢光層 21 1353618 P55950076TWC4 22306-4twf.doc/n 1010、1010’:陽極結構 1012 :分隔結構 1300、1400 :顯示裝置 1302、1306、1402、1404 :驅動器 1304、1308 :控制電路 1310 > 1406 :畫素 1410 :發光單元 1408 :開關控制單元L :光線 S : 面光源 R : 紅色顯示晝素 G : 綠色顯示晝素 B : 藍色顯示晝素 0 : 橙色顯示晝素 22Compliance with Display Device Requirements for Same Use FIG. 6 illustrates a light source device in accordance with an embodiment of the present invention. 7 to 8 illustrate a display device in accordance with an embodiment of the present invention. 9 to 10 are diagrams showing the pixel structure of a display device in accordance with an embodiment of the present invention. 11 to 12 illustrate a luminance gray scale control mechanism in accordance with an embodiment of the present invention. 13 to 14 illustrate a display device 1353618 P55950076TWC4 22306^twf.doc/n according to an embodiment of the present invention. [Main component symbol description] 200, 300, 400a, 400b, 400c: electron emission type light-emitting element 202, 302, 402, 502, 602, 702: electrons 204, 304, 504, 704: ions 210, 310, 410, 510, 610, 710, 810: anodes 220, 320, 420, 520, 620, 720, 820: cathode 230, 330, 430, 530, 630, 730: gases 240, 340, 440, 540, 640, 740, 840: glory layer 322: secondary electron source material layers 452, 454: induced discharge structures 500, 600, 700: Light-emitting structure 560: spacer 570: sealed space 680, 880: substrate 800: light source device 800a: electron-emitting light-emitting element 900: display device 902: display pixel 1000: first substrate 1002: second substrate 1004, 1004': Cathode structure layer 1006: low pressure gas 1008a, 1008b, 1008c: glory layer 1008a', 1008b', l8c, phosphor layer 21 1353618 P55950076TWC4 22306-4twf.doc/n 1010, 1010': anode structure 1012: separation Structures 1300, 1400: display devices 1302, 1306, 1402, 1404: drive 1304, 1308: control circuit 1310 > 1406: pixel 1410: illumination unit 1408: switch control unit L: light S: surface light source R: red display halogen G: green display element B: blue display element 0 : Orange shows Alizarin 22

Claims (1)

曰修正本 丨1〇r月 十、申請專利範圍: h —種顯示晝素結構,包括: 一第一基板; 多個陰極結構層,位於該第一基板上; 一第二基板,是一光穿透材料; 多個陽極結構層,位於該第二基板 結構層是-光穿透導電材料,該第—基板轉二 相面對’使該些陰極結構層與該些陽極:二^ =隔結構’於料—基板與料二基板之間,分別 極結構層與該些陰極結構層對應分隔,以構成多 播思夕彳!1縣層,》別位於触陽極結構層與該些陰極結 構層之間,構成多個畫素;以及 一低壓氣體,分別填入該些空間, 壓《層有—奸平均自由雜,允許至少 ΐΐ ΐ—縣f壓下餘縣該勞光層, 杯爾、δ玄低壓氣體的—氣壓介於8x10-1托爾(㈣至1〇-3 托爾(torr)之間。 丄如曱請專利範圍第1項所 該些螢光層分別位於該陽極表面 1項所述之顯示晝素結構,其中 發出不同顏色的光。 項所述之顯示畫素結構,其中 3.如申請專利範圍第 該些螢光層依照材料特性, 4·如申請專利範圍第工 項所述之顯示畫素結構 23 100-7-8 別發:一t晝素為一晝素單元’該三個螢光層包含分 X出、,工先、綠光、藍光的三種榮光材料。 該查利範圍第4項所述之顯示晝素結構,其中 至素早疋更包括橙色光。 對應專利範圍第1項所述之顯示畫素結構,其中 π二:厂、的雜陽極結構層與該些陰極結構層,分別 也σ作電壓’以產生分別所需要的輝度灰階。 :如申請專利範圍第i項所述之顯示畫素結構,還包 夕-次電子源材料層’分別在該些陰極結構層上。 •如巾請專利範圍第7項所述之顯示畫素結構,其中 該=二次電子源材料層的材質包括氧化鎂(Mg〇)、三氧化 一 ’'(Tb2〇3)、二氧化二鋼(La2〇3)或二氧化飾(Ce〇2)。 夕9.如申請專利範圍第丨項所述之顯示晝素結構,更包 括夕個誘發放電結構’配置於該陽極結構層與該陰極結構 層至少其中之一上。 —1〇.—種顯示裝置,具有陣列排列的多個顯示晝素,其 中每一顯示晝素包括一電子發射式發光元件,該電子發射 式發光元件包括: 一陰極結構層; 一陽極結構層; 一鸯光層’配置於該陰極結構層與該陽極結構層之間; 以及 〜低壓氤體,配置於該陰極與該陽極之間,用以誘導 該陰極發出多個電子,其中該低壓氣體有一電子平均自由 24 100-7-8 路徑’允許至少足夠數量 該螢光層, 的電子在一操作 電壓下直接撞擊 其中該低壓氣體所存在夕卢#^尸 (㈣至10-3把爾㈣。核兄的氣壓介於私10·1托爾 11.如申請專利範圍第10 -雷早㈣彳H Μ 項所34之齡裝置,其中每 面。"” Χ 70牛的該勞光層位於該陽極結構層的表 12·如申請專鄕@第1G項所述之顯示衫,更包括 -上基板與-下基板’用以承縣—t子發射式發光元件 的該陽極結構層與該陰極結構層。 13. 如申請專利範圍第10項所述之顯示裝置,其中每 一電子發射式發光元件更包括一誘發放電結構,其配置於 該陽極結構層與該陰極結構層至少其中之一上。 14. 如申請專利範圍第1〇項所述之顯示裝置,其中每 一電子發射式發光元件更包括一二次電子源材料層 (secondary electron emitting layer),配置於該陰極上。 15·如申請專利範圍第10項所述之顯示裝置,其中相 鄰三個電子發射式發光元件構成一晝素單元,分別發出紅 光、綠光與Ιι光。 16.如申請專利範圍第15項所述之顯示裝置,其中該 晝素單元更包括橙色光。 17.—種顯示裝置,包括: 一第一基板; 多個陰極結構層,位於該第一基板上,構成二維陣列; 25 1353618 100-7-8 一第二基板,是一光穿透材料; 多個陽極結構層,位於該第二基板上,其中該些陽極 結構層是-光穿透導電㈣,其中該第—基板與該第二基 板是相面對’使該猶極結構層與該些陽極結構層分別對 準; -分隔結構,於該第-基板與該第二基板之間,分別 將該些陽極結構層無些陰極結構層對齡隔,以構成多 個空間; 多個螢光層,分別位於該些陽極結構層與該些陰極结 構層之間,構成多個晝素; ' -低壓氣體,分職人該些空間’其中該低壓氣體声 有一電子平均自由路徑,允輕少足夠數量的電子在^ 作電壓下直接撞擊該f光層,其巾該低壓氣體的—介 於8x10“托爾(torr)至1〇_3托爾(torr)之間;以及 、 多個驅動單元,設置於該第一基與該第二基板之至,卜 其-上’用以控制該二維陣列的該些晝素, 二 該操作電壓,而產生輝度灰階。 對應的 18·如申請專利範圍第17項所述之顯示裝置, 些驅動單元是以主動模式或是被純式·轉該些書2該 19·如申請專利範圍第17項所述之顯示了二 素更包括至少一薄膜電晶體,在#此二,母個晝 合驅動該些晝素。在4動早兀的控制下配 2〇·如申請專利範圍第17項所述之顯 些螢光層依照材料特性,發出不同顏色的光。 ^ 26 1353618 100-7-8 21. 如申請專利範圍第17項所述之顯示裝置,其中該 些螢光層依照不同的操作電壓,發出不同輝度灰階。 22. —種顯示晝素結構,包括: 一第一基板; 一第二基板,是一光穿透材料; 一分隔結構,於該第一基板與該第二基板之間,分隔 出多個空間; 多個陰極結構層,位於該第一基板上,且每一該些空 間有一個該陰極結構層; 多個陽極結構層,位於該第一基板上,且每一該些空 間有一個該陽極結構層; 多個螢光層,位於該第一基板上,分別位於該些陽極 結構層與該些陰極結構層之間,構成多個晝素;以及 一低壓氣體,分別填入該些空間, 其中該低壓氣體層有一電子平均自由路徑,允許至少 足夠數量的電子在一操作電壓下直接撞擊該螢光層, 其中該低壓氣體所存在之環境的氣壓介於8x10“托爾 (torr)至 10-3 托爾(torr)。 23. 如申請專利範圍第22項所述之顯示畫素結構,其 中以相鄰至少三個晝素為一晝素單元,該三個螢光層包含 分別發出紅光、綠光、藍光的三種螢光材料。 24. 如申請專利範圍第23項所述之顯示畫素結構,其 中該晝素單元更包括橙色光。 25. 如申請專利範圍第22項所述之顯示畫素結構,其 27 100-7-8 晝素的該些陽極結構層與該些陰極結構層,分 細作電壓’以產生分別所需要的輝度灰階。 包括夕ί申請專利範圍第22項所述之顯示畫素結構,還 = 次電子源材料層’分別在該些陰極結構層上。 如申請專賴㈣26項所述之顯示畫素結構,其 化:—次電子源材料層的材f包括氧絲(Mg〇)、三氧 試(Tb2〇3)、二氧化二鑭(La2〇3)或二氧化鈽(Ce〇2)。 =8.如巾請專㈣圍第22項所述之顯示晝素結構,更 夕個誘發放電結構,配置於該陽極結制與該陰極結 構層至少其中之一上。 29_ —種顯示裝置,包括: 一第一基板; 一第二基板,是一光穿透材料; —分隔結構,於該第一基板與該第二基板之間,分隔 出多個空間構成二維陣列; 多個陰極結構層,位於該第一基板上,且每一該些空 間有一個該陰極結構層; 多個陽極結構層,位於該第一基板上,且每一該些空 間有一個該陽極結構層; —卫 夕個螢光層,位於該第一基板上,分別位於該些陽極 結構層與該些陰極結構層之間,構成多個晝素;以及 低壓氣體,分別填入該些空間,其中該低壓氣體屛 有一電子平均自由路徑,允許至少足夠數量的電子在 1電壓下直接撞擊該螢光層,其中該低壓氣體所存在 圭兄的氣壓介於8x1ο·1托爾(切汀)至丨〇-3托爾(t〇rr);以及长 28 100-7-8 少個驅動單元,設置於該第—基板與該第二基板之至 二:i,用以控制該二維陣列的該些晝素,以施加對應 的°亥彳呆作電壓,而產生輝度灰階。 相鄭如申料利範㈣29項所述之顯示裝置,其中以 發出^二個畫素為—畫素單元,該三個料層包含分別 χ 、,’卫先、綠光、藍光的三種螢光材料。 如申料·㈣29項所述之顯示裝置,其中該 息素早7L更包括橙色光。 騎η申請專利範圍第29項所述之顯示裝置,其中對 加該接^的該些陽極結構層與該些陰極結構層,分別施 3'電壓,以產生分別所需要的輝度灰階。 多個二請專利範圍第29項所述之顯示裝置,還包括 34^電子源材料層,分別在該聽極結構層上。 些二請專利範圍第33項所述之顯示裝置,其中該 铽(Tb2〇 )源Ϊ料層的材質包括氧化鎂(岣〇)、三氧化二 35二二氧化二鑭(La2〇3)或二氧化鈽(Ce〇2)。 多個誘發專利範圍第29項所述之顯示裝置,更包括 至少其中<電2構’配置於該陽極結構層與該陰極結構層 29曰 丨 丨 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 a penetrating material; a plurality of anode structure layers, wherein the second substrate structure layer is a light-transmissive conductive material, and the first substrate is turned into two phases facing the cathode structure layer and the anodes: The structure is formed between the substrate-substrate and the material substrate, and the pole structure layer and the cathode structure layer are respectively separated to form a multi-cast Si Xi彳! 1 county layer, and the anode structure layer and the cathode structure are located. Between the layers, a plurality of pixels are formed; and a low-pressure gas is filled into the spaces, and the layer is arbitrarily free and free, allowing at least ΐΐ ΐ - county f to suppress the light layer of Yu County, Cup The gas pressure of the δ hypotonic gas is between 8x10-1 Torr ((4) to 1〇-3 Torr (torr). For example, the fluorescent layer of the patent range 1 is located on the anode surface. The item described in item 1 shows a halogen structure in which light of different colors is emitted. The display pixel structure described in the item, wherein, in the patent application scope, the fluorescent layers are in accordance with the material characteristics, and the display pixel structure as described in the application of the patent scope is 23 100-7-8 : A 昼 昼 为 该 该 该 该 该 该 该 该 该 该 该 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' The display of the pixel structure according to the first item of the patent scope, wherein the π two: factory, the hetero-anode structure layer and the cathode structure layers are respectively σ as a voltage to generate respectively The required luminance gray scale: as shown in the patent claim range i, the display pixel structure, and the outer-second electron source material layer 'on the cathode structure layer respectively. The display pixel structure, wherein the material of the secondary electron source material layer comprises magnesium oxide (Mg 〇), oxidized one '' (Tb2 〇 3), second oxidized steel (La 2 〇 3) or two Oxidation decoration (Ce〇2). 9. Displaying the structure of the element as described in the scope of the patent application Further comprising: an evoked discharge structure disposed on at least one of the anode structure layer and the cathode structure layer. The display device has a plurality of display elements arranged in an array, wherein each of the display elements The invention includes an electron emission type light emitting element, comprising: a cathode structure layer; an anode structure layer; a phosphor layer disposed between the cathode structure layer and the anode structure layer; and a low pressure body Between the cathode and the anode, for inducing the cathode to emit a plurality of electrons, wherein the low-pressure gas has an electron average free 24 100-7-8 path 'allowing at least a sufficient number of the phosphor layers, the electrons in one Under the operating voltage, the low-pressure gas exists directly in the presence of Xilu #^ 尸 ((4) to 10-3 尔 (4). The pressure of the nuclear brother is between 10 and 1 Torr. 11. For example, the application for the patent range 10 - Lei early (four) 彳 H Μ item 34 years old device, each side. "" Χ 70 cattle of the layer of light is located in the anode structure layer of the table 12 · as specified in the application of the @1G item of the display shirt, including - the upper substrate and the - lower substrate 'for the county -t The display device of claim 10, wherein each of the electron-emitting light-emitting elements further comprises an induced discharge structure disposed on the display device And a display device according to the above aspect, wherein each of the electron-emitting light-emitting elements further comprises a secondary electron source material layer (secondary electron) The display device according to claim 10, wherein the adjacent three electron-emitting light-emitting elements constitute a halogen unit, respectively emitting red light, green light and Ιι 16. The display device of claim 15, wherein the halogen unit further comprises orange light. 17. A display device comprising: a first substrate; a plurality of cathode structure layers, Forming a two-dimensional array on the first substrate; 25 1353618 100-7-8 a second substrate is a light transmissive material; a plurality of anode structure layers are disposed on the second substrate, wherein the anode structure layers Yes - the light penetrates the conductive (four), wherein the first substrate and the second substrate are facing each other 'the sagittal structure layer and the anode structure layer are respectively aligned; - a partition structure on the first substrate and the Between the second substrates, the anode structure layers are respectively separated from the cathode structure layer to form a plurality of spaces; and a plurality of phosphor layers are respectively located between the anode structure layers and the cathode structure layers. Forming a plurality of halogens; '-low-pressure gas, the space of the person in the division', wherein the low-pressure gas sound has an electron mean free path, allowing a small amount of electrons to directly impact the f-light layer under the voltage, a low pressure gas - between 8 x 10 "torr (torr) to 1 〇 _3 torr (torr); and, a plurality of drive units, disposed between the first base and the second substrate, On the 'used to control the two-dimensional array of the elements, the second Operating voltage and generating a luminance gradation. Corresponding 18. The display device according to claim 17 of the patent application scope, wherein the driving units are in an active mode or are simply transferred to the book 2, and the display is as described in item 17 of the patent application scope. The second element further comprises at least one thin film transistor, and in the second, the parent coupler drives the halogen. Under the control of 4 motions, the fluorescent layer described in item 17 of the patent application scope emits light of different colors according to the material characteristics. The display device of claim 17, wherein the phosphor layers emit different luminance gray scales according to different operating voltages. 22. A display of a halogen structure comprising: a first substrate; a second substrate being a light transmissive material; a spacer structure separating the plurality of spaces between the first substrate and the second substrate a plurality of cathode structure layers on the first substrate, and each of the spaces has a cathode structure layer; a plurality of anode structure layers on the first substrate, and each of the spaces has a cathode a plurality of phosphor layers are disposed on the first substrate between the anode structure layer and the cathode structure layers to form a plurality of halogens; and a low pressure gas is respectively filled in the spaces. Wherein the low pressure gas layer has an electron mean free path, allowing at least a sufficient amount of electrons to directly impinge on the phosphor layer at an operating voltage, wherein the atmosphere of the low pressure gas is between 8 x 10 "torr" to 10 -3 托尔 (orr) 23. The display pixel structure of claim 22, wherein at least three halogens are adjacent to each other, and the three fluorescent layers respectively emit red Light A three-dimensional fluorescent material of green light or blue light. 24. The display pixel structure of claim 23, wherein the halogen element further comprises orange light. 25. Display as described in claim 22 The pixel structure, the anode structure layer of the 27 100-7-8 halogen and the cathode structure layer are divided into voltages ' to generate the required luminance gray scales respectively, including the 22nd item of the patent application scope The pixel structure is also displayed, and the sub-electron source material layer is respectively on the cathode structure layers. If the display pixel structure described in the above-mentioned (4) item 26 is applied, the material of the sub-electron source material layer is f: Including oxygen wire (Mg〇), trioxane test (Tb2〇3), bismuth dioxide (La2〇3) or cerium oxide (Ce〇2). =8. The display unit includes a first substrate; a second substrate; a light penetrating material; a partition structure between the first substrate and the second substrate Separating a plurality of spaces to form a two-dimensional array; a plurality of cathode structure layers on the first substrate, and each of the spaces has a cathode structure layer; and a plurality of anode structure layers on the first substrate, And each of the spaces has a layer of the anode structure; a luminescent layer on the first substrate, respectively located between the anode structure layer and the cathode structure layer to form a plurality of halogens; And a low-pressure gas filled into the spaces, wherein the low-pressure gas has an electron mean free path, allowing at least a sufficient amount of electrons to directly impinge on the phosphor layer at a voltage of 1 8x1ο·1 Toll (Centin) to 丨〇-3 Toll (t〇rr); and long 28 100-7-8 less drive unit, disposed on the first substrate and the second substrate :i, for controlling the two elements of the two-dimensional array to apply a corresponding voltage to generate a luminance gray scale. The display device according to the item 29 of the Zheng et al., wherein the two pixels are provided as a pixel unit, and the three layers comprise three kinds of fluorescent materials respectively: χ, ’, first, green, and blue. The display device according to item (4), wherein the polyglycan is more than orange and includes 7o. The display device of claim 29, wherein the anode structure layer and the cathode structure layer are respectively applied with a voltage of 3' to respectively generate a desired luminance gray scale. The display device of claim 29, further comprising a 34^ electron source material layer respectively on the listener structure layer. The display device according to claim 33, wherein the material of the tantalum (Tb2〇) source material layer comprises magnesium oxide (lanthanum), bismuth trioxide (La2〇3) or Ceria (Ce〇2). The display device of claim 29, further comprising at least wherein the <electrical structure' is disposed on the anode structure layer and the cathode structure layer.
TW96146915A 2006-12-18 2007-12-07 Pixel structure of display and display apparatus TWI353618B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96146915A TWI353618B (en) 2006-12-18 2007-12-07 Pixel structure of display and display apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
TW95147427 2006-12-18
TW96128668 2007-08-03
TW96146915A TWI353618B (en) 2006-12-18 2007-12-07 Pixel structure of display and display apparatus

Publications (2)

Publication Number Publication Date
TW200834644A TW200834644A (en) 2008-08-16
TWI353618B true TWI353618B (en) 2011-12-01

Family

ID=44834996

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96146915A TWI353618B (en) 2006-12-18 2007-12-07 Pixel structure of display and display apparatus

Country Status (1)

Country Link
TW (1) TWI353618B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI408725B (en) 2008-12-04 2013-09-11 Ind Tech Res Inst Electron emission device and package method thereof
TWI408718B (en) * 2008-12-11 2013-09-11 Ind Tech Res Inst Plane light source
TWI413056B (en) * 2011-01-10 2013-10-21 Hon Hai Prec Ind Co Ltd Method for driving field emission display

Also Published As

Publication number Publication date
TW200834644A (en) 2008-08-16

Similar Documents

Publication Publication Date Title
KR100899430B1 (en) Pixel structure of display and display apparatus
CN100593835C (en) Display pixel structure and display device
US20070080626A1 (en) Light emitting device using electron emission and flat display apparatus using the same
TWI353618B (en) Pixel structure of display and display apparatus
CN100405524C (en) Double faced field emission display
TWI418891B (en) Light source appasratus and backlight module
US7923915B2 (en) Display pixel structure and display apparatus
JP5413401B2 (en) Backlight source device
JP5085766B2 (en) Surface light source device that emits light on both sides
TWI295068B (en) Field emission display device
US20070096660A1 (en) Display device
TW200834640A (en) Electron emission device and light emitting method
KR100768223B1 (en) Display apparatus
TWI408718B (en) Plane light source
KR100918813B1 (en) Flat panel display with local dimming technology
KR100333718B1 (en) Plasma display panel having cathodoluminescent phosphor layer
KR100751377B1 (en) Display apparatus and the fabrication method thereof
JP4382810B2 (en) Light emitting panel and light emitting device
JP3651607B2 (en) Light emitting panel and light emitting device
TW201133544A (en) 3-dimension facet light-emitting source device and stereoscopic light-emitting source device
CN101510491A (en) Flat panel display device
TW200839369A (en) Electrode structure of flat lamp