TWI352446B - Fuel cell, fuel cell group and a method for manufa - Google Patents

Fuel cell, fuel cell group and a method for manufa Download PDF

Info

Publication number
TWI352446B
TWI352446B TW094126781A TW94126781A TWI352446B TW I352446 B TWI352446 B TW I352446B TW 094126781 A TW094126781 A TW 094126781A TW 94126781 A TW94126781 A TW 94126781A TW I352446 B TWI352446 B TW I352446B
Authority
TW
Taiwan
Prior art keywords
fuel cell
layer
catalyst layer
flow guiding
baffle
Prior art date
Application number
TW094126781A
Other languages
Chinese (zh)
Other versions
TW200707834A (en
Inventor
Chuan De Huang
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW094126781A priority Critical patent/TWI352446B/en
Publication of TW200707834A publication Critical patent/TW200707834A/en
Application granted granted Critical
Publication of TWI352446B publication Critical patent/TWI352446B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

1352446 100年03月3i日按正替換頁 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明係關於一種燃料電池、燃料電池組及燃料電池製 造方法。 【先前技術】1352446 The following is a replacement page on March 3, 2014. 6. Description of the Invention: [0001] The present invention relates to a fuel cell, a fuel cell stack, and a fuel cell manufacturing method. [Prior Art]

[0002]燃料電池係一種電化學發電裝置,其將燃料及氧化劑轉 化為電能並產生反應產物。燃料電池具有能量轉換效率 高、對環境污染小、適用廣、無噪音及連續工作等優點 ,廣泛應用於軍事、國防及民用之電力、交通、通訊等 多種領域。 [0003] 燃料電池通常可分為鹼性燃料電池、固態氧化物燃料電 池以及質子交換膜燃料電池等。其中,質子交換膜燃料 t 電池近年來發展迅速,通常,一個質子交換膜燃料電池 單元主要包括膜電極、導流板以及集流板等組成部分。 [0004] 膜電極亦稱為膜電極組,係電池單元之核心部件,燃料 氣體及氧化劑在此發生電化學反應,釋放電子並產生水 。膜電極一般係由一質子交換膜、分別位於質子交換膜 兩表面的陽極及陰極組成。導流板亦稱為流床板、隔板 ,一般係由導電材料製成。在每個電池單元中,膜電極 係夾在兩塊導流板中間,在每個導流板與膜電極相接觸 之表面上形成有一條或複數條導流槽,該導流槽分別用 於導引燃料氣體、氧化劑或反應產物水。集流板一般係 導電材料製成,在一個電池單元中通常採用兩塊集流板 分別設在兩塊導流板未形成導流槽一表面上,由於導流 板本身亦具有導電性,故,先前技術中亦有省略集流板 094126781 表單编號 A0101 第 4 頁/共 18 頁 1003110953-0 1352446 100年03月31日梭正替换頁 之設計,直接以導流板兼作集流板之用。 [0005] 先前技術中一種燃料電池,該燃料電池之導流板上具有 導流槽,且在具有導流槽的一面上塗覆有電活性催化劑 材料之塗層,藉由該催化劑以提高燃料電池之氣體轉化 效率,惟,該催化劑塗層之催化劑顆粒粒徑非常小,一 般為微米級或奈米級,使得有些沿導流槽流動之氣體未 能碰到催化劑顆粒,從而氣體未能來得及發生反應即流 出燃料電池,使得該燃料電池之氣體轉化效率不高。 [0006] 另外,先前技術之燃料電池還存在一個問題,即膜電極 與導流板之介面導電性較差,燃料電池反應產生之所有 電子無法有效地導出至外電路(負載)。 [0007] 是以,提供一種可提高氣體轉化效率、提高導電性之燃 料電池、燃料電池組及該燃料電池製造方法實為必要。 【發明内容】 [0008] 以下將通過實施例說明一種可提高氣體轉化效率、提高 導電性之燃料電池、燃料電池組及該燃料電池之製造方 法0 [0009] 為實現上述内容,提供一種燃料電池,該燃料電池包括 二導流板、一位於二導流板之間之膜電極,其中,該膜 電極包括一質子交換膜、分別位於質子交換膜兩表面的 陽極與陰極,該導流板面向膜電極之一面上沿遠離導流 板的方向依次設置有阻隔層、第一催化劑層、碳材料層 以及第二催化劑層。 [0010] 以及,提供一種燃料電池組,該燃料電池組包括複數膜 094126781 表單編號A0101 第5頁/共18頁 1003110953-0 1352446 ,_ 100年03月3ί日修正替換頁 電極及複數導流板,膜電極包括一質子交換膜、分別位 於質子交換膜兩表面的陽極與陰極,相鄰二導流板夾緊 一個膜電極,除最外層導流板外其他導流板相對兩側面 分別具有導流槽,導流板具導流槽之一面上沿遠離導流 板的方向依次設置有阻隔層、第一催化劑層、碳材料層 -. 丨》 · · r W » wt 以及弟二惟化劑層。 [0011] 以及,提供一種燃料電池製造方法,該方法包括如下步 驟: [0012] 提供具有導流槽之導流板; 鲁 [0013] 於導流槽表面上沈積一阻隔層; [0014] 於阻隔層上形成第一催化劑層; [0015] 於第一催化劑層上形成碳材料層; [0016] 於碳材料層上沈積形成第二催化劑層; [0017] 組裝形成所需之燃料電池。 [0018] 相較於先前技術,本實施例燃料電池之導流板上具有碳 ® 材料層,碳材料層具有較好的導電性,其電阻小於傳統 金屬,從而使導流板具有較好的導電性。另外,碳材料 層作為催化劑層之載體,可充分發揮催化劑之活性,提 高氣體之轉換效率。 【實施方式】 [0019] 請一併參閱第一圖及第二圖,本發明第一實施例提供一 種燃料電池單元20,該燃料電池單元20包括二導流板22 、一位於二導流板22之間之膜電極24。 094126781 表單編號A0101 第6頁/共18頁 1003110953-0 1352446 100年03月31日梭正替換頁 [0020] 膜電極24包括一質子交換膜240、分別位於質子交換膜 240兩表面的陽極242及陰極244,該陽極242、陰極244 之至少一面具有催化劑(圖未示)。 [0021] 該導流板22可由金屬(如銅 '不銹鋼)或其他導電性複 合材料製成,該導流板22面向膜電極24之一面上具有一 條或者複數導流槽220,以利於燃料氣體或氧化劑均勻分 佈’另外亦可用於將反應產生的水導出。 [0022] 該導流槽220可利用壓鑄、衝壓、機械銑刻、化學蝕刻、 • 光刻技術或者微影製程形成於導流板22表面,該導流槽 220呈連續S形分佈於導流板22上,其截面可為V形、U形 、圓弧形、矩形或者其他多邊形形狀,該導流槽220之寬 度大約為10(m至400(m,深度一般為20(m至l〇mm。 [0023] 該導流槽220内具有提高導流板22導電性之碳材料層224 ’該碳材料層224可以為奈米碳管、奈米碳棒、奈米碳纖 維或者碳粉等’其厚度為20 nm至400 nm。 [0024] 該碳材料層224上沈積形成有一催化劑層226,其作為燃 料電池單元20工作時之催化劑以提高燃料電池單元20之 反應速度及反應效率,該催化劑層226為由貴重金屬組成 ’如鉑、釕、金或三者之任意組合之合金,其厚度大約 為20nm至400nm 〇 [0025] 另外’碳材料層224、催化劑層226不僅可位於導流槽 220内部’亦可分佈於整個導流板22具導流槽220之一面 [0026] 本實施例之燃料電池單元20之導流板22具有碳材料層224 094126781 表單編號 A0101 第 7 頁/共 18 頁 1003110953-0 1352446 100年03月31’日核正替换頁 ,該碳材料層224—方面可提高導流板22之導電性,另一 方面作為催化劑層226之載體亦可有效提高催化劑之活性 ,進而提高氣體的轉換效率。 [0027] 實際應用時,為提高燃料電池總功率,複數燃料電池單 元20可通過疊加方式串聯構成電池組,此時除最外層一 塊導流板22外,其餘導流板22兩表面均形成有導流槽220 ,分別用作一個膜電極2 4之陽極導流面,以及另一個膜 電極2 4之陰極導流面*導流板22之兩表面均具有碳材料 層224及催化劑層226。 [0028] 請參閱第三圖,其係本發明第二實施例燃料電池製造方 法之流程圖,該方法包括以下步驟: [0029] 步驟1係提供具有導流槽之導流板。該導流板可由金屬( 如銅、不銹鋼)或導電性複合材料製成,該導流板至少 一面上具有導流槽,該導流槽之裁面可為V形、U形、圓 弧形、矩形或者其他多邊形形狀。 [0030] 步驟2係於導流板上形成碳材料層。 [0031] 步驟3係於碳材料層上沈積形成催化劑層。於碳材料層上 進一步沈積燃料電池工作所需之催化劑層。 [0032] 步驟4係組裝形成所需之燃料電池。將具有碳材料層、催 化劑層之導流板與燃料電池之其他組成部分,如膜電極 等,進行組裝以形成所需之燃料電池單元或燃料電池組 [0033] 下面結合具體實施例說明該方法之實現過程。 1003110953-0 094126781 表單編號A0101 第8頁/共18頁 1352446 [0034] 100年03月31日修正替换頁1 凊參閱第四圖至第七圖所示,本實施例之導流板42可由 銅製成,其表面具有藉助壓鑄、衝壓、機械銑刻、化學 蝕刻、光刻技術或者微影製程形成之導流槽42〇。由於導 流板42由金屬材質製成,故可採用壓鑄、衝壓技術實現 量產。 [0035] » 於導流板42之導流槽420表面上沈積一層用於生長奈米碳 管426之第一催化劑層424,本實施例之碳材料層係選用 奈米碳管’當然該碳材料亦可為奈米碳棒、奈米碳纖維 或碳粉等。該第一催化劑層424可包括鐵、鈷 '錄及該三 種金屬任意組合之合金,沈積方法包括濺鍍法、蒸鑛法 或者其他適合形成薄膜之方法。 [0036] » 應當指出’由於導流板4 2為金屬材質,為防止導流板4 2 與第一催化劑層424發生反應,影響第一催化劑層424之 活性,可於沈積第一催化劑層424之前先行沈積一阻隔層 4 2 2,用以阻止第一催化劑層4 2 4與金屬材質之導流板 42發生反應,確保第一催化劑層424於後續反應時之催化 活性’該阻隔層422可為矽薄膜、鎳薄膜或者二氧化矽薄 膜,沈積方法包括濺鍵法、蒸鍵法或者其他適合形成薄 膜之方法;當導流板42為非金屬,例如石墨時,可以不 需形成上述阻隔層422,故,可省略此步驟。 [0037] 採用化學氣相沈積法(CVD)藉由第一催化劑層424之催化 作用,於第一催化劑層424表面生長奈米碳管426,大量 奈米碳管426構成奈米碳管陣列,該奈米碳管陣列可提高 導流板42之導電性。目前,關於CVD法生長奈米碳管426 之方法已經較為成熟,業界已有很多先前技術,此處不 094126781 表單编號A0】0丨 第9頁/共18頁 1003110953-0 1352446 _. 100年03月3ί日核正替换頁 再詳細描述。 [0038] 沈積一第二催化劑層428於奈米碳管陣列上,該第二催化 劑層428可作為燃料電池反應時之催化劑以提高燃料電池 之反應速度及氣體反應效率,該第二催化劑層428為鉑、 釕、金或三者任意組合之合金,沈積方法包括濺鍍法、 蒸鍍法或者其他適合形成薄膜之方法。 [0039] 最後,將沈積有阻隔層4 2 2、奈米碳管4 2 6及第二催化劑 層428之導流板42與燃料電池之其他組成部分組合,如膜 電極等,形成所需之燃料電池單元或燃料電池組。 · [0040] 另外,阻隔層422、碳奈米管426以及第二催化劑層428 並不限於僅僅分佈於導流槽420之表面,可完全塗覆於導 流槽420所在之區域,或者導流板42具導流槽420之一面 上。 [0041] 綜上所述,本發明符合發明專利要件,爰依法提出專利 申請。惟,以上所述者僅為本發明之較佳實施例,舉凡 熟悉本發明技藝之人士,在援依本發明精神所作之等效 φ 修飾或變化,皆應包含於以下之申請專利範圍内。 【圖式簡單說明】 [0042] 第一圖係本發明第一實施例燃料電池單元之分解示意圖 〇 [0043] 第二圖係第一圖中11 - 11處之局部剖示圖。 [0044] 第三圖係本發明第二實施例燃料電池製造方法之流程圖 094126781 表單编號A0101 第10頁/共18頁 1003110953-0 1352446 100年03月31日梭正替换頁 [0045] 第四圖係本發明實施例燃料電池製造方法之沈積阻隔層 〇 [0046] 第五圖係於第四圖之阻隔層上沈積第一催化劑層。 [0047] 第六圖係於第五圖之第一催化劑層上生長奈米碳管。 [0048] 第七圖係於第六圖之奈米碳管上沈積第二催化劑層。 【主要元件符號說明】 [0049] 燃料電池單元:20 [0050] 導流板:22、42 [0051] 膜電極:24 [0052] 導流槽:220、420 [0053] 碳材料層:224 [0054] 催化劑層:226 [0055] 陽極:242 [0056] 陰極:244 [0057] 阻隔層:42 2 [0058] 第一催化劑層:424 [0059] 奈米碳管:426 [0060] 第二催化劑層:428 094126781 表單編號A0101 第11頁/共18頁 1003110953-0A fuel cell is an electrochemical power generating device that converts fuel and oxidant into electrical energy and produces a reaction product. Fuel cells have the advantages of high energy conversion efficiency, low environmental pollution, wide application, no noise and continuous operation. They are widely used in military, defense and civil power, transportation, communications and other fields. Fuel cells are generally classified into alkaline fuel cells, solid oxide fuel cells, and proton exchange membrane fuel cells. Among them, the proton exchange membrane fuel t battery has developed rapidly in recent years. Generally, a proton exchange membrane fuel cell unit mainly comprises a membrane electrode, a baffle and a current collecting plate. [0004] A membrane electrode, also referred to as a membrane electrode assembly, is a core component of a battery cell in which a fuel gas and an oxidant electrochemically react to release electrons and produce water. The membrane electrode is generally composed of a proton exchange membrane, an anode and a cathode respectively located on both surfaces of the proton exchange membrane. The deflector, also known as the flow bed plate, the baffle, is generally made of a conductive material. In each of the battery cells, the membrane electrode is sandwiched between the two baffles, and one or a plurality of diversion channels are formed on the surface of each baffle that is in contact with the membrane electrode, and the diversion trough is respectively used for Guide fuel gas, oxidant or reaction product water. The current collecting plate is generally made of a conductive material. In a battery unit, two current collecting plates are usually respectively disposed on a surface of the two deflecting plates that do not form a flow guiding groove. Since the deflector itself is also electrically conductive, the current guiding plate itself is also electrically conductive. In the prior art, there is also an omission of the current collector plate 094126781 Form No. A0101 Page 4 of 18 1003110953-0 1352446 The design of the shuttle replacement page on March 31, 100, directly used as a baffle for the baffle . [0005] A fuel cell of the prior art, the fuel cell has a flow guiding groove on the deflector, and a coating having an electroactive catalyst material coated on one side of the flow guiding groove, the catalyst is used to improve the fuel cell The gas conversion efficiency, however, the catalyst particle size of the catalyst coating is very small, generally on the order of micrometers or nanometers, so that some of the gas flowing along the guide channel fails to hit the catalyst particles, so that the gas fails to occur. The reaction flows out of the fuel cell, so that the gas conversion efficiency of the fuel cell is not high. In addition, the prior art fuel cell has a problem in that the interface between the membrane electrode and the baffle is poorly conductive, and all electrons generated by the fuel cell reaction cannot be efficiently exported to an external circuit (load). [0007] Therefore, it is necessary to provide a fuel cell, a fuel cell stack, and a fuel cell manufacturing method which can improve gas conversion efficiency and improve conductivity. SUMMARY OF THE INVENTION [0008] Hereinafter, a fuel cell, a fuel cell stack, and a fuel cell manufacturing method capable of improving gas conversion efficiency and improving conductivity will be described by way of example. [0009] To achieve the above, a fuel cell is provided. The fuel cell includes two baffles and a membrane electrode between the two baffles, wherein the membrane electrode comprises a proton exchange membrane, an anode and a cathode respectively located on both surfaces of the proton exchange membrane, the baffle facing A barrier layer, a first catalyst layer, a carbon material layer, and a second catalyst layer are sequentially disposed on one surface of the membrane electrode in a direction away from the baffle. [0010] Also, a fuel cell stack is provided, which includes a plurality of films 0 941 678 Form No. A0101 Page 5 / A total of 18 pages 1003110953-0 1352446, _ 100 March 3 日 Correct replacement page electrode and complex baffle The membrane electrode comprises a proton exchange membrane, an anode and a cathode respectively located on both surfaces of the proton exchange membrane, and the adjacent two baffles clamp a membrane electrode, and the other deflector has a guide opposite to the opposite sides of the outer deflector a flow cell, the deflector has a barrier layer, a first catalyst layer, and a carbon material layer on one side of the flow guiding groove in a direction away from the deflector - 丨》 · · r W » wt and the second agent Floor. [0011] And, a fuel cell manufacturing method is provided, the method comprising the following steps: [0012] providing a baffle having a flow guiding groove; [0013] depositing a barrier layer on the surface of the guiding groove; [0014] Forming a first catalyst layer on the barrier layer; [0015] forming a carbon material layer on the first catalyst layer; [0016] depositing a second catalyst layer on the carbon material layer; [0017] assembling to form a desired fuel cell. [0018] Compared with the prior art, the fuel cell of the present embodiment has a carbon material layer on the baffle plate, and the carbon material layer has better conductivity, and the electric resistance is smaller than that of the conventional metal, so that the baffle has better performance. Electrical conductivity. Further, as the carrier of the catalyst layer, the carbon material layer can sufficiently exert the activity of the catalyst and improve the gas conversion efficiency. The first embodiment of the present invention provides a fuel cell unit 20 including two baffles 22 and one baffle plate. Membrane electrode 24 between 22. 094126781 Form No. A0101 Page 6 / Total 18 Page 1003110953-0 1352446 October 31, 100, the shuttle replacement page [0020] The membrane electrode 24 includes a proton exchange membrane 240, an anode 242 located on both surfaces of the proton exchange membrane 240, and The cathode 244 has at least one surface of the anode 242 and the cathode 244 having a catalyst (not shown). [0021] The baffle 22 may be made of metal (such as copper 'stainless steel) or other conductive composite material, and the baffle 22 has one or a plurality of guiding channels 220 facing one side of the membrane electrode 24 to facilitate fuel gas. Or the oxidant is evenly distributed 'in addition to the water produced by the reaction. [0022] The flow guiding groove 220 can be formed on the surface of the baffle 22 by die casting, stamping, mechanical milling, chemical etching, photolithography or lithography, and the flow guiding groove 220 is continuously S-shaped and distributed in the diversion flow. The plate 22 may have a V-shaped, U-shaped, circular arc-shaped, rectangular or other polygonal shape. The width of the flow guiding groove 220 is about 10 (m to 400 (m), and the depth is generally 20 (m to l〇). [0023] The flow guiding groove 220 has a carbon material layer 224 that improves the conductivity of the baffle 22. The carbon material layer 224 may be a carbon nanotube, a nano carbon rod, a nano carbon fiber or a carbon powder. The thickness of the carbon material layer 224 is formed by depositing a catalyst layer 226 as a catalyst for operating the fuel cell unit 20 to increase the reaction rate and reaction efficiency of the fuel cell unit 20, the catalyst. The layer 226 is an alloy composed of precious metals such as platinum, rhodium, gold or any combination of the three, and has a thickness of about 20 nm to 400 nm. [0025] Further, the carbon material layer 224 and the catalyst layer 226 may be located not only in the flow guiding groove 220. The internal 'can also be distributed throughout the baffle 22 with diversion One side of 220 [0026] The baffle 22 of the fuel cell unit 20 of the present embodiment has a carbon material layer 224 094126781 Form No. A0101 Page 7 of 18 1003110953-0 1352446 100 March 31's nuclear replacement page The carbon material layer 224 can improve the conductivity of the baffle 22, and on the other hand, as the carrier of the catalyst layer 226, the activity of the catalyst can be effectively improved, thereby improving the gas conversion efficiency. [0027] In practical application, The total fuel cell power is increased. The plurality of fuel cell units 20 can be connected in series to form a battery pack. In addition to the outermost baffle 22, the other baffles 22 are formed with guide channels 220 on both surfaces, respectively. The anode flow guiding surface of one membrane electrode 24 and the cathode flow guiding surface of the other membrane electrode 24 * both surfaces of the deflector 22 have a carbon material layer 224 and a catalyst layer 226. [0028] Please refer to the third figure. A flow chart of a method for manufacturing a fuel cell according to a second embodiment of the present invention, the method comprising the following steps: [0029] Step 1 provides a baffle having a flow guiding groove. The baffle may be made of metal (such as copper, not The steel baffle is made of a conductive composite material, and the baffle has a flow guiding groove on at least one side, and the cutting surface of the baffle can be V-shaped, U-shaped, circular-arc, rectangular or other polygonal shape. Step 2 is to form a carbon material layer on the deflector. [0031] Step 3 is to deposit a catalyst layer on the carbon material layer, and further deposit a catalyst layer required for fuel cell operation on the carbon material layer. [0032] Step 4 It is assembled to form the required fuel cell. The baffle having the carbon material layer and the catalyst layer and other components of the fuel cell, such as membrane electrodes, are assembled to form a desired fuel cell unit or fuel cell stack. [0033] The method will be described below in conjunction with specific embodiments. The realization process. 1003110953-0 094126781 Form No. A0101 Page 8 of 18 Revision 1352 [0034] Correction Replacement Page 1 of March 31, 100 凊 Referring to Figures 4 to 7, the baffle 42 of the present embodiment may be made of copper. The surface has a flow guiding groove 42〇 formed by die casting, stamping, mechanical milling, chemical etching, photolithography or lithography. Since the deflector 42 is made of a metal material, mass production can be achieved by die casting and stamping techniques. [0035] a first catalyst layer 424 for growing the carbon nanotubes 426 is deposited on the surface of the flow guiding channel 420 of the baffle 42. The carbon material layer of the embodiment is a carbon nanotube. The material may also be a nano carbon rod, a carbon fiber or a carbon powder. The first catalyst layer 424 may comprise an alloy of iron, cobalt and any combination of the three metals, and the deposition method may include sputtering, steaming or other methods suitable for forming a film. [0036] It should be noted that since the baffle 42 is made of a metal material, in order to prevent the baffle 42 from reacting with the first catalyst layer 424, affecting the activity of the first catalyst layer 424, the first catalyst layer 424 may be deposited. A barrier layer 42 2 is previously deposited to prevent the first catalyst layer 4 24 from reacting with the metal material baffle 42 to ensure the catalytic activity of the first catalyst layer 424 in the subsequent reaction. For the ruthenium film, the nickel film or the ruthenium dioxide film, the deposition method includes a sputtering method, a steam bonding method or other methods suitable for forming a film; when the baffle 42 is a non-metal such as graphite, the above barrier layer may not be formed. 422, therefore, this step can be omitted. [0037] The carbon nanotubes 426 are grown on the surface of the first catalyst layer 424 by chemical vapor deposition (CVD) by the catalytic action of the first catalyst layer 424, and the plurality of carbon nanotubes 426 constitute an array of carbon nanotubes. The carbon nanotube array can increase the conductivity of the baffle 42. At present, the method for growing the carbon nanotube 426 by the CVD method has been relatively mature, and there are many prior art in the industry. Here, no. 0 914 678 1 Form No. A0 】 0 丨 9 / 18 pages 1003110953-0 1352446 _. 100 years The March 3rd nuclear replacement page will be described in detail. [0038] depositing a second catalyst layer 428 on the carbon nanotube array, the second catalyst layer 428 can be used as a catalyst in the fuel cell reaction to improve the reaction speed and gas reaction efficiency of the fuel cell, the second catalyst layer 428 For alloys of any combination of platinum, rhodium, gold or a combination of three, the deposition method includes sputtering, evaporation, or other methods suitable for forming a thin film. [0039] Finally, the baffle 42 deposited with the barrier layer 42 2 , the carbon nanotubes 4 26 and the second catalyst layer 428 is combined with other components of the fuel cell, such as a membrane electrode, etc., to form a desired Fuel cell unit or fuel cell stack. [0040] In addition, the barrier layer 422, the carbon nanotube 426, and the second catalyst layer 428 are not limited to being distributed only on the surface of the flow guiding groove 420, and may be completely coated in the region where the guiding groove 420 is located, or the flow guiding The plate 42 has a face on the flow guiding groove 420. [0041] In summary, the present invention complies with the requirements of the invention patent, and submits a patent application according to law. The above is only the preferred embodiment of the present invention, and equivalent modifications or variations of the present invention in the spirit of the present invention are intended to be included in the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0042] The first drawing is an exploded view of a fuel cell unit according to a first embodiment of the present invention. [0043] The second drawing is a partial cross-sectional view taken at 11-11 in the first figure. [0044] FIG. 3 is a flow chart of a fuel cell manufacturing method according to a second embodiment of the present invention. 094126781 Form No. A0101 Page 10 of 18 1003110953-0 1352446 100 March 31st Shuttle Replacement Page [0045] 4 is a deposition barrier layer of a fuel cell manufacturing method according to an embodiment of the present invention. [0046] The fifth figure is a deposition of a first catalyst layer on the barrier layer of the fourth figure. [0047] The sixth figure is a growth of a carbon nanotube on the first catalyst layer of the fifth figure. [0048] The seventh figure is a second catalyst layer deposited on the carbon nanotubes of the sixth figure. [Main component symbol description] [0049] Fuel cell unit: 20 [0050] Deflector: 22, 42 [0051] Membrane electrode: 24 [0052] Guide groove: 220, 420 [0053] Carbon material layer: 224 [ 0054] Catalyst layer: 226 [0055] Anode: 242 [0056] Cathode: 244 [0057] Barrier layer: 42 2 [0058] First catalyst layer: 424 [0059] Carbon nanotube: 426 [0060] Second catalyst Layer: 428 094126781 Form No. A0101 Page 11 / Total 18 Page 1003110953-0

Claims (1)

1352446 _·— 100年03月3ί日修正替換頁 七、申請專利範圍: 1 . 一種燃料電池,其包括二導流板、一位於二導流板之間之 膜電極,該導流板面向膜電極之一面具有導流槽,且該具 導流槽的一面上沿遠離導流板的方向依次設置有阻隔層、 第一催化劑層、碳材料層以及第二催化劑層,該膜電極包 括一質子交換膜、分別位於質子交換膜兩表面的陽極與陰 極0 2 .如申請專利範圍第1項所述之燃料電池,其中該碳材料層 為奈米碳管、奈米碳棒、奈米碳纖維、碳粉或其混合物。 | 3 .如申請專利範圍第2項所述之燃料電池,其中該碳材料層 之厚度為20nm至400nm。 4 .如申請專利範圍第1項所述之燃料電池,其中該導流槽之 寬度在10(m至400(m範圍内。 5 .如申請專利範圍第4項所述之燃料電池,其中該導流槽之 深度在20(m至10 mm範圍内。 6 .如申請專利範圍第1項所述之燃料電池,其中該催化劑層 為钻、金、釕或三者任意組合之合金。 | 7 .如申請專利範圍第1項所述之燃料電池,其中該催化劑層 之厚度在20nm至400nm範圍内。 8 . —種燃料電池組,包括複數膜電極及複數導流板,膜電極 包括一質子交換膜、分別位於質子交換膜兩表面的陽極與 陰極,相鄰二導流板夾緊一個膜電極,除最外層導流板外 其他導流板相對兩側分別具有導流槽,該導流槽的一面上 沿遠離導流板的方向依次設置有阻隔層、第一催化劑層、 碳材料層以及第二催化劑層。 094126781 表單編號A0101 第12頁/共18頁 1003110953-0 1352446 100年03月31日核正替换頁 9. 一種燃料電池製造方法,包括以下步驟: 提供具有導流槽之導流板; 於導流槽表面上沈積一阻隔層; 於阻隔層上形成第一催化劑層; 於第一催化劑層上形成碳材料層;於碳材料層上沈積形成 第二催化劑層; 組裝形成所需之燃料電池。 1〇 .如申請專利範圍第9項所述之燃料電池製造方法,其中該 阻隔層為矽薄膜、鎳薄膜或者二氧化矽薄膜。 11 .如申請專利範圍第9項所述之燃料電池製造方法,其中該 第一催化劑層用於生長奈米碳材。 12 .如申請專利範圍第11項所述之燃料電池製造方法,其中該 第一催化劑層為鐵、鈷、鎳或該三種金屬任意組合之合金 〇 13 .如申請專利範圍第11項所述之燃料電池製造方法,其中該 奈米碳層為奈米碳管、奈米碳棒、奈米碳纖維或者碳粉。 14 .如申請專利範圍第9項所述之燃料電池製造方法,其中該 沈積方法包括濺鍍法、蒸鍍法。 15 .如申請專利範圍第9項所述之燃料電池製造方法,其中該 導流槽可藉助壓鑄、衝壓、機械銑刻、化學蝕刻、光刻技 術或者微影製程而成。 16 .如申請專利範圍第9項所述之燃料電池製造方法,其中該 第二催化劑層為始、金、釕或三者任意組合之合金。 094126781 表單編號A0101 第13頁/共18頁 1003110953-01352446 _·—100年03月3日日修正 replacement page VII. Patent application scope: 1. A fuel cell comprising two baffles and a membrane electrode between the two baffles, the baffle facing the membrane One side of the electrode has a flow guiding groove, and one side of the flow guiding groove is provided with a barrier layer, a first catalyst layer, a carbon material layer and a second catalyst layer in a direction away from the baffle, and the film electrode comprises a proton An exchange membrane, the anode and the cathode respectively located on both surfaces of the proton exchange membrane. The fuel cell according to claim 1, wherein the carbon material layer is a carbon nanotube, a nanocarbon rod, a nano carbon fiber, Toner or a mixture thereof. The fuel cell according to claim 2, wherein the carbon material layer has a thickness of 20 nm to 400 nm. 4. The fuel cell according to claim 1, wherein the width of the flow guiding groove is in the range of 10 (m to 400 (m). 5. The fuel cell according to claim 4, wherein The depth of the guide groove is in the range of 20 (m to 10 mm). The fuel cell according to claim 1, wherein the catalyst layer is an alloy of diamond, gold, tantalum or any combination of the three. The fuel cell according to claim 1, wherein the catalyst layer has a thickness in the range of 20 nm to 400 nm. 8. A fuel cell stack comprising a plurality of membrane electrodes and a plurality of baffles, the membrane electrode comprising a proton The exchange membrane, the anode and the cathode respectively located on both surfaces of the proton exchange membrane, the adjacent two baffles clamp a membrane electrode, and the other two sides of the deflector except the outermost deflector respectively have a flow guiding groove, the diversion A barrier layer, a first catalyst layer, a carbon material layer, and a second catalyst layer are disposed on one side of the groove in a direction away from the baffle. 094126781 Form No. A0101 Page 12 of 18 1003110953-0 1352446 100 March 31st nuclear replacement Page 9 is a fuel cell manufacturing method comprising the steps of: providing a baffle having a flow guiding groove; depositing a barrier layer on the surface of the flow guiding groove; forming a first catalyst layer on the barrier layer; on the first catalyst layer A fuel cell layer is formed on the carbon material layer; and the second fuel cell layer is formed on the carbon material layer; and the fuel cell manufacturing method according to claim 9, wherein the barrier layer is a tantalum film. The method of manufacturing a fuel cell according to claim 9, wherein the first catalyst layer is used for growing a nanocarbon material. 12. As claimed in claim 11 The fuel cell manufacturing method, wherein the first catalyst layer is iron, cobalt, nickel or an alloy of any combination of the three metals. The fuel cell manufacturing method according to claim 11, wherein the nanocarbon The layer is a carbon nanotube, a nanocarbon rod, a nano carbon fiber, or a carbon powder. The fuel cell manufacturing method according to claim 9, wherein the deposition The method includes the method of manufacturing a fuel cell according to claim 9, wherein the flow guiding groove can be die-cast, stamped, mechanically milled, chemically etched, lithographically or microscopically. The fuel cell manufacturing method according to claim 9, wherein the second catalyst layer is an alloy of any combination of the first, the gold, the crucible or the three. 094126781 Form No. A0101 Page 13 / Total 18 pages 1003110953-0
TW094126781A 2005-08-08 2005-08-08 Fuel cell, fuel cell group and a method for manufa TWI352446B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW094126781A TWI352446B (en) 2005-08-08 2005-08-08 Fuel cell, fuel cell group and a method for manufa

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW094126781A TWI352446B (en) 2005-08-08 2005-08-08 Fuel cell, fuel cell group and a method for manufa

Publications (2)

Publication Number Publication Date
TW200707834A TW200707834A (en) 2007-02-16
TWI352446B true TWI352446B (en) 2011-11-11

Family

ID=46728027

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094126781A TWI352446B (en) 2005-08-08 2005-08-08 Fuel cell, fuel cell group and a method for manufa

Country Status (1)

Country Link
TW (1) TWI352446B (en)

Also Published As

Publication number Publication date
TW200707834A (en) 2007-02-16

Similar Documents

Publication Publication Date Title
US7351444B2 (en) Low platinum fuel cell catalysts and method for preparing the same
KR101240144B1 (en) Low platinum fuel cells, catalysts, and method for preparing the same
JP5558474B2 (en) GAS DIFFUSION LAYER FOR FUEL CELL AND METHOD FOR MANUFACTURING THE SAME
US7601454B2 (en) Polymer electrolyte fuel cell
WO2011027539A1 (en) Membrane electrode assembly, production method for same, and fuel cell
JP6599843B2 (en) Electrodes, membrane electrode composites, electrochemical cells and stacks
JP5417038B2 (en) Method for producing catalyst electrode used for membrane electrode assembly, catalyst electrode used for membrane electrode assembly, method for producing membrane electrode assembly, membrane electrode assembly, and fuel cell
CN112838232B (en) Full-through-hole metal fiber sintered body fuel cell bipolar plate and fuel cell stack
CN1845367A (en) Fuel cell and its deflector structure
JP2001357862A (en) Bipolar plate and solid high-polymer type fuel cell
JP4642656B2 (en) Fuel cell electrode and fuel cell using the same
US20070031724A1 (en) Fuel cell, fuel cell assembly, and method for manufacturing the fuel cell
JP2003197223A (en) Porous gas distribution plate for small fuel cell, and separator plate for small fuel cell manufactured including this
JP2005353758A (en) Energy device, its manufacturing method and device mounting the same
EP2827417B1 (en) Gas diffusion layer with flowpath
JP2017073218A (en) Conductive member, method for manufacturing the same, separator for fuel cell using the same, and solid polymer fuel cell
TWI352446B (en) Fuel cell, fuel cell group and a method for manufa
KR101767593B1 (en) Electrode for fuel cell and method of fabricating thereof and fuel cell having the electrode
JP2005078981A (en) Separator for fuel cell and method of manufacturing the same
JP3838107B2 (en) Separator, separator manufacturing method, and polymer electrolyte fuel cell
TWI333291B (en) Fuel cell and flow field plate for the fuel cell
JP2009064591A (en) Electrode for fuel cell, manufacturing method thereof, and membrane electrode assembly using the electrode
JP5857817B2 (en) Fuel cell
US20080124603A1 (en) Mixed reactants and electrolyte fuel cell
TW201843871A (en) a fuel cell electrode and a fuel cell using the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees