TWI345787B - Method and apparatus for hierarchical bit line bias bus for block selectable memory array - Google Patents

Method and apparatus for hierarchical bit line bias bus for block selectable memory array Download PDF

Info

Publication number
TWI345787B
TWI345787B TW96128078A TW96128078A TWI345787B TW I345787 B TWI345787 B TW I345787B TW 96128078 A TW96128078 A TW 96128078A TW 96128078 A TW96128078 A TW 96128078A TW I345787 B TWI345787 B TW I345787B
Authority
TW
Taiwan
Prior art keywords
mode
line
bus
unselected
array
Prior art date
Application number
TW96128078A
Other languages
Chinese (zh)
Other versions
TW200826114A (en
Inventor
Roy E Scheuerlein
Luca G Fasoli
Original Assignee
Sandisk 3D Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/461,362 external-priority patent/US7633828B2/en
Priority claimed from US11/461,376 external-priority patent/US7596050B2/en
Application filed by Sandisk 3D Llc filed Critical Sandisk 3D Llc
Publication of TW200826114A publication Critical patent/TW200826114A/en
Application granted granted Critical
Publication of TWI345787B publication Critical patent/TWI345787B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/16Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0023Address circuits or decoders
    • G11C13/0026Bit-line or column circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/02Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/18Auxiliary circuits, e.g. for writing into memory
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1048Data bus control circuits, e.g. precharging, presetting, equalising
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/12Bit line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, equalising circuits, for bit lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/18Bit line organisation; Bit line lay-out
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/12Group selection circuits, e.g. for memory block selection, chip selection, array selection
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2207/00Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
    • G11C2207/002Isolation gates, i.e. gates coupling bit lines to the sense amplifier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/71Three dimensional array

Description

1345787 九、發明說明: 【發明所屬之技術領域】 本發明係關於可程式化記憶體陣列,且結 符疋έ之係關於 併入被動元件記憶體單元之半導體積體電路記憶體陣列, 且更特定言之係關於一種併入此類記憶體罩 早兀之二維記憶 體陣列。 【先前技術】1345787 IX. Description of the Invention: [Technical Field] The present invention relates to a programmable memory array, and is related to a semiconductor integrated circuit memory array incorporated into a passive element memory cell, and In particular, it relates to a two-dimensional memory array incorporating such a memory mask. [Prior Art]

特定被動元件記憶體單元展現可再寫特性◊例如,在特 定記憶體單元中,程式化可藉由使用一大約6 乂至8 V之電 壓正向偏壓記憶體單元(例如參考其内一二極體之極性)來 實現,而抹除可藉由使用一大約1〇 ν至14 ν之電壓反向偏 壓記憶體單元來實現。該些高電壓需要在字線及位元線解 碼器内使用特殊高電壓CM〇s電晶體。該此 不完全隨著記憶體單元字線及位元線間距減小而= 放。此對於三維記憶體技術而言特別成問題,其中退出陣 列並必須介接一字線及位元線驅動器之字線及位元線之純 粹达度使得提供相容不斷變小陣列線間距之解碼器及I/O 電路(且特別係字線及位元線驅動器電路 選定記憶體單元作用-足夠高電壓之能力甚至更加2。 【發明内容】 矣又而口本發明係關於一種併入一用於一區塊可選擇 η己隐體陣列之階層式位元線偏壓匯流排之記憶體陣列,及 種使用用於—區塊可選擇記憶體陣列之階層式位元線 偏壓U之方法1而’本發明係由隨附中請專利範圍 123l78.doc 1345787 來定義,故此章節内的任何内容均不應視為限制該等申請 專利範圍。 在—態樣中’本發明提供-種積體電路,其包括具有複 數個陣列區塊的-記憶體陣列,各陣列區塊包括字線與位 疋線。該積體電路包括-般跨越該複數個陣列區塊的一第 一全域匯流排,用於有時輕合—選定區塊之選定位元線至 個別資料電路。該積體電路還包括每陣列區塊一個別第一 匯流排片段’用於在一第一操作模式期間傳遞適用於該第 操作模式的H選定位元線偏壓條件至—選定區塊 之未選定位元線,並傳遞適用於該第一操作模式的一第二 未選定位元線偏壓條件至未選定陣龍塊之未選定 線。 、在另—態樣中’本發明提供—種積體電路,其包括具有 複數個陣列區塊的一記情體陲別 ^ —陣列,各陣列區塊包括字線與 二線。該積體電路包括輕合構件,其用於在—第一 模式下藉助一般跨越該複數個陣列區塊的-第一全域匯汽 排來耦合-選定區塊之選定仿_妨 王域匯流 心匕现之選疋位兀線至個 體電路包括耦合構件,盆用於紅人 一去夕“ 《用於輕合選定及未選定陣列區塊 一者之未選定位元線至一鱼 制笛一@ ^ 與各個別陣列區塊相關聯的一個 L排片段。該積體電路包括傳遞構件,其用於在 與該選定陣列區塊相關聯之個別第、、 用於該第一操作模式 ’抓&上傳遞適 積體電路還包括傳遞構件,其用=元線偏愿條件。該 相關聯之㈣第-匯二1:遞在:該未選定陣列區塊 上傳遞適用於該第一操作模 123178.doc 1345787 式的一第二未選定位元線偏壓條件。 在另一態樣中,本發明提供— 使用之古生— 種用於配。一記憶體陣列 …=體陣列具有複數個陣列區塊,各陣列 =二:元線。該方法包括在-第-操作模式下 -·:二相該複數個陣列區塊的-第-全域匯流排來輕 . ^選疋區塊之選定位元線至個別資料電路、μ選定及 • 未選定陣列區塊二者之未選定位元叙^ 伹兀線至一與各個別陣列區 • 關聯的個別第-匯流排片段、在與該選定陣列區塊相 關聯的個別第-匯流排片段上傳遞適用於該第一操作模1目 .# —第-未選定位元線㈣條件、及在與未選定陣列 相關聯的個別第—藤#I H # . …弟s流排片奴上傳遞適用於該第一操作模 式之一第二未選定位元線偏壓條件。 、 在另一態樣中,本發明提供—種用於製造1憶體產品 ▲ t方法。該方法包括形成-具有複數個陣列區塊之記憶體 陣列,各陣列區塊包括字線與位元線。該方法還包括形 .一般跨越該複數個陣列區塊的一第—全域匯流排,用於有 時叙合一選定區塊之選定位元線至個別資料電路。該方法 還包括每陣列區塊形成一個別第一匯流排片段,用於在— 第一操作模式期間傳遞適用於該第一操 選定位元線偏壓條件至一選定區塊之未選定:元線 遞適用於該第-操作模式的一第二未選定位元線偏壓條件 至未選定陣列區塊之未選定位元線。 本發明於數個態樣中適用於具有—記憶體陣列之積體電 路、用於操作此類積體電路及記憶體陣列之方法、製造併 123178.doc 1345787 入此類陣列之記憶體產品之方法及此類積體電路、產品或 記憶體陣列之電腦可讀取媒體編碼,均如本文更詳細所述 及隨附申請專利範圍所提出《所述技術、結構及方法可單 獨或相互組合地加以使用。 前面係一概述,因而必然包含細節之簡化、一般化及省 略。因此,習知此項技術者應瞭解,前面概述僅係說明性 • 且不希望以任何形式限制本發明。根據下文所提出之詳細 鲁 說明,可明白僅由申請專利範圍所定義之本發明之其他態 樣、創新特徵及優點。 【實施方式】 圖1係一範例性被動元件記憶體陣列i00之一示意圖。顯 示一子線1〇2、104以及二位元線1〇6、1〇8。假定字線1〇2 係一選定字線(SWL),並假定字線104係一未選定字線 (UWL)。同樣地,假定位元線1〇6係一選定位元線(sbl), 並假定位元線108係一未選定位元線(UBL)。顯示四個被動 ·' 元件記憶體單元101、1〇3、1〇5、107,各耦合於一相關聯 字線與一相關聯位元線之間。 s己憶體單7C 101係與選定字線102及選定位元線1〇6相關 - 聯,故可視為一”S"單元(即"選定"單元卜記憶體單元103 係與未選定字線104及選定位元線1〇6相關聯,故可視為一 單元(即”截止"單元)。記憶體單元1〇5係與選定字線1〇2 及未選定位元線108相關聯,故可視為一,Ή ”單元(即"半選 定,,單元)。最後,記憶體單元107係與未選定字線1〇4及未 選定位元線1〇8相關聯,故可視為一 %"單元(即"未選定" 123178.doc 1345787 單元)。 圖1中還說明用於一正向偏壓操作模式之範例性偏壓條 件。如本文別處所述,此正向偏壓模式可用於一程式化模 式、一區塊抹除模式及一讀取模式(但通常此類不同模式 使用不同的電壓位準或條件)。如所示,該等偏壓條件可 視為適用於一用於一選定陣列區塊之程式化操作模式,並 將如此予以說明。 選定字線102係在一 VSX電壓(例如接地)下偏壓,選定位 元線106係在一 VSB電壓(例如+8伏特)下偏壓,未選定字線 104係在一 VUX電壓(例如+7·3伏特)下偏壓,而未選定位元 線108係在一 VUB電壓(例如+0‘7伏特)下偏壓。該選定位元 線偏壓電壓VSB可視為程式化電壓νρρ,由於實質上此整 個電Μ係作用於選定記憶體單元1 〇丨上(由於該選定字線係 在接地下偏壓),在匯流排及陣列線自身内較少的特定電 阻降。該未選定位元線偏壓電壓VUB還較佳的係各記憶體 單元之一正向偏壓方向上設定在一對應於一明顯,,臨界電 壓"之值下,因而顯示為一電壓ντ正作用於未選定位元線 1〇8上》同樣地,該未選定字線偏壓電壓νυχ還較佳的係 設定在一值VPP-VT。 在該些偏壓條件下,s單元101接收一等於VPP(例如+8 伏特)之正向偏壓電壓,F單元1〇3接收一等於ντ(例如+〇7 伏特)之正向偏壓電壓,Η單元1〇5接收一等於ντ(例如7 伏特)之正向偏壓電壓,而u單元1〇7接收一等於νρρ_2ντ (例如-6.6伏特)之反向偏壓電壓。存在若干範例性記憶體 123178.doc 1345787 單元技術,當在該些條件下偏壓時,選定單元會變化至一 更低電阻值,而該等F、Η及U單元卻絲毫沒有電阻變化。 下文說明範例性單元。 現在參考圖2,顯示用於一反向偏壓操作模式之範例性 偏壓條件200 ^如本文別處所述,此反向偏壓模式可用於 一程式化模式或一區塊抹除模式(但通常此類不同模式使 用不同條件)。如所示,該等偏壓條件可視為適用於一用A particular passive component memory cell exhibits rewritable characteristics. For example, in a particular memory cell, the stylization can be forward biased by a voltage of approximately 6 乂 to 8 V (eg, reference to one or two of them) The polarity of the polar body is achieved, and erasing can be achieved by using a voltage of approximately 1 〇ν to 14 ν to reverse bias the memory cell. These high voltages require the use of special high voltage CM〇s transistors in the word line and bit line decoders. This is not exactly as the memory cell word line and bit line spacing are reduced. This is particularly problematic for three-dimensional memory technology, in which the exit array must be interfaced with a word line and the word line and the pureness of the bit line to provide a decoding that is compatible with ever-decreasing array line spacing. And I/O circuits (and in particular the word line and bit line driver circuits are selected to function as memory cells - the ability to be sufficiently high voltage is even more. 2. SUMMARY OF THE INVENTION The present invention relates to an incorporation The memory array of the hierarchical bit line bias bus bar of the n-hidden array can be selected in a block, and the method for using the hierarchical bit line bias U for the block selectable memory array 1 and 'the present invention is defined by the accompanying patent scope 123l78.doc 1345787, and therefore nothing in this section should be construed as limiting the scope of such patents. In the aspect of the invention, the invention provides a circuit comprising a memory array having a plurality of array blocks, each array block comprising a word line and a bit line. The integrated circuit includes a first global bus bar that generally spans the plurality of array blocks. Used for Sometimes lightly-selected to select the location line to the individual data circuit. The integrated circuit also includes a different first bus segment per array block for passing during the first mode of operation for the first The operating mode H selects the positioning element line bias condition to the unselected positioning element line of the selected block, and transmits a second unselected positioning element line bias condition suitable for the first operating mode to the unselected array block The unselected line. In another aspect, the present invention provides an integrated circuit including a pattern of a plurality of array blocks, each array block including a word line and two The integrated circuit includes a light fitting member for coupling in a first mode by means of a first global exhaust bus that generally spans the plurality of array blocks - a selected imitation of the selected block The convergence of the current selection of the 兀 line to the individual circuit includes the coupling member, the basin is used for the red man to go to the eve of the "unselected positioning element for the light-selected and unselected array block to a fish system Flute one @ ^ One associated with each array block L-segment segment. The integrated circuit includes a transfer member for transmitting an adaptive body circuit for the first operational mode 'grass & , the use of = yuan line bias condition. The associated (four) first - sink two 1: hand on: the unselected array block is applied to the first operation mode 123178.doc 1345787 type of a second unselected Bit line bias condition. In another aspect, the present invention provides - the use of the ancient - species for the distribution. A memory array... = the body array has a plurality of array blocks, each array = two: the element line The method includes - in the -first mode of operation -: two-phase - the global array of the plurality of array blocks to lighten. ^ Selecting the block to select the location line to the individual data circuit, μ selection and • Unselected locator elements of the unselected array blocks are linked to an individual first-bus segment associated with each array area, and individual first-bus bars associated with the selected array block The segment is passed on the first operation mode 1#. - the first unselected positioning element Conditions, and with the first array associated with an individual unselected - vine #I H # ... s brother sheet discharge stream is transmitted on one of the first slave applies to the second operating mode unselected bit line bias conditions. In another aspect, the invention provides a method for making a memory product. The method includes forming a memory array having a plurality of array blocks, each array block comprising a word line and a bit line. The method further includes forming a first-global busbar that generally spans the plurality of array blocks for temporarily combining the selected location lines of the selected block to the individual data circuits. The method also includes forming a different first busbar segment per array block for communicating unselected elements suitable for the first selected positioning meta-line bias condition to a selected block during the first mode of operation: The line hand is applied to a second unselected locating element line bias condition of the first mode of operation to an unselected locating element line of the unselected array block. The invention is applicable in several aspects to a memory circuit having an array of memory, a method for operating such an integrated circuit and a memory array, and a memory product of the same type. Methods and computer readable media encodings of such integrated circuits, products or memory arrays, as described in more detail herein and in the accompanying claims, the techniques, structures and methods described herein, individually or in combination Use it. The foregoing is an overview and thus necessarily includes simplification, generalization and simplification of the details. Therefore, it is to be understood by those skilled in the art that the foregoing description is merely illustrative and is not intended to limit the invention in any form. Other aspects, innovative features, and advantages of the present invention are defined by the scope of the appended claims. [Embodiment] FIG. 1 is a schematic diagram of an exemplary passive component memory array i00. A sub-line 1〇2, 104 and a two-bit line 1〇6, 1〇8 are displayed. Assume that word line 1 〇 2 is a selected word line (SWL) and that word line 104 is an unselected word line (UWL). Similarly, the pseudo-positioning line 1〇6 is a selected positioning element line (sbl), and the pseudo-positioning unit line 108 is an unselected positioning element line (UBL). Four passive ' component memory cells 101, 1〇3, 1〇5, 107 are shown, each coupled between an associated word line and an associated bit line. The sufficiency single 7C 101 system is associated with the selected word line 102 and the selected positioning element line 〇6, so it can be regarded as a "S" unit (ie, "selected" unit memory unit 103 system and unselected The word line 104 and the selected positioning element line 1〇6 are associated, so it can be regarded as a unit (ie, “cutoff” unit). The memory unit 1〇5 is associated with the selected word line 1〇2 and the unselected positioning element line 108. Linked, it can be regarded as a Ή ” unit (ie "half-selected, unit). Finally, the memory unit 107 is associated with the unselected word line 1〇4 and the unselected positioning element line 〇8, so it is visible It is a %" unit (ie "unselected" 123178.doc 1345787 unit.) An exemplary bias condition for a forward bias mode of operation is also illustrated in Figure 1. As described elsewhere herein, this is The bias mode can be used in a stylized mode, a block erase mode, and a read mode (but typically such different modes use different voltage levels or conditions). As shown, the bias conditions can be considered as Applicable to a stylized mode of operation for a selected array block, and will be said The selected word line 102 is biased at a VSX voltage (e.g., ground), the selected bit line 106 is biased at a VSB voltage (e.g., +8 volts), and the unselected word line 104 is tied to a VUX voltage (e.g., +7·3 volts) is biased, and the unselected locating element line 108 is biased at a VUB voltage (eg, +0'7 volts). The selected locating element line bias voltage VSB can be regarded as a stylized voltage νρρ, Since substantially the entire electrical system acts on the selected memory cell 1 (because the selected word line is biased at ground), there is less specific resistance drop in the bus and array lines themselves. The bit line bias voltage VUB is also preferably set in a forward bias direction of one of the memory cells to correspond to an apparent, threshold voltage value, thereby indicating that a voltage ντ is acting on Similarly, the unselected word line bias voltage ν υχ is preferably set to a value of VPP-VT. Under these bias conditions, s unit 101 receives a equal to VPP. (for example, +8 volts) forward bias voltage, F unit 1〇3 receives an equal to ντ ( For example, a forward bias voltage of + 〇 7 volts, Η unit 1 〇 5 receives a forward bias voltage equal to ντ (eg, 7 volts), and u unit 1 〇 7 receives a value equal to νρρ_2ντ (eg, -6.6 volts) Reverse bias voltage. There are several exemplary memory 123178.doc 1345787 cell techniques, when biased under these conditions, the selected cell will change to a lower resistance value, and the F, Η and U cells There is no resistance change at all. An exemplary unit is described below. Referring now to Figure 2, an exemplary bias condition 200 for a reverse bias mode of operation is shown. ^ As described elsewhere herein, this reverse bias mode can be used for one Stylized mode or a block erase mode (but usually such different modes use different conditions). As shown, these bias conditions can be considered to be suitable for one use.

於一選定陣列區塊之程式化操作模式或抹除操作模式,並 將如此予以說明。 該等偏壓條件VSX、vux、VSB及VUB之各偏壓條件現 在將針對適用於本操作模式之值來加以重新定義。選定字 線102係在一 VSX電壓VRR/2(例如+5伏特)下偏壓,而選定 4元線106則在一vsB電壓-VRR/2(例如-5伏特)下偏壓。該 未選疋子線電壓νυχ及該未選定位元線電壓VUB二者均接 地0 在该些偏壓條件下,s單元1〇1接收一數量等於vrr(例 如-10伏特)之反向偏壓電壓,F單元1〇3接收一等於 yRR/2(例如_5伏特)之反向偏壓電壓,而η單元105接收一 等於VRR/2(例如_5伏特)之反向偏壓電壓。應注意,^單元 107橫跨單元上不接收任何偏壓。 子在右干例性記憶體單元技術(參考下面),當在該此 條件下偏壓時,選定留± ^ " 避疋早7L會從一較低電阻值變化至一更其 電阻值,而該蓉 ^ ^ _飞等F、H&U單元電阻卻沒有絲毫變化。還應 u等未選定U記憶體單元沒有任何偏壓,因而沒有 123178.doc -U · 1345787 任何漏電流,其在橫跨此類單元在數伏特下偏壓時另外可 能支援-相當大數量㈣漏電流。如進一步詳細所述,許 多有用記憶體陣列具體實施例包括比H單元或F單元遠大得 多數目的u單元’且此類陣列較其他偏壓方案在陣列之該 ; 冑未選$記憶體單元内I有明顯較低的漏電流以及因此低 得多的功率消耗。 ' 藉由在此反向模式下"分割"VRR電壓,並在一等於程式 # 4匕電壓一半的負電壓下偏壓SBL’以及在一等於程式化; 歷-半的正電壓下偏壓SWL,位元線解碼器及字線解碼器 .—者之電壓要求得到明顯鬆弛。因此,與該等P車列線(例 ,如字線及位元線)之較小間距相-致,在該等陣列線驅動 器電路内的該等高電壓電晶體佔據更少面冑,因為其可設 計以獲得一相對較低的"分割"電壓。 其他記憶體技術一直面對關於程式化及抹除電壓(及此 類南電壓電晶體所需之面積)不隨記憶體單元間距以相同 ϋ率比例縮放之類似問題。例如,在快閃記憶體内此問題 的影響有時因為-般以快閃記憶體為主記憶體陣列之更大 扇出而稍微降低。用於高電塵電晶體之更多空間消耗設計 -㈣可藉由增加記憶體區塊大小而在某些更新颖技術中得 到攤鎖然而,在-以二極體為主被動元件記憶體陣列 中,^區塊大小係以透過屬於選定陣列之該等未選定記 隐體單7G之增加戌漏為代價的。藉由如圖2所示偏塵此類 未選定記憶體單元,可將此茂漏成分減小至幾乎零,並獲 得-更大區塊大小,同時幾乎沒有有害功率消耗。 123178.doc -12· 1345787 現在參考圖3 ’顯示一範例性字線解碼器電路,包括顯 示適用於正向偏壓操作模式之偏壓條件(如圖丨所示)。在頁 面左侧顯示-列解碼器電路,其顯示二解碼輸出158、 162。解碼輸出158對應於—選定解碼輸出,而解碼輸出 162對應於-未選定解碼輸出…列解❹152可使用各種 熟知技術之任—者來實施,產生複數個解碼輸出,例如輪 出155、159,其係由多工器157、161及反相器156、16〇來The stylized mode of operation or the erase mode of operation of a selected array block will be described as such. The bias conditions for these bias conditions VSX, vux, VSB, and VUB are now redefined for values applicable to this mode of operation. The selected word line 102 is biased at a VSX voltage of VRR/2 (e.g., +5 volts) and the selected 4-ary line 106 is biased at a vsB voltage of -VRR/2 (e.g., -5 volts). The unselected dice line voltage ν υχ and the unselected locating element line voltage VUB are both grounded. Under these bias conditions, the s unit 1 〇 1 receives a reverse bias equal to vrr (eg, -10 volts). At the voltage, the F unit 1〇3 receives a reverse bias voltage equal to yRR/2 (e.g., _5 volts), and the η unit 105 receives a reverse bias voltage equal to VRR/2 (e.g., _5 volts). It should be noted that the unit 107 does not receive any bias across the unit. In the right-handed memory cell technology (see below), when biased under this condition, the selected ± ^ " early 7L will change from a lower resistance value to a more resistance value. However, the F, H & U unit resistance of the Rong ^ ^ _ fly did not change at all. It should also be such that unselected U memory cells do not have any bias voltage and therefore do not have any leakage current of 123178.doc -U · 1345787, which may additionally support when biased across such cells at a few volts - a considerable amount (four) Leakage current. As described in further detail, many useful memory array embodiments include a much larger number of u cells than H cells or F cells' and such arrays are in the array compared to other biasing schemes; I have a significantly lower leakage current and therefore a much lower power consumption. 'By splitting "VRR voltage in this reverse mode, and biasing SBL' at a negative voltage equal to half the voltage of program #4匕 and at a positive voltage equal to a stylized; calendar-half Voltage SWL, bit line decoder and word line decoder. The voltage requirements are significantly relaxed. Thus, the higher pitch transistors in the array line driver circuits occupy less area than the smaller pitches of the P train lines (e.g., word lines and bit lines) because It can be designed to achieve a relatively low "segment" voltage. Other memory technologies have been faced with similar problems with stylized and erase voltages (and the area required for such south voltage transistors) that do not scale with memory cell spacing at the same rate. For example, the effect of this problem in flash memory is sometimes slightly reduced by the fact that the flash memory is the larger fanout of the main memory array. More Space Consumption Design for High Dust-Electrical Crystals - (4) Can be Stabilized in Some Renewal Techniques by Increasing Memory Block Size However, In-Diode-Based Passive Component Memory Array The size of the block is at the expense of an increase in the leakage of the unselected ciphers 7G belonging to the selected array. By removing such unselected memory cells as shown in Figure 2, the leakage component can be reduced to almost zero and a larger block size can be obtained with little or no detrimental power consumption. 123178.doc -12 1345787 An exemplary word line decoder circuit is now shown with reference to FIG. 3', including bias conditions for display in a forward bias mode of operation (as shown in FIG. A column decoder circuit is shown on the left side of the page, which displays two decoded outputs 158, 162. The decoded output 158 corresponds to - the selected decoded output, and the decoded output 162 corresponds to the - unselected decoded output ... the column decipher 152 can be implemented using any of a variety of well known techniques to produce a plurality of decoded outputs, such as rounds 155, 159, It is composed of multiplexers 157, 161 and inverters 156, 16

有條件地反轉。一反轉緩衝器係在該NAnd閘之後併入以 由於在節點158上的較大電容性負載而驅動節點155(即結 果’如此處’多工器157操縱節點155至輸出158)β列解喝 器152係在此操作模式下操作,—等於νρρ之上部供應電 壓係耗合至電源節點153以及—接地下部供應電壓係輕合 至電源節點154。在此操作模式下,該列解碼器係―”高態 有效解碼器,思味著將諸如解碼輸出節點158之選定輸出 (或多個輸出)驅動至兩個可用電壓狀態之最高者,在此情Conditionally reversed. A reverse buffer is incorporated after the NAnd gate to drive node 155 due to the larger capacitive load on node 158 (i.e., the result 'as multiplexer 157 manipulates node 155 to output 158 here) beta column solution The drinker 152 operates in this mode of operation, i.e., equal to the upper supply voltage of νρρ, which is coupled to the power supply node 153 and the grounded lower supply voltage is coupled to the power supply node 154. In this mode of operation, the column decoder is a "high state valid decoder" that is intended to drive a selected output (or outputs) such as decode output node 158 to the highest of the two available voltage states, here situation

況下係VPP。㈣未選定解碼輸_域碼輸出節點162月) 係驅動至該等兩個可用電壓狀態之最低者,在此情況下係 接地。下述將最初假定一次僅選擇一此類解碼輸出節點 (例如"高態")》 各解碼輸出㈣合至-或多個字線驅動urn如, 解碼輸出節點158軸合至—字線驅動器電路,其包括 PMOS電晶體171與麵〇8電晶體172。電晶體i7i、m之 個別沒極端子係同時福合至—字線,在此情況下表示選定 字線心儘管本發明之特定具體實施例涵蓋多頭解碼器 123178.doc -13- 1345787 外的解碼器,但圖3描述一還耦合至解碼輸出節點US之第 二字線驅動器電路,其表示與此特定解碼輪出節點158相 關聯之一或多個其他字線驅動器電路。此第二字線驅動器 電路包括PMOS電晶體173及NMOS電晶體174,其輸出驅 動 子線181,字線181表示一或多個半選定字線。 在該些字線驅動器電路之各電路内的NMOS電晶體之個 別源極端子係耦合至一源極選擇匯流排XSEL之一個別匯 流排線。在此操作模式下,該源極選擇匯流排係基於位址 資訊來解碼,使得在一適用於此操作模式一字線之有效狀 態下偏壓此類匯流排線,而在一適用於此操作模式字線之 無效操作模式下偏壓剩餘匯流排線。在特定具體實施例 中,多個此類源極選擇匯流排可以係有效的,但現在假定 匯流排線167有效,並在接地下偏壓,而一或多個剩餘匯 流排線(表示為匯流排線168)係無效並驅動至該未選定字線 電壓VUX(顯示為VPP-VT)。 由於在解碼輸出節點158上的電壓(vpp)高於匯流排線 167、168之電壓,故該等^^河⑽電晶體172、174二者係接 通,從而驅動選定字線102接地,並驅動半選定字線i8i至 VPP-VT。該些二傳導路徑係指示為開尾式箭頭線。 在該些字線驅動器電路之各電路内的PM〇s電晶體之個 別源極端子係耦合至一未選定偏壓線UXL,還標註為節點 164。在此操作模式下,該UXL偏壓線傳遞該未選定字線 電壓νυχ。由於在解碼輪出節點158上的電壓(vpp)高於該 UXL偏壓線之電壓,故二pM〇s電晶體171、173係截止。 123178.doc -14- 1345787 解碼輸出卽點162係耦合至一字線驅動器電路,其包括 PMOS電晶體175與_沉電晶體176。電晶體π、μ之 ::汲極端子係同時耦合至一字線,在此情況下表示未選 疋子線104還耗合至解碼輸出節點162之一第二字線驅動 器電路表示與解碼輸出節點16 2相關聯之一或多個剩餘字 線驅動器電路’並包括PM0S電晶體177及NM〇s電晶體 178,該等電晶體之輸出驅動一未選定字線“^。 如則述在該些予線驅動器電路之各電路内的NM〇s電 晶體之個別源極端子係耦合至一源極選擇匯流排xsel之 一個別匯流排線。由於在解碼輸出節點162上的電壓(接地) 係在或低於匯流排線167、168之電壓’故該等nm〇s 176、178二者係截止。在該些字線驅動器電路之各電路内 的PMOS電晶體之個別源極端子係耦合至未選定偏壓線 UXL節點164。由於在解碼輸出節點丨62上的電壓(接地)係 低於UXL偏壓線164之電壓(低pm〇S臨界電壓以上),二 PMOS電晶體175、177係接通,從而驅動該等未選定字線 104、183至VUX(例如VPP-VT)。該些二傳導路徑係指示為 開尾式箭頭線。 現在參考圖4,顯示此相同範例性字線解碼器電路,包 括適用於反向偏壓操作模式之偏壓條件(如圖2所示)。該列 解碼電路之解碼輸出158仍對應於一選定解碼輸出,而解 碼輸出162對應於一未選定解碼輸出。列解碼器152係在此 操作模式下操作,一等於VRR/2之上部供應電壓係耦合至 電源節點153以及一接地下部供應電壓係耦合至電源節點 123178.doc •15· 1345787 1 54。在此操作模式下,該列解碼器係一”高態有效"解碼 器’而該有效(選定)解碼輸出158係使用反相器156及多工 器157而驅動至兩個可用電壓狀態之最低者,在此情況下 其係GND(接地)。該等未選定解碼輸出(例如解碼輸出節點 162)係使用反相器160及多工器161而驅動至該等兩個可用 電壓狀態之最高者,在此情況下係VRR/2。 在此操作模式下,對於所述範例性具體實施例而言,源 極選擇匯流排XSEL之該等個別匯流排線係全部驅動至相 同偏壓條件(接地),而該"未選定"偏壓線UXL傳遞一等於 VRR/2(例如+5伏特)之偏壓電壓。在此反向操作模式下, 該偏壓線UXL實際上傳遞一適用於字線之有效狀態,而非 一無效或未選定偏屢條件。由於在解碼輸出節點158上的 電壓(GND)相當低於該偏壓線uxl之電壓(即低一 PM〇s臨 界電壓以上),該等PMOS電晶體171、173二者係接通,從 而將該選定字線102驅動至VRR/2,並還將本來係半選擇 子線者(此處顯示為選定字線181)驅動至vrR/2。該些二傳 導路徑係指示為開尾式箭頭線。 在此操作模式下’不解碼該源極選擇匯流排XSEL,且 各此類匯流排線係在一適用於一字線之無效狀態下(例如 接地)偏壓。由於在解碼輸出節點158上的電壓(接地)不高 於匯流排線167、168之電壓,故該等^^仍172、174二者 係截止。 解碼輸出節點162係一未選定輸出,藉由反相器16〇及多 工器161而驅動至VRR/2。由於在解碼輸出節點162上的電 123178.doc 1345787 壓咼於匯流排線167、168之電壓,故該等1^河〇8 176、178 一者係接通,從而將該等未選定字線1〇4、183驅動至接 地。該些二傳導路徑係指示為開尾式箭頭線。由於在解碼 輸出節點162上的電壓與該UXL偏壓線164上傳遞的電壓相 同,故二PMOS電晶體175、177係截止。 現在參考圖5,顯示一範例性位元線解碼器電路,包括 顯不適用於正向偏壓操作模式之偏壓條件(如圖丨所示卜在 頁面左側顯示一行解碼器電路,其顯示二解碼輸出2〇8、 212。解碼輸出208對應於一選定解碼輸出,而解碼輸出 212對應於一未選定解碼輸出。一行解碼器2〇2可使用各種 熟知技術之任一者來實施,產生複數個解碼輸出,例如輸 出205、209 ’其係由多工器207、211及該等反相器2〇6、 210來有條件地加以反轉。不同於該列解碼器,在該nand 閘之後不存在反轉緩衝器以驅動節點2〇5,因為在節點2〇8 上的電容性負載要比用於該等列解碼器輸出的要低得多。 行解碼器202係在此操作模式下操作,一等於vpp之上部 供應電麼係耦合至電源節點203以及一接地下部供應電壓 係耦合至電源節點204。在此操作模式下,該行解碼器係 一”低態有效"解碼器。該等未選定解碼輸出(例如解碼輸出 節點212)係驅動至該等兩個可用電壓狀態之最高者,在此 情況下係VPP。下述將最初假定一次僅選擇一此類解碼輪 出節點208(例如,,低態")。 各解碼輪出係耦合至一或多個位元線驅動器電路。例 如,解碼輸出節點208係耦合至一位元線驅動器電路其 123178.doc 1345787 包括PMOS電晶體22 1與NMOS電晶體22:) 电a日髖222。電晶體221、 2之個別汲極端子係同時耦合至— 位70線’在此情況下 表不選疋位元線106。儘管本發明 m I月之特定具體實施例涵蓋 多頭解碼器外的解碼器,但圖5描 口相迎還耦合至解碼輸出 :‘請之第二位元線驅動器電路,其表示與此特定解瑪 〜出卽點208相關聯之-或多個剩餘位元線驅動器電路。 此第二字線驅動器電路包括PM〇s電晶體223及觀〇8電晶In the case of VPP. (4) The unselected decoding source code output node 162 months is driven to the lowest of the two available voltage states, in this case grounded. The following will initially assume that only one such decoded output node (e.g., "high state") is selected at a time (e.g., "four" is combined to - or a plurality of word line drivers urn, and the decoded output node 158 is coupled to - word line A driver circuit includes a PMOS transistor 171 and a facet 8 transistor 172. Individuals of the transistors i7i,m have no extreme sub-systems that are simultaneously compliant to the word line, in this case representing the selected word line center. Although a particular embodiment of the invention encompasses decoding of the multi-head decoder 123178.doc -13- 1345787 However, FIG. 3 depicts a second word line driver circuit that is also coupled to the decode output node US, which represents one or more other word line driver circuits associated with this particular decode wheel out node 158. The second word line driver circuit includes a PMOS transistor 173 and an NMOS transistor 174, the output driver line 181, and the word line 181 representing one or more semi-selected word lines. The individual source terminals of the NMOS transistors in the various circuits of the word line driver circuits are coupled to an individual bus line of a source select bus XSEL. In this mode of operation, the source select bus is decoded based on the address information to bias such bus bars in an active state suitable for the word line of the operating mode, and is suitable for this operation. The remaining bus lines are biased in the inactive mode of the mode word line. In a particular embodiment, a plurality of such source select busses may be active, but now assume that bus bar 167 is active and biased at ground and one or more remaining bus bars (represented as confluence) Cable 168) is inactive and driven to the unselected word line voltage VUX (shown as VPP-VT). Since the voltage (vpp) on the decoded output node 158 is higher than the voltage of the bus bars 167, 168, the transistors (172) 172, 174 are both turned "on", thereby driving the selected word line 102 to ground, and The semi-selected word lines i8i to VPP-VT are driven. The two conductive paths are indicated as open-ended arrow lines. The individual source terminals of the PM〇s transistors in the various circuits of the word line driver circuits are coupled to an unselected bias line UXL, also labeled as node 164. In this mode of operation, the UXL bias line passes the unselected word line voltage νυχ. Since the voltage (vpp) at the decoding wheeling node 158 is higher than the voltage of the UXL bias line, the two pM〇s transistors 171, 173 are turned off. 123178.doc -14- 1345787 The decode output node 162 is coupled to a word line driver circuit that includes a PMOS transistor 175 and a sink transistor 176. The transistor π, μ::汲 terminal is simultaneously coupled to a word line, in which case the unselected sub-line 104 is also consuming to one of the decoded output nodes 162, the second word line driver circuit representation and the decoded output. Node 16 2 is associated with one or more of the remaining word line driver circuits 'and includes a PMOS transistor 177 and an NM 〇 s transistor 178, the output of which drives an unselected word line "^. The individual source terminals of the NM〇s transistors in each of the pre-driver circuits are coupled to an individual bus bar of a source select bus xsel. The voltage (ground) at the decoded output node 162 is At or below the voltage of the bus bars 167, 168, the two NMOSs 176, 178 are both turned off. The individual source terminals of the PMOS transistors in each of the word line driver circuits are coupled to The bias line UXL node 164 is not selected. Since the voltage (ground) at the decoded output node 丨62 is lower than the voltage of the UXL bias line 164 (above the low pm 〇 S threshold voltage), the two PMOS transistors 175, 177 are Turning on, thereby driving the unselected word lines 104 183 to VUX (e.g., VPP-VT). The two conduction paths are indicated as open-ended arrow lines. Referring now to Figure 4, this same exemplary word line decoder circuit is shown, including for a reverse bias mode of operation. The bias condition (shown in Figure 2). The decoded output 158 of the column decode circuit still corresponds to a selected decoded output, and the decoded output 162 corresponds to an unselected decoded output. The column decoder 152 operates in this mode of operation. The upper supply voltage equal to VRR/2 is coupled to the power supply node 153 and a grounded lower supply voltage is coupled to the power supply node 123178.doc • 15· 1345787 1 54. In this mode of operation, the column decoder is “ The high state active "decoder' and the active (selected) decoded output 158 is driven to the lowest of the two available voltage states using inverter 156 and multiplexer 157, in which case it is GND (ground) . The unselected decoded outputs (e. g., decoded output node 162) are driven to the highest of the two available voltage states using inverter 160 and multiplexer 161, in this case VRR/2. In this mode of operation, for the exemplary embodiment, the individual bus bars of the source select bus XSEL are all driven to the same bias condition (ground), and the "unselected" The bias line UXL delivers a bias voltage equal to VRR/2 (e.g., +5 volts). In this reverse mode of operation, the bias line UXL actually passes an active state suitable for the word line, rather than an invalid or unselected partial condition. Since the voltage (GND) on the decoded output node 158 is relatively lower than the voltage of the bias line ux1 (ie, above the threshold voltage of the lower PM 〇s), the PMOS transistors 171, 173 are both turned on, thereby The selected word line 102 is driven to VRR/2 and also drives the half-selected sub-line (shown here as selected word line 181) to vrR/2. The two guided paths are indicated as open-ended arrow lines. In this mode of operation, the source select buss XSEL are not decoded, and each such bus bar is biased in an inactive state (e.g., ground) suitable for a word line. Since the voltage (ground) at the decode output node 158 is not higher than the voltage of the bus bars 167, 168, the 172 and 174 are both turned off. Decode output node 162 is an unselected output that is driven to VRR/2 by inverter 16 and multiplexer 161. Since the power 123178.doc 1345787 on the decoded output node 162 is pressed against the voltage of the bus bars 167, 168, the ones are connected, thereby unselecting the word lines. 1〇4, 183 drive to ground. The two conductive paths are indicated as open-ended arrow lines. Since the voltage on the decode output node 162 is the same as the voltage across the UXL bias line 164, the two PMOS transistors 175, 177 are turned off. Referring now to FIG. 5, an exemplary bit line decoder circuit is shown, including a bias condition that is not suitable for the forward bias mode of operation (as shown in FIG. 卜, a row of decoder circuits is displayed on the left side of the page, which displays two The decoded output 2〇8, 212. The decoded output 208 corresponds to a selected decoded output and the decoded output 212 corresponds to an unselected decoded output. A row of decoders 2〇2 can be implemented using any of a variety of well known techniques to generate a complex number The decoded outputs, such as outputs 205, 209 ' are conditionally inverted by multiplexers 207, 211 and the inverters 2, 6, 210. Unlike the column decoder, after the nand gate There is no inversion buffer to drive node 2〇5 because the capacitive load on node 2〇8 is much lower than that used for the column decoder outputs. Row decoder 202 is in this mode of operation. Operation, one equal to the upper supply of vpp is coupled to the power supply node 203 and a grounded lower supply voltage is coupled to the power supply node 204. In this mode of operation, the row decoder is a "low state active" decoder. Such The selected decoded output (e.g., decoded output node 212) is driven to the highest of the two available voltage states, in this case VPP. The following will initially assume that only one such decoding round-out node 208 is selected at a time (eg, , low state ") Each decoding wheel is coupled to one or more bit line driver circuits. For example, decoding output node 208 is coupled to a one bit line driver circuit 123178.doc 1345787 includes PMOS transistor 22 1 With the NMOS transistor 22:) electric a day hip 222. The individual 汲 extremes of the transistors 221, 2 are simultaneously coupled to the -70 line 'in this case the table below does not select the bit line 106. Although the invention m I The specific embodiment of the month covers the decoder outside the multi-head decoder, but the description of Figure 5 is also coupled to the decoded output: 'Please the second bit line driver circuit, which represents the specific solution to the point 208 associated with - or a plurality of remaining bit line driver circuits. This second word line driver circuit includes a PM 〇s transistor 223 and a 〇 8 transistor

體224,該等電晶體之輸出驅動—位元線231,其表示一或 多個半選定位元線。比較該字線解碼器,此類半選定位元 線可表示—選定位元線’其係維持在一無效狀態下。 在該些位元線驅動器電路之各電路内的pM〇s電晶體之 個別源極端子係耦合至一源極選擇匯流排selb之一個別 =流排線。在此操作模式下’該源極選擇匯流排肌㈣ 資料相依的,且可進一步基於位址資訊來加以解碼,使得 對於此操作模式,一或多個此類匯流排線係在一適用於一Body 224, the output of the transistors is driven - bit line 231, which represents one or more semi-selected positioning elements. Comparing the word line decoder, such a semi-selected positioning line can indicate that the selected positioning element line is maintained in an inactive state. The individual source terminals of the pM〇s transistors in the various circuits of the bit line driver circuits are coupled to one of the source select busses selb individually = the bank lines. In this mode of operation, the source selects the busbar muscles (4) data dependent, and can be further decoded based on the address information, such that for this mode of operation, one or more such bus lines are applied to one

位7L線之有效狀態下偏壓,而對於此操作模式,剩餘匯流 排線係在一適用於位元線之無效狀態下偏壓。在特定具體 實施例中,一或多個此類源極選擇匯流排線可以係有效 的’但現在假定匯流排線2 1 7係有效,並在vpp下偏壓, 而一或多個剩餘匯流排線(表示為匯流排線2丨8)係無效並驅 動至該未選定位元線電壓VUB(顯示為VT)。 由於在解碼輸出節點208上的電壓(接地)低於匯流排線 217、218之電壓,故該等1>1^〇8電晶體221、223二者係接 通’從而驅動選定位元線1〇6至Vpp,並驅動半選定位元 123178.doc 1345787 線23 1至VT。該些二傳導路徑係指示為開尾式箭頭線。 在該些位元線驅動器電路之各電路内的NMOS電晶體之 個別源極端子係耦合至一未選定偏壓線UYL,還標註為節 點214。在此操作模式下,該UYL偏壓線傳遞該未選定位 元線電壓VUB。由於在解碼輸出節點208上的電壓(接地)低 於該UYL偏壓線之電壓,故二NMOS電晶體222、224係截 止。 解碼輸出節點2 12係耦合至一位元線驅動器電路,其包 括PMOS電晶體225與NMOS電晶體226。電晶體225、226 之個別汲極端子係同時耦合至一位元線,在此情況下表示 未選定位元線108。還耦合至解碼輸出節點212的一第二位 元線驅動器電路表示與解碼輸出節點212相關聯的一或多 個剩餘位元線驅動器電路,並包括PMOS電晶體227及 NMOS電晶體228,該等電晶體之輸出驅動一未選定位元線 233 °The bit 7L line is biased in an active state, and for this mode of operation, the remaining bus bar is biased in an inactive state suitable for the bit line. In a particular embodiment, one or more of such source selection bus bars may be active 'but now assume that bus bar 2 1 7 is active and biased at vpp, and one or more remaining confluences The cable (denoted as bus bar 2丨8) is invalid and is driven to the unselected location line voltage VUB (shown as VT). Since the voltage (ground) on the decoding output node 208 is lower than the voltage of the bus bars 217, 218, the 1 > 1 ^ 8 transistors 221, 223 are both turned "on" to drive the selected bit line 1 〇6 to Vpp and drive the semi-selected positioning element 123178.doc 1345787 line 23 1 to VT. The two conductive paths are indicated as open-ended arrow lines. The individual source terminals of the NMOS transistors in the various circuits of the bit line driver circuits are coupled to an unselected bias line UYL, also labeled as node 214. In this mode of operation, the UYL bias line delivers the unselected location line voltage VUB. Since the voltage (ground) at the decoded output node 208 is lower than the voltage of the UYL bias line, the two NMOS transistors 222, 224 are cut off. The decode output node 2 12 is coupled to a one bit line driver circuit that includes a PMOS transistor 225 and an NMOS transistor 226. The individual 汲 terminal sections of the transistors 225, 226 are simultaneously coupled to a single bit line, in this case the unselected locating element line 108. A second bit line driver circuit coupled to the decode output node 212 represents one or more remaining bit line driver circuits associated with the decode output node 212 and includes a PMOS transistor 227 and an NMOS transistor 228, such The output of the transistor drives an unselected positioning element line 233 °

如上述,在該些位元線驅動器電路之各電路内的PMOS 電晶體之個別源極端子係耦合至一源極選擇匯流排SELB 之一個別匯流排線。由於在解碼輸出節點2 12上的電壓 (VPP)係在或高於匯流排線217、218之電壓,故該等PMOS 225、227二者係截止。在該些位元線驅動器電路之各電路 内的NMOS電晶體之個別源極端子係耦合至未選定偏壓線 UYL節點214。由於在解碼輸出節點212上的電壓係VPP, 故二NMOS電晶體226、228係接通,從而將未選定位元線 108、233驅動至VUB(例如VT)»該些二傳導路徑係指示為 123178.doc -19- 1345787 開尾式箭頭線》 現在參考圖6,顯示該位元線解碼器電路,包括適用於 反向偏壓操作模式之偏壓條件(如圖2所示)。該行解碼器電 路之解碼輸出208仍對應於一選定解碼輸出,而解碼輸出 212對應於一未選定解碼輸出。行解碼器2〇2係在此操作模 式下操作,一等於GND之上部供應電壓係耦合至電源節點 203以及一下部供應電壓_VRR/2係耦合至電源節點2〇4。在 此操作模式下,該行解碼器係一 ”高態有效"解碼器,而該 有效(選定)解碼輸出208係藉由反相器206及多工器2〇7而驅 動至兩個可用電壓狀態之最高者,在此情況下其係 GND(接地)。該等未選定解碼輸出(例如解碼輸出節點2 12) 係藉由反相器210及多工器211而驅動至該等兩個可用電壓 狀態之最低者,在此情況下其係-VRR/2。 在此操作模式下,對於所述範例性具體實施例而言,源 極選擇匯流排SELB之該等個別匯流排線係全部驅動至相 同偏壓條件(接地),而該"未選定"偏壓線UYL傳遞一等 於-VRR/2(例如-5伏特)之偏壓電壓。在此反向操作模式 下,該偏壓線UYL實際上傳遞一適用於位元線之有效狀 態’而非一無效或未選定偏壓條件。由於在解碼輸出節點 208上的電壓(接地)相當程度高於該偏壓線uyl之電壓(低 一 NMOS臨界電壓以上),該等NMOS電晶體222、224二者 係接通,從而將該選定位元線106驅動至- VRR/2,並還將 本來係半選擇位元線者(此處顯示為選定位元線231)驅動 至-VRR/2。該些二傳導路徑係指示為開尾式箭頭線。 123178.doc -20. 1345787 在此操作模式下,該源極選擇匯流排SELB係非資料相 依或不解碼(至少在一給定區塊内),且各此類匯流排線係 在一適用於一位元線之無效狀態下(例如接地)偏壓。該等 PMOS電晶體221、223二者係截止。 解碼輸出郎點212係未選定輸出並驅動至_ vrr/2。該 等PMOS電晶體225、227二者係接通,從而驅動該等未選 定位兀線108、233至接地。該些二傳導路徑係指示為開尾 式箭頭線。二NMOS電晶體226、228係截止。 應注意,在該正向模式下,該行解碼器係低態有效而該 等位元線係高態有效。但在該反向模式下,該行解碼器逆 反其極性而變成高態有效,而該等位元線自身也逆反極性 而變成低態有效。反之,在該正向模式下,該列解碼器係 冋態有效而該等字線係低態有效。但在該反向模式下該 列解碼器逆反其極性而變成低態有效,而該等字線自身也 逆反極性而變成高態有效《還應注意,該行解碼器輸出位 準在該正向模式(即GND至VPP)與反向模式(即-VRR/2至 GND)之間在平均電壓上偏移。 當視為一非多頭解碼器(在圖3、4、5及6中,僅非虛線 陣列線驅動器電路)時,可極簡單地說明該解碼器電路之 操作。在該反向模式下,該字線解碼器逆反其極性並使一 選定字線成高態(〜5 V) ’同時保持所有其他選定字線接 地。該逆反發生於位元線選擇側,其中選定一位元線並成 為-5 V而所有其他位元線均接地。最終結果係橫跨選定記 憶體單兀的10 V反向偏壓與橫跨其他單元的零反向偏壓。 123178.doc • 21 - 1^787 在該等字線及位元複 - 動益電路内的該等電晶體僅須承受 J5最大電壓-半,而非整個電壓。 吏用多頭解碼器(在圖3、4、5及6中,包括虛陣 列2驅動器電路)之蕴涵時,應注意,至此所述電路在該 ° 。㈣解㉜源極選擇匯流排,其允許選擇該陣 列線群組之-單—者(但是同時將剩餘半選定陣列線驅動 至未選疋偏愿條件)。然而,在該反向模式下來自該 歹J及行解碼器之選定解碼輸出將各陣列線輕合至一單一未 選定偏I線(例如UXL及UYL)m㈣線在該反 向模式下無法獲得半選定陣列線。由此,在配置用以在該 反向模式下選擇一陣列線區塊(例如一"區塊抹除")時上述 電路及技術非常有用。如在圖4及6中可看出一選定字線 區塊與一選定位元線區塊在該反向模式下同時選擇,沒有 任何獨立可組態的半選定陣列線。此類區塊操作全部避免 任何半選疋線之需要。解碼蘊涵可能極類似於授予E. .Scheuerlein之美國專利第6,879,5〇5號’標題為"用於三維 記憶體陣列之具有多層字線片段之字線配置"中所述,其 揭示内谷全部以引用形式併入本文。是否可組態此類區塊 操作(或可組態多大的區塊)主要取決於單元重置電流之數 量、同時傳導此類重置電流之單元數目、以及在字線驅動 器電路及位元線驅動電路内的PMOS與NMOS電晶體是否 可在可接受電壓降下支援此類電流。 可藉由使用其他技術在該反向模式下提供半選定陣列線 (除了在該正向模式下已經提供的)。在一單一此類技術 123178.doc -22- 1345787 中,該等列及行解碼器可由過電壓來供電,使得該等解碼 輪出節點高於該PM0S源極電壓且低於該]^1^〇8源極電壓 而橫過。藉由如此操作,可透過1^河〇8電晶體將選定字線 驅動最高至+VRR/2電壓,並可透過PM0S電晶體將選定位 , 元線驅動最低至-VRR/2電壓。此利用與該正向模式期間相 同的電晶體來驅動選定字線及位元線。 此類技術如圖7及8所示。最初參考圖7,說明一字線解 • 碼器電路,其利用一過驅動解碼輸出來驅動該等陣列線驅 動器,其源極保持在上述偏壓條件下。在此列解碼器電路 * 中,列解碼器15 2係由一 8伏特上部供應電壓與一負i伏特 下部供應電壓來供電。該等解碼輸出節點158、162之極性 係相對於圖4所示之極性逆反,故現在係一高態有效解碼 器,其在+8伏特下提供一選定輸出158並在_丨伏特下提供 一未選定解碼輸出162。源極選擇匯流排XSE[保持一解碼 匯流排不變。其個別匯流排線之一(或多個)者係選定並驅 • 動至+5伏特,而該等未選定線係驅動至接地。NMOS電晶 體172係接通,並將選定字線1〇2傳導至相關聯的xsel匯 流排線電壓(+5伏特)。NM0S電晶體174係也接通,並將該 (等)半選定字線181傳導至接地。在未選定解碼輸出節點 - 162在―1伏特下時’該等PMOS電晶體175、177係同時接 通,並將未選定字線104、183傳導至接地。在利用此技術 之某些具體實施例中,不使用該等條件輸出反相器156、 16〇及該等多工器157、161(此處顯示為”虛線·,)。 現在參考圖8,說明一位元線解碼器電路,其也利用一 123178.doc • 23- 1345787 過驅動解碼輸出來驅動該等陣列線驅動器。在此行解碼器 電路中,行解碼器202係由一+1伏特高電源電壓與一負8伏 特低電源電壓來供電。該等解碼輸出節點2〇8、212之極性 係相對於圖6所示之極性逆反,故現在係一低態有效解碼 器其在伏特下提供一選定輸出208並在+1伏特下提供 一未選定解碼輸出212 ^該等個別SELB匯流排線217之一 : (或多個)者係選定並驅動至_5伏特,而該等未選定SELB匯 φ 流排線218係驅動至接地。PMOS電晶體221係接通,並將 該等選疋位元線106傳導至相關聯的SELB匯流排線電壓(_5 • 伏特)。PM0S電晶體223係也接通,並將該(等)半選定字線 . 231傳導至接地。在未選定解碼輸出節點212在+1伏特下 時,該等NMOS電晶體226、228係同時接通,並將該等未 選定位元線!08、233傳導至接地。在利用此技術之某些具 體實施例中,不使用該等條件輸出反相器2〇6、2 ^ 〇及該等 • 多工器207、211。 在另一技術中,半選擇字線及位元線可藉由取代該等單 ^ —未選定偏壓線UXL及UYL而併人—個別反向源極選擇匯 流排來在該反向模式下提供。現在參考圖9,說明一字線 : ㈣器電路,其利用雙解碼源極選擇匯流排。用於該等字 、線驅動器電珞之該等PM0S電晶.體之一反向源極選擇匯流 排XSELP已取代圖4所示之未選定偏壓線皿而併入。此 字線解碼器電路之剩餘部分如前述操作。 在該反向模式下’選定解碼輪出節點158係低態有效並 驅動至接地。該反向源極選擇匯流排xsELp之該等個別匯 123178.doc -24· 1345787 流排線之一選定者係偏壓至一適用於一字線之反向操作模 式之有效偏壓條件。在此情況下,該XSELP匯流排之選定 匯流排線243係驅動至VRR/2,而該XSELP匯流排之未選定 偏壓線244係驅動至一適用於一字線之此操作模式之無效 偏壓條件,在此情況下係驅動至接地。PM〇s電晶體171係 藉由耦合至其閘極之低壓而接通,並將選定字線1〇2驅動 至VRR/2電位《然而,在該半選定字線驅動器電路内的 PMOS電晶體1 73保持截止,因為在其閘極上的電壓相對於 其源極不夠低,由於二者均接地。 由於NMOS電晶體174係也截止,故在該半選定字線驅動 器電路内的任一電晶體均不接通。因此,該等半選定字線 在接地電位或附近浮動。如同在範例性電路之情況下在 NMOS下拉電晶體174大於PM〇s上拉電晶體173時發生此 障况更大電晶體比更小電晶體完全具有一至其基板更大 洩漏數量。因此,由於電晶體174具有一捆綁至接地之基 板’故接地、/¾漏電流支配基板茂漏電流至由PMos電晶體 173所產生之vrr/2,且此淨電流傾向於將該等未選定字 線181維持在接地電位或附近。與未選定解碼輸出節點162 相關聯之該專子線驅動器電路如前述操作,該等電 晶體176、178係接通以將該等未選定字線1〇4、ι83傳導至 接地。 在一替代性具體實施例中,該等解碼輸出節點158、ι62 之低位準可藉由使用一等於_VTP(或更低)之低電源154操 作列解碼器152、反相器156、160及多工器157、ι61來驅 123178.doc -25- 1345787 動至低於接地(例如至一在接地以下PMOS臨界電壓或以下 之電壓,即-VTP)。由此,PMOS上拉電晶體173係接通至 有效驅動該(等)半選定字線181至接地。As described above, the individual source terminals of the PMOS transistors in the various circuits of the bit line driver circuits are coupled to one of the individual bus bars of a source select bus SELB. Since the voltage (VPP) at the decoded output node 2 12 is at or above the voltage of the bus bars 217, 218, the PMOSs 225, 227 are both turned off. The individual source terminals of the NMOS transistors in the various circuits of the bit line driver circuits are coupled to unselected bias line UYL node 214. Since the voltage system VPP on the output node 212 is decoded, the two NMOS transistors 226, 228 are turned "on", thereby driving the unselected positioning elements 108, 233 to VUB (eg, VT). 123178.doc -19- 1345787 Open-Ended Arrow Line Referring now to Figure 6, the bit line decoder circuit is shown, including bias conditions suitable for the reverse bias mode of operation (shown in Figure 2). The decoded output 208 of the row decoder circuit still corresponds to a selected decoded output, and the decoded output 212 corresponds to an unselected decoded output. The row decoder 2〇2 operates in this mode of operation, with a supply voltage coupled to the power supply node 203 and a lower supply voltage _VRR/2 coupled to the power supply node 2〇4. In this mode of operation, the row decoder is a "high active" decoder, and the active (selected) decoded output 208 is driven to two available by inverter 206 and multiplexer 2〇7. The highest voltage state, in this case, is GND (ground). The unselected decoded outputs (eg, decoded output node 2 12) are driven to the two by inverter 210 and multiplexer 211. The lowest of the available voltage states, in this case -VRR/2. In this mode of operation, for the exemplary embodiment, the individual busbars of the source select bus SELB are all Driven to the same bias condition (ground), and the "unselected" bias line UYL delivers a bias voltage equal to -VRR/2 (eg, -5 volts). In this reverse mode of operation, the bias The voltage line UYL actually passes an active state suitable for the bit line' instead of an invalid or unselected bias condition. Since the voltage (ground) at the decoded output node 208 is considerably higher than the voltage of the bias line uyl (lower than NMOS threshold voltage), the NMOS transistors 222, 224 are both turned on, thereby driving the selected positioning element line 106 to -VRR/2, and driving the originally half-selected bit line (shown here as the selected positioning element line 231) to -VRR /2. The two conduction paths are indicated by an open-ended arrow line. 123178.doc -20. 1345787 In this mode of operation, the source selection bus SELB is non-data dependent or not decoded (at least in a given Within the block, and each such bus bar is biased in an inactive state (eg, ground) suitable for one bit line. Both PMOS transistors 221, 223 are turned off. Decoding output point 212 The output is unselected and driven to _vrr/2. The PMOS transistors 225, 227 are both turned "on" to drive the unselected positioning lines 108, 233 to ground. The two conductive paths are indicated as being on. Tail arrow line. The two NMOS transistors 226, 228 are cut off. It should be noted that in the forward mode, the row decoder is active low and the bit line high is active. However, in the reverse mode Next, the row decoder reverses its polarity and becomes active high, and the bit line itself is also reversed. In the forward mode, the column decoder is active and the word lines are active low. However, in the reverse mode, the column decoder reverses its polarity and becomes The low state is valid, and the word lines themselves are also reversed and become high. "It should also be noted that the output level of the decoder is in the forward mode (ie GND to VPP) and the reverse mode (ie -VRR/ Offset between the average voltages between 2 and GND. When viewed as a non-multi-head decoder (in Figures 3, 4, 5 and 6, only non-dashed array line driver circuits), this decoding can be described very simply The operation of the circuit. In the reverse mode, the word line decoder reverses its polarity and places a selected word line high (~5 V)' while maintaining all other selected word lines grounded. This reversal occurs on the bit line selection side where one bit line is selected and becomes -5 V and all other bit lines are grounded. The end result is a 10 V reverse bias across the selected memory cell and a zero reverse bias across the other cells. 123178.doc • 21 - 1^787 The transistors in these word lines and in the bit-dynamic circuit must only withstand the maximum voltage of J5 - half, not the entire voltage. When using a multi-head decoder (in Figures 3, 4, 5, and 6, including the virtual array 2 driver circuit), it should be noted that the circuit is at that °. (d) Solving the 32 source selection bus, which allows the selection of the array of the array line - (but simultaneously drives the remaining semi-selected array lines to the unselected bias condition). However, in the reverse mode, the selected decoded output from the 歹J and the row decoders combines the array lines to a single unselected partial I line (eg, UXL and UYL). The m(four) line is not available in the reverse mode. Semi-selected array line. Thus, the above described circuits and techniques are useful in configuring an array of line blocks (e.g., "block erase") to be selected in the reverse mode. As can be seen in Figures 4 and 6, a selected wordline block and a selected location line block are simultaneously selected in the reverse mode without any independently configurable semi-selected array lines. This type of block operation all avoids the need for any semi-selection lines. The decoding implications may be very similar to those described in U.S. Scheuerlein, U.S. Patent No. 6,879,5,5, entitled "Word Line Configuration for Multi-Dimensional Word Line Segments for Three-Dimensional Memory Arrays" Neigu is fully incorporated herein by reference. Whether this block operation can be configured (or how large a block can be configured) depends mainly on the number of cell reset currents, the number of cells that conduct such reset currents, and the word line driver circuit and bit lines. Whether the PMOS and NMOS transistors in the driver circuit can support such currents at an acceptable voltage drop. A semi-selected array line can be provided in this reverse mode by using other techniques (except in the forward mode). In a single such technique, 123178.doc -22- 1345787, the column and row decoders may be powered by an overvoltage such that the decoding turn-out nodes are above the PM0S source voltage and below the ^^1^ 〇8 source voltage and traverse. By doing so, the selected word line can be driven up to +VRR/2 voltage through the 1^he 8 transistor, and the positioning can be selected through the PM0S transistor, and the line driving can be as low as -VRR/2. This utilizes the same transistor as during the forward mode to drive the selected word line and bit line. Such techniques are illustrated in Figures 7 and 8. Referring initially to Figure 7, a word line decoder circuit is illustrated which utilizes an overdrive decode output to drive the array line drivers with their sources maintained under the bias conditions described above. In this column decoder circuit *, the column decoder 15 2 is powered by an 8 volt upper supply voltage and a negative i volt lower supply voltage. The polarities of the decoded output nodes 158, 162 are inversely relative to the polarity shown in Figure 4, and are now a high effective decoder that provides a selected output 158 at +8 volts and provides one at _ volts. Decoded output 162 is not selected. Source Select Bus XSE [Keep a decoding busbar unchanged. One (or more) of its individual bus bars are selected and driven to +5 volts, and the unselected wires are driven to ground. NMOS transistor 172 is turned "on" and conducts the selected word line 1 〇 2 to the associated xsel bus line voltage (+5 volts). The NM0S transistor 174 is also turned "on" and conducts the (etc.) half-selected word line 181 to ground. When the decoded output node - 162 is not selected at "1 volt", the PMOS transistors 175, 177 are simultaneously turned on and the unselected word lines 104, 183 are conducted to ground. In some embodiments utilizing this technique, the conditional output inverters 156, 16A and the multiplexers 157, 161 (shown here as "dashed lines,") are not used. Referring now to Figure 8, A bit line decoder circuit is illustrated which also drives the array line drivers using a 123178.doc • 23-1345787 overdrive decoding output. In this row decoder circuit, the row decoder 202 is comprised of a +1 volt. The high supply voltage is supplied with a negative 8 volt low supply voltage. The polarities of the decoded output nodes 2 〇 8, 212 are inversely opposite to the polarity shown in Figure 6, so now a low effective decoder is under volts. A selected output 208 is provided and an unselected decoded output 212 is provided at +1 volts ^ one of the individual SELB bus bars 217: (or more) selected and driven to _5 volts, and the unselected The SELB sink φ bus line 218 is driven to ground. The PMOS transistor 221 is turned "on" and conducts the select bit lines 106 to the associated SELB bus line voltage (_5 volts). The PMOS transistor 223 The system is also connected, and the (equal) semi-selected word line. 231 To ground. When the unselected decode output node 212 is at +1 volt, the NMOS transistors 226, 228 are simultaneously turned on and the unselected locating elements! 08, 233 are conducted to ground. In some embodiments of the technology, the conditional output inverters 2〇6, 2^〇 and the multiplexers 207, 211 are not used. In another technique, the semi-selected word lines and bit lines are semi-selected. The bus line can be provided in the reverse mode by replacing the single unselected bias lines UXL and UYL and the individual-inverted source selection bus. Referring now to Figure 9, a word line is illustrated: a circuit that utilizes a dual decoded source select bus. One of the PMOS transistors used for the word and line driver is replaced by the unselected bias shown in FIG. The remainder of the wordline decoder circuit operates as previously described. In this reverse mode, the selected decoder wheeling node 158 is active low and driven to ground. The reverse source selects the busbar. One of the individual sinks of xsELp 123178.doc -24· 1345787 To an effective bias condition suitable for the reverse mode of operation of a word line. In this case, the selected bus line 243 of the XSELP bus is driven to VRR/2, and the unselected bias of the XSELP bus is driven. Line 244 is driven to an inactive bias condition suitable for this mode of operation of a word line, in this case driven to ground. PM〇s transistor 171 is turned on by a low voltage coupled to its gate. Driving the selected word line 1〇2 to the VRR/2 potential. However, the PMOS transistor 173 in the half-selected word line driver circuit remains off because the voltage on its gate is not sufficiently low relative to its source. Because both are grounded. Since the NMOS transistor 174 is also turned off, none of the transistors in the half-selected word line driver circuit are turned "on". Therefore, the semi-selected word lines float at or near the ground potential. This obstacle occurs when the NMOS pull-down transistor 174 is larger than the PM 〇s pull-up transistor 173 in the case of an exemplary circuit. A larger transistor has a larger number of leaks than a smaller transistor than a smaller transistor. Therefore, since the transistor 174 has a substrate tied to the ground, the grounding, /3⁄4 leakage current dominates the substrate leakage current to vrr/2 generated by the PMos transistor 173, and this net current tends to be unselected. Word line 181 is maintained at or near ground potential. The dedicated sub-line driver circuit associated with the unselected decode output node 162 operates as previously described, and the transistors 176, 178 are turned "on" to conduct the unselected word lines 1 〇 4, ι 83 to ground. In an alternative embodiment, the low levels of the decoded output nodes 158, ι 62 can operate the column decoder 152, the inverters 156, 160, and by using a low power supply 154 equal to _VTP (or lower). Multiplexer 157, ι 61 drives 123178.doc -25-1345787 to move below ground (eg, to a voltage below PMOS threshold voltage below ground, or -VTP). Thus, the PMOS pull-up transistor 173 is turned "on" to effectively drive the (equal) half-selected word line 181 to ground.

一類似情形發生於併入雙資料相依源極選擇匯流排之一 行解碼器電路中。現在參考圖10,說明一位元線解碼器電 路,其利用雙解碼(在此情況下資料相依)源極選擇匯流 排。用於該等位元線驅動器電路之該等NMOS電晶體之一 反向源極選擇匯流排SELN已取代圖6所示之未選定偏壓線 UYL而併入。此位元線解碼器電路之剩餘部分如前述操 作。A similar situation occurs in a row decoder circuit that incorporates a dual data dependent source select bus. Referring now to Figure 10, a one-bit line decoder circuit is illustrated which utilizes dual decoding (in this case data dependent) source selection bus. One of the NMOS transistors for the bit line driver circuit, the reverse source select bus SELN, has been incorporated in place of the unselected bias line UYL shown in FIG. The remainder of this bit line decoder circuit operates as previously described.

在該反向模式下,選定解碼輸出節點208係高態有效並 驅動至接地。該反向源極選擇匯流排SELN之該等個別匯 流排線之一選定者係偏壓至一適用於一位元線之反向操作 模式之有效偏壓條件。在此情況下,該SELN匯流排之選 定匯流排線247係驅動至-VRR/2,而該SELN匯流排之未選 定偏壓線248係驅動至一適用於此操作模式之位元線之無 效偏壓條件,在此情況下係驅動至接地。NMOS電晶體222 係藉由耦合至其閘極之高電壓而接通,並將選定字線106 驅動至-VRR/2電位。然而,在該半選定字線驅動器電路内 的NMOS電晶體224保持截止,因為在其閘極上的電壓相對 於其源極不夠高,由於二者均接地。 由於PMOS電晶體223係也截止,故在該半選定位元線驅 動器電路内的任一電晶體均不接通。因此,該等半選定位 元線在接地電位或附近浮動。如同在此範例性電路之情況 123178.doc -26- 1345787 下’在PMOS上拉電晶體223大於NMOS下拉電晶體224時 發生此情況。更大電晶體比更小電晶體完全具有一至其基 板之更大洩漏數量。因此,由於更大電晶體223具有一相 綁至接地之基板,故接地漏電流支配基板洩漏電流至由 • NMOS電晶體224所產生之-VRR/2,且此淨電流傾向於將 該等半選定字線231維持在接地電位或附近。與未選定解 碼輸出節點212相關聯之該等位元線驅動器電路如前述操 Φ 作’該等PMOS電晶體225、227係接通以將該等未選定位 元線108、233傳導至接地。 . 對於該等解碼器電路二者’在該正向操作下的操作實質 . 上如圖4及6所示而執行。考量該列解碼器情況,在該正向 模式下,解碼該源極選擇匯流排,並將所有未選定字線驅 動至該未選定偏壓線UXL。在使用該雙解碼列解碼器之正 • 向模式下,不解碼該反向源極選擇匯流排,並將所有其個 別匯流排線驅動至與該UXL匯流排線相同之電壓。因而, # 該等字線驅動器電路相對於圖4不變地操作。確實,一單 • 一偏壓線UXL已由複數個"偏壓線"取代,各偏壓線係驅動 至與前者UXL偏壓線相同的電壓,且各未選定字線係驅動 : 至該偏壓線》 ' 在該行解碼器情況下,在該正向模式下解碼該源極選擇 匯流排SELB,並將所有未選定位元線驅動至該未選定偏 壓線UYL。在使用該雙解碼行解碼器之正向模式下,不解 碼該反向源極選擇匯流排,並將所有其個別匯流排線驅動 至與該UYL匯流排線相同的電壓。因而,該等位元線驅動 123178.doc •27- 1345787 器電路相對於圖6不變地操作。確實,一單一偏壓線UYL 已由複數個"偏壓線"取代,各偏壓線係驅動至與前者UYL 偏壓線相同之電壓,且各未選定位元線係驅動至該偏壓 線。 至此所述的該等解碼器電路係用於實施其中記憶體單元 包括一可逆電阻器加上一二極體之記憶體陣列。此類記憶 體單元可使用橫跨單元施加之一反向偏壓來重置,且用於 半選定字線及位元線允許將個別字線及位元線放置於一重 置偏壓條件下’從而提供重置個別記憶體單元而不須重置 一整個區塊之能力。 如圖7及8所述之技術具有僅一單一解碼源極選擇匯流排 之優點,但由於該等列及行解碼器係由過電壓來供電,故 用於此類解碼器電路之電壓要求更高。圖9及1〇所述之技 術在一額外解碼(及/或資料相依)反向源極選擇匯流排及併 入使用二解碼源極選擇匯流排之陣列線驅動器之可能增加 面積的代價下,藉由不利用過電壓向該等二解碼器電路供 電來減小該等電壓要求。該位元線選擇電路多達匯流排線 的兩倍,且可能佈線受限。該等字線選擇電路還可能略微 更大且佈線受限(即該等字線驅動器電路包括六個額外解 碼線用於一六頭解碼器,且該pM〇s裝置略微大於更早期 的電路)。雖然如此,但任一技術可能比用 施例之其他技術更有用。 』實 上面在一裎式化條件之背景下說明該正向模式,其中施 加至該選定位元線之電壓係vpp。該正向模式還應用於一 123178.doc • 28· 1345787 «賣取模式,其中選疋位元線係媒動至一讀取電壓VRD,且 選疋子線再次驅動至接地。此類讀取電壓可以係一比該程 式化電壓VPP低得多的電壓,且該未選定字線偏壓電壓 VUX及該未選定位元線偏壓電壓VUB因此在其用於該程式 化模式之值上減小。 特定記憶體單元可使用一正向偏壓模式來加以"程式化", 並使用S亥反向模式來抹除區塊。其他單元可使用一最初正 向偏壓程式化技術來預調節(例如在製造期間),但接著使 用該反向模式來加以"程式化”,並使用該正向模式來加以 抹除。為了避免與可程式化技術中的歷史用法混淆,並 為了全面瞭解搭配至此所述之該等解碼器電路使用所構思 之不同記憶體技術,三個不同操作模式係用於說明:讀 取、叹火及重置。在該讀取模式下,橫跨一選定記憶體單 元施加一讀取電壓VRD。在該設定模式下,橫跨一選定記 憶體單元施加一設定電壓VPP。在至此所述之範例性具體 實施例中’該讀取電壓VRD及該設定電壓vpp二者均係正 電壓’且此模式係使用正向解碼器操作模式來實施。在該 重置模式下,橫跨一選定記憶體單元施加一重置電壓 VRR。在至此所述之範例性具體實施例中,該重置電壓 VRR係作為一反向偏壓電壓來施加’並使用該反向解碼器 操作模式來實施》 上述重置模式使用一分割電壓技術來限制用於該等解碼 器電路之該等電壓要求,並將一選定位元線驅動至一負電 壓(即使用一三重井半導體結構或者,該重置模式可使 123178.doc •29- 1345787 用完全非負電壓來實施。在此情況下,該重置電壓VRR係 傳遞至該選定字線,且接地係傳遞至該選定位元線。該等 VUX及VUB電壓較佳的係設定至大約VRR/2。 許多類型的記憶體單元(下述)能夠使用該重置模式來加 以程式化。在該些記憶體單元技術之特定技術中,在各記 憶體單元内的一反熔絲最初在正向方向上跳變。接著在反 向偏壓方向上"調諧"各記憶體單元之電阻以完成程式化。 此將對於一一次可程式化單元亦如此情況。對於可再寫單 元’使用該正向方向來抹除單元,其可在一各種大小之區 塊内執行,接著使用該反向模式來加以程式化。 該反向偏壓係用於重置該選定記憶體單元。該程式化電 流係由一二極體崩潰來供應。此外,可仔細控制與此程式 化相關聯之該等偏壓條件,包括控制該選定字線及/或位 元線之電壓斜坡。有用程式化技術之額外洞察可見諸於下 面所參考之美國專利第6,952,030號。如下面所參考之〇23_ 0049及023-0055申請案所述,以及如下面所參考之ΜΑ· 163-1申請案中更詳細所述,多個程式化操作可用於程式 化各種電阻狀態。傾斜程式化脈衝之用途係說明於下面所 參考之SAND-01114US0及SAND-01114US1申請案内,且用 於微調多個單元之電阻之技術係說明於下面所參考之 SAND-01117US0及 SAND-01U7US1 申請案内。 如上述(特別在雙解碼源極選擇線之背景下)使用重置程 式化來程式化一併入一可微調電阻元件之被動元件記憶體 單元在提供較大彈性以允許一更大陣列區塊大小時特別有 123178.doc •30- 1345787 用。即便在一選定陳 疋久呼列&塊内(如全部上述曾假定),在該 重置模式下橫跨該等夫撰宝 y ^寻禾選疋记憶體皁元不存在任何偏壓, 因此沒有浪費的功率消耗。透過一單元之反向電流㈣ 與區塊大小無關。因此可選擇許多區塊以增加寫入帶寬。 此外’橫跨各半選定記憶體單元之電壓僅係該程式化電壓 之一半,故安全地用於該些單元。 應注意,在上述中,該重置模式說明選定及半選定字線 及位元線。例如在列選擇之背景下,一給定位址可實際上 不選定’’此類半選定字線,且此術語係該多頭字線驅動器 結構之一人為產物。然而,在該等位元線之背景下,此類 半選定位7G線可能實際上只要與行位址有關便可選定,但 可能偏壓至一用於該等位元線之無效狀態而非有效狀態, 因為用於該位元線之特定資料不需要”程式化"單元,或因 為該位元線正在"等待"被程式化。此情況在同時程式化少 於位元線解碼器頭數目時發生。然而應注意,程式化帶寬 顧慮提出組態一記憶體陣列以盡可能多地同時程式化位元 線。 二重井處理允許該(等)選定位元線獲得一負電壓,而該 (等)選定字線獲得一正電壓》在重置程式化(即反向模式) 下’用於全部未選定陣列線(未位元線及字線)之參考位準 係接地’從而快速解碼及選擇字線及位元線二者。再次參 考該等半選定字線及位元線係浮動在接地(由於至該等二 驅動器電晶體之最大者之井電位的洩漏電流)之說明,該 4 §己憶體單元之電阻性質在此類半選定陣列線與該等未選 123178.doc -31 - ^45787 :陣列線之間提供一額外浅漏電流’該等陣列線係主動維 在該未選定偏磨位準Τβ此進—步促進該等未選定陣列 線保持在該未選定偏壓電位或附近浮動。In this reverse mode, the selected decode output node 208 is active high and driven to ground. One of the individual bus bars of the reverse source select bus SELN is biased to an effective bias condition suitable for the reverse mode of operation of the one bit line. In this case, the selected bus bar 247 of the SELN bus is driven to -VRR/2, and the unselected bias line 248 of the SELN bus is driven to a bit line suitable for this mode of operation. The bias condition, in this case, is driven to ground. NMOS transistor 222 is turned "on" by a high voltage coupled to its gate and drives selected word line 106 to the -VRR/2 potential. However, the NMOS transistor 224 in the half-selected word line driver circuit remains off because the voltage across its gate is not sufficiently high relative to its source, since both are grounded. Since the PMOS transistor 223 is also turned off, any of the transistors in the half-selected locator driver circuit are not turned "on". Therefore, the semi-selected positioning elements float at or near the ground potential. As in the case of this exemplary circuit, 123178.doc -26- 1345787 'This occurs when the PMOS pull-up transistor 223 is larger than the NMOS pull-down transistor 224. Larger crystals have a much larger number of leaks than their smaller ones than smaller ones. Therefore, since the larger transistor 223 has a substrate that is tied to the ground, the ground leakage current dominates the substrate leakage current to -VRR/2 generated by the NMOS transistor 224, and the net current tends to be the same. The selected word line 231 is maintained at or near the ground potential. The bit line driver circuits associated with the unselected decode output node 212 are turned "on" to operate the PMOS transistors 225, 227 to conduct the unselected bit lines 108, 233 to ground. The operation of both of the decoder circuits in the forward operation is substantially as shown in Figures 4 and 6. Consider the column decoder case, in which the source select bus is decoded and all unselected word lines are driven to the unselected bias line UXL. In the positive mode using the dual decode column decoder, the reverse source select bus is not decoded and all of its individual bus lines are driven to the same voltage as the UXL bus. Thus, # the word line driver circuits operate unchanged with respect to FIG. Indeed, a single bias line UXL has been replaced by a plurality of "bias lines", each bias line is driven to the same voltage as the former UXL bias line, and each unselected word line drive: to The bias line " in the case of the row decoder, the source select bus SELB is decoded in the forward mode and all unselected bit lines are driven to the unselected bias line UYL. In the forward mode using the dual decoded row decoder, the reverse source select bus is not decoded and all of its individual bus bars are driven to the same voltage as the UYL bus. Thus, the bit line driver 123178.doc • 27-1345787 circuit operates unchanged with respect to FIG. Indeed, a single bias line UYL has been replaced by a plurality of "bias lines", each bias line is driven to the same voltage as the former UYL bias line, and each unselected positioning line is driven to the bias Pressure line. The decoder circuits described so far are used to implement a memory array in which the memory unit includes a reversible resistor plus a diode. Such a memory cell can be reset using a reverse bias applied across the cell, and for semi-selected word lines and bit lines allows individual word lines and bit lines to be placed under a reset bias condition 'Therefore providing the ability to reset individual memory cells without having to reset an entire block. The techniques described in Figures 7 and 8 have the advantage of having only a single decoded source select bus, but since the column and row decoders are powered by overvoltage, the voltage requirements for such decoder circuits are even greater. high. The techniques described in Figures 9 and 1 are at the expense of an additional decoding (and/or data dependent) reverse source select bus and the possible increased area of the array line driver incorporating the second decoded source select bus. These voltage requirements are reduced by not supplying overvoltages to the two decoder circuits. This bit line selection circuit is up to twice as large as the bus line and may have limited wiring. The word line select circuits may also be slightly larger and have limited wiring (ie, the word line driver circuits include six additional decode lines for a six-bit decoder, and the pM〇s device is slightly larger than the earlier circuit) . Nonetheless, either technique may be more useful than other techniques of the application. The forward mode is illustrated in the context of a simplification condition in which the voltage applied to the selected locating element is vpp. The forward mode is also applied to a 123178.doc • 28· 1345787 «sell mode, in which the selected bit line is mediated to a read voltage VRD, and the selected sub-line is driven again to ground. Such a read voltage may be a voltage that is much lower than the stylized voltage VPP, and the unselected word line bias voltage VUX and the unselected bit line bias voltage VUB are thus used in the stylized mode The value is reduced. A particular memory unit can be "programmed" using a forward bias mode and use the S-Hour reverse mode to erase blocks. Other units can be pre-conditioned using an initial forward bias programming technique (eg, during manufacturing), but then the reverse mode is used to "stylize" and use the forward mode to erase. Avoid confusion with historical usage in stylized techniques, and to fully understand the different memory technologies used in conjunction with the decoder circuits described so far, three different modes of operation are used to illustrate: reading, sighing And resetting. In the read mode, a read voltage VRD is applied across a selected memory cell. In the set mode, a set voltage VPP is applied across a selected memory cell. In the specific embodiment, 'the read voltage VRD and the set voltage vpp are both positive voltages' and this mode is implemented using a forward decoder mode of operation. In the reset mode, across a selected memory The cell applies a reset voltage VRR. In the exemplary embodiment described so far, the reset voltage VRR is applied as a reverse bias voltage and uses the reverse decoder The mode is implemented. The reset mode uses a split voltage technique to limit the voltage requirements for the decoder circuits and drive a selected bit line to a negative voltage (ie, using a triple well semiconductor structure). Alternatively, the reset mode can be implemented by 123178.doc • 29-1345787 with a completely non-negative voltage. In this case, the reset voltage VRR is passed to the selected word line and the ground is passed to the selected bit line. Preferably, the VUX and VUB voltages are set to approximately VRR/2. Many types of memory cells (described below) can be programmed using the reset mode. Among the specific techniques of the memory cell technology An antifuse in each memory cell initially jumps in the forward direction. Then, in the direction of the reverse bias, "tuning" the resistance of each memory cell to complete the stylization. The same is true for the second programmable unit. For the rewritable unit, the forward direction is used to erase the unit, which can be executed in blocks of various sizes, and then programmed using the reverse mode. The reverse bias is used to reset the selected memory unit. The stylized current is supplied by a diode collapse. In addition, the bias conditions associated with the stylization can be carefully controlled, including control. The voltage slope of the selected word line and/or the bit line. Additional insights into the use of the stylization technique can be found in U.S. Patent No. 6,952,030, the disclosure of which is incorporated herein by reference. And as described in more detail in the ΜΑ163-1 application, which is referred to below, a plurality of stylized operations can be used to program various resistance states. The use of the tilted stylized pulses is described in the SAND-01114US0 referenced below. The technique of fine-tuning the resistance of a plurality of cells in the SAND-01114US1 application is described in the SAND-01117US0 and SAND-01U7US1 applications referenced below. As described above (especially in the context of dual decoded source select lines), the use of reset programming to program a passive component memory cell incorporating a trimmable resistive element provides greater flexibility to allow for a larger array of blocks. Large hours are especially used for 123178.doc • 30-1345787. Even in a selected Chen Yujiu & block (as all of the above assumed), there is no bias across the memory in this reset mode. Therefore, there is no wasted power consumption. The reverse current through a unit (4) is independent of the block size. Therefore many blocks can be selected to increase the write bandwidth. In addition, the voltage across the selected memory cells is only half of the programmed voltage and is safely used for the cells. It should be noted that in the above, the reset mode illustrates selected and semi-selected word lines and bit lines. For example, in the context of column selection, a given address may not actually select such a semi-selected word line, and this term is an artifact of the multi-word line driver structure. However, in the context of the bit line, such a semi-selected 7G line may actually be selected as long as it relates to the row address, but may be biased to an inactive state for the bit line instead of Valid state, because the specific material used for the bit line does not require a "stylized" unit, or because the bit line is being "waiting" is programmed. This situation is programmed at the same time less than bit line decoding. The number of heads occurs. However, it should be noted that stylized bandwidth concerns suggest configuring a memory array to program the bit lines as much as possible at the same time. The dual well processing allows the (equal) selected bit lines to obtain a negative voltage, And the (equal) selected word line obtains a positive voltage. In the reset stylized (ie, reverse mode), the reference level for all unselected array lines (no bit lines and word lines) is grounded. Quickly decode and select both word lines and bit lines. Refer again to the description of the semi-selected word lines and bit lines floating at ground (due to the leakage current to the well potential of the largest of the two driver transistors) , the 4 § recall The resistive nature of the cell provides an additional shallow leakage current between such semi-selected array lines and the unselected 123178.doc -31 - ^45787 : array lines. The array line active dimensions are in the unselected partial wear position. This advancement step facilitates the floating of the unselected array lines at or near the unselected bias potential.

涵蓋二維記憶體陣列,但咸信該等解碼器配置對於一具 有多個記憶體平面之三維記憶體陣列特別有用。在特定較 佳具體實施例中’該記憶體陣列係組態使得各字線在多個 記憶體平面之各記憶體平面上包含字線片@,如下所述。 。圖11係一範例性記憶體陣列300之一方塊圖。雙列解碼 ^ 02 304產生列選擇線用於該陣列,各列選擇線橫跨陣 列300,如本文下面所述。在此具體實施例中,該等字線 驅動器電路(未顯示)空間分佈於該記憶體陣列下面並藉助 在個別記憶陣列區塊(標註306、3〇8的兩個區塊)之交替側 的垂直連接(其中一個係標註31〇)來連接至該等字線。所 不兄憶體陣列包括兩個記憶體,,條"3丨8、32〇,並進一步包 括四個行解碼器及分別在該陣列之頂部、中上部、中下部 及底部的位元線電路區塊312、314、315、316。如本文所 述,還可併入額外條,且各條可包括一或多個記憶體機 架。在各區塊内的該等位元線還2:1交錯以鬆弛行相關電 路之間距要求。作為一範例,位元線322與上部行電路區 塊3 12相關聯(即由其驅動並感應),而位元線324係與底部 行電路區塊314相關聯。 在範例性具體實施例中,記憶體陣列3〇〇係在四個記憶 體平面之各記憶體平面上形成之被動元件記憶體單元之一 三維記憶體陣列。此類記憶體單元較佳的係併入一可微調 U3l78.doc -32· 1345787 電阻器元件(如本文所述)’並還可包括一反熔絲。各邏輯 子線係連接至在四個字線層之各字線層上的一字線片段 (各與一個別記憶體平面相關聯)。 記憶體陣列300之各條係分成大量區塊,例如區塊3〇8。 . 在本文所述之特定範例性具體實施例中,各記憶體機架包 括1 6個陣列區塊,但可實施其他數目的區塊。在所示範例 I"生具體實施例中’各區塊在用於個別四個記憶體平面之四 φ 個位兀線層之各位元線層上包括288個位元線,因而總計 每區塊1,152個位元線。該些位元線係2:1交錯,使得在一 • 陣列區塊之頂部及底部的該等行解碼器及資料I/O電路之 . 各電路介接576個位元線。還涵蓋此類位元線及陣列區塊 之其他數目及配置’包括更高數目。 在一選定記憶體陣列區塊内,該些源極選擇匯流排線 — XSELN(或反向源極選擇匯流排XSELP)之一係由一列偏壓 電路來解碼並驅動至—有效偏廢條件,而剩餘匯流排線 •、(還稱為偏壓線”)係驅動至一無效條件(即一適用於一未選 . 定字線之電壓)。因此,一單一選定RSEL線(即列選擇線, 其對應於圖3内的解碼輸出節點158)驅動該選定記憶體區 塊内的一字線為低態,並將該選定區塊内的其他N1字線 • 馬區動至-未選定偏壓位準。在其他非選定記憶體區塊内, 該等源極及反向源極選擇匯流排之任何個別匯流排線均不 驅動為有效,故該有效RSEL線不選擇任何字線。或者, 可使在未選定陣列區塊内的該等源極及反向源極選擇匯流 排浮動’特別係在該正向模式下。 123178.doc -33. 1^4^/87 。各列選擇線橫跨整個記憶體條内的所有記憶體區塊,並 驅動位於該條之各對區塊(以及兩個以上各分別位於該 等第—及最後區塊"外部之間"的一個別四頭字線驅動 益。該等RSEL線還可稱為"全域列線",㈣可對應於本文 所參考之該等列解碼器輸出節點。範例性電路、操作、偏 壓條件、浮動條件、操作模式(包括讀取及程式化模式)及 類似等之額外細節進一步說明於前述美國專利第6,879,5〇5 號並另外說明於授予Christopher J. Petti等人之美國專利 案第7,〇54,219號’標題為"用於緊密間距記憶體陣列線之 電晶體佈局組態",其全部揭示内容以引用形式併入本 文並進一步說明於Roy E. Scheuerlein等人在2005年6月7 曰申請的美國申請案第11/146,952號,標題為"用於非二進 制記憶體線驅動器群組之解碼電路",作為美國專利申請 公告案第2006-0221702號於2006年10月5日頒佈,其全部 揭示内容以弓丨用形式併入本文。 為了加快一全域列線之選擇時間,該些尺卯^線係藉由 二階層列選擇解碼器302、304(還稱為"全域類解碼器 302、304”),各分別在陣列條左右側而位於陣列外部,在 其兩端來加以驅動。藉由使用一階層解碼器結構,減小全 域列解碼器302之大小,從而改良陣列效率。此外,可方 便地提供一反向解碼模式以獲得改良測試能力,如進一步 說明於2006年7月6日作為美國抓了申請公告案第2〇〇6_ 0145 193號頒佈,於2004年12月30曰申請的美國申請案第 11/026,493號,Kenneth K. So等人之"雙模式解碼器電路、 123178.doc -34- 1345787 併入其之積體電路記憶體陣列及相關操作方法"中,龙八 部揭示内容以引用方式併入本文。用於此類階層式解碼: 之範例性電路可見諸於美國專利申請公告案第聰_ 0146639 A1號,Luca G· Fas〇u等人之”用於使用多層級多 頭解碼器之密集記憶體陣列之階層解碼之裝置及方法”, 其全部揭示内容係以引用形式併入本文。 在本文所述之特定材料中’一範例性四頭解碼器電路包Two-dimensional memory arrays are covered, but it is believed that these decoder configurations are particularly useful for a three-dimensional memory array with multiple memory planes. In a particularly preferred embodiment, the memory array is configured such that each word line includes a word line @ on each memory plane of a plurality of memory planes, as described below. . 11 is a block diagram of an exemplary memory array 300. Dual column decoding ^ 02 304 produces column select lines for the array, with each column select line spanning array 300, as described herein below. In this embodiment, the word line driver circuits (not shown) are spatially distributed under the memory array and by alternating sides of individual memory array blocks (two blocks labeled 306, 3〇8) Vertical connections (one of which is labeled 31〇) are connected to the word lines. The non-remembered array includes two memories, a strip "3丨8, 32〇, and further includes four row decoders and bit lines at the top, middle, lower, middle, and bottom of the array, respectively. Circuit blocks 312, 314, 315, 316. Additional strips may also be incorporated as described herein, and each strip may include one or more memory shelves. The bit lines in each block are also 2:1 interleaved to relax the line-to-path spacing requirements. As an example, bit line 322 is associated with (i.e., driven and sensed by) upper row circuit block 312, and bit line 324 is associated with bottom row circuit block 314. In an exemplary embodiment, the memory array 3 is a three-dimensional memory array of passive element memory cells formed on the memory planes of the four memory planes. Such a memory cell is preferably incorporated into a fine tunable U3l78.doc -32. 1345787 resistor element (as described herein) and may also include an antifuse. Each logic sub-line is connected to a word line segment (each associated with a different memory plane) on each word line layer of the four word line layers. Each strip of memory array 300 is divided into a plurality of blocks, such as blocks 3〇8. In the particular exemplary embodiment described herein, each memory rack includes 16 array blocks, although other numbers of blocks may be implemented. In the illustrated example I"[0012], each block includes 288 bit lines on the bit line layers of the four φ bit line layers for the individual four memory planes, thus totaling each block 1,152 bit lines. The bit lines are 2:1 interleaved such that the row decoders and data I/O circuits are arranged at the top and bottom of the array block. Each circuit interfaces 576 bit lines. Other numbers and configurations of such bit lines and array blocks are also contemplated as including higher numbers. Within a selected memory array block, one of the source select bus lines - XSELN (or reverse source select bus XSELP) is decoded and driven by a column of bias circuits to - effectively depleted conditions, The remaining bus bars, (also referred to as bias lines), are driven to an inactive condition (ie, a voltage applied to an unselected. word line). Therefore, a single selected RSEL line (ie, column select line) , corresponding to the decoding output node 158 in FIG. 3, driving a word line in the selected memory block to a low state, and moving other N1 word lines in the selected block to the unselected partial Press level. In other non-selected memory blocks, any individual bus lines of the source and reverse source select bus bars are not driven to be active, so no valid word lines are selected for the active RSEL line. , the source and reverse source selection bus bars in the unselected array block can be floated 'in particular in the forward mode. 123178.doc -33. 1^4^/87. Column selection The line spans all memory blocks in the entire memory strip and drives each of the strips The block (and two or more of the two word lines between the two and the last block "external" are driven by the word line. These RSEL lines can also be called "global column lines" (d) may correspond to the column decoder output nodes referenced herein. Additional details of exemplary circuits, operations, bias conditions, floating conditions, modes of operation (including read and stylized modes), and the like are further described above. U.S. Patent No. 6,879,5,5, issued to U.S. Patent No. 7, s. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No. , the entire disclosure of which is hereby incorporated by reference in its entirety by reference in its entirety in its entirety in its entirety in its entirety in the the the the the the the the The decoding circuit of the line driver group " is issued as of US Patent Application Publication No. 2006-0221702 on October 5, 2006, the entire disclosure of which is incorporated herein by reference. Quickly select the time of the global column line, which is selected by the two-level column selection decoders 302, 304 (also referred to as "global class decoders 302, 304"), respectively on the left and right sides of the array strip Outside the array, it is driven at both ends. By using a hierarchical decoder structure, the size of the global column decoder 302 is reduced, thereby improving the efficiency of the array. Further, a reverse decoding mode can be conveniently provided to obtain Improved testing capabilities, as further illustrated on July 6, 2006 as US Patent Application Bulletin No. 2〇〇6_ 0145 193, US Application No. 11/026,493, December 30, 2004, Kenneth K. So et al.'s "Double-Mode Decoder Circuit, 123178.doc -34- 1345787 is incorporated into its Integrated Circuit Memory Array and Related Operation Methods", and the contents of the Dragon 8 are incorporated herein by reference. . Exemplary circuit for such hierarchical decoding can be found in U.S. Patent Application Publication No. _ 0146639 A1, by Luca G. Fas〇u et al., "Using a dense memory array using a multi-level multi-head decoder." Apparatus and method for hierarchical decoding, the entire disclosure of which is incorporated herein by reference. An exemplary four-head decoder circuit package in the specific materials described herein

m 括四個"選定”偏壓線與-單—未収偏壓線。此命名之基 本原理係因為在選擇一給定解碼器頭之輸入(即驅動至一 有效位準)時,該解碼器頭將其輸出耦合至―"選定"偏壓 線。然而,此點絕不暗示著,所示該等頭之全部四個均驅 動其個別輸出至-反映正在選擇該輸出之位準,因為一般 情況下僅該等選定偏壓線之—係在—適合於—選定輸出之 條件下實際偏壓,而剩餘三個選定偏壓線係在一適合於一 未選定輸出之條件下偏壓。用於一多頭解碼器之該些"選 疋’偏壓線在本文中係說明為一"源極選擇匯流排",但類 似刼作,另有提醒的除外。某些具體實施例還包括一第二 此類匯流排,其係一”反向源極選擇匯流排"而非一單一未 選定偏壓線。 反之’若用於該多頭解碼器之輸入節點係無效或未選 定,則所有此類頭均驅動其個別輸出至一相關聯"未選定" 偏壓線(或—反向源極選擇匯流排之個別匯流排線)。對於 許夕有用具體實施例,此類未選定偏壓線可組合成一由該 多頭解碼器之所有頭共用的單一偏壓線。 123178.doc •35- 1345787m includes four "selected" bias lines and - single-unaccepted bias lines. The basic principle of this designation is because when selecting the input of a given decoder head (ie driving to a valid level), the decoding The head couples its output to the ""selected" bias line. However, this does not imply that all four of the heads shown drive their individual outputs to - reflecting the level at which the output is being selected Because, in general, only the selected bias lines are - are suitable for - the actual bias under the condition of the selected output, and the remaining three selected bias lines are biased to an unselected output. The "option" bias line used in a multi-head decoder is described herein as a "source selection bus", but similar to the operation, except for reminders. Some Particular embodiments also include a second such bus bar that is a "reverse source select bus" rather than a single unselected bias line. Conversely, 'if the input node for the multi-head decoder is invalid or unselected, then all such headers drive their individual outputs to an associated "unselected" bias line (or - reverse source select sink) Rows of individual bus lines). For a particular embodiment, such unselected bias lines can be combined into a single bias line shared by all of the heads of the multi-head decoder. 123178.doc •35- 1345787

類似或相關字線解碼器結構及技術,包括此類解碼之額 外階層、用於該等解碼匯流排(例如XSELN與XSELP)之偏 壓電路阻止及相關支援電路,係進一步說明於R〇y ESimilar or related word line decoder structures and techniques, including additional levels of such decoding, bias circuit blocking and associated support circuits for such decoding busses (eg, XSELN and XSELP), further illustrated in R〇y E

Scheuerlein及 Matthew P. Crowley之美國專利第 6,856,572 號,標題為"利用具有雙用途驅動器裝置之記憶體陣列線 驅動器之多頭解碼器結構",其全部揭示内容以引用形式 併入本文、以及Roy E. Scheuerlein及Matthew P. Crowle之 美國專利第6,859,410號,標題為"特別適合於介接具有極 小佈局間距之樹狀解碼器結構"’其全部揭示内容以引用 形式併入本文。 圖12係表示依據本發明之特定具體實施例之一三維記憶 體陣列之一字線層及一位元線層之一俯視圖。其他字線層 及位元線可使用該等所示層來實施並在某些具體實施例中 共用相同的垂直連接。顯示記憶體區塊332、334分別包括 複數個位元線333、335,並具有2:1交錯的字線片段。至 用於一區塊之該等字線片段之一半的垂直連接係在該區塊 左側(例如字線片段337及垂直連接339),而至用於該區塊 之該等字線片段之另一半的垂直連接係在該區塊右側(例 如子線片段336及垂直連接340)。此外’各垂直連接在二 相鄰區塊之各區塊内用於一字線片段。例如,垂直連接 340連接至在陣列區塊332内的字線片段336並連接至陣列 區塊334内的字線片段338。換言之,各垂直連接(例如垂 直連接340)係由在二相鄰區塊之各區塊内的一字線片段來 共用。然而,若所期望的,用於該等第一及最後陣列區塊 123178.doc -36· 1345787 之個別"外部"垂直連接僅用於該等第一及最後陣列區塊内 的字線片段°例如,若區塊334係形成一記憶體陣列(或一 έ己‘fe體機架)之複數個區塊之最後區塊,則其外部垂直連 接(例如垂直連接344)可僅用於區塊334内的字線片段342, 因而遍及該陣列之其他部分不由二字線片段共用。 藉由交錯所不字線片段,該等垂直連接之間距係個別字 : 線片段自身之間距的兩倍。此點特別有利,因為可獲得用 φ 於許多被動元件記憶體單元陣列之字線間距明顯小於可獲 知用於可能用於形成垂直連接之許多通道結構之間距。而 , 且,此點還可減小字線驅動器電路之複雜性以實施於記憶 體陣列下面的半導體基板内。 現在參考圖13,顯示一示意圖,其表示依據本發明之特 定具體實施例具有-片段化字線配置之—三維記憶體陣 • 列。各字線係由在該記憶體陣列之至少一(且較有利的多 個)字線層之一或多個字線片段所形成。例如,一第一字 ·· 線係由置放於該記憶體陣列之一字線層上的字線片段36〇 . 肖置放於另—字線層上的字線片段362所形成。該等字線 片段360、362係藉由—垂直連接358來連接以形成第一字 ·- 線。垂直連接说還提供-連接路徑至置放於另一層(例如 在該半導體基板内)的驅動器裝置171、172。一來自—列 解碼器(未顯示)之解碼輸出352實質上平行於該等字線片段 360、362而橫過,有時透過裝置172將該等字線片段⑽、 362輕合至—實質上平行於該等字線片段而橫過之解碼偏 線167(例如源極選擇匯流排灯腦),有時透過裝置171 123178.doc -37- /δ/ 將該等字線片段360、362耦人$鉉π 祸。至一解碼偏壓線203(例如如 圖所示之反向源極選擇匯流排XSELP)。 還顯示字線片段361、363,其係藉由—垂直連接州連 接^成-第:字線並提供—連接路徑至字線驅動器電路 來自該列解碼器之另一解碼輸出353有時透過 裝置176將該些字緩κ ~ /片奴361、363耦合至解碼源極選擇線 (即”偏壓線丨丨)167,右拄、風at ) 有時透過裝置將該等字線片段361、 363耦合至解碼偏壓绩 " °儘s此圖示概念性介紹一範例 性陣列組態,但下面旬ΒΒ也夕。1 ^ 5月許夕具體實施例,其包括所示組 〜之變更’而且包括可能適用於特定具體實施例,但不一 定適用於全部具體實施例之細節。 在特定較佳具體實施例中,利用一六頭字線驅動器。盘 此六頭字線驅動器電路相關聯之六個字線由兩個相鄰記憶 ,區塊在料美國專利第7,054,219號巾所述。換 口之 定頭字線驅動器解碼並驅動二相鄰區塊之各 區塊内的六個字線。如該圖所暗示,該些相鄰區塊可視為 刀别在該等相關聯字線驅動器左邊及右邊。然而,在較佳 具體實施例_,此麵客5S〜& 此類多頭子線驅動器實質上係置放於該等 陣列區塊下面’且僅至該等字線之該等垂直連接係製造於 該等區塊之間。 涵蓋具有非鏡射陣列(例如一字線線層僅與一單一位元 線層相關聯)之特定具體實施例,諸如在Luca G. Fasoli等 人於2〇05年3月31申請的美國申請案第1 1/095,907號,標題 為用於在記憶體陣列内併入區塊冗餘之裝置及方法"’現 123178.doc -38- 呀345787U.S. Patent No. 6,856,572 to Scheuerlein and Matthew P. Crowley, entitled "Multi-head Decoder Structure Using a Memory Array Line Driver with Dual-Use Driver Device", the entire disclosure of which is incorporated herein by reference, U.S. Patent No. 6,859,410 to E. Scheuerlein and Matthew P. Crowle, entitled "Tag Decoder Structures Having Interfaces Having Very Small Layout Spacing", the entire disclosure of which is hereby incorporated by reference. Figure 12 is a top plan view showing one of a word line layer and a bit line layer of a three-dimensional memory array in accordance with a particular embodiment of the present invention. Other word line layers and bit lines can be implemented using the layers shown and share the same vertical connections in some embodiments. Display memory blocks 332, 334 include a plurality of bit lines 333, 335, respectively, and have 2: 1 interleaved word line segments. The vertical connection to one half of the word line segments for a block is to the left of the block (e.g., word line segment 337 and vertical connection 339), and to the other word line segments for the block Half of the vertical connections are to the right of the block (eg, sub-segment 336 and vertical connection 340). In addition, each vertical connection is used in a block of two adjacent blocks for a word line segment. For example, vertical connection 340 is coupled to word line segment 336 within array block 332 and to word line segment 338 within array block 334. In other words, each vertical connection (e.g., vertical connection 340) is shared by a word line segment within each of the two adjacent blocks. However, if desired, the individual "external" vertical connections for the first and last array blocks 123178.doc -36· 1345787 are only used for word lines within the first and last array blocks. Fragment ° For example, if block 334 forms the last block of a plurality of blocks of a memory array (or a single body frame), its external vertical connection (eg, vertical connection 344) may be used only for The word line segment 342 within block 334 is thus not shared by the second word line segments throughout the other portions of the array. By interleaving the word lines, the vertical connections are separated by an individual word: twice the distance between the line segments themselves. This is particularly advantageous because the word line spacing available for φ in many passive element memory cell arrays is significantly less than the distance between many channel structures that are known for use in forming vertical connections. Moreover, this also reduces the complexity of the word line driver circuit for implementation within the semiconductor substrate underneath the memory array. Referring now to Figure 13, a schematic diagram is shown showing a three-dimensional memory array column having a -fragmented word line configuration in accordance with a particular embodiment of the present invention. Each word line is formed by one or more word line segments of at least one (and advantageously a plurality of) word line layers of the memory array. For example, a first word line is formed by a word line segment 36 disposed on a word line layer of the memory array. The word line segment 362 is placed on the other word line layer. The word line segments 360, 362 are connected by a vertical connection 358 to form a first word line. The vertical connection also provides a connection path to driver means 171, 172 placed in another layer (e.g., within the semiconductor substrate). A decoded output 352 from a column decoder (not shown) is substantially traversed parallel to the word line segments 360, 362, and sometimes the device line 172 is coupled to the word line segments (10), 362 to - substantially Parallel to the word line segments traversing the decoding offset 167 (eg, the source selection bus bar), sometimes coupled by the device 171 123178.doc -37- / δ / the word line segments 360, 362 Man $铉π disaster. The decode bias line 203 is decoded (e.g., the reverse source select bus XSELP as shown). Also shown are word line segments 361, 363 which are connected by a vertical connection state-to-first word line and provide a connection path to the word line driver circuit. Another decoded output 353 from the column decoder is sometimes transmitted through the device. 176 coupling the words κ ~ 片 361, 363 to the decoded source select line (ie, "bias line 丨丨" 167, right 拄, wind at) sometimes through the device to the word line segment 361, 363 coupled to the decoding bias performance " ° s This illustration conceptually introduces an exemplary array configuration, but the following is also the beginning of the day. 1 ^ May Xu Hua specific embodiment, which includes the changes shown in the group ~ 'And including details that may be applicable to a particular embodiment, but not necessarily to all of the specific embodiments. In a particularly preferred embodiment, a six-word line driver is utilized. Six of the six word line driver circuits are associated with each other. The word line is composed of two adjacent memories, and the block is described in U.S. Patent No. 7,054,219. The terminating word line driver of the switch decodes and drives six word lines in each block of two adjacent blocks. The figure implies that the adjacent blocks can be regarded as The knives are to the left and to the right of the associated word line drivers. However, in a preferred embodiment, the multi-head sub-line drivers are placed substantially below the array blocks. And only such vertical connections to the word lines are fabricated between the blocks. Specific implementations with non-mirror arrays (eg, a word line layer associated with only a single bit line layer) are contemplated. For example, U.S. Patent Application Serial No. 1 1/095,907, filed on Jan. 31, 2005, to the entire disclosure of the entire disclosure of ;' now 123178.doc -38- 呀345787

為美國專利第7,142,471號中所述’其全部揭示内容係以^ 用形式併入本文。特定言之,圖15顯示4個位元線層、同 時在一陣列區塊之頂部及底部側上的一 16頭行解碼器β 圖顯示在4位元線層之各層上的4位元線係由一單一 16頭行 解碼器耦合至頂部資料匯流排(說明4〗/〇層),且同樣地在 相同4位元線層之各層上的4位元線係由一單一 16頭行解瑪 器而耗合至該底部資料匯流排(但在該說明中,該等兩個 群組的16選定位元線係位於相同陣列區塊内)。涵蓋其他 半鏡射具體實施例,例如二位元線層共用一字線層之該等 具體實施例,以形成二記憶體陣列。The entire disclosure of U.S. Patent No. 7,142,471 is incorporated herein by reference. Specifically, Figure 15 shows a 4-bit line layer at the same time, and a 16-bit row decoder on the top and bottom sides of an array block. The β-picture shows the 4-bit line on each layer of the 4-bit line layer. It is coupled to the top data bus (description 4 〇 / 〇 layer) by a single 16-bit row decoder, and the 4-bit line on each layer of the same 4-bit line layer is solved by a single 16-bit row. The device is consuming to the bottom data bus (but in this description, the 16 selected positioning elements of the two groups are located in the same array block). Other embodiments, such as a two-bit line layer sharing a word line layer, are contemplated to form two memory arrays.

在接下若干圖中,說明利用重置程式化(即反向偏壓程 式化)之各種具體實施例。因此,一些定義係依次用於本 揭不内容之此部分。術語"設定"應視為正向偏壓一單一(或 群組)記憶體單元’以透過各記憶體單元引起一更低電 F術"告抹除”應視為正向偏壓一記憶體單元區塊,以透 過各°己憶體單元引起一更低電阻。最後,術語"重置"應視 為反向偏壓一記憶體單元以透過各此類單元引起一更高電 [(關於本文所述之其他具體實施例,此類定義可能不In the following figures, various specific embodiments utilizing reset stylization (i.e., reverse bias programming) are illustrated. Therefore, some definitions are used in turn for this part of the content. The term "set" shall be considered as forward biasing a single (or group) of memory cells 'to cause a lower electrical F through each memory cell" A memory cell block that causes a lower resistance through each of the memory cells. Finally, the term "reset" should be considered as reverse biasing a memory cell to cause a change through each such cell High power [(For other specific embodiments described herein, such definitions may not

適用。特·定"^ «V .S之,術語"抹除"可還指橫跨一記憶體單元之 反向偏壓條件以增加該單元之電阻。) 現在參考圖14,—記憶體陣列370包括一第一條37丨與一 第一條3 72。兮笛 .. 必弟—條371係還標註為條〇而該第二條372還 T 為條1。條371包括二記憶體機架BAY—〇〇與8八¥_〇1。 各此類°己憶體機架包括複數個陣列區塊(例如16此類記憶 123178.doc •39- 1345787 體陣列區塊)。儘管顯示此範例性記憶體陣列370包括兩個 記憶體條’各具有兩個記憶體機架,但還涵蓋其他數目的 條及機架。 该第一記憶體機架BΑΥ_〇〇表示其他記憶體機架。總計 表示16個記憶體陣列區塊,其中兩個標註為374及375,各 具有置放於該記憶體陣列下面的一感應放大器(例如在該 ' 等半導體基板層内,但是一或多個記憶體平面可形成於在 籲 該等基板層上形成的一介電層上)。一頂部行解碼器電路 380、一頂部資料匯流排373及一頂部位元線選擇區塊381 . 跨越此機架之丨6個陣列區塊,且與從各陣列區塊之頂部退 . 出之該等位元線相關聯。一底部行解碼器電路379、一底 部資料匯流排378及一底部位元線選擇區塊382跨越此機架 之16個陣列區塊,且與從各陣列區塊之底部退出之該等位 元線相關聯。 應明白,頂部行解碼器電路38〇可說明為在該等陣列區 9 塊"上面",而底部行解碼器電路379可說明為在該等陣列 . Ε1塊下面 此術5吾視覺上反映示意圖中所示之電路區塊 之方位。此類位置還可描述為在該等陣列區塊”一側,,及 相對側(但此公認地暗示著一水平基板用於其上實施此電 . 路之積體電路)。此外,方向術語"北,,與"南"係用於說明各 種電路區塊之位置關係的方便術語。 相比之下,在特定具體實施例中,記憶體陣列可形成於 基板"上面"’而各種電路組塊係說明為在記憶體陣列,,下 面’’。如本文所適用,在基板或一記憶體陣列區塊(其均係 123178.doc 1345787 一般具有一平面特性之實際實體結構)的"上面"或"下面"係 相對於一垂直於此類基板或記憶體平面之表面而言。 在圖14中’儘管底部行解碼斋可描述為在該等陣列區塊 下面,但此類行解碼器不一定在該記憶體陣列下面(即更 靠近基板)。相比之下,可假定描述為在該陣列區塊邊界 内並描述為在該陣列區塊"下面”或,,之下"的該等感應放大 器區塊(標註為SA),以傳遞此類實體位置及結構關係。在Be applicable. The term "wipe " erase " can also refer to a reverse bias condition across a memory cell to increase the resistance of the cell. Referring now to Figure 14, the memory array 370 includes a first strip 37 丨 and a first strip 372.兮笛..必弟—Article 371 is also marked as a bar and the second 372 is also T. Bar 371 includes two memory racks BAY-〇〇 and 8-8¥_〇1. Each such frame has a plurality of array blocks (e.g., 16 such memory 123178.doc • 39-1345787 body array blocks). Although this exemplary memory array 370 is shown to include two memory strips each having two memory racks, other numbers of strips and racks are also contemplated. The first memory rack BΑΥ_〇〇 represents another memory rack. A total of 16 memory array blocks, two of which are labeled 374 and 375, each having a sense amplifier placed under the memory array (eg, within the 'semiconductor substrate layer, but one or more memories) The body plane can be formed on a dielectric layer formed on the substrate layers. A top row decoder circuit 380, a top data bus 373 and a top bit line selection block 381. Between the six array blocks of the rack and retreating from the top of each array block The bit lines are associated. A bottom row decoder circuit 379, a bottom data bus 378 and a bottom bit line selection block 382 span the 16 array blocks of the rack and exit with the bits from the bottom of each array block. Line associated. It should be understood that the top row decoder circuit 38 can be illustrated as being "above" in the array area, and the bottom row decoder circuit 379 can be illustrated as being under the array. Reflects the orientation of the circuit blocks shown in the diagram. Such locations may also be described as "on one side," and on the opposite side of the array of blocks (although this generally implies a horizontal substrate for the integrated circuit on which the electrical circuit is implemented). In addition, directional terminology "North, &"South" are convenient terms used to illustrate the positional relationship of various circuit blocks. In contrast, in certain embodiments, a memory array can be formed on a substrate "above" 'And the various circuit blocks are described as being in the memory array, below''. As used herein, in the substrate or a memory array block (all of which are 123178.doc 1345787 generally have a planar nature of the physical structure) The above "above" or "below" is relative to a surface perpendicular to such a substrate or memory plane. In Figure 14 'although the bottom row decoding can be described as being in the array block In the following, such a row decoder is not necessarily below the memory array (ie, closer to the substrate). In contrast, it can be assumed that it is within the array block boundary and is described as being below the array block " "or, Under " induction of such amplifier block (labeled SA), and the physical location to deliver such structural relationship. in

本說明書及各種圖之背景下,應清楚,,上面”及,,下面”之用 法。 在特定範例性具體實施例中,該等位元線解碼器係16頭 解碼器同時選擇在一選定記憶體陣列區塊之頂部側上 的16位元線。此"選擇"涉及行解碼,不—定暗示著所有16 位元線實際上同時程式化。該等十六個選定位元線較佳的 係在四個位元線層之各層上配置成在頂部(或用於其他解 碼器之底部)退出該陣列的四個相鄰位元線。In the context of this specification and the various figures, it should be clear that the above "and, below," are used. In a particular exemplary embodiment, the bit line decoder is a 16-bit decoder that simultaneously selects a 16-bit line on the top side of a selected memory array block. This "select" involves row decoding, which does not imply that all 16-bit lines are actually stylized at the same time. Preferably, the sixteen selected bit lines are arranged on each of the four bit line layers to exit the four adjacent bit lines of the array at the top (or at the bottom of other decoders).

頂部資料匯流排373之該等十六個1/〇線水平橫越所有十 六個區塊。此類匯流排對應於上述SELB匯流排。此資料 匯流排373之該等個別匯流排線之各匯流排線㈣合至分 佈於該等所示十六個區塊中之十六個感應放大器電路之一 :別者。該等十六個資料匯流排線之各資料匯流排線還可 操:二:目關聯偏壓電路(即一重置電路),其可在-特定 等;“間用於適當偏壓該等"選定” 16個位元線内的該 依據用I疋線。例如’對於一重置操作模式,此重置電路 ";該等16位元線之各位元線之資料位元,並還依據 123178.doc 41 丄 Μ)/87 允許同時程式化之位元線數目(當然意味著輕合至特定位 疋線之欲程式化單元)來適當偏_等"選定”16位it線内的 該等欲程式化位元線與該等不欲程式化位元線。可停用該 一偏壓電路並引起其在該等選定位元線藉助資料匯流排 373(即上述SELB匯流排)*輕合至個別感應放大器時在一 讀取操作模式期間展現一高阻抗。The sixteen 1/〇 lines of the top data bus 373 traverse all of the sixteen blocks horizontally. Such a bus bar corresponds to the above SELB bus bar. This data bus 373 is connected to each of the bus bars (4) of the individual bus bars to one of the sixteen sense amplifier circuits distributed in the sixteen blocks shown: otherwise. The data bus lines of the sixteen data bus lines can also be operated: two: a related bias circuit (ie, a reset circuit), which can be -specific, etc.; Etc. "Selected" The 16-bit line is based on the I-line. For example, 'for a reset operation mode, this reset circuit"; the data bits of the bit lines of the 16-bit lines, and also allows the simultaneous stylized bits according to 123178.doc 41 丄Μ)/87 The number of lines (which of course means that the programmatic unit that is lightly connected to a particular bit line) is appropriately biased to "select" the desired bit line in the 16-bit it line and the undesired stylized bits. The bias line can be deactivated and caused to exhibit during the read mode of operation when the selected bit line is lighted to the individual sense amplifier by means of the data bus 373 (ie, the SELB bus) A high impedance.

底部資料匯流排378之該等十六個1/〇線水平橫越所有十 六個區塊。此類匯流排對應於上述另一刪匯流排,此 時係用於在陣列底部退出之該等位元線(應記住該等位元 線係2:1交錯)。如前述,此資料匯流排378之該等個別匯流 排線之各匯流排線係耦合至分佈於該等所示十六個區塊中 的十/、個感應放大器電路之_個別者^在各群組的Μ區塊 (即機木)中,存在連接至32個選定位元的32個感應放大 ^ °在讀取模式下’所有該等選定位元線可配置成用以落 入該等十六個區塊之—N,或可另外配置,如此處將要說 月°亥等感應放大器可方便地實施於記憶體陣列區塊之 下,。但該等資料匯流排線373、爪、該等十六頭行選擇解 碼器(即該等位元線選擇區塊381、382)及該等行解碼器 379 380之一小部分較佳的係實施於該陣列區塊外部。有 用订解碼器配置之額外細節可見諸於美國申請案第 U/〇95,9G7號(美國專利第7,142,471號)以及前述美國專利 申晴公告案第2006-0146639 A1號中。 在一程式化模式下,總程式化電路之數量可限制同時程 式化°己隐體單元之數目。此外,Ά -單-選定位元線或字 123178.doc -42- 1345787 線流動之程式化電流之數量還可限制記憶體單元之數目, 其可同時可靠地加以程式化。在所示範例性架構中,若兩 各行解碼器選擇相同陣列區塊内的位元線’則一陣列區塊 總計選定32個位元線。假定各解碼器從四個位元線層之各 層中選擇四個位元線(即來自各個別記憶體平面之四個位 兀•線)’則在各記憶體平面上的選定字線片段須支援用於 〜计八個選定記憶體單元之程式化電流。(參見圖13以顯 示每層的個別字線片段。)該些選定記憶體單元之四個記 憶體單it與向北退出之位元線相關冑,而其他四個選定記 憶體單元係與向南退出位元線相關聯。該等選定記憶體單 元之全部32個單元將由相同字線驅動器電路來驅動,但是 該等選定記憶體單元之各記憶體單元係由其自身位元線驅 動器電路來驅動。 如上所暗不,即便用於32個單元之總程式化電流可由該 積體電路來供應,用於8個選定記憶體單元之程式化電流 可&各層上的該等選定字線片段引起一不可接收的電壓 降此外,s玄選定字線驅動器電路可能無法使用可接收電 壓降來驅動此類電流。 在重置程式化模式下,將一反向偏壓施加至各選定被 動記憶體單元,藉此將可修改的電阻材料重置至一高電阻 狀態以程式化使用者資料。在—區塊内的一或多個位元線 可選定用於同時程式化,且隨著該等位元之某些位元重置 至一更间電阻狀態,從該選定位元線流向該選定字線之電 μ明顯減小,且該等剩餘位元由於減小的字線降而看見 123178.doc -43- 1345787 一明顯更高的電壓。由此,更容易程式化之該等位元先改 變狀態,從而使更"頑固"的位元看見一略微更高的電壓以 幫助程式化此類位元。 雖然如此,但使32個選定記憶體單元駐留於相同陣列區 塊内可能由於任一上述原因而難以接受。因此,兩個不同 陣列區塊可選定用於程式化,各使用該等兩個資料匯流排 之一個別者。在圖中,陣列區塊374係交叉陰影線繪製以 表示其用於重置程式化之選擇。用於區塊374之該等頂部 行解碼器380輸出之一係有效,從而將16個選定位元線耦 合至頂部資料匯流排373(由從陣列區塊374至資料匯流排 373之箭頭表示此外,陣列區塊375係交又陰影線繪製 以表示其用於重置程式化之選擇。用於區塊3 75之該等底 部行解碼器3 79輸出之一係也有效,從而將16個選定位元 線耦合至底部資料匯流排378(由從陣列區塊375至資料匯 流排378之箭頭表示)。 一單一列377係由在該記憶體陣列之任一側上的該等全 域列解碼器(未顯示)來選定,其橫跨整個條371來驅動一全 域列選擇線。此類全域列選擇線對應於圖9所示之列解碼 器電路之解碼輪出1 58。一多頭字線驅動器電路係致能(藉 由在其源極選擇匯流排及反向源極選擇匯流排上的適當偏 壓條件)以驅動區塊374内的一選定字線3 76與在區塊3 75内 的選疋子線°由於共用在此範例性具體實施例内的該等 子線故—此類選定字線驅動器電路驅動在二區塊374、 3 75内的字線。整個程式化電流仍透過此一選定字線驅動 123178.docThe sixteen 1/〇 lines of the bottom data bus 378 traverse all of the sixteen blocks horizontally. Such a bus bar corresponds to the other bus bar stream described above, which is used for the bit line exiting at the bottom of the array (it should be remembered that the bit line system is 2:1 interleaved). As described above, each of the bus bars of the individual bus bars of the data bus 378 is coupled to the _ individual of the ten sense amplifier circuits distributed in the sixteen blocks shown. In the group of blocks (ie, the machine wood), there are 32 inductive amplifications connected to 32 selected positioning elements. In the reading mode, all of the selected positioning elements can be configured to fall into such The N-blocks of the sixteen blocks can be additionally configured. As will be said here, a sense amplifier such as a moon can be conveniently implemented under the memory array block. However, the data bus lines 373, the claws, the sixteen header selection decoders (ie, the bit line selection blocks 381, 382), and a small portion of the row decoders 379 380 are preferably a preferred system. Implemented outside the array block. Additional details of the configuration of the splicing decoder can be found in U.S. Patent Application Serial No. U.S. Patent Application Serial No. U.S. Patent No. 7, s. In a stylized mode, the total number of stylized circuits can limit the number of simultaneous hidden units. In addition, the number of stylized currents flowing in the line can also limit the number of memory cells, which can be reliably programmed at the same time. In the exemplary architecture shown, if two row decoders select bit lines within the same array block, then an array block selects a total of 32 bit lines. Suppose each decoder selects four bit lines (ie, four bits from each memory plane) from each of the four bit line layers'. The selected word line segment on each memory plane is required. Supports stylized currents for ~ eight selected memory cells. (See Figure 13 to show individual wordline segments for each layer.) The four memory banks of the selected memory cells are associated with the northbound exit bitline, while the other four selected memory cells are oriented. The south exit bit line is associated. All 32 cells of the selected memory cells will be driven by the same word line driver circuit, but each memory cell of the selected memory cells is driven by its own bit line driver circuit. As the above is dark, even if the total stylized current for 32 cells can be supplied by the integrated circuit, the programmed current for the 8 selected memory cells can cause the selected word line segments on each layer to cause a Unacceptable Voltage Drop In addition, the s-selected word line driver circuit may not be able to drive this type of current using a receivable voltage drop. In the reset stylized mode, a reverse bias is applied to each of the selected passive memory cells, thereby resetting the modifiable resistive material to a high resistance state to program the user data. One or more bit lines within the block may be selected for simultaneous programming, and flow from the selected bit line to the bit as some bits of the bit are reset to a more resistive state The electrical μ of the selected word line is significantly reduced, and the remaining bits see a significantly higher voltage of 123178.doc -43 - 1345787 due to the reduced word line drop. Thus, it is easier to stylize the bits to change state first, so that the more "stubborn" bits see a slightly higher voltage to help stylize such bits. Nonetheless, having 32 selected memory cells residing within the same array block may be unacceptable for any of the above reasons. Therefore, two different array blocks can be selected for stylization, each using one of the two data busses. In the figure, array block 374 is cross-hatched to indicate its choice to reset the stylization. One of the outputs of the top row decoder 380 for block 374 is active, thereby coupling the 16 selected positioning element lines to the top data bus 373 (indicated by the arrows from array block 374 to data bus 373) The array block 375 is cross-hatched to indicate its selection for resetting the stylization. One of the output of the bottom row decoder 3 79 for block 3 75 is also valid, thereby selecting 16 The bit lines are coupled to a bottom data bus 378 (represented by arrows from array block 375 to data bus 378.) A single column 377 is by the global column decoders on either side of the memory array. (not shown) is selected which drives a global column select line across the entire strip 371. Such a global column select line corresponds to the decode wheel 1 58 of the column decoder circuit shown in Figure 9. A multi-word line The driver circuit is enabled (by appropriate bias conditions on its source select bus and reverse source select bus) to drive a selected word line 3 76 within block 374 and within block 3 75 Selecting the scorpion line ° due to sharing in this exemplary embodiment The sub-lines are such that the selected word line driver circuit drives the word lines in the two blocks 374, 3 75. The entire programmed current is still driven through the selected word line.

的峰值電流將大約為一半。藉由選擇以將資料頁配置於一 對應於奇或偶子線之更複雜區塊配置内,可完全避免共用 器電路而發起,但現在沿各選定字線片段之電流減半 於各字線片段現在僅支持4個選定記憶體單元。應注 字線驅動器。例如,假定從一 給定陣列區塊左側驅動偶字 線,且從一給定陣列區塊右側驅動奇字線。當在給定陣列 區塊内選定一偶字線時,可同時選定其左邊的區塊,且當 在一給定陣列區塊内選擇一奇字線時,可同時選定其右邊 的區塊。在此情況下,沒有任何選定字線出現在一未選定 陣列區塊内。在一替代性具體實施例中,欲寫入資料頁可 配置成用以避免共用字線驅動器。 在上述雙資料匯流排範例中,各記憶體區塊係與兩個資 料匯流排373、378相關聯。在一不同記憶體循環中,與陣 列區塊374相關聯之其他位元線將被耦合至底部資料匯流 排378 ’而與陣列區塊375相關聯之其他位元線將被耦合至 頂部資料匯流排373 »在此及其他具體實施例中,為了最 佳化效能,在一給定機架内選定用於讀取之該等區塊不同 於選定用於重置之該等區塊。一次選定一單一區塊用於讀 取,但選定兩個區塊用於重置。該等兩個資料匯流排二者 均讀取有效,但存取一單一區塊,不同於上述重置存取。 存在提供類似好處之各種其他雙資料匯流排配置。圖15 顯示一記憶體機架400,其中該等奇數記憶體區塊係僅與 123178.doc •45· 1345787 一第一資料匯流排相關聯,而該等偶數記憶體區塊係僅與 一第二資料匯流排相關聯。奇數陣列區塊4〇6係與該第一 資料匯流排402相關聯,其係表示為位元線選擇區塊4〇8, 而偶數陣列區塊407係與第二資料匯流排4〇4相關聯。二記 憶體陣列區塊(例如陣列區塊406、407)係同時選定,各將 其選定位元線耦合至該等資料匯流排(表示為個別粗體箭 頭 410、412)之一。 圖16顯示一記憶體機架420,其中各記憶體區塊係與一 第一資料匯流排422與一第二資料匯流排424二者相關聯。 在一所示記憶體循環中,第一陣列區塊426係選定並將其 選疋位元線輕合(粗體箭頭430)至第一資料匯流排422,而 第二陣列區塊427係同時選定並將其選定位元線耦合(粗體 箭頭43 2)至第二資料匯流排424。在另一記憶體循環中, 第一陣列區塊426可被選定並將其選定位元線耦合至第二 資料匯流排424,而第二陣列區塊427係同時選定並將其選 定位元線麵合至第一資料匯流排422。 圖1 7顯示一記憶體機架440 ’其中各記憶體區塊係與一 第一資料匯流排442與一第二資料匯流排444二者相關聯, 其均位於該等陣列區塊之相同側。第一陣列區塊446係憑 藉一第一位元線選擇區塊449而與該第一資料匯流排442相 關聯’並還憑藉一第二位元線選擇區塊448而與第二資料 匯流排444相關聯《在所示範例性記憶體循環中,二記憶 體陣列區塊(例如陣列區塊447、446)係同時選定,各將其 選定位元線耦合至該等第一及第二資料匯流排442、 123178.doc -46· 1345787 444(表示為個別粗體箭頭450、454)。 現在參考圖18,描述一記憶體機架460,其類似於上述 記憶體機架BAY一〇〇,除了在此範例性具體實施例中,兩 個同時選疋陣列區塊462、4 64係不相鄰。在一所示記憶體 德環中’陣列區塊462係選定並將其選定位元線耦合(即粗 體箭頭)至上部資料匯流排466,而陣列區塊464係同時選 定並將其選定位元線耦合至一下部資料匯流排468。此組 織在相鄰記憶體陣列區塊之間不共用該等字線時特別有 用,但即便共用此類字線之情況下仍能使用。在此情況 下’在一選定區塊内的一選定字線還將伸入相鄰記憶體區 塊内。 在該些所示具體實施例之各具體實施例中,一個以上區 塊係選定用於重置程式化。反向偏壓係施加至該等選定陣 列區塊(即選定"子陣列")内的該等被動元件單元,藉此將 可修改電阻材料重置至一高電阻狀態以將使用者資料程式 化在該陣列内。此可能由於若干原因在高帶寬下完成。首 先,藉由選擇一個以上區塊用於程式化,可增加同時程式 化記憶體單元之數目超出一給定字線片段所強加或甚至一 給定字線驅動器電路所強加之該等限制。可選定兩個以上 選定陣列區塊,只要該等資料匯流排到達各此類區塊。此 外,該程式化方向有助於允許程式化更大數目的單元。換 言之,由於該等程式化位元之某些位元重置至一更高電阻 狀態,從位元線流向字線之電流數量明顯下降,故勝餘位 元由於不斷減小的字線電壓降而看見略微更高的電壓。對 123178.doc •47- 1345787 於σ疋最大程式化電流,可能從低至高電阻比從高至低 電阻可靠地程式化更多位元。還貢獻於—高帶寬程式化的 係在全部大量未選定字線及位元線上的該等偏壓條件。由 於該些線全部保持接地,故不存在選定及取消選定陣列區 塊時升壓偏壓該等未選定陣列陣列相關聯之較大延遲,也 不存在必須容納以上升及下降偏壓此類陣列區塊之較大電 流暫態電流。應注意,在此重置程式化配置中,甚至在選 定記憶體區塊㈣該等㈣定字線與位元線偏塵在接地下 (即使用特定範例性解碼器結構時向左浮動 在範例性具體實施例中,可組織一記憶體晶片,使得各 機架具有其自己的讀取寫入電路組與將該等讀取/讀寫電 路連接至位7L線選擇電路之至少一資料匯流排。此匯流排 橫跨該機架之寬度而延伸,或換言之"跨越"區塊群組。可 能存在在該等區塊頂側的一行解碼器以及在該等區塊底側 的一第二行解碼器,故存在兩個資料匯流排。在特定具體 實施例中’可能存在與各個別資料匯流排相關聯的兩組讀 取寫入電路。較佳的係一特定資料頁係分散至所有機架以 獲得最高帶寬。此點係藉由在各記憶體機架内的一對選定 陣列區塊而描述於圖14所示之範例性具體實施例中。 車乂佳的係該等選疋位元係分佈於一機架内的兩個區塊 上’-區塊具有由該等行解碼器之—選定並於該等資料匯 流排之一相關聯之位元線,而第二區塊係由另一行解碼器 及資料匯流排來選定’使得每機架加倍帶寬’但在任一字 線片段内流動之電流不變。此外,在一選定行位置之該等 123178.doc •48- 1345787 位兀線之-或許多者係同時選定用於重置程式化。同時程 式化的數目可能受從-區塊㈣該等選定位元線流向共用 字線之電流的限制。.但此限制在—方法中得到減輕,其中 由於該等位元之某些位元重置至一更高電阻狀態,透過 "已重置"單元之電流減小’沿共用字線片段之ir降減小, 且剩餘位元獲得更多電壓以促進其重置。 在各選定區塊㈣料敎字線較佳㈣全部在相同列 上,從而4除解碼蘊涵,因為該全域列解碼器電流不需要 變化以支援此點。較佳的係該等同時選定區塊係相鄰,特 別在相鄰區塊之間共用字線之情訂。該解碼可配置,使 得對於在兩個相鄰區塊之間共用的任一選定字線該歧兩 個相鄰陣列區塊可經組態成同時選定陣列區塊。例如,置 放於該等及第二區塊之間的一給定字線驅動器驅動在該第 一及第二區塊(二者同時選定)内的一共用字線。下一字線 (假定其係在該等陣列區塊之左右側採用2:丨交錯形式)將由 該等第二及第三陣列區塊之間的一陣列線驅動器來驅動, 該等陣列區塊還可以係選定陣列區塊。此點避免處理選定 字線伸入相鄰非選擇陣列區塊内。 當使用重置程式化時,各記憶體單元係藉由該”設定"操 作模式而設定回至一低電阻狀態,該設定操作模式可用於 再寫新資料’或藉由一次施加正向偏壓至一位元,或在_ 資料頁或一抹除區塊内的許多位元來抹除一群組位元。高 效能抹除可藉由在一區塊内選擇多個位元線或多個字線, 並將該等單元設定至低電阻來獲得。在位元驅動器路徑内 123178.doc •49- 丄:545787 ㈣:電路限制流動至共用字線之總電流。取決於所選記The peak current will be approximately half. By selecting to configure the data page in a more complex block configuration corresponding to an odd or even sub-line, the duplexer circuit can be completely avoided and initiated, but now the current along each selected word line segment is halved to each word line. The clip now only supports 4 selected memory units. The word line driver should be noted. For example, assume that an even word line is driven from the left side of a given array block and an odd word line is driven from the right side of a given array block. When an even word line is selected within a given array block, the block to its left can be selected at the same time, and when an odd word line is selected within a given array block, the block to the right can be selected at the same time. In this case, no selected word lines appear in an unselected array block. In an alternate embodiment, the data page to be written can be configured to avoid sharing the word line driver. In the dual data bus example described above, each memory block is associated with two data bus bars 373, 378. In a different memory loop, other bit lines associated with array block 374 will be coupled to bottom data bus 378' and other bit lines associated with array block 375 will be coupled to the top data bus 373 » In this and other embodiments, to optimize performance, the blocks selected for reading in a given rack are different than the blocks selected for reset. A single block is selected for reading at a time, but two blocks are selected for reset. Both data busses are valid for reading, but accessing a single block is different from resetting the above. There are various other dual data bus configurations that offer similar benefits. Figure 15 shows a memory rack 400 in which the odd-numbered memory blocks are only associated with a first data bus of 123178.doc • 45· 1345787, and the even-numbered memory blocks are only one The second data bus is associated. The odd array block 4〇6 is associated with the first data bus bar 402, which is represented as a bit line selection block 4〇8, and the even array block block 407 is associated with the second data bus bar 4〇4. Union. The two memory array blocks (e.g., array blocks 406, 407) are simultaneously selected, each coupling its selected location line to one of the data bus bars (denoted as individual bold arrows 410, 412). Figure 16 shows a memory rack 420 in which each memory block is associated with a first data bus 422 and a second data bus 424. In a memory cycle, the first array block 426 is selected and its selected bit line is lightly coupled (bold arrow 430) to the first data bus 422, while the second array block 427 is simultaneously selected. The selected meta-line coupling (bold arrow 43 2) is selected to the second data bus 424. In another memory loop, the first array block 426 can be selected and its selected positional line coupled to the second data bus 424, while the second array block 427 is simultaneously selected and positioned to locate the element line The first data bus 422 is connected. Figure 17 shows a memory rack 440' in which each memory block is associated with a first data bus 442 and a second data bus 444, all located on the same side of the array block. . The first array block 446 is associated with the first data bus 442 by a first bit line selection block 449 and is also associated with the second data bus by a second bit line selection block 448. 444. In the exemplary memory cycle shown, two memory array blocks (e.g., array blocks 447, 446) are simultaneously selected, each coupling its selected location line to the first and second data streams. Rows 442, 123178.doc -46· 1345787 444 (represented as individual bold arrows 450, 454). Referring now to Figure 18, a memory bay 460 is illustrated which is similar to the memory bay BAY described above, except that in this exemplary embodiment, two simultaneous select array blocks 462, 4 64 are not Adjacent. In an array of memory blocks, the array block 462 is selected and positioned to be coupled by a meta-line (ie, bold arrow) to the upper data bus 466, while the array block 464 is simultaneously selected and positioned. The meta-line is coupled to the lower data bus 468. This organization is particularly useful when the word lines are not shared between adjacent memory array blocks, but can be used even if such word lines are shared. In this case, a selected word line within a selected block will also extend into the adjacent memory block. In the specific embodiments of the illustrated embodiments, more than one block is selected for resetting the stylization. A reverse bias is applied to the passive component cells within the selected array block (ie, selected "sub-array"), thereby resetting the modifiable resistive material to a high resistance state to Stylized within the array. This can be done at high bandwidth for several reasons. First, by selecting more than one block for stylization, the number of simultaneous programmed memory cells can be increased beyond what is imposed by a given wordline segment or even imposed by a given wordline driver circuit. More than two selected array blocks can be selected as long as the data bus arrives at each such block. In addition, this stylized orientation helps to program a larger number of cells. In other words, since some bits of the stylized bits are reset to a higher resistance state, the amount of current flowing from the bit line to the word line is significantly reduced, so the winning residual bit is due to the decreasing word line voltage drop. And see a slightly higher voltage. For 123178.doc •47– 1345787, the maximum stylized current at σ疋 may reliably program more bits from low to high resistance than high to low resistance. It also contributes to the high bandwidth programming of these bias conditions on a large number of unselected word lines and bit lines. Since the lines are all kept grounded, there is no large delay associated with boosting the unselected array arrays when selecting and deselecting the array blocks, nor is there an array that must accommodate the rising and falling biases. Large current transient current of the block. It should be noted that in this reset stylized configuration, even in the selected memory block (4), the (4) word line and bit line dust are grounded (ie, float to the left when using a specific exemplary decoder structure) In a specific embodiment, a memory chip can be organized such that each rack has its own read write circuit group and at least one data bus that connects the read/write circuit to the bit 7L line select circuit. This bus bar extends across the width of the rack, or in other words, a "crossover" block group. There may be a row of decoders on the top side of the blocks and a number on the bottom side of the blocks. Two rows of decoders, so there are two data buss. In a particular embodiment, there may be two sets of read write circuits associated with individual data busses. Preferably, a particular data page is spread to All racks achieve the highest bandwidth. This is described in the exemplary embodiment shown in Figure 14 by a pair of selected array blocks within each memory bay.疋 疋 系 is distributed in a rack The two blocks have '-blocks with bit lines selected by the row decoders and associated with one of the data bus banks, and the second block is composed of another row of decoders and data busses To select 'Make bandwidth per rack' but the current flowing in any of the wordline segments is the same. In addition, at the same row position, the 123178.doc • 48-1345787 兀 line - or many of them simultaneously Selected for resetting the stylization. At the same time, the number of stylized may be limited by the current flowing from the selected bit line to the common word line from the block (4). However, this limitation is mitigated in the method, Some bits of the bit are reset to a higher resistance state, and the current reduction by 'reset " cell decreases' decreases along the ir of the common word line segment, and the remaining bits get more voltage Promote its resetting. In each selected block (4), the word lines are better (4) all on the same column, so 4 is divided by the decoding implication, because the global column decoder current does not need to change to support this point. Etc. simultaneously select the adjacent blocks, especially adjacent The word lines are shared between the blocks. The decoding is configurable such that for any selected word line shared between two adjacent blocks, the two adjacent array blocks can be configured to simultaneously select the array A block, for example, a given word line driver placed between the second and second blocks drives a common word line within the first and second blocks (both simultaneously selected). The lines (assuming they are in the 2: 丨 interleaved form on the left and right sides of the array blocks) will be driven by an array of line drivers between the second and third array blocks, which may also be The array block is selected. This avoids processing the selected word line into the adjacent non-selected array block. When using the reset stylization, each memory unit is set back to one by the "set" operating mode. Low resistance state, this set mode of operation can be used to rewrite new data' or erase a group by applying forward bias to one bit at a time, or by arranging many bits in a data page or a erase block Bit. High performance erasure can be obtained by selecting a plurality of bit lines or a plurality of word lines in a block and setting the cells to a low resistance. Within the bit driver path 123178.doc •49- 丄:545787 (4): The circuit limits the total current flowing to the common word line. Depends on the selected record

憶體平7C技術、及設定電流及重置電流之相對數量、及U 單元浅漏電流之數量’可比用於重置(即程式化)選定更少 區塊用於設定或抹除操作。 -電阻材料之選擇係形成二極體之多晶矽材料。一反熔 絲("AF")可與多晶碎二極體串列,且該反料係在製造時 -格式化步驟中在程式化事件之前跳變。該反㈣用於限 制設定時單元傳導之最大電流。 如上述’較佳的係該記憶體陣列包括一片段化字線架構 (如圖12及13所示),且較佳的係、—三維陣列。在特定具體 實施例巾,在-、給定字線層± @該等字線係與在—單一位 π線層上的位元線相關聯,而在特定具體實施例中,在一 所謂"半鏡射"配置中,在一給定字線層上的該等字線在二 位7L線層(即定義二記憶體平面的一單一字線層與二位元 線層)之間共用《此類記憶體陣列結構進一步說明於前述 美國專利第6,879,505號中。 至此該等各種解碼器電路之說明主要集中於說明一單一 陣列區塊》應記得,各解碼器曾在一源極選擇匯流排以及 對於某些具體實施例一反向源極選擇匯流排之背景下加以 說明。該字線解碼階層可視為相對直接。源極選擇匯流排 及未選定偏壓線或者反向源極選擇匯流排係基於位址資訊 來解碼’並依據哪個陣列區塊係有效來驅動。本文中他處 已參考類似列解碼電路。可使用於與未選定陣列區塊相關 聯之字線的該(等)個別源極選擇匯流排及/或未選定偏壓線 i23178.doc •50· 1345787 向左浮動。 關於該等行解碼器配置’一階層式匯流排配置可用於提 供讀取/寫入資料之有效路由以及在選定及未選定陣列區 塊内之位元線之有效偏壓。將在圖9及10所示之雙源極選 擇匯流排解碼器之背景下說明有用階層式匯流排配置,但 該些配置可調適用於其他解碼器具體實施例。Recall that the body level 7C technology, and the relative number of set currents and reset currents, and the number of shallow leakage currents in the U unit can be used to set or erase operations by selecting fewer blocks for reset (ie, stylized). The choice of the resistive material is to form a diode polycrystalline germanium material. An anti-fuse ("AF") can be serialized with a polycrystalline dipole, and the anti-fault is hopped prior to the stylization event during the manufacturing-formatting step. This inverse (4) is used to limit the maximum current that the cell conducts when it is set. Preferably, the memory array comprises a segmented word line architecture (as shown in Figures 12 and 13), and preferably a three-dimensional array. In a particular embodiment, the word line system is associated with a bit line on a single bit π line layer, and in a particular embodiment, in a particular embodiment, In a semi-mirror configuration, the word lines on a given word line layer are between two 7L line layers (ie, a single word line layer and a two bit line layer defining two memory planes). The sharing of such a memory array structure is further described in the aforementioned U.S. Patent No. 6,879,505. At this point, the description of the various decoder circuits has focused primarily on a single array block. It should be recalled that each decoder has a background selection bus and, for some embodiments, a reverse source selection bus. Explain below. The word line decoding level can be considered relatively straightforward. The source select bus and the unselected bias line or the reverse source select bus are decoded based on the address information and driven according to which array block is active. References to similar column decoding circuits have been made elsewhere herein. The (etc.) individual source select bus and/or unselected bias line i23178.doc • 50· 1345787 for the word line associated with the unselected array block may be floated to the left. With respect to the row decoder configurations, a hierarchical bus configuration can be used to provide efficient routing of read/write data and effective biasing of bit lines within selected and unselected array blocks. A useful hierarchical bus configuration will be described in the context of the dual source select bus decoder shown in Figures 9 and 10, but these configurations are applicable to other decoder embodiments.

在該等正向操作(讀取及設定)中,一範例性階層式匯流 排配置在該SELN匯流排上提供一適當偏壓用於一選定陣 列區塊,並使未選定陣列區塊的SELN匯流排浮動。此點 有助於減小相鄰一選定陣列區塊内之陣列區塊内的不合需 要功率消耗。在-選定陣列區塊内的該等未選定字線係偏 壓在一相當高電壓VUX(例如VPP_VT)下,且在一共用字線 木構下,$ #未選定字線還延伸至相鄰未選定陣列區塊 (即在未選料列區塊内的該等字線的—半與該選定陣列 ·. 區塊一起共用)。在相鄰陣列區塊内的該等未選定位元線 較佳的係在該未選定位元線電愿VUB(例如ντ)下偏屢。此 點由於透過未選定記憶體單元之茂漏電流而浪費功率。在 相鄰未選料列區塊内的該等字線之另—半係㈣,使得 其洩漏直至爾電壓,故;曳漏功率係針對該 之一半而最小化。 疋疋早兀 重置操作模式下提供 以到達在該等陣列區 該範例性階層式匯流排配置還在一 一較長SELN路徑,其跨越許多區塊 塊下面分佈的該等重置資料驅動器。 四個範例性階層式匯流排配 置係描述於接下 四圖中 。現 123178.doc 51 1345787 在參考圖1 9,描述一匯流排配置500,其包括三個記憶體 陣列區塊502、504、506,其表示在一機架内的所有陣列 區塊。儘管僅顯示三個陣列區塊,但應清楚該配置之遞增 性質以及其至任一陣列區塊數目的延伸性。顯示用於各個 別陣列區塊的一個別SELN匯流排片段。如本文所使用, 一匯流排片段僅係比其他此類匯流排更小的一匯流排,而 在其他具體實施例(下述)中,多個匯流排片段可一起耦合 以形成單一更大匯流排。In the forward operation (read and set), an exemplary hierarchical bus arrangement provides an appropriate bias voltage on the SELN bus for a selected array block and SELN of the unselected array block. The bus bar floats. This helps to reduce the undesirable power consumption in the array blocks within a selected one of the selected array blocks. The unselected word lines in the selected array block are biased at a relatively high voltage VUX (e.g., VPP_VT), and under a common word line, the $# unselected word lines also extend to adjacent The array blocks are not selected (i.e., the half of the word lines in the unselected column block are shared with the selected array.. block). Preferably, the unselected locating elements within the adjacent array block are offset by the unselected locating element line VUB (e.g., ντ). This is a waste of power due to leakage current through unselected memory cells. The other half of the word lines in the adjacent unselected column blocks cause the leakage to the voltage, so the leakage power is minimized for half of the word lines. Early in the reset mode of operation to reach in the array area The exemplary hierarchical bus configuration is also a longer SELN path that spans the reset data drivers distributed under the plurality of block blocks. The four exemplary hierarchical bus configuration are described in the next four figures. Now, 123178.doc 51 1345787, a busbar configuration 500 is described with reference to FIG. 1, which includes three memory array blocks 502, 504, 506 that represent all of the array blocks within a rack. Although only three array blocks are shown, the incremental nature of the configuration and its extensibility to the number of any array block should be clear. A separate SELN bus segment for each of the array blocks is displayed. As used herein, a busbar segment is only one busbar that is smaller than other such busbars, while in other embodiments (described below), multiple busbar segments can be coupled together to form a single larger confluence. row.

在設定模式下,用於一選定陣列區塊之SELN匯流排片 段係耦合至一更長GSELN匯流排,其藉由一耦合電路508 而跨越整個記憶體機架。此耦合電路508可簡單至16個電 晶體,各將一個別SELN匯流排線耦合至個別GSELN匯流 排線。此耦合電路508係由一控制信號EN_GSELN來致 能,其在設定模式或在重置模式時有效用於選定陣列區塊 (下述)。在該設定模式期間,此GSELN匯流排係耦合至未 選定位元線電壓VUB(即該GSELN匯流排之各匯流排線係 耦合至此電壓)。用於該等未選定陣列區塊之個別 EN_GSELN控制信號係有效,個別耦合電路508關閉,因 而需要時使個別SELN匯流排片段浮動。 在重置模式下,用於所有陣列區塊之個別EN_GSELN控 制信號係有效,且個別耦合電路508係開啟以將個別SELN 匯流排片段耦合至該GSELN匯流排。此點提供寫入資料至 所有陣列區塊,不管選擇哪個區塊。該SELB匯流排係驅 動至該VUX電壓(例如接地)以提供未選定位元線偏壓條件 123178.doc -52- 1345787 用以重置程式化。In the set mode, the SELN busbar segments for a selected array block are coupled to a longer GSELN busbar that spans the entire memory bank by a coupling circuit 508. This coupling circuit 508 can be as simple as 16 transistors, each coupling a different SELN bus line to an individual GSELN bus line. This coupling circuit 508 is enabled by a control signal EN_GSELN which is active for the selected array block (described below) in the set mode or in the reset mode. During this set mode, the GSELN busbar is coupled to the unselected location line voltage VUB (i.e., the busbar lines of the GSELN bus are coupled to this voltage). The individual EN_GSELN control signals for the unselected array blocks are active, and the individual coupling circuits 508 are turned off, thereby allowing individual SELN bus segments to float as needed. In the reset mode, individual EN_GSELN control signals for all of the array blocks are active, and individual coupling circuits 508 are turned on to couple individual SELN bus bars to the GSELN bus. This point provides write data to all array blocks, regardless of which block is selected. The SELB bus is driven to the VUX voltage (e.g., ground) to provide an unselected positioning element bias condition 123178.doc -52- 1345787 to reset the stylization.

此係一相對簡單的電路配置,每陣列區塊(耦合電路 508)僅需要一另外16個全域線(GSELN)及16個額外電晶 體。缺點(至少相對於下述其他具體實施例而言)包括在該 等SELB及SELN匯流排二者上的一相對較高電容。在該 SELB匯流排上的電容始終存在,但僅在一讀取循環期間 確定,而在所有該等SELN匯流排片段係耦合至全域匯流 排GSELN時,此時期間該等組合匯流排傳遞重置資料資 訊,在該SELN匯流排上的較高電容在該重置模式期間存 在0 在特定其他具體實施例中,該重置模式可組態有整個非 負電壓,而不將重置電壓VRR分割成-VRR/2及+ VRR/2。 在此情況下,該等未選定字線及位元線係在中點(現在係 VRR/2)下偏壓。因此,當從重置模式出來時,應小心控制 該些線之放電速率以免在放電時過多電流突波。This is a relatively simple circuit configuration, requiring only an additional 16 global lines (GSELN) and 16 additional transistors per array block (coupling circuit 508). Disadvantages (at least with respect to other embodiments described below) include a relatively high capacitance on both the SELB and SELN busbars. The capacitance on the SELB bus is always present, but only during a read cycle, and when all of the SELN bus segments are coupled to the global bus GSELN, the combined bus transfers are reset during this time. Data information, the higher capacitance on the SELN bus has 0 during the reset mode. In certain other embodiments, the reset mode can be configured with the entire non-negative voltage without dividing the reset voltage VRR into -VRR/2 and + VRR/2. In this case, the unselected word lines and bit lines are biased at the midpoint (now VRR/2). Therefore, when coming out of the reset mode, the discharge rate of the lines should be carefully controlled to avoid excessive current surges during discharge.

現在參考圖20,描述另一具體實施例,其中該等個別 SELN匯流排片段係一起耦合以形成一單一更大匯流排, 其跨越整個記憶體機架。在設定模式下,用於一選定陣列 區塊之SELN匯流排係藉由一耦合電路532而耦合至一單一 偏壓線VUB,其跨越整個記憶體機架。此耦合電路532可 簡單至16個電晶體,各將一個別SELN匯流排線耦合至該 VUB偏壓線(其係耦合至一適當偏壓電路,如所示)。此耦 合電路532係由一控制信號BLATVUB來致能,其係在設定 模式時針對該選定陣列區塊有效。對於該等未選定陣列區 123178.doc -53 - 1345787 塊,該個別BLATVUB控制信號係無效,個別耦合電路532 關閉,因而需要時使個別SELN匯流排片段浮動。Referring now to Figure 20, another embodiment is described in which the individual SELN busbar segments are coupled together to form a single larger busbar that spans the entire memory bay. In the set mode, the SELN bus for a selected array block is coupled to a single bias line VUB by a coupling circuit 532 that spans the entire memory frame. The coupling circuit 532 can be as simple as 16 transistors, each coupling a different SELN bus bar to the VUB bias line (which is coupled to a suitable bias circuit, as shown). The coupling circuit 532 is enabled by a control signal BLATVUB that is active for the selected array block when in the set mode. For the unselected array regions 123178.doc -53 - 1345787, the individual BLATVUB control signals are disabled and the individual coupling circuits 532 are turned off, thus allowing individual SELN bus segments to float as needed.

在重置模式下,該SELB匯流排係驅動至該VUB電壓(例 如接地)以提供未選定位元線偏壓條件用於重置程式化。 此外,該等個別SELN匯流排片段係藉由一耦合電路533 — 起耦合以形成一跨越整個記憶體機架之單一匯流排,該記 憶體機架係耦合至該重置電路以向該等組合匯流排提供重 置資料資訊。該等SELN匯流排片段之一可藉由匯流排536 而耦合至該重置電路。在特定具體實施例中,一耦合電路 535可用以在RESET模式下向重置區塊提供連接。 此係一相對簡單的電路配置,其每陣列區塊(該等耦合 電路532、53 3)僅需要一額外偏壓線(VUB)及32個額外電晶 體。類似於先前具體實施例,在二SELB與SELN匯流排上 仍存在一相對較高電容。In the reset mode, the SELB bus is driven to the VUB voltage (e.g., ground) to provide an unselected positioning element bias condition for resetting the stylization. Moreover, the individual SELN busbar segments are coupled by a coupling circuit 533 to form a single busbar spanning the entire memory frame, the memory chassis being coupled to the reset circuit for the combination The bus provides reset information. One of the SELN busbar segments can be coupled to the reset circuit by busbar 536. In a particular embodiment, a coupling circuit 535 can be used to provide a connection to the reset block in RESET mode. This is a relatively simple circuit configuration in which only one additional bias line (VUB) and 32 additional transistors are required per array block (the coupling circuits 532, 53 3). Similar to the previous embodiment, there is still a relatively high capacitance on the two SELB and SELN busbars.

現在參考圖21,描述一匯流排配置550,其併入來自二 先前具體實施例之特徵。在SET模式下,用於一選定陣列 區塊之SELN匯流排片段係藉由一耦合電路554而耦合至一 跨越整個記憶體機架之VUB偏壓線,耦合電路5 54係由一 控制信號BLATVUB來致能。用於未選定陣列區塊之個別 BLATVUB控制信號係無效,個別耦合電路554關閉,因而 需要時使個別SELN匯流排片段浮動(由於在SET模式下該 EN_GSELN信號也無效)。 在重置模式下,用於一選定陣列區塊之個別EN_GSELN 控制信號係有效,故一個別耦合電路552係開啟以將個別 123178.doc -54- 1345787 SELN匯流排片段耦合至該GSELN匯流排。用於該等未選 定陣列區塊之個別EN_GSELN控制信號係無效,個別耦合 電路552關閉,故使個別SELN匯流排片段浮動。此組態僅 向該(等)未選定陣列區塊提供寫入資料,從而明顯減小總 電容。該SELB匯流排係驅動至該VUX電壓(例如接地)以提 供未選定位元線偏壓條件用於重置程式化。Referring now to Figure 21, a bus arrangement 550 is described which incorporates features from two prior embodiments. In SET mode, the SELN bus segment for a selected array block is coupled to a VUB bias line across the entire memory frame by a coupling circuit 554, which is coupled to a control signal BLATVUB. Come to enable. The individual BLATVUB control signals for the unselected array blocks are invalid, and the individual coupling circuits 554 are turned off, thus floating individual SELN bus segments as needed (since the EN_GSELN signal is also inactive in SET mode). In the reset mode, the individual EN_GSELN control signals for a selected array block are active, so a separate coupling circuit 552 is turned on to couple the individual 123178.doc - 54 - 1345787 SELN bus segments to the GSELN bus. The individual EN_GSELN control signals for the unselected array blocks are invalid, and the individual coupling circuits 552 are turned off, thereby causing individual SELN bus segments to float. This configuration only provides write data to this (etc.) unselected array block, which significantly reduces the total capacitance. The SELB bus is driven to the VUX voltage (e. g., ground) to provide unselected positioning element bias conditions for reset stylization.

此電路配置每陣列區塊(該等耦合電路552、554)需要17 個額外線(VUB匯流排與GSELN匯流排)與32個額外電晶 體。不同於該等先前具體實施例,此配置提供用於明顯減 小SELN匯流排上的電容,由於用於未選定陣列區塊之該 等個別SELN匯流排片段不耦合至該GSELN匯流排。在該 SELB匯流排上仍存在相當高的電容。This circuit configuration requires 17 additional lines (VUB bus and GSELN bus) and 32 additional transistors for each array block (the coupling circuits 552, 554). Unlike these prior embodiments, this configuration provides for significantly reducing the capacitance on the SELN bus, since the individual SELN bus segments for unselected array blocks are not coupled to the GSELN bus. There is still a fairly high capacitance on the SELB bus.

圖22描述另一階層式匯流排配置,此次僅利用一跨越記 憶體機架的單一全域選擇匯流排GSEL,並將SELB匯流排 分成一個別SELB匯流排片段用於各陣列區塊。對於一選 定陣列區塊,個別SELB匯流排或個別SELN匯流排片段係 耦合至此GSEL匯流排。在SET模式期間,該選定區塊 SELB匯流排片段係耦合至該GSEL匯流排,而該選定區塊 SELN匯流排片段係耦合至該VDSEL·偏壓線(在SET期間其 傳遞一適當偏壓電路所產生之未選定位元線偏壓條件 VUB,如所示)。使該等未選定區塊SELN匯流排向左浮 動。 在RESET模式期間,該選定區塊SELN匯流排片段係耦 合至該GSEL匯流排,而該選定區塊SELB匯流排片段係耦 123178.doc -55- 1345787 合至該VDSEL偏壓線(在RESET期間其傳遞未選定位元線 偏壓條件VUX)。再次使該等未選定區塊SELN匯流排向左 浮動。Figure 22 depicts another hierarchical bus arrangement, this time using only a single global selection bus GSEL across the memory frame and dividing the SELB bus into a separate SELB bus segment for each array block. For a selected array block, individual SELB busses or individual SELN bus segments are coupled to the GSEL bus. During the SET mode, the selected block SELB busbar segment is coupled to the GSEL busbar, and the selected block SELN busbar segment is coupled to the VDSEL. bias line (which delivers an appropriate bias during SET) The unselected positioning element line bias condition VUB generated by the path, as shown). The unselected block SELN bus is floated to the left. During the RESET mode, the selected block SELN busbar segment is coupled to the GSEL busbar, and the selected block SELB busbar segment is coupled to the VDSEL bias line (at RESET) It passes the unselected positioning element line bias condition VUX). The unselected block SELN bus is again floated to the left.

此配置係所述該等配置中最複雜的,每陣列區塊需要1 7 個全域線(即跨越記憶體機架)與64個額外電晶體,且可能 在某些具體實施例中需要更多佈局面積。然而,其還在 SELB及SELN匯流排上提供低電容,因為允許更高的效 能,並提供一極模組化的區塊設計。而且,可實施更大記 憶體機架而不明顯增加該等SELB及SELN匯流排上的電 容.。 在另一具體實施例中,該等行解碼器電路可加以修改以 提供一分離行解碼輸出用於位元線驅動器電路之該等 NMOS及PMOS電晶體,故可將位元線選擇器設定在高阻 抗狀態下。但此配置將明顯增加位元線選擇器面積以及自 身的行解碼器。This configuration is the most complex of the described configurations, requiring 17 global lines per array block (ie, spanning the memory rack) and 64 additional transistors, and may require more in some embodiments. Layout area. However, it also provides low capacitance on the SELB and SELN busbars because it allows for higher efficiency and provides a one-pole modular block design. Moreover, larger memory racks can be implemented without significantly increasing the capacitance on the SELB and SELN busbars. In another embodiment, the row decoder circuits can be modified to provide a separate row decode output for the NMOS and PMOS transistors of the bit line driver circuit, so that the bit line selector can be set at In high impedance state. However, this configuration will significantly increase the bit line selector area as well as its own row decoder.

現在參考圖23,描述一資料電路,其包括用於該等設 定、重置及讀取模式之分離區塊。應記得,在反向偏壓模 式(即重置模式),該等選定位元線係耦合至一個別SELN匯 流排線(即該反向源極選擇匯流排)。此處發現一重置驅動 器615耦合至SELN匯流排617(其表示可使用四個階層式匯 流排配置之任一者的至SELN匯流排之路徑)。本質上,此 表示對於一選定陣列區塊最終耦合至SELN匯流排片段之 路徑。欲寫入資料資訊係接收於I/O邏輯601,在匯流排 602上傳遞至一寫入鎖存器區塊604,在匯流排607上傳遞 123178.doc -56- 1345787 至控制邏輯608,該控制邏輯接著藉助控制線612來控制重 置驅動器615。 應記得’在該正向模式下,該等選定位元線係耦合至一 個別SELB匯流排線。由於二SET及READ模式利用正向偏 壓模式’故一設定驅動器614及一讀取感應放大器613係同 時耦合至SELB匯流排616(其表示用於上述四個階層式匯流 排配置之任一者或可採用之任何其他配置之至SELB匯流 排之路徑)。感應資料係由匯流排609而傳遞至一讀取鎖存 器605 ’由匯流排603而傳遞至I/O邏輯601。各種匯流排 606、610及611提供用於一程式化控制迴路,有時稱為智 慧寫入,其可在一位元係成功跳變或設定時關閉程式化電 流。該等匯流排還提供一寫入前讀取能力以決定(例如)在 一後續程式化操作之前應保留之任何先前程式化狀態(例 如LSB資料位元)。此類能力係進一步說明於下面參考的 023-0049及 023-0055 中請案中。 圖24中描述一簡化範例性重置驅動器615以及至一選定 記憶體單元638之字線及位元線選擇路徑之一表示。一字 線選擇路徑639表示透過該字線驅動器電路(即解碼器頭)至 用於產生解碼源極選擇匯流排XSELN之電路的路徑。一位 π線選擇路徑636表示透過該位元線驅動器電路以及透過 任何耦合電路(例如在各種階層式匯流排配置具體實施例 中所述之該等電路)至個別SELN匯流排線635之路徑。一 較佳重置方法及相關聯重置驅動器係說明於下面參考的 sand-〇i114USO及SAND_01114USlf 請案中,特別涉及其 123178.doc •57· 中圖13。 位元線選擇路徑之電容係在試圖程式化一新定址選定位 元線之前預充電。此點可使用一高於實際重置選定記憶體 單元所需之數量的電流來執行,但適當定時時,此類更高 數量預充電可加快預充電時間而對記憶體單元沒有決定性 的影響。此預充電係由一在控制信號637上傳遞至位元線 選擇路徑636之預充電行信號PCHGCOL來控制。一位元線 預充電(BLP)限流電路633與一重置限制電路634係同時提 供以控制個別位元線預充電及重置電流之上部數量。若資 料使得不需要任何重置操作,則二者均由信號632來停 用’且SELN匯流排線635浮動。 反之,若資料使得要重置記憶體單元,則停用線632係 無效,且暫時(例如200 ns至500 ns)致能BLp限流電路633 以提供一更高位準的控制電流用於此類預充電,之後其係 停用(藉由一未顯示控制信號),使重置限流電路634來供應 一更低數量的電流用於重置選定記憶體單元。由於重置一 記憶體單元引起其m電阻狀態變成—更高電阻狀 態,故很少需要感應重置操作之完成並停用重置限制 634,由於單元在其到達重置狀態便自動關閉。 至於上述各種具體實施例,許多類型記憶體單元能夠使 用一反向偏壓(例如上述重置模式)來加以程式化。此類單 元包括-被動元件單元,其具有一金屬氧化物(例如一過 渡金屬氧化物)與--太 甘A丄 一極體。其他適當單元包括在一二 體矩陣内的一電阻材料 計之該專早兀。粑例包括一可程式化 123178.doc •58- 1345787 金屬化連接、-相變電阻器(例如GST材料)、一有機材料 可變電阻器、-複合金屬氧化物、一碳聚合物膜、一摻雜 硫化物玻璃及一含遷移原子以改變電阻之宵特基 (Schottky)阻障二極體。所選電阻材料可提供一次可程^ 化(OTP)記憶體單元或多:欠寫入記憶體單元。&amp;外,可採 用夕日日矽一極體,其具有反向偏壓應力修改的傳導。 用於反向重置操作之有用記憶體單元係說明於授予s· Brad Hemer等人之美國專利第6 952 〇3〇號,標題為”高密 度二維記憶體單元,,;以及還說明於2〇〇5年12月Μ曰 Tanmay Kumar等人申請的美國申請案第u/237 167號標 題為&quot;使用帶可微調電阻之可切換半導體記憶體元件之記 憶體單元之方法&quot;,於2〇〇7年4月26日作為美國專利申請公 告案第2007-0090425號公佈。一適當金屬氧化物記憶體單 元係顯示於2006年3月31aS. Brad Hernert請的美國申請 案第11/394,903號,標題為”含電阻率切換氧化物或氮化物 及反炼絲之多層非揮發性記憶體單元”。一使用一可提供 多個電阻狀態之相變材料之適當記憶體單元係顯示於R〇y Ε· Scheuedein等人申請的美國專利申請公告案第2〇〇5· 0158950號,標題為&quot;串列包含介電層及相變材料之非揮發 性記憶體單元”。該些上述參考揭示案之各案全體内容以 引用形式併入本文。具有一過渡金屬氧化物(例如包括該 等具有結之氧化物)之其他範例性記憶體單元以及其中操 縱元件之多晶矽材料自身包含可切換電阻材料之範例性單 元係說明於下面所參考之ΜΑ· 163-1申請案中。 123178.doc -59- 1345787 此外’ S. Brad Herner等人於2005年5月9曰申請的美國申 請案第1 1/125,939號’標題為”包含二極體及電阻切換材料 之可再寫記憶體單元,•,於2006年12月9日作為美國專利申 請公告案第2006-0250836號公佈,揭示一串列一氧化物(氧 化鎳)併入一二極體之有用可再寫記憶體單元,其中該記 憶體單元之電阻可從低至高及從高至低電阻狀態而重複切 換。S. Brad Herner等人於2006年3月31申請的美國申請案 第11/395,995號’標題為”包含二極體及電阻切換材料之非 揮發性記憶體單元&quot;並於2006年11月9日作為美國專利申請 公告案第2006-0250837號而公佈,揭示一 〇ΤΡ多層記憶體 單元’其係使用正向偏壓來設定並使用反向偏壓來重置。 該些上述參考揭示案之各案全體内容以引用形式併入本 文。 在本文所述許多具體實施例中,在資料路徑内強加於各 個別匯流排線之精確偏壓條件係獨立控制。用於該等設定 及重置驅動器之各驅動器的特定電壓及電流設定可針對資 料路徑之各位元來加以調整。由此,涵蓋具有兩個以上狀 態之特定記憶體單元(即”多層”記憶體單元)用於配合本文 所述許多結構來使用。範例性多層記憶體單元係說明於下 面參考的前述美國申請案第11/23 7,167號及MA-163-1申請 案中。 可用於實施本發明之範例性被動元件記憶體單元及相關 非揮發性記憶體結構係說明下列文件中,其全部内容各以 引用形式併入本文: 123178.doc •60- 美國專利第6,034,882號,標題為”垂直堆疊場可程式化 非揮發性記憶體及製造方法”,授予Mark G J〇hns〇n等 人; 美國專利第6,420,215號,標題為&quot;三維記憶體陣列及製 造方法&quot;’授予N. Johan Knall等人; 美國專利第6,525,953號,標題為&quot;垂直堆疊場可程式化 非揮發性記憶體及製造方法&quot;,授予Mark J〇hns〇n等人; 美國專利第6,490,218號,標題為&quot;用於儲存多位元數位 資料之蘇會為記憶體方法及系統&quot;,授予Michael Vyv〇da 等人; 美國專利第6,952,043號,標題為',主動裝置中的電絕緣 柱&quot;’授予Michael Vyvoda等人;以及 美國專利申請公告案第US 2005-0052915號,標題為',具 有1¾及第阻抗態之不帶介電反溶絲之非揮發性記憶體單 元&quot;,由S· Brad Herner等人申請。 下列申請案(各在相同時期申請)說明可用於實施本發 明之記憶體單元結構、電路、系統及方法,各申請案全 部内容以引用形式併入本文: 美國申請案第11/496,985號(律師檔第10519_ 141號),標 題為&quot;多用途記憶體單元及記憶體陣列&quot;,由R〇yReferring now to Figure 23, a data circuit is illustrated that includes separate blocks for the set, reset, and read modes. It will be recalled that in the reverse bias mode (i.e., reset mode), the selected positioning elements are coupled to a different SELN bus line (i.e., the reverse source select bus). Here, a reset driver 615 is found coupled to the SELN bus 617 (which indicates that the path to the SELN bus can be used using any of the four hierarchical bus configurations). Essentially, this represents the path that is ultimately coupled to the SELN bus segment for a selected array block. The information to be written is received by the I/O logic 601, passed on the bus 602 to a write latch block 604, and 123178.doc -56-1345787 is passed on the bus 607 to the control logic 608. Control logic then controls reset driver 615 by means of control line 612. It should be remembered that in this forward mode, the selected positioning elements are coupled to an individual SELB bus line. Since the two SET and READ modes utilize the forward bias mode, the set driver 614 and the read sense amplifier 613 are simultaneously coupled to the SELB bus 616 (which is representative of any of the above four hierarchical bus configurations). Or any other configuration to the path of the SELB bus). The sensing data is passed from bus 609 to a read latch 605' which is passed from bus 603 to I/O logic 601. Various bus bars 606, 610, and 611 are provided for a stylized control loop, sometimes referred to as a smart write, which turns off the programmed current when a one-element system successfully transitions or sets. The bus banks also provide a pre-write read capability to determine, for example, any previous stylized states (e.g., LSB data bits) that should be retained prior to a subsequent stylized operation. Such capabilities are further described in the 023-0049 and 023-0055 references below. One representation of a simplified exemplary reset driver 615 and a word line and bit line select path to a selected memory cell 638 is depicted in FIG. A word line select path 639 represents the path through the word line driver circuit (i.e., the decoder head) to the circuitry used to generate the decoded source select bus XSELN. A one π line select path 636 represents the path through the bit line driver circuit and through any of the coupling circuits (e.g., the circuits described in the various hierarchical bus arrangement embodiments) to the individual SELN bus bars 635. A preferred reset method and associated reset driver are described in the sand-〇i114USO and SAND_01114USlf references below, with particular reference to Figure 13 of 123178.doc • 57·. The capacitance of the bit line selection path is precharged before attempting to program a new address selection location line. This can be performed using a higher current than the amount required to actually reset the selected memory cell, but at the appropriate timing, such higher amounts of pre-charging can speed up the pre-charge time without a decisive influence on the memory cells. This precharge is controlled by a precharge line signal PCHGCOL that is passed on control signal 637 to bit line select path 636. A one-line precharge (BLP) current limit circuit 633 and a reset limit circuit 634 are simultaneously provided to control the number of upper bits of the individual bit line precharge and reset current. If the data is such that no reset operation is required, both are stopped by signal 632 and the SELN bus bar 635 floats. Conversely, if the data causes the memory cell to be reset, the disable line 632 is inactive and the BLp current limit circuit 633 is enabled temporarily (e.g., 200 ns to 500 ns) to provide a higher level of control current for such a Pre-charging, which is then disabled (by a control signal not shown), causes reset current limiting circuit 634 to supply a lower amount of current for resetting the selected memory cell. Since resetting a memory cell causes its m resistance state to become a higher resistance state, it is rarely necessary to perform the inductive reset operation and disable the reset limit. Since the cell automatically turns off when it reaches the reset state. As with the various embodiments described above, many types of memory cells can be programmed using a reverse bias (e.g., the reset mode described above). Such a unit includes a passive component unit having a metal oxide (e.g., a transition metal oxide) and a ?-tano A? Other suitable units include a resistor material in a two-body matrix. Examples include a programmable 123178.doc • 58-1345787 metallized connection, a phase change resistor (eg GST material), an organic material variable resistor, a composite metal oxide, a carbon polymer film, a The doped sulfide glass and a Schottky barrier diode containing a migrating atom to change the electrical resistance. The selected resistive material can provide one-time programmable (OTP) memory cells or multiple: under write memory cells. In addition, it is possible to use a day-to-day polar body with a reverse bias stress modified conduction. A useful memory unit for the reverse reset operation is described in U.S. Patent No. 6,952, 3, issued to s. U.S. Application No. U/237,167, filed on Jan. 5, 1989, to the name of &quot;Using a Memory Unit with Switchable Semiconductor Memory Element with Trimmer Resistors&quot; U.S. Patent Application Publication No. 2007-0090425, issued April 26, 2007. A suitable metal oxide memory cell system is shown on March 31, 2006. Brad Hernert, U.S. Application Serial No. 11/394,903 No., entitled "Multilayer Non-Volatile Memory Cell with Resistivity Switching Oxide or Nitride and Anti-Refined Wire". A suitable memory cell system using a phase change material that provides multiple resistance states is shown in R U.S. Patent Application Publication No. 2,5,158,950 issued to Scheuedein et al., entitled &quot;Non-volatile memory cells comprising a dielectric layer and a phase change material. The entire contents of each of the above-referenced publications are hereby incorporated by reference. Other exemplary memory cells having a transition metal oxide (eg, including such oxides having junctions) and exemplary cells in which the polysilicon material of the steering element itself comprises a switchable resistive material are described below. In the 163-1 application. </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; A unit of a useful rewritable memory unit incorporating a tantalum oxide (nickel oxide) incorporated into a diode, published as US Patent Application Publication No. 2006-0250836, issued Dec. 9, 2006. The resistance of the memory cell can be switched from low to high and from high to low resistance. S. Brad Herner et al., U.S. Application Serial No. 11/395,995, filed on March 31, 2006, A non-volatile memory unit of a diode and a resistor-switching material is disclosed in US Patent Application Publication No. 2006-0250837, issued on Nov. 9, 2006, which discloses the use of a multi-layer memory unit. Forward bias is set and reset using a reverse bias. The entire contents of each of the above-referenced publications are hereby incorporated by reference. In many of the embodiments described herein, the precise bias conditions imposed on each individual bus bar within the data path are independently controlled. The specific voltage and current settings for each of these drivers for setting and resetting the drive can be adjusted for each element of the data path. Thus, a particular memory unit (i.e., "multi-layer" memory unit) having more than two states is contemplated for use with the many structures described herein. Exemplary multi-layer memory cells are described in the aforementioned U.S. Application Serial Nos. 11/23,167, and MA-163-1. Exemplary passive element memory cells and associated non-volatile memory structures that can be used in the practice of the present invention are described in the following documents, the entire contents of each of which are hereby incorporated herein by reference: Titled "Vertical Stacking Fields, Programmable Non-Volatile Memory and Manufacturing Methods," awarded Mark GJ〇hns〇n et al; US Patent No. 6,420,215, entitled &quot;Three-Dimensional Memory Arrays and Manufacturing Methods&quot; N. Johan Knall et al.; U.S. Patent No. 6,525,953, entitled &quot;Vertical Stacking Field Programmable Non-Volatile Memory and Manufacturing Method&quot;, to Mark J〇hns〇n et al; U.S. Patent No. 6,490,218, Titled &quot;Su will be a memory method and system&quot; for storing multi-bit digital data, awarded to Michael Vyv〇da et al; US Patent No. 6,952,043, entitled 'Electrical Insulation Columns in Active Devices&quot;; 'given to Michael Vyvoda et al; and US Patent Application Bulletin No. US 2005-0052915, entitled ', with 13⁄4 and the first resistive state without dielectric reverse dissolution The non-volatile memory unit &quot;, filed by S · Brad Herner et al. The following applications (each filed during the same period) describe the memory cell structures, circuits, systems, and methods that can be used to implement the present invention, and the entire contents of each application are hereby incorporated by reference: U.S. Application No. 11/496,985 (Attorney) File No. 10519_141), titled &quot;Multipurpose Memory Unit and Memory Array&quot;, by R〇y

Scheuerlein與 Tanmay Kumar 申請(&quot;10519-141&quot;申請案); 美國申請案第11/496,984號(律師檔案號10519-1 50),標 題為••多用途記憶體單元及記憶體陣列之使用方法&quot;,由Application by Scheuerlein and Tanmay Kumar (&quot;10519-141&quot;Application); US Application No. 11/496,984 (Attorney Docket No. 10519-1 50), titled • Multi-Purpose Memory Units and Methods of Using Memory Arrays &quot;, by

Roy Scheuerlein與 Tanmay Kumar 申請(&quot;10519-150&quot;申請 123178.doc -61 - 1345787 案); 美國申請案第11/496,874號(律師檔案號10519-142),標 為&quot;混合用途記憶體早元”’由Roy Scheuerlein申請 (&quot;10519-142&quot;申請案); 美國申請案第11/496,983號(律師檔案號1〇519-151),標 題為&quot;混合用途記憶體單元之使用方法&quot;,由R〇y Scheuerlein 申請(&quot;105 19-151&quot;申請案); 美國申請案第11/496,870號(律師檔案號10519-149),標 題為&quot;具不同資料狀態之混合用途記憶體單元&quot;,由R〇yRoy Scheuerlein and Tanmay Kumar apply (&quot;10519-150&quot; application 123178.doc -61 - 1345787 case); US application No. 11/496,874 (lawyer file number 10519-142), labeled &quot; mixed use memory early "" applied by Roy Scheuerlein (&quot;10519-142&quot;application); US application No. 11/496,983 (attorney file number 1〇519-151), titled &quot;How to use mixed-use memory unit&quot; Application by R〇y Scheuerlein (&quot;105 19-151&quot;Application); US Application No. 11/496,870 (Attorney Docket No. 10519-149), titled &quot; Mixed-use memory with different data status Unit &quot;, by R〇y

Scheuerlein 與 Christopher Petti 申請(&quot;i〇519-149&quot;申請 案); 美國申請案第11M97,021號(律師檔案號1〇519-152),標 題為&quot;具不同資料狀態之混合用途記憶體單元之使用方 法&quot;’由 Roy Scheuerlein與 Christopher Petti 申請(&quot;105 19· 152&quot;申請案); 美國申請案第11/461,393號(律師檔案號SAND-01114US0), 標題為&quot;在非揮發性記憶體中的受控脈衝操作&quot;,由R〇y Scheuerlein 申請(&quot;SAND-01114US0&quot;申請案); 美國申請案第11/461,399號(律師檔案號呂八仙- 01114US1) ’標題為&quot;用於非揮發性記憶體中受控脈衝操 作之系統”’由 Roy Scheuerlein 申請(&quot;SAND-01114US 1&quot; 申請案); 美國申請案第11/461,410號(律師檔案號8八肋-01115US0) ’標題為&quot;高帶寬一次場可程式化記憶體” ’ 123178.doc -62- 1345787 由 Roy Scheuerlein 與 Christopher J. Petti 申請(&quot;SAND- O1115US0&quot;申請案); 美國申請案第11/461,419號(律師擋案號呂八⑽-0111 5US 1) ’標題為&quot;用於高帶寬一次場可程式化記憶體 之系統&quot;,由 Roy Scheuerlein與 Christopher J· Petti 申請 (&quot;SAND-01115US1” 申請案); 美國申請案第11/461,424號(律師檔案號呂八^-01117US0) ’標題為&quot;在非揮發性記憶體中的反向偏壓微 調操作&quot;’由 Roy Scheuerlein 與 Tanmay Kumar 申請 (&quot;SAND-01117US0&quot;申請案); 美國申請案第11/461,431號(律師檔案號3八·-0111 7US 1),標題為”用於非揮發性記憶體中反向偏壓微 調4呆作之系統’由Roy Scheuerlein與Tanmay Kumar申 請(&quot;SAND-01117US1&quot;申請案); 美國申請案第11/496,986號(律師檔案號ΜΑ-163-1),標 題為”包含具可微調電阻之可切換半導體記憶體元件之 吕己憶體早元之使用方法&quot;’由Tanmay Kumar、S. BradScheuerlein and Christopher Petti apply (&quot;i〇519-149&quot;application); US application No. 11M97,021 (lawyer file number 1〇519-152), titled &quot; mixed-use memory with different data status How to use the unit &quot;'Application by Roy Scheuerlein and Christopher Petti (&quot;105 19· 152&quot;Application); US Application No. 11/461,393 (Attorney File No. SAND-01114US0), titled &quot;Non-volatile Controlled Pulse Operation in Sexual Memory&quot;, filed by R〇y Scheuerlein (&quot;SAND-01114US0&quot;Application); US Application No. 11/461,399 (Lawyer File No. Lv Baxian - 01114US1) 'Title For &quot;System for Controlled Pulse Operation in Non-Volatile Memory?' Application by Roy Scheuerlein (&quot;SAND-01114US 1&quot;Application); US Application No. 11/461,410 (Attorney File No. 8 8 rib) -01115US0) 'Title is &quot;High-bandwidth primary field programmable memory' ' 123178.doc -62- 1345787 Requested by Roy Scheuerlein and Christopher J. Petti (&quot;SAND- O1115US0&quot; Application) US Application No. 11/461,419 (Lawyer's Case No. Lv8 (10)-0111 5US 1) 'Title for &quot;System for High-Bandwidth One-Time Programmable Memory&quot;, by Roy Scheuerlein and Christopher J. Petti Application (&quot;SAND-01115US1" Application); US Application No. 11/461,424 (Attorney File No. Lv8-01-01US0) 'Title for &quot; Reverse bias in non-volatile memory Pressure fine-tuning operation &quot; 'Apply by Roy Scheuerlein and Tanmay Kumar (&quot;SAND-01117US0&quot;application); US application No. 11/461,431 (lawyer file number 3·8-1111 7US 1), entitled " A system for reverse bias trimming 4 in non-volatile memory' application by Roy Scheuerlein and Tanmay Kumar (&quot;SAND-01117US1&quot;application); US application No. 11/496,986 (lawyer file number ΜΑ -163-1), titled "Using Method for Having a Switchable Semiconductor Memory Component with Trimmerable Resistor", by "Tanmay Kumar, S. Brad"

Herner、Roy E. Scheuerlein及 Christopher J· Petti 申請 (&quot;MA-163-1&quot;申請案); 美國申請案第11/461,339號(律師檔案號023-0048),標題 為併入反向極性字線及位元線解瑪器之被動元件記憶 體陣列&quot;,由 Luca G. Fasoli、Christopher J. Petti及 Roy E. Scheuerlein 申請(&quot;023-0048&quot;申請案); 美國申請案第II/461,364號(律師檔案號023-0054),標題 123178.doc -63 · 1345787 為&quot;使用併入反向極性字線及位元線解碼器之被動元件 記憶體陣列之方法&quot;,由 Luca G. Fasoli、Christopher J. Petti及 Roy E. Scheuerlein 申請(&quot;023-0054&quot;申請案); 美國申請案第1 l/46i,343號(律師擋案號〇23_〇〇49),標題 為&quot;用於讀取一多層被動元件記憶體單元陣列之裝置„, 由 Roy E. Scheuerlein、Tyler Thorp及 Luca G. Fasoli 申請 (&quot;023-0049&quot;申請案); 美國申請案第11/461,367號(律師檔案號023-0055),標題 為&quot;用於讀取一多層被動元件記憶體單元陣列之方法&quot;, 由 Roy E. Scheuerlein、Tyler Thorp及 Luca G. Fasoli 申請 (&quot;023-0055&quot;申請案); 美國申請案第11/461,352號(律師擋案號023-0051),標題 為”用於耦合讀取/寫入電路至記憶體陣列之雙資料相依 匯流排&quot;’由 Roy E. Scheuerlein及 Luca G. Fasoli 申請 (&quot;023-0051&quot;中請案); 美國申請案第11/461,369號(律師檔案號023-0056),標題 為&quot;用於耦合讀取/寫入電路至記憶體陣列之雙資料相依 匯流排之使用方法&quot;,由Roy E. Scheuerlein及Luca G. Fasoli 申請(&quot;023-0056&quot;申請案); 美國申請案第11/461,3 59號(律師檔案號023-0052),標題 為&quot;併入用於記憶體陣列區塊選擇之二資料匯流排之記 憶體陣列&quot;,由 Roy E. Scheuerlein、Luca G. Fasoli 及 Christopher J. Petti 申請(&quot;023-0052&quot;申請案); 美國申請案第11/46丨,372號(律師檔案號023-0057),標題 123178.doc -64- 1345787 為”用於記憶體陣列區塊選擇之二資料匯流排之使用方 法&quot;,由 Roy E. Scheuerlein、Luca G. Fasoli 及Application by Herner, Roy E. Scheuerlein and Christopher J. Petti (&quot;MA-163-1&quot;Application); US Application No. 11/461,339 (Attorney Docket No. 023-0048), titled Inverse Passive component memory array for polar word lines and bit line decimators, applied by Luca G. Fasoli, Christopher J. Petti and Roy E. Scheuerlein (&quot;023-0048&quot;application); US application II/461,364 (Attorney Docket No. 023-0054), Title 123178.doc -63 · 1345787 is a method of using a passive element memory array incorporating a reverse polarity word line and a bit line decoder &quot; , applied by Luca G. Fasoli, Christopher J. Petti and Roy E. Scheuerlein (&quot;023-0054&quot;application); US application No. 1 l/46i, 343 (lawyer file number 〇〇23_〇〇49 ), titled &quot;Device for reading a multi-layer passive element memory cell array, by Roy E. Scheuerlein, Tyler Thorp, and Luca G. Fasoli (&quot;023-0049&quot;application); US application Case No. 11/461,367 (Attorney File No. 023-0055), Title For &quot;method for reading a multi-layer passive element memory cell array&quot;, applied by Roy E. Scheuerlein, Tyler Thorp, and Luca G. Fasoli (&quot;023-0055&quot;application); US application 11/461, 352 (attorney file number 023-0051), entitled "Double Data Dependent Buss for Coupling Read/Write Circuits to Memory Arrays" by Roy E. Scheuerlein and Luca G. Fasoli application (&quot;023-0051&quot; in the case); US application No. 11/461,369 (attorney file number 023-0056), titled &quot; for coupling read/write circuits to memory arrays The application of the double data-dependent busbars, applied by Roy E. Scheuerlein and Luca G. Fasoli (&quot;023-0056&quot;application); US application No. 11/461, 3 59 (lawyer file number 023) -0052), titled &quot;Memory Array&quot; incorporated into the data bus block selection for memory array block selection, by Roy E. Scheuerlein, Luca G. Fasoli, and Christopher J. Petti (&quot;023 -0052&quot;Applications; US Application No. 11/46, 37 No. 2 (Attorney Docket No. 023-0057), heading 123178.doc -64- 1345787 is "How to use the data bus for memory array block selection", by Roy E. Scheuerlein, Luca G. Fasoli and

Christopher J. Petti 申請(&quot;023-0057&quot;申請案); 美國申請案第11/461,362號(律師檔案號023-0053),標題 為&quot;用於區塊可選擇記憶體陣列之階層式位元線偏壓匯 # &quot; » 由 Roy E. Scheuerlein及 Luca G. Fasoli 申請(&quot;023- 0〇53&quot;申請案);以及Christopher J. Petti Application (&quot;023-0057&quot;Application); US Application No. 11/461,362 (Attorney Docket No. 023-0053), titled &quot; Hierarchical Position for Block Selectable Memory Array Yuan Line Biashui # &quot; » Application by Roy E. Scheuerlein and Luca G. Fasoli (&quot;023- 0〇53&quot;Application);

美國申請案第11/461,376號(律師檔案號023-0058),標題US Application No. 11/461,376 (Attorney File No. 023-0058), Title

為&quot;使用用於區塊可選擇記憶體陣列之階層式位元線偏 壓匯流排之方法&quot;,由Roy E. Scheuerlein&amp; Luca GFor &quot;Method of using a hierarchical bit line bias bus for block selectable memory arrays&quot;, by Roy E. Scheuerlein &amp; Luca G

Fasoli 申請(&quot;023-0058&quot;申請案)。 个人r/r不付疋粑例性具_只冗π —且牡付疋数Fasoli applies (&quot;023-0058&quot; application). Personal r / r does not pay for example _ only redundant π - and the number of oysters

位範例之背景下說明,例如解碼輸出之數目、解碼器頭之 數目、匯流排線之&amp;目、f料匯流排之數目、纟一記憶體 機架内陣列區塊之數目及記憶體條之數目。可使用此揭示 案之教導來實施符合其他設計目標之其他變化。清楚起 見’並未顯示並說明本文所述實施方案之全部常規特徵。 大多數記憶體陣列係設計具有一相對較高的均句度。例 如’通常每-位元線包括相同數目的記憶體單 位元線、字線、陣列區塊及甚至記憶體平面= =2的-整數次幕(例如,2V以獲得解碼 :及效率。但此類規則性或一致性 :施例中當然不要求。例如,在不同層上心= 不同數目的記憶體單元,該記憶體陣列可包括_:匕 』』0枯二個記憶 123178.doc -65 - 1345787 體平面,在第一及最後陣列區塊内的字線片段可能在記憶 體單元數目或位元線組態及對記憶體陣列設計之通常一致 性的許多其他不規則變化之任一變化上不同,除非申請專 利範圍中另有明確說明,即便如本文所述具體實施例中所 不’此類通常規則性不應引入任何申請專利獨立項之意義 内。 應瞭解,指示頂部、左邊、底部及右邊僅係用於一記憶 體之四侧之方便說明性術語。用於一區塊之該等字線片段 可實施為水平定向之二指間字線片段群組,而用於一區塊 之該等位元線可實施為垂直定向之二指間位元線群組。各 個別字線或位元線群組可由在陣列四側上的一個別解碼器/ 驅動器電路及一個別感應電路來服務。 如本文所使用,一列橫跨整個記憶體機架延伸(若不橫 跨整條)並包括許多字線。如本文所使用,&quot;一般跨越複數 個陣列區塊&quot;之一匯流排或線包括幾乎跨越所有陣列區 塊’例如跨越全部但除最後區塊外(例如一給定匯流排不 輕合之一最後區塊)。此類匯流排或線可置放於陣列區塊 側,或可置放於此類記憶體區塊上面或下面(即在一垂直 於一半導體基板之方向上)。 如本文所使用將選定位元線耦合至一第一匯流排,,意 味著分別將各此類選定位元線耦合至該第一匯流排之一對 應匯流排線。如本文所使用,字線(例如包括字線片段)與 位元線通常表示正交陣列線,且一般遵從此技術中的一普 通假設,即至少在一讀取操作週期驅動字線並感應位元 123I78.doc • 66 - 1345787 線。而且,如本文所使用,一&quot;全域線,,(例如一全域選擇 線)係跨越多個記憶體區塊之一陣列線,但不應得出任何 特定推論來暗示此類全域線必須橫跨一整個記憶體陣列或 實質上橫跨一整個積體電路。In the context of a bit example, for example, the number of decoded outputs, the number of decoder heads, the sum of the bus bars, the number of f-bus bars, the number of array blocks in a memory frame, and the memory bank The number. Other teachings that meet other design goals can be implemented using the teachings of this disclosure. It is clear that 'all of the conventional features of the embodiments described herein are not shown and described. Most memory array designs have a relatively high mean sentence. For example, 'usually every bit line includes the same number of memory unit lines, word lines, array blocks, and even memory plane ==2 - integer sub-screen (for example, 2V for decoding: and efficiency. But this Regularity or consistency: Of course, it is not required in the application. For example, on different layers of the heart = a different number of memory cells, the memory array can include _: 匕 』 』 0 dry two memories 123178.doc -65 - 1345787 Body plane, word line segments in the first and last array blocks may vary in memory cell number or bit line configuration and many other irregular changes in the general consistency of the memory array design It is different, unless expressly stated otherwise in the scope of the patent application, even if it is not described in the specific embodiments as described herein, such general rules should not be included in the meaning of any patent independent item. It should be understood that the indication is on the top, left, The bottom and right sides are only convenient explanatory terms for the four sides of a memory. The word line segments for a block can be implemented as a horizontally oriented inter-finger word line segment group for one area. Block The equipotential lines can be implemented as vertically oriented inter-finger bit line groups. Each word line or bit line group can be served by a different decoder/driver circuit and a different sensing circuit on the four sides of the array. As used herein, a column extends across the entire memory frame (if not across the entire strip) and includes a number of word lines. As used herein, &quot;generally spans multiple array blocks&quot; one bus or The line includes almost all of the array blocks 'e.g., spanning all but except the last block (for example, a given bus bar does not lightly match one of the last blocks). Such bus bars or lines can be placed on the array block side. Or can be placed above or below such a memory block (ie, in a direction perpendicular to a semiconductor substrate). As used herein, the selected positioning element is coupled to a first bus, meaning that Each such selected positioning element line is coupled to one of the first bus bars corresponding to the bus bar. As used herein, a word line (eg, including word line segments) and a bit line generally represent an orthogonal array line, and generally conforms to this One of the techniques Assume that the word line is driven at least during a read operation cycle and senses the bits 123I78.doc • 66 - 1345787. Also, as used herein, a &quot;global line, (e.g., a global selection line) is crossed Array lines of one of a plurality of memory blocks, but no specific inference should be drawn to imply that such global lines must span an entire memory array or substantially span an entire integrated circuit.

如本文所使用,一讀取/寫入電路(例如一設定及讀取電 路)可用於一或多個資料位元,因此可耦合至一單—導 線,或可包括耦合至用於各分離資料位元之一資料匯流排 之各匯流排線的一分離此類讀取/寫入電路。As used herein, a read/write circuit (eg, a set and read circuit) can be used for one or more data bits, and thus can be coupled to a single wire, or can include coupling to separate data. One of the bits of the data bus is separated from each of the bus lines by such a read/write circuit.

如本文所使用,一&quot;資料匯流排”或資料匯流排&quot;片段&quot;至 少多次傳遞資料相依資訊,但不必始終如此。例如,此類 -貝料匯流排可針對特定操作模式來在此類資料匯流排之各 匯&quot;IL排線上傳遞相同偏麗資訊。如本文所使用,一&quot;全域&quot; 匯流排可橫跨多個陣列區塊,但不必橫跨(或跨越)整個記 憶體陣列。例如’此類全域匯流排可橫跨記憶體機架,而 不一疋跨越一整個記憶體條。適當時,一&quot;資料電路&quot;可包 括一讀取/寫入電路、一設定電路、一重置電路、一讀取 電路或一程式化電路之一或多個者或任一組合。 如本文所使用,選定”線(例如在一陣列區塊内的選定位 元線)對應於由一多頭解碼器電路同時選定並各耦合至一 對應匯流排線之此類位元線。此類位元線還可以或不可以 由資料或I/O電路來選定以實際執行一給定讀取、程式 化《•又疋重置或抹除操作。例如,若一 16頭行解碼器同 時選擇並將16位元線耦合至一給定匯流排(例如seln匯 流排),則其涵蓋沒有任何位元線、一位元線、一個以上 123178.doc •67· 1345787 位元線或此16位元線群組之全部位元線可實際上接收一.商 用於給定操作模式之選定偏愿 〃 、 -未選定偏歷條件。此件,而剩餘位元線可接收 1… 排可說明為-”資料相依&quot;匯 卜在其他具體實施财,可能存在-個以上此類,,選 定”偏壓條件在一认宏匯&amp;祕t油 遲 ^ w ,,°疋匯流排上傳遞,例如在二同時選定 §己憶體早謂程式化成不同資料狀態時。 本文所使用’ 一被動几件記憶體陣列包括複數個2端 。己憶體單7L ’各連接於一相關聯χ線(例如字線)盘一相 關聯Υ線(例如位元線)之間。此類記憶體陣列可以係一二 維(平面)陣列或可以係一具有—個以上記憶體單元平面之 三維陣列。此類記憶體單元具有一非線性導電率,其中在 一反向方向(例如’從陰極至陽極)上的電流低於在一正向 方向上的電流。一被動元件記憶體陣列可以係一一次可程 式化(即一次寫入)記憶體陣列或一讀取/寫入(即多次寫入) 記憶體陣列。此類被動元件記憶體陣列可—般視為具有一 在方向上引導電流之電流操縱元件與另一能夠改變其狀 態之組件(例如一熔絲、一反熔絲、一電容器、一電阻元 件等)。在選定記憶體元件時,該記憶體元件之程式化狀 態可藉由感應電流或電壓降來讀取。 在各圖中各種陣列線之方向性僅方便用於簡化陣列中二 交又線群組之說明。如本文所使用,一積體電路記憶體陣 列係一單石積體電路結構,而非一個以上封裝在一起或緊 密近接之積體電路。 文中方塊圖可使用一連接區塊之單一節點之術語來說 123178.doc -68- 1345787 明。雖然如此,但應瞭解,在背景要求時,此類&quot;節點&quot;可 實際上表示用於傳遞一差分信號之一對節點,或可表示用 於載送若干相關信號或用於載送形成一數位字或其他多位 元信號之複數個信號的多個分離導線(例如匯流排)。 儘官一般假疋電路及實體結構,但應完全認識到,在現 代半導體設計及製造中,實體結構及電路可採用適用於後 續設計、測試或製造階段以及所產生製造半導體積體電路 之電腦可讀取描述性形式來具體化。因此,關於傳統電路 或結構之主張符合其特定語言’可理解為其電腦可讀取編 碼及表示,不論嵌入於媒體内或是組合適當讀取器以允許 對應電路及/或結構之製造、測試或設計精細化。本發明 係還涵蓋以包括電路、包括此類電路之封裝模組、利用此 類電路及/或模組及/或其他記憶體裝置之系統、相關操作 方法、用於製造此類電路之相關方法、及此類電路及方法 之電腦可讀取媒體編碼,均如本文所述及如隨附申請專利As used herein, a &quot;data bus&quot; or data bus&quot;fragment&quot; transmits information dependent information at least multiple times, but this need not always be the case. For example, such a-border bus can be used for a particular mode of operation. This type of data bus has the same partial information on the IL line. As used in this article, a &quot;global&quot; bus can span multiple array blocks, but does not have to span (or span) the entire Memory array. For example, such a global bus can span a memory rack without crossing an entire memory strip. When appropriate, a &quot;data circuit&quot; can include a read/write circuit, One or more or any combination of a set circuit, a reset circuit, a read circuit, or a stylized circuit. As used herein, a "line" (eg, a selected location line within an array block) is selected. Corresponding to such bit lines that are simultaneously selected by a multi-head decoder circuit and each coupled to a corresponding bus bar. Such bit lines may or may not be selected by the data or I/O circuitry to actually perform a given read, programmatic "•reset or erase operation. For example, if a 16-bit row decoder simultaneously selects and couples a 16-bit line to a given bus (eg, a seln bus), it covers no bit lines, one bit line, more than one 123178.doc • The 67. 1345787 bit line or all of the bit lines of the 16-bit line group can actually receive a quotient for the selected ambiguity of the given mode of operation, - no erroneous condition is selected. This piece, while the remaining bit line can receive 1... The row can be described as - "data dependent" in the other specific implementation, there may be more than one such, selected "bias condition" in a macro The secret t oil is late ^ w ,, ° 疋 疋 上 传递 , , , , , , , , , , , , , , , , , , , , , , , , , , As used herein, a passive array of memory devices includes a plurality of 2 terminals. The memory cells 7L' are each connected between an associated ( line (e.g., word line) disk and an associated Υ line (e.g., a bit line). Such a memory array can be a two dimensional (planar) array or can be a three dimensional array having more than one memory cell plane. Such memory cells have a non-linear conductivity in which the current in a reverse direction (e.g., from the cathode to the anode) is lower than the current in a forward direction. A passive component memory array can be a one-time programmable (i.e., write-once) memory array or a read/write (i.e., multiple write) memory array. Such a passive component memory array can be generally viewed as having a current steering element that directs current in a direction and another component capable of changing its state (eg, a fuse, an antifuse, a capacitor, a resistive component, etc.) ). When a memory component is selected, the stylized state of the memory component can be read by inductive current or voltage drop. The directionality of the various array lines in the various figures is only convenient for simplifying the description of the quadratic and parallel groups in the array. As used herein, an integrated circuit memory array is a single-slab integrated circuit structure rather than one or more integrated circuits packaged together or closely adjacent. The block diagram in the text can be used in the terminology of a single node connecting blocks. 123178.doc -68-1345787. Nonetheless, it should be understood that such &quot;node&quot; may actually represent one of the nodes used to convey a differential signal, or may be used to carry a number of related signals or for carrier formation when required by the background. A plurality of separate wires (eg, bus bars) of a plurality of signals of a digital word or other multi-bit signal. The system and physical structure are generally assumed, but it should be fully recognized that in modern semiconductor design and manufacturing, the physical structure and circuit can be used in subsequent design, test or manufacturing stages and the resulting computer-made integrated circuit can be used. Read the descriptive form to materialize. Thus, the assertion of a conventional circuit or structure conforms to its specific language 'can be understood as its computer readable code and representation, whether embedded in the medium or combined with a suitable reader to allow the manufacture and testing of the corresponding circuit and/or structure. Or the design is refined. The present invention also encompasses systems including circuits, package modules including such circuits, systems utilizing such circuits and/or modules and/or other memory devices, associated methods of operation, and methods for fabricating such circuits And computer-readable media codes for such circuits and methods, as described herein and as accompanying patent applications

些〇 * . 前述詳細說明僅已說明本發明之許多可行實施方案之The foregoing detailed description has only described many possible embodiments of the present invention.

制。 123178.doc -69- 1345787 此例之變化及修改而不脱離本發明之範嘴及精神。僅希望 隨附申請專利範圍(包括全部等效内容)定義本發明之範 疇。而且’上述具體實施例明確涵蓋以單獨以及採用各種 組合來加以使用。因此,本文所述之其他具體實施例、變 化及改良不必脫離本發明之範嘴。 【圖式簡單說明】system. 123178.doc -69- 1345787 Variations and modifications of this example without departing from the scope and spirit of the invention. It is only intended that the scope of the invention is defined by the scope of the claims, including all equivalents. Moreover, the above specific embodiments are explicitly intended to be used individually and in various combinations. Therefore, other specific embodiments, changes, and improvements described herein do not depart from the scope of the invention. [Simple description of the map]

參考附圖,習知此項技術者不僅可更理解本發明,還可 明白其許多目標、特徵及優點。 圖1係一記憶體陣列之一示意圖,說明選定及未選定字 線及位元線、及在—正向偏壓操作模式下的範例性偏壓條 件。 ’、 但s兒明在一反向 圖2係圖1所示記憶體陣列之一示意圖 偏壓操作模式下的範例性偏壓條件。The present invention will be understood by those skilled in the art, and many of its objects, features and advantages are apparent. 1 is a schematic diagram of a memory array illustrating selected and unselected word lines and bit lines, and exemplary bias conditions in a forward bias mode of operation. Figure 2 is a diagram showing an exemplary bias condition in a bias mode of operation of one of the memory arrays shown in Figure 1.

圖3係一字線解碼器電路 壓操作條件下的範例性條件 圖4係一字線解碼器電路 壓操作條件下的範例性條件 之一示意圖,包括在一 〇 之一示意圖,包括在一 正向偏 反向偏 :二包括在-正向 包括在一反向 包括對於特定其 範例性條件。 ,包括對於特定 咏解碼器電路之一示 偏屋操作條件下的範例性條件。 圖7係一字線解喝器電路之一示意 他具體實施例在一及 圖8係一位元線解碼器電路 欠向偏壓操作條件 之一开 123178.doc 1345787 其他八體實知例在一反向偏壓操作條件下的範例性條件。 圖9係一具有雙解碼源極選擇匯流排之字線解碼器電路 之一不意圖,包括在一用於重置程式化之反向偏壓操作條 件下的範例性條件。 圖1〇係一具有資料相依源極選擇匯流排之位元線解碼器 電路之一示意圖,包括在一用於重置程式化之反向偏壓操 作條件下的範例性條件。 圖11係描述—包括一三維記憶體陣列之範例性積體電路 之一方塊圖,且該積體電路包括在該陣列一側的一全域列 解碼器與同時在該陣列頂部及底部的—對行解碼器。 圖12係表示依據本發明之特定具體實施例之一三維記憶 體陣列之-字㈣及-位元線層之—俯視圖,其顯示2:1 交錯的字線片&amp;,其中至用於—區塊之該等字線片段之一 半的垂直連接係在該區塊左側,而至用於該區塊之該等字 線片段之另一半的垂直連接係在該區塊右側。此外,來自 二相鄰區塊之一字線片段共用各垂直連接。 圖13係一三維圖,其描述符合圖12所示者之特定具體實 施例之-三維記憶體陣列之-部分,並說明藉助至;;相鄰 陣列區塊之各區塊内_個別字線片段之—垂直連接箱合並 在一或夕個予線層之各層上的一字線驅動器電路。 圖14係-記憶體陣列之-方塊圖,說明二記憶體條,各 具有二(或多個)記憶體機架’且各機架包複數個記憶體陣 列區塊。二,列區塊係顯示為同時選定,各將其個別位元 線耦合至與該記憶體機架相關聯之二資料匯流排之一個別 123178.doc .71 · 1345787 者。 一圖15係-記憶體機架之一方塊圖1明另 二陣列區塊係_為同時選定,各將其個別位元線㈣至 ”該記憶體機架相關聯之二資料匯流排之—個別者。 -圖16係—記憶體機架之一方塊圖說明另一配置:其中 二陣列區塊係顯示為同時選定,各將其個別位元^至 與該δ己憶體機架相關聯之二資料匯流排之—個別者。 圖17係一汜憶體機架之一方塊圖’制另一配置,其中 -陣列區塊係、顯示為同時選定,各將其個別位元線輛合至 與該記憶體機架相關聯之二f料Μ流排之_個別者,該等 匯流排係置放於該等記憶體陣列區塊之相同側上。/ 圖18係一記憶體機架之一方塊圖,說明另一配置,其中 二不相鄰陣列區塊係顯示為同時選定,各將其個別位元線 耦合至與該記憶體機架相關聯之二資料匯流排之—個別 者0 ‘3 is an exemplary condition of a word line decoder circuit under voltage operating conditions. FIG. 4 is a schematic diagram of an exemplary condition of a word line decoder circuit under voltage operating conditions, including a schematic diagram in one Offset bias: Two include in the forward direction including a reverse direction including specific paradigm conditions for it. Excluding, for one of the specific 咏 decoder circuits, an exemplary condition under partial operating conditions. Figure 7 is a diagram of a word line decanter circuit illustrating his specific embodiment in one and Figure 8 is a one-line decoder circuit under-bias bias operating conditions open 123178.doc 1345787 other eight body examples An exemplary condition under a reverse bias operating condition. Figure 9 is a schematic diagram of a word line decoder circuit having dual decoded source select busses, including exemplary conditions for resetting the stylized reverse bias operating conditions. Figure 1 is a schematic diagram of a bit line decoder circuit having data dependent source select busses, including exemplary conditions for resetting stylized reverse bias operating conditions. Figure 11 is a block diagram depicting an exemplary integrated circuit including a three-dimensional memory array, and the integrated circuit includes a global column decoder on one side of the array and a pair at the top and bottom of the array simultaneously Line decoder. Figure 12 is a top plan view of a word (four) and a bit line layer of a three dimensional memory array in accordance with a particular embodiment of the present invention, showing a 2:1 interleaved word line &amp; The vertical connection of one half of the word line segments of the block is to the left of the block, and the vertical connection to the other half of the word line segments for the block is to the right of the block. In addition, word line segments from one of the two adjacent blocks share the vertical connections. Figure 13 is a three-dimensional diagram depicting a portion of a three-dimensional memory array in accordance with a particular embodiment of the embodiment of Figure 12, and illustrating the use of; adjacent word lines within each block of adjacent array blocks The segment-vertical junction box merges a word line driver circuit on each of the layers of the eclipse layer. Figure 14 is a block diagram of a memory array illustrating two memory banks each having two (or more) memory banks' and each of which houses a plurality of memory array blocks. Second, the column blocks are shown as being selected simultaneously, each of which individually couples its individual bit lines to one of the two data busses associated with the memory frame, 123178.doc .71 · 1345787. Figure 15 is a block diagram of a memory rack. Figure 1 shows that the other array blocks are selected simultaneously, each of which has its individual bit line (4) to the data bus associated with the memory rack. - Figure 16 is a block diagram of a memory rack illustrating another configuration: wherein two array blocks are displayed for simultaneous selection, each individually associated with the delta recall frame The second data bus - individual. Figure 17 is a block diagram of a frame of the memory frame to make another configuration, where - the array block system, shown as simultaneous selection, each of its individual bit line To the individual of the memory banks associated with the memory rack, the busbars are placed on the same side of the memory array block. / Figure 18 is a memory rack A block diagram illustrating another configuration in which two non-adjacent array blocks are shown as being simultaneously selected, each coupling its individual bit lines to a data bus associated with the memory rack - an individual 0 '

圖19係一記憶體機架之一部分之一方塊圖,說明一範例 性階層式解碼配置用於在該等源極選擇匯流排上提供適當 條件用於選定及未選定陣列區塊。 圖20係一記憶體機架之一部分之一方塊圖,說明另一範 例性階層式解碼配置用於在該等源極選擇匯流排上提供適 當條件用於選定及未選定陣列區塊。 圖21係一記憶體機架之一部分之一方塊圖,說明另—範 例性階層式解碼配置用於在該等源極選擇匯流排上提供適 當條件用於選定及未選定陣列區塊。 123178.doc -72· 1345787 圖22係一記憶體機架之一部分之一方塊圖,說明另一範 例性階層式解碼配置用於在該等源極選擇匯流排上提供適 當條件用於選定及未選定陣列區塊。 圖23係一資料電路之一方塊圖,其包括用於本文所述各 種具體實施例之一讀取感應放大器、一設定驅動器、及一 重置驅動器。 ^圖24係一範例性重置電路之一方塊圖,包括透過一選定Figure 19 is a block diagram of a portion of a memory rack illustrating an exemplary hierarchical decoding configuration for providing appropriate conditions for selected and unselected array blocks on the source select busses. Figure 20 is a block diagram of one portion of a memory rack illustrating another exemplary hierarchical decoding configuration for providing suitable conditions on the source select busses for selected and unselected array blocks. Figure 21 is a block diagram of one portion of a memory rack illustrating another exemplary hierarchical decoding configuration for providing suitable conditions on the source select busses for selected and unselected array blocks. 123178.doc -72· 1345787 Figure 22 is a block diagram of one portion of a memory rack illustrating another exemplary hierarchical decoding configuration for providing appropriate conditions for selection and non-selection on the source select busses The array block is selected. Figure 23 is a block diagram of a data circuit including a read sense amplifier, a set driver, and a reset driver for various embodiments described herein. ^ Figure 24 is a block diagram of an exemplary reset circuit, including through a selection

«體單元之重置路徑及該等字線及位元線選擇路徑之一 描述D 不同圖式中使用相同參考符號指示相似或相同的項目。 【主要元件符號說明】 範例性被動元件記憶體陣列 被動元件記憶體單元 字線«The reset path of the body unit and one of the word line and bit line selection paths Description D The same reference symbols are used in different drawings to indicate similar or identical items. [Main component symbol description] Example passive component memory array Passive component memory cell Word line

1〇〇 101 102 103 104 105 106 107 108 152 153 154 155 被動元件記憶體單元 字線 被動元件記憶體單元 位元線 被動元件記憶體單元 位元線 列解碼器 電源節點 電源節點 輸出/節點 123178.doc -73- 13457871〇〇101 102 103 104 105 106 107 108 152 153 154 155 Passive component memory cell word line passive component memory cell bit line passive component memory cell bit line column decoder power node power node output / node 123178. Doc -73- 1345787

156 反相器 157 多工器 158 解碼輸出 159 輸出 160 反相器 161 多工器 162 解碼輸出 164 節點 167 匯流排 168 匯流排線 171 PMOS電晶體 172 NMOS電晶體 173 PMOS電晶體 174 NMOS電晶體 175 PMOS電晶體 176 NMOS電晶體 177 PMOS電晶體 178 NMOS電晶體 181 未選定字線 183 未選定字線 200 範例性偏壓條件 202 行解碼器 203 電源節點 204 電源節點 -74- 123178.doc 1345787 205 輸出 206 反相器 207 多工器 208 解碼輸出 209 輸出 210 反相器 211 多工器 212 解碼輸出 214 節點 217 匯流排 218 匯流排線 221 PMOS電晶體 222 PMOS電晶體 223 PMOS電晶體 224 NMOS電晶體 225 PMOS電晶體 226 NMOS電晶體 227 PMOS電晶體 228 NMOS電晶體 231 位元線 233 未選定位元線 300 範例性記憶體陣列 302 雙列解碼器 304 雙列解碼器 -75- 123178.doc 1345787156 Inverter 157 Multiplexer 158 Decode Output 159 Output 160 Inverter 161 Multiplexer 162 Decode Output 164 Node 167 Bus 168 Bus Bar 171 PMOS Transistor 172 NMOS Transistor 173 PMOS Transistor 174 NMOS Transistor 175 PMOS transistor 176 NMOS transistor 177 PMOS transistor 178 NMOS transistor 181 unselected word line 183 unselected word line 200 exemplary bias condition 202 row decoder 203 power node 204 power node -74- 123178.doc 1345787 205 output 206 Inverter 207 Multiplexer 208 Decode Output 209 Output 210 Inverter 211 Multiplexer 212 Decode Output 214 Node 217 Bus 218 Bus Bar 221 PMOS Transistor 222 PMOS Transistor 223 PMOS Transistor 224 NMOS Transistor 225 PMOS transistor 226 NMOS transistor 227 PMOS transistor 228 NMOS transistor 231 bit line 233 unselected location line 300 exemplary memory array 302 dual column decoder 304 dual column decoder -75- 123178.doc 1345787

306 記憶陣列區塊 308 記憶陣列區塊 310 垂直連接 312 位元線電路區塊 314 位元線電路區塊 315 位元線電路區塊 316 位元線電路區塊 318 記憶體”條” 320 記憶體”條&quot; 322 位元線 324 位元線 332 記憶體區塊 333 位元線 334 記憶體區塊 335 位元線 336 字線片段 337 字線片段 338 字線片段 339 垂直連接 340 垂直連接 342 字線片段 344 垂直連接 352 解瑪輸出 353 解碼輸出 -76- 123178.doc 1345787 358 垂直連接 359 垂直連接 360 字線片段 361 字線片段 362 字線片段 363 字線片段 370 記憶體陣列 371 第一條 372 第二條 373 頂部資料匯流排 374 記憶體陣列區塊 375 記憶體陣列區塊 376 選定字線 377 列 378 底部資料匯流排 379 底部行解碼器電路 380 頂部行解碼器電路 381 頂部位元線選擇區塊 382 底部位元線選擇區塊 400 記憶體機架 402 第一資料匯流排 404 第二資料匯流排 406 奇數陣列區塊 407 偶數陣列區塊 123178.doc ·77· 1345787 408 位元線選擇區塊 410 粗體箭頭 412 粗體箭頭 420 記憶體機架 422 資料匯流排 424 第二資料匯流排 426 第一陣列區塊 427 第二陣列區塊 430 粗體箭頭 432 粗體箭頭 440 記憶體機架 442 第一資料匯流排 444 第二資料匯流排 446 第一陣列區塊 447 陣列區塊 448 第二位元線選擇區塊 449 第一位元線選擇區塊 450 粗體箭頭 454 粗體箭頭 460 記憶體機架 462 陣列區塊 464 陣列區塊 466 上部資料匯流排 468 下部資料匯流排 123178.doc -78- 1345787306 Memory Array Block 308 Memory Array Block 310 Vertical Connection 312 Bit Line Circuit Block 314 Bit Line Circuit Block 315 Bit Line Circuit Block 316 Bit Line Circuit Block 318 Memory "Bar" 320 Memory "Bar" &quot; 322 bit line 324 bit line 332 memory block 333 bit line 334 memory block 335 bit line 336 word line segment 337 word line segment 338 word line segment 339 vertical connection 340 vertical connection 342 words Line segment 344 Vertical connection 352 Solution output 353 Decode output -76- 123178.doc 1345787 358 Vertical connection 359 Vertical connection 360 Word line segment 361 Word line segment 362 Word line segment 363 Word line segment 370 Memory array 371 First 372 Second strip 373 top data bus 374 memory array block 375 memory array block 376 selected word line 377 column 378 bottom data bus 379 bottom row decoder circuit 380 top row decoder circuit 381 top bit line selection region Block 382 bottom bit line selection block 400 memory rack 402 first data bus 404 second data sink Row 406 odd array block 407 even array block 123178.doc · 77· 1345787 408 bit line selection block 410 bold arrow 412 bold arrow 420 memory rack 422 data bus 424 second data bus 426 First Array Block 427 Second Array Block 430 Bold Arrow 432 Bold Arrow 440 Memory Rack 442 First Data Bus 444 Second Data Bus 446 First Array Block 447 Array Block 448 Second Place Element selection block 449 First bit line selection block 450 Bold arrow 454 Bold arrow 460 Memory frame 462 Array block 464 Array block 466 Upper data bus 468 Lower data bus 123178.doc -78 - 1345787

500 匯流排配置 502 記憶體陣列區塊 504 記憶體陣列區塊 506 記憶體陣列區塊 508 耦合電路 532 耦合電路 533 耦合電路 535 耦合電路 536 匯流排 550 匯流排配置 552 耦合電路 554 耦合電路 601 I/O邏輯 602 匯流排 603 匯流排 604 寫入鎖存器區塊 605 讀取鎖存器 606 匯流排 607 匯流排 608 控制邏輯 609 匯流排 610 匯流排 611 匯流排 612 控制線 123178.doc -79· 1345787 613 讀取感應放大Is 614 設定驅動器 615 重置驅動器 616 SELB匯流排 617 SELN匯流排 632 信號 633 位元線預充電(BLP)限流電路 634 重置限制電路 635 SELN匯流排線 636 位元線選擇路徑 637 控制信號 638 選定記憶體單元 639 字線選擇路徑500 bus arrangement 502 memory array block 504 memory array block 506 memory array block 508 coupling circuit 532 coupling circuit 533 coupling circuit 535 coupling circuit 536 bus bar 550 bus bar configuration 552 coupling circuit 554 coupling circuit 601 I / O Logic 602 Bus 603 Bus 604 Write Latch Block 605 Read Latch 606 Bus 607 Bus 608 Control 609 Bus 610 Bus 611 Bus 612 Control Line 123178.doc -79· 1345787 613 Read Induction Amplifier Is 614 Set Driver 615 Reset Driver 616 SELB Bus 617 SELN Bus 632 Signal 633 Bit Line Precharge (BLP) Current Limit Circuit 634 Reset Limit Circuit 635 SELN Bus 636 Bit Line Selection Path 637 control signal 638 selected memory unit 639 word line selection path

123178.doc -80-123178.doc -80-

Claims (1)

1345787 ^月日修正替換頁 第096128078號專利申請案 中文申請專利範圍替換本(1〇〇年3月) 十、申請專利範圍: 1* 一種積體電路,其包含: 一記憶體陣列,其具有複數個陣列區塊,各陣列區塊 包含字線及位元線; -第-全域匯流排,其—般跨越該複數個陣列區塊, 用於有時將-敎區塊之選定位元線耗合至個別資料電 路;及 每陣列區塊的一個別第一匯流排片段,其用於在一第 一操作模式期間將一適合於該第一操作模式之第一未選 定位元線偏壓條件傳遞至一選定區塊之未選定位元線, 並將-適合於該第一操作模式之第二未選定位元線偏壓 條件耦合至未選定陣列區塊之未選定位元線。 2.如請求項1之積體電路,其中: 該第一操作模式包含一設定操作模式; 適合於該第-操作模式之該第一未選定位元線偏壓條 件包含一未選定位元線電壓;以及 適合於該第-操作模式之該第二未選定位元線偏壓條 件包含一浮動條件》 3·如請求項1之積體電路,其中: 在-第二操作模式下,一選定陣列區塊之該個別第一 匯抓排片段係_合以將適合於該第二操作模式在個別第 匯排片#又®流排線上之個別資料相依偏壓條件傳遞 至該選定區塊之選定位元線。 4.如凊求項3之積體電路,其中: 123178-1000310.doc 1 曰修正替換f 該第一全域匯流排包含耦合至一端你/办1—— 項取/.寫入電路之一讀 取/寫入匯流排。 5.如請求項4之積體電路,其進一步包含: -耦合至-第二資料電路之第二全域匯流排; 其中各區塊包括-個別耗合電路,其用於有時將該個 別第一匯流排片段輕合至該第二全 王埤匯流排,有時使之 浮動 6.如請求項5之積體電路,其中: 在該第-操作模式下,該第二全域匯流排之各匯_ 線係在適合於該第-操作模式之第一未選定位元線偏漫 條件下偏壓;以及 在該第二操作模式下,該第-全域匯流排之各匯流排 線係在-適合於該第二操作模式之纟選定位元線偏壓條 件下偏壓。 7·如請求項3之積體電路,其進一步包含: 一全域偏壓線’其麵合至一偏壓電路; 其中各區塊包括一個別耦合電路,其用於有時將該個 別第一匯流排片段之各匯流排線耦合至該全域偏壓線, 在此期間該全域偏壓線傳遞一適合於該第一操作模式之 未選定位元線偏壓電壓。 8.如請求項7之積體電路,其進一步包含: 複數個竊合電路,其用於有時將用於各個別陣列區塊 之該#個別第一匯流排片段耗合在一起,以形成跨越該 複數個陣列區塊之一單一邏輯匯流排,該等耦合一起的 123178-1000310.doc -2- 第一匯流排片段係耦 〇 , ^ . 弟一貢枓電路。 9·如明求項8之積體電路,其中: 用於各個別陣列區塊 該第二操作棋式期間麵合在1起個別第一匯流排片段係在 10.如請求項8之積體電路,其中: 在該第二操作模式下, 複梅太a第—全域匯流排之各匯流排 線係在一適合於該第二 件下偏壓;以及 〃、式之未選定位元線電壓條 同時在該等第一及第二 遞一適合於該第-操作模偏壓線傳 ! , , ^ 飞之未選疋位元偏壓電壓。 Π.如凊求項7之積體電路,其中: 一m括•別耦合電路’其用於有時將該個別第 一匯流排片段輕合至-第二全域匯流排。 12.如請求項11之積體電路,其中: 在該第二操作模式下,該 人 弟王域匯流排之各匯流排 線係在一適合於該第二操 杜卞说@ . 料敎位域電壓條 件下偏壓;以及 了-及第二操作模式二者下,該全域偏壓線傳 遞-適合於該第-操作模式之未選定位元偏壓電塵。 13.如請求項7之積體電路,其中: 該第一全域匯流排包含耦人 、 3耦13至該等個別資料電路之一 全域選擇匯流排;以及 該S己憶體陣列進一步包含各瞌s丨r 母陣列區塊一個別第二匯流 排片段,其用於在該第—操作 锞作杈式期間,將一適合於該 123178-1000310.doc U45787 C/V - 日修正替換, 第-操作模式之資料相依位元線 區塊之選定位元線條件㈣至-選定 -適合於該第二操作==: =模式期間,將 至未選定陣㈣塊之未選定位未Γ線讀虹⑽件傳遞 14.如請求項13之積體電路,其甲:1345787 ^月日修正换换页号 096128078 Patent application Chinese patent application scope replacement (March 1st) X. Patent application scope: 1* An integrated circuit comprising: a memory array having a plurality of array blocks, each of the array blocks comprising a word line and a bit line; - a first-global bus bar, which generally spans the plurality of array blocks, and is used for positioning the meta-line of the block Compatible with an individual data circuit; and a different first bus segment of each array block for biasing a first unselected positioning element line suitable for the first mode of operation during a first mode of operation The condition is passed to an unselected location line of a selected block, and a second unselected location line bias condition suitable for the first mode of operation is coupled to an unselected location line of the unselected array block. 2. The integrated circuit of claim 1, wherein: the first mode of operation comprises a set mode of operation; the first unselected bit line bias condition suitable for the first mode of operation comprises an unselected bit line a voltage; and the second unselected positioning element line bias condition suitable for the first mode of operation comprises a floating condition. 3. The integrated circuit of claim 1, wherein: in the second mode of operation, a selection </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> Bit line. 4. For the integrated circuit of Item 3, where: 123178-1000310.doc 1 曰Correct Replacement f The first global bus includes a coupling to one end of your/office 1 - item fetch / write circuit read Take/write bus. 5. The integrated circuit of claim 4, further comprising: - a second global bus that is coupled to the second data circuit; wherein each of the blocks includes - an individual consumable circuit for sometimes the individual A bus bar segment is lightly coupled to the second full king bus bar and sometimes floated. 6. The integrated circuit of claim 5, wherein: in the first mode of operation, the second global bus bar The sink line is biased under a first unselected positioning element line bias condition suitable for the first mode of operation; and in the second mode of operation, each bus line of the first-global bus bar is - Suitable for biasing the positioning mode under the bias condition of the second mode of operation. 7. The integrated circuit of claim 3, further comprising: a global bias line 'faced to a bias circuit; wherein each block includes a separate coupling circuit for sometimes the individual Each bus bar of a bus segment is coupled to the global bias line during which the global bias line delivers an unselected positioning element bias voltage suitable for the first mode of operation. 8. The integrated circuit of claim 7, further comprising: a plurality of stealing circuits for sometimes consuming the # individual first bus stop segments for the respective array blocks to form A single logical bus bar spanning one of the plurality of array blocks, the 123178-1000310.doc -2- first bus bar segment coupled together, ^. 9. The integrated circuit of claim 8, wherein: for each of the array blocks, the second operation of the chess period is combined with one individual first bus segment segment at 10. The integration of claim 8 a circuit, wherein: in the second mode of operation, each bus line of the first-to-global bus bar is biased at a voltage suitable for the second component; and the unselected positioning element line voltage At the same time, the first and second hands are adapted to the first operating mode bias line transmission !, , ^ fly unselected bit voltage.积. The integrated circuit of claim 7, wherein: a m-series coupling circuit is used to sometimes lightly couple the individual first bus segment to the second global bus. 12. The integrated circuit of claim 11, wherein: in the second mode of operation, each of the bus lines of the younger family bus is adapted to the second operation. The bias voltage in the domain voltage condition; and the second mode of operation, the global bias line transfer - the unselected locator bias electric dust suitable for the first mode of operation. 13. The integrated circuit of claim 7, wherein: the first global bus includes a coupling, a 3 coupling 13 to one of the individual data circuits, and a global selection bus; and the S memory array further includes The s丨r mother array block has a second bus bar segment, which is used during the first operation mode, and is adapted to the 123178-1000310.doc U45787 C/V-day correction replacement, the first - Operation mode data dependent bit line block selection positioning element line condition (4) to - selected - suitable for the second operation ==: = mode period, unselected array (four) block unselected positioning untwisted line read rainbow (10) Piece Transfer 14. The integrated circuit of claim 13 is: 各區塊包括-個㈣合電路,其用於有時將個別第二 匯流排片段耦合至該全域選擇匯流排,並在特定其他時 候韓合至該全域偏壓線,並在其他時候使之浮動,· *在該第一操作模式下,該全域偏壓線傳遞一適合於該 第一操作模式之未選定位元偏壓電壓;以及 在》亥第一操作模式下,該全域偏壓線傳遞一適合於該 第二操作模式之未選定位元偏壓電壓。 15.如請求項丨之積體電路,其中: 該記憶體陣列包含一三維記憶體陣列,其具有在二位 元線層上的位元線;以及 在一個別陣列區塊之二位元線層上的位元線係同時耦 合至個別匯流排片段。 16.如請求項15之積體電路,其中: 各記憶體單元包含—可逆電阻器元件。 17.如請求項16之積體電路,其中: 該可逆電阻器元件包含一過渡金屬氧化物。 18.如請求項丨5之積體電路,其中: 各記憶體單元包含與一二極體串列的一可逆電阻器元 件。 123178-1000310.doc S -4- 1345787 ^3月替換貢 19. 如請求項1之積體電路,其中該第一全域匯流排以一正 父於該等位元線之方向橫越該等陣列區塊。 20. —種封裝模組,其包括請求項1之積體電路。 21. —種積體電路,其包含: 一記憶體陣列’其具有複數個陣列區塊,各陣列區塊 包含字線及位元線;Each block includes a (four) combining circuit for sometimes coupling individual second busbar segments to the global selection busbar and, at certain other times, to the global bias line and at other times Floating, in the first mode of operation, the global bias line transmits an unselected locator bias voltage suitable for the first mode of operation; and in the first mode of operation, the global bias line An unselected locator bias voltage suitable for the second mode of operation is passed. 15. The integrated circuit of claim 1 wherein: the memory array comprises a three dimensional memory array having bit lines on a two bit line layer; and a two bit line in a different array block The bit line on the layer is simultaneously coupled to the individual bus segment. 16. The integrated circuit of claim 15, wherein: each memory cell comprises a reversible resistor element. 17. The integrated circuit of claim 16, wherein: the reversible resistor element comprises a transition metal oxide. 18. The integrated circuit of claim 5, wherein: each memory cell comprises a reversible resistor element in series with a diode. 123178-1000310.doc S -4- 1345787 ^3月换贡 19. The integrated circuit of claim 1, wherein the first global bus is traversed by the parent in the direction of the bit line Block. 20. A package module comprising the integrated circuit of claim 1. 21. An integrated circuit comprising: a memory array having a plurality of array blocks, each array block comprising word lines and bit lines; 第一耦合構件,其用於在一第一操作模式下,藉由一 般跨越該複數個陣列區塊之一第一全域匯流排將一選定 區塊之選定位元線耦合至個別資料電路; 第二耦合構件,其用於將選定及未選定陣列區塊二者 之未選定位元線耦合至與各個別陣列區塊相關聯的一個 別第一匯流排片段; 第-傳遞構件,其用於在與該選定陣列區塊相關聯之 個:第-匯流排片段上傳遞—適合於該第—操作模式之 第一未選定位元線偏壓條件;以及 第二傳遞構件’其用於在與未選定陣列區塊相關聯之 :別第一匯流排片段上傳遞-適合於該第-操作模式之 第一未選定位元線偏壓條件。 22.如請求項21之積體電路,其中·· 、 保忭祺式包含一設定操作模式; 適合於該第一操作模式之該一〜 件包含一夫·登'&quot;第未選疋位元線偏壓條 未k疋位7C線電壓;以及 適合於該第一操作模式 件包含—浮動條件。 第-未選…線偏壓條 123178-1000310.doc -5. 1345787 23.如請求項21之積體電路 式下: 其進—步包含在一第 免月冷日換頁 操作模 選疋陣列區塊之一或多個 列區塊相關聯之個別第— 第三耦合構件,其用於將一 選定位元線輕合至與該選定陣 匯流排片段; 第三傳遞構件,其用於在盥哕 /、这選疋陣列區塊相關聯戈 個別第一匯流排片段上值揀 . 乃又上傳遞一適合於該第二操作模式之 個別資料相依偏壓條件;以及 —第四輕合構件,其用於將該選定陣列區塊之未選定位 元線柄合至該第一全域匯流排。 24. 如請求項23之積體電路,其進—步包含: 在該第二操作模式下,用於將與該選定陣列區塊相關 .聯之該個別第一匯流排片段耦合至一資料電路之構件。 25. 如請求項23之積體電路,其中: 該第一操作模式包含一重置操作模式; 耦合至該選定陣列區塊之選定位元線的適合於該第二 操作模式之該等個別資料相依偏壓條件包含一使一選定 位7G線重置的第一值與一使一選定位元線不改變的第二 值。 26. 如請求項23之積體電路,其中: 該第一全域匯流排包含耦合至一讀取/寫入電路之一讀 取/寫入匯流排。 27. 如請求項26之積體電路,其進一步包含: 第五輪合構件,其用於有時將用於一陣列區塊之個別 123178-1000310.doc c -6 - 1345787 心月/^日修正替換頁 第一匯流排片段耦合至一第二全域匯流排,該第二全域 匯荒排自身係、輕合至—第二資料電路’並有時用於使該 個別第一匯流排片段浮動。 28·如請求項23之積體電路,其進一步包含: 第六耦合構件,其用於有時將該個別第一匯流排片段 之各匯流排片段耦合至一全域偏壓線;以及 第四傳遞構件,其用於有時在該全域偏壓線上傳遞一 適β於該第一操作模式之未選定位元線偏壓電壓。 29,如請求項28之積體電路,其進一步包含: 第七耦合構件,其用於有時將用於各個別陣列區塊之 該等個別第-匯流排片段耦合在一起,以形成一跨越該 複數個陣列區塊之單一邏輯匯流排;以及 第八耦合構件,其用於將該等耦合一起的第一匯流排 片段耦合至一第二資料電路。 3 0,如請求項28之積體電路,其進一步包含: 第七耦合構件’其用於有時將該個別第一匯流排片段 耦合至一第二全域匯流排。 31_如請求項28之積體電路,其中: 該第一全域匯流排包含耦合至該等個別資料電路之一 全域選擇匯流排;以及 該積體電路進-步包含第五傳遞構件,其用於藉由每 陣列區塊的一個別第二匯流排片段,在該第一操作模式 期間’將適合於㈣—操作m職料相依位元線 偏壓條件傳遞至—敎區塊之敎位元線,並用於在該 123178-1000310.doc 1345787 年3#曰修正替找頁 第二操作模式期間,將—適合於該第二操作 :位元線偏壓條件傳遞至未選—之未== A如請求項21之積體電路,其中該第一全 交於該等位元線之方向橫越該等陣列區塊。^ W一正 33. -種用於配合—記憶體陣列使用之方法,該記憶體_ = 區塊,各陣列區塊包括字線與位元線, 在第操作模式下,該方法包含: Ο 排=二:^ ^ ^ H區域匯流 、疋品塊之選疋位π線輕合至個別資料電路. 將選定及未敎陣㈣塊二者之未觀位元軸合至 ”各個別陣列區塊相關聯的—個別第—匯流排片段; 在與該選定陣列區塊相關聯之個別第一匯流排片段上 傳遞-適合於該第一操作模式之第一未選定位元線偏壓 條件;以及 在與未選定陣列區塊相關聯之個別第一匯流排片段上 傳遞-適合於該第一操作模式之第二未選定位元線偏壓 條件。 34.如請求項33之方法,其中·· 適。於該第-操作板式之該第二未選定位元線偏壓條 件包含一浮動條件。 •如D月求項33之方法,其中該第—全域匯流排以—正交於 該等位元線之方向橫越該等陣列區塊。 3 6·如請求項34之方法,其中: J23178-10003I0.doc 1345787 嘴月/¾修正替換茛 該第一操作模式包含一設定操作模式;以及 =於該第一操作模式之該第一未選定位元編條 件包含一未選定位元線電壓。 3人如請求項33之方法,其進一 入 步在一第二操作模式 下· 將:選定陣列區塊之一或多個選定位元線耗合至盘該 L疋陣列區塊相關聯之個別第-匯流排片段. ^與該選定陣列區塊相關聯之個別第流排片段上 傳遞一適合於該第-握 件;以及 ㈣彳以之個㈣料相依偏虔條 將該選定陣列區塊之夫撰 _ 匯流排。 塊之—轉合至該第一全域 38·如請求項37之方法,其進一步包括: 在該第二操作模式下,將與該 個別第-匯涂排片仙合至-資料電路車心塊相關聯之 39.如請求項38之方法,其進一步包括 在該第二操作模式下 個別第-匯流排片㈣人:陣列區塊相關聯之 匯流排。排片㈣合至-跨越該複數個陣列區塊之 40.如請求項37之方法,其中: 該第二操作模式包含一重置操作模式; 广至該選定陣列區塊之選定位元線的適 位讀重置之第—值與一使一選定位元線不改變之 操作換式之該等個別資料相依偏壓條件包含:,二 位元線重罟夕筮_ &amp; &amp; .. 更一選定 第 123I78-I000310.doc 日修正替換頁 值》 41.如請求項37之方法,其中: 二:全域匯流排包含耦合至一讀取/寫入電路之一讀 取/寫入匯流排。 42·如請求項41之方法,其進一步包括: ―:時將用於一陣列區塊之個別第-匯流排片段耦合至 第—全域匯流排,&gt;&gt; ΛΛ g __ 一、 該第二全域匯流排自身係耦合至一 苐一貧料電路,士 m 、有時用於使該個別第一匯流排片段浮 動。 •如請求項42之方法,其進一步包含: 在該第-操作模式下,將該第二全域匯流排之各匯 於該第_操作模式之第—未選定位元線偏 條件下偏壓;以及 在該第二操作模式 排線在一適合於該第 件下偏壓。 下’將該第一全域匯流排之各匯流 二操作模式之未選定位元線偏壓條 44.如請求項37之方法,其進一步包含: 有時將該個別第一匯流排片段之各匯流排線耦合至一 全域偏壓線,.以及 在該等時候在該全域偏慶線上傳遞一適合於該第一操 作模式之未選定位元線偏壓電壓。 45·如請求項44之方法,其進一步包含: 凡有時將用於各個別陣列區塊之該等個別第-匯流排片 奴耦〇在一起,以形成一跨越該複數個陣列區塊之單一 123178-I〇〇〇3i〇.doc 1345787 月/¾修正替換貧 邏輯匯流排;以及 電:該等Μ合一起的第一―至一第二資料 46. 如請求項45之方法,其進一步包含: 個作模式期間將用於各個別陣列區塊之該等 個别第一匯〜排片段耦合在一起。 47. 如請求項45之方法,其進一步包含: 在該第二操作模式, 排绫在潘人 將該第—全域匯流排之各匯流 排線在-適合於該第二操 件下偏壓丨以及 之未選疋位凡線偏壓條 在該等第一及第二操作模 上傳遞-適合於該第—操作在該全域偏壓線 壓。 呆作杈式之未選定位元偏壓電 48. 如請求項44之方法,其進一步包含: 有時將該個別第—匯流排人 排。 奴耦合至一第二全域匯流 49. 如請求項48之方法,其進-步包含: 在該第二操作模式下,將該 排線在-適合於該第二操錢匯流排之各匯流 件下偏壓;以及 、&quot;之未選定位元線偏壓條 在該等第—及第二操作Hi 上傳遞-適合於該第一操作模—下,在該全域偏塵線 壓。 、式之未選定位元偏壓電 50_如請求項44之方法,其中: 123178-1000310.doc 1345787a first coupling member for coupling a selected location element of a selected block to an individual data circuit in a first mode of operation by generally crossing a first global bus bar of the plurality of array blocks; a second coupling member for coupling unselected positioning element lines of both selected and unselected array blocks to a first bus bar segment associated with each of the individual array blocks; a first-passing member for Passing on the first array block associated with the selected array block: a first unselected locating element line bias condition suitable for the first mode of operation; and a second transfer member 'for The unselected array block is associated: not passed on the first bus segment - a first unselected positioning element line bias condition suitable for the first mode of operation. 22. The integrated circuit of claim 21, wherein the protection mode comprises a set operation mode; the one-piece suitable for the first operation mode comprises a ··登'&quot; The line biasing bar does not k clamp the 7C line voltage; and is adapted to include the first floating mode condition. First-unselected...line bias strip 123178-1000310.doc -5. 1345787 23. As in the integrated circuit of claim 21: the advance step includes a page swapping operation on the first free month cold swapping mode An individual first to third coupling member associated with one or more column blocks for coupling a selected positioning element line to the selected array bus segment; a third transfer member for use in /, the selected array block is associated with the individual first bus segment segment, and the other data is adapted to the second operating mode dependent bias condition; and - the fourth light component, And combining the unselected positioning element handles of the selected array block to the first global bus bar. 24. The integrated circuit of claim 23, further comprising: in the second mode of operation, coupling the individual first busbar segment associated with the selected array block to a data circuit The components. 25. The integrated circuit of claim 23, wherein: the first mode of operation comprises a reset mode of operation; the individual data coupled to the selected location line of the selected array block suitable for the second mode of operation The dependent bias condition includes a first value that causes a selected positioning 7G line to be reset and a second value that causes a selected positioning element line to not change. 26. The integrated circuit of claim 23, wherein: the first global bus includes a read/write bus coupled to a read/write circuit. 27. The integrated circuit of claim 26, further comprising: a fifth wheel assembly for use in an individual 123178-1000310.doc c -6 - 1345787 heart month/^ day Correcting the replacement page The first bus segment segment is coupled to a second global bus bar, the second global domain bar is itself coupled to the second data circuit and is sometimes used to float the individual first bus segment . 28. The integrated circuit of claim 23, further comprising: a sixth coupling member for coupling each busbar segment of the individual first busbar segment to a global bias line; and a fourth pass And means for transmitting an unselected positioning element line bias voltage in the first mode of operation, sometimes on the global bias line. 29. The integrated circuit of claim 28, further comprising: a seventh coupling member for coupling the individual first bus-sink segments for the respective array blocks to form a span a single logic bus of the plurality of array blocks; and an eighth coupling member for coupling the first busses coupled together to a second data circuit. 30. The integrated circuit of claim 28, further comprising: a seventh coupling member </ RTI> for coupling the individual first busbar segments to a second global busbar. 31. The integrated circuit of claim 28, wherein: the first global bus includes a global selection bus coupled to one of the individual data circuits; and the integrated circuit further includes a fifth transfer component for use Passing a second bus bar segment of each array block, during the first mode of operation, 'transferring the (4)-operation m-substance dependent bit line bias condition to the 敎 bit of the 敎 block Line, and used during the second mode of operation of the 123178-1000310.doc 1345787 3#曰 correction search page, will be - suitable for the second operation: the bit line bias condition is passed to the unselected - no == A. The integrated circuit of claim 21, wherein the first cross is in the direction of the bit line traversing the array blocks. ^W一正33. - A method for mate-memory array use, the memory _ = block, each array block includes a word line and a bit line, in the first mode of operation, the method comprises:排=二: ^ ^ ^ H area convergence, 疋 之 之 π π 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻 轻Block-associated-individual first-bus-segment segments; transmitting on respective first bus-segment segments associated with the selected array block--first unselected positioning element line bias conditions suitable for the first mode of operation; And transmitting on the individual first bus segment associated with the unselected array block - a second unselected positioning element line bias condition suitable for the first mode of operation. 34. The method of claim 33, wherein The second unselected positioning element line bias condition of the first operation panel includes a floating condition. • The method of claim 33, wherein the first global buffer is orthogonal to the The direction of the bit line traverses the array blocks. 3 6. As requested in item 34 Method, wherein: J23178-10003I0.doc 1345787 mouth/3⁄4 correction replacement, the first mode of operation includes a set mode of operation; and = the first unselected location element in the first mode of operation comprises an unselected Bit line voltage. 3 persons as in the method of claim 33, which further enters a second operation mode, and: one or more selected array elements of the selected array block are consumed to the L疋 array area An individual first-bus bar segment associated with the block. ^ is passed to an individual first-stream segment associated with the selected array block, and is adapted to the first-grip; and (iv) a fourth (four) material-dependent partial bar The selected array block is spliced to the bus. The method of transferring the block to the first global domain 38. The method of claim 37, further comprising: in the second mode of operation, The method of claim 38, wherein the method of claim 38 further comprises, in the second mode of operation, an individual first-bus bar (four) person: a bus bar associated with the array block.排片(四)合到-跨40. The method of claim 37, wherein: the second mode of operation comprises a reset mode of operation; wherein the selected bit of the selected array block is adapted to the read bit of the selected bit line - The value and the individual data dependent bias conditions for an operation mode that does not change the selected positioning element line include: the two-bit line is 罟 & & & & & &&;; Doc Day Correction Replacement Page Value 41. The method of claim 37, wherein: 2: The global bus includes a read/write bus coupled to one of the read/write circuits. 42. The method of claim 41, further comprising: ―: coupling an individual first-bus bar segment for an array block to a first-global bus bar, &gt;&gt; ΛΛ g __ one, the second The global busbar is itself coupled to a lean circuit, sometimes used to float the individual first busbar segments. The method of claim 42, further comprising: in the first mode of operation, each of the second global bus bars is biased under the condition of the first unselected positioning element line bias condition; And in the second mode of operation, the cable is biased at a suitable one for the first member. The method of the unselected locating element line biasing bar of the first two global bus modes of the first global bus bar. The method of claim 37, further comprising: sometimes each bus bar of the individual first bus bar segment The line is coupled to a global bias line, and at that time an unselected positioning element line bias voltage suitable for the first mode of operation is transmitted over the global bias line. 45. The method of claim 44, further comprising: arbitrarily coupling the individual sigma-bus slabs for the respective array blocks to form a single across the plurality of array blocks 123178-I〇〇〇3i〇.doc 1345787/3⁄4 modified replacement lean logic bus; and electricity: the first-to-second second data that is combined together. 46. The method of claim 45 further includes : The individual first sink-segment segments for the respective array blocks are coupled together during the pattern mode. 47. The method of claim 45, further comprising: in the second mode of operation, arranging the bus lines of the first-global bus bar in the Pan-person to be biased under the second operating device. And the unselected clamps of the line bias strips are transmitted on the first and second modes of operation - suitable for the first operation to bias the line voltage at the global direction. The unselected locating element bias power 48. The method of claim 44, further comprising: arranging the individual first bus. The slave is coupled to a second global convergence 49. The method of claim 48, wherein the step further comprises: in the second mode of operation, the cable is at - each of the manifolds suitable for the second money bus The lower bias voltage; and the unselected positioning element line bias strips are transmitted on the first and second operations Hi - suitable for the first operating mode - under the global dust line pressure. The unselected positioning element bias voltage 50_, as in the method of claim 44, wherein: 123178-1000310.doc 1345787 該第一全域匯流排包含輕合至該等個別資 全域選擇匯流排;以及 該方法進一步包含藉由每陣列區塊的一個別第二匯法 排片段’在該第-操作模式期間,將適合於該第:掉: 模式之個別資料相依位元線偏歸件㈣至_選定區 之選定位讀’並用於在㈣二操作模式_ 合於該第二操作模式之未選定位元線偏遞: 選定陣列區塊之未選定位元線。 得遞至未 51. 如請求項50之方法,其中·· r 在該第一操作模式期間傳遞至該選定陣列區塊之選定 該等個別資料相依偏塵條件包含-使—選it ==其上操作之第-值與-使-較位元線不改變之 52. 如請求項50之方法,其進一步包含: 、有時將用於-區塊之個別第:匯流排片段輕合至該全 =選擇匯流排’並在特定其他時㈣合 線,並在其他時候使個別第二匯流排片段浮動;£ 操作模式下,在該全域偏壓線上傳遞—適人 於該第-操作模式之未選定位元偏塵電壓;以及 在:第二操作模式下,在該全域 於該第二操作模式之未選定位元偏厂堅·。 適。 53’種用於製造—記憶體產品之方法,該方法包含. 「=:!憶體陣列,其具有複數個陣列區塊,各陣列 區塊包含字線及位元線; +單歹J 123178-1000310.doc •12· 1345787 f年j月’农日傪正替換頁j 形成一第一全域匯流排,其-般跨越該複數個陣列區 塊,用於有時將-選定區塊之選定位元軸合至 料電路; 形成每陣列區塊的-個別第—匯流排片段,其用於在 -第-操作模式期間將一適合於該第一操作模式之第一 未選定位元線㈣條件傳遞至―選定區塊之未選定位元 t並將-適合於該第-操作模式之第:未敎位元線 偏條件傳遞至未選定陣舰塊之未選定位元線。 54.如凊求項53之方法,其中: 該第一操作模式包含—設定操作模式; 適合於該弟一 #作握4 «Jr # &amp; 株勺人“、#作模式之該第—未選定位元線偏麼條 牛l 3未選疋位元線電壓;以及 適合於該第一操作模式之 件包含-浮動條件。 第—未選疋位元線偏壓條 55·如請求項53之方法,其中·· 匯Ϊ:片第:操作模式下,一選定陣列區塊之該個別第-第:匯輕合以將適合於該第二操作模式之在個別 定巴塊H 流排線上的個別偏壓條件傳遞至該選 疋區塊之選定位元線。 56. 如請求項53之方法,宜 哕望彳 ’、以第一全域匯流排以一正交於 疋,.之方向橫越該等陣列區塊。 57. 如請求項55之方法,其進_步包含、 形成該第一全域匯流排 之專用讀取/寫入匯流排。 至一讀取/寫入電路 123178-I000310.doc •13- 笑》月/^修正替換頁 58.如請求項57之方法,其進_步包含: 成耗合至一第二資料雷故a 針對久「&amp; _電路之弟二全域匯流排; 個別第―兩士以 』祸0电路,其用於有時將該 卑匯流排片段耦合至玆坌-人上 之浮動。 D 一王域匯流排,有時使 59·如請求項55之方法,其進一步包含: :成,至一偏壓電路之全域偏壓線; 針對各區塊,形成一個 個別莖w 』祸σ電路,其用於有時將該 第 匯流排片段之各匯流排始j人 雄如 ,瓜排線耦合至該全域偏壓 ;之=該全域偏壓線傳遞-適合於該第-操作模 飞之未選疋位元線偏壓電壓。 6〇·如請求項59之方法,其進—步包含: 形成複數個耦合電路,其用 令呀將用於各個別陣列 &amp;塊之該等個別第一匯流排 又耦s在一起,以形成跨 越該複數個陣列區塊之一單—邏 平邏輯匯流排,該等耦合在 -起的弟-匯流排片段係耗合至—第二資料電路。 61·如請求項59之方法,其進—步包含: 針對各區塊,形成-個別輕合電路,其用於有時將該 個別第-匯流排片段叙合至—第二全域匯流排。 人 62.如請求項59之方法,其中: 該第-全域匯流排包含麵合至該等個別資料電路之一 全域選擇匯流排;以及 該方法進-步形成每陣列區塊的—個別第:_排片 段’其用於在該第-操作模式期間,將一適合於該第一 123178-1000310.doc •14- 1345787 ζΟ 〇 ' &quot;ΊΛΙΓ· 年 &gt;月〜修正替換頁 ,作模式之選定位元線偏壓條件傳遞至1定區棟之選 疋位二線,並用於在該第:操作模式朗將—適合於 該第二操作模式之未選定位元線偏屡條件傳遞至未:定 陣列區塊之未選定位元線。 63. 如請求項53之方法,其進一步包含· 形成-三維記憶體陣列,其具有在二位元線層上的位 元線。 64. 如請求項63之方法,其中: 形成記憶體單开,甘^ λ 70 其包含一可逆電阻器元件。 65. 如請求項62之方法,甘^ 中該第一全域匯流排以一正交於 該等位元線之方而技&amp; ^榣越該等陣列區塊。 123178-1000310.doc 15·The first global bus bar includes a light-weighted connection to the individual asset-wide selection buss; and the method further includes a second channel segment segment by each array block, during which the first mode of operation will be adapted In the first: off: the individual data of the mode depends on the bit line partial (4) to _ selected area selected position read 'and used in (4) two operation mode _ unselected positioning element line offset in the second mode of operation : The unselected positioning element of the selected array block. The method of claim 50, wherein the selection of the individual data dependent to the selected array block during the first mode of operation comprises: - selecting - = The method of claim 50, wherein the method of claim 50 further comprises: ??? All = select bus bar 'and at some other time (four) join line, and at other times make individual second bus bar segment float; £ operating mode, pass on the global bias line - suitable for the first mode of operation The locating element is not selected for the dust voltage; and in the second mode of operation, the unselected locating element in the second mode of operation is partial. suitable. 53' method for manufacturing a memory product, the method comprising: "=:! memory array, having a plurality of array blocks, each array block comprising word lines and bit lines; + single 歹 J 123178 -1000310.doc •12· 1345787 fYj's 'Nongken's replacement page j forms a first global bus, which generally spans the plurality of array blocks for the selection of the selected blocks. a bit-axis-to-feed circuit; forming an individual-bus-strip segment of each array block for using a first unselected locating element line (4) suitable for the first mode of operation during the -first mode of operation The condition is passed to the unselected location element t of the selected block and is adapted to the first of the first mode of operation: the untwisted bit line bias condition is passed to the unselected location line of the unselected array block. The method of claim 53, wherein: the first operation mode comprises: setting an operation mode; and is suitable for the younger one to make a grip 4 «Jr # &amp; 株人", #作模式的第一-unselected positioning element Line biased cattle l 3 unselected bit line voltage; and suitable for the first mode of operation Contains - floating conditions. The first-unselected bit line bias strip 55. The method of claim 53, wherein: · sink: slice: in the operation mode, the individual first-first: light combination of a selected array block is suitable The individual bias conditions on the individual bus block H stream lines in the second mode of operation are passed to the selected location line of the selected block. 56. The method of claim 53, wherein the first global bus is traversed by the first global bus in a direction orthogonal to 疋. 57. The method of claim 55, wherein the step comprises: forming a dedicated read/write bus of the first global bus. To a read/write circuit 123178-I000310.doc • 13- Laughter "Month / ^ Correction Replacement Page 58. The method of claim 57, wherein the step _ includes: consuming a second data to a thunder For the long-term "&amp; _ circuit brothers two global bus; individual first - two sergeant "cause 0 circuit, which is used to sometimes couple the squall bus segment to the floating of the 坌 - people. The method of claim 55, further comprising: the method of claim 55, further comprising: forming a global bias line to a bias circuit; forming a single stem w 祸 σ circuit for each block, For sometimes arranging the respective busses of the bus bar segment, the melon cable is coupled to the global bias; = the global bias line transmission - suitable for the first operation mode fly unselected The bit line bias voltage. The method of claim 59, wherein the step further comprises: forming a plurality of coupling circuits for use in the respective first confluences The rows are coupled together to form a single-logic logic bus that spans one of the plurality of array blocks The coupling-bus-bus segment is consumed to the second data circuit. 61. The method of claim 59, wherein the step further comprises: forming, for each block, an individual light-splicing circuit, The method of claim 59, wherein the method of claim 59, wherein: the first-global bus includes a face-to-face data circuit a global selection bus; and the method further forms an individual:_segment segment of each array block for use during the first mode of operation, one suitable for the first 123178-1000310.doc • 14- 1345787 ζΟ 〇 ' &quot;ΊΛΙΓ·year&gt; month~correct replacement page, mode selection locating element line bias condition is passed to the second line of the selected block, and is used in the first: operation mode Lang--the unselected positioning element line suitable for the second mode of operation is passed to the unselected positioning element of the un-arranged block. 63. The method of claim 53, further comprising · forming - three-dimensional Memory array, which has a two-dimensional line layer 64. The method of claim 63, wherein: the method of claim 63, wherein: forming a memory single opening, 甘 λ 70 comprising a reversible resistor element. 65. The method of claim 62, the first global domain The busbars are orthogonal to the square of the bit lines and the array blocks are used. 123178-1000310.doc 15·
TW96128078A 2006-07-31 2007-07-31 Method and apparatus for hierarchical bit line bias bus for block selectable memory array TWI345787B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/461,362 US7633828B2 (en) 2006-07-31 2006-07-31 Hierarchical bit line bias bus for block selectable memory array
US11/461,376 US7596050B2 (en) 2006-07-31 2006-07-31 Method for using a hierarchical bit line bias bus for block selectable memory array

Publications (2)

Publication Number Publication Date
TW200826114A TW200826114A (en) 2008-06-16
TWI345787B true TWI345787B (en) 2011-07-21

Family

ID=38997824

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96128078A TWI345787B (en) 2006-07-31 2007-07-31 Method and apparatus for hierarchical bit line bias bus for block selectable memory array

Country Status (2)

Country Link
TW (1) TWI345787B (en)
WO (1) WO2008016951A2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245570A (en) * 1990-12-21 1993-09-14 Intel Corporation Floating gate non-volatile memory blocks and select transistors

Also Published As

Publication number Publication date
TW200826114A (en) 2008-06-16
WO2008016951A3 (en) 2008-05-15
WO2008016951A2 (en) 2008-02-07

Similar Documents

Publication Publication Date Title
US7554832B2 (en) Passive element memory array incorporating reversible polarity word line and bit line decoders
US8004927B2 (en) Reversible-polarity decoder circuit and method
US7463546B2 (en) Method for using a passive element memory array incorporating reversible polarity word line and bit line decoders
US7486587B2 (en) Dual data-dependent busses for coupling read/write circuits to a memory array
US7463536B2 (en) Memory array incorporating two data busses for memory array block selection
US7570523B2 (en) Method for using two data busses for memory array block selection
US7633828B2 (en) Hierarchical bit line bias bus for block selectable memory array
US7596050B2 (en) Method for using a hierarchical bit line bias bus for block selectable memory array
TW201214460A (en) Decoder circuitry providing forward and reverse modes of memory array operation and method for biasing same
TWI345785B (en) Method and apparatus for passive element memory array incorporating reversible polarity word line and bit line decoders
TWI345791B (en) Method and apparatus for memory array incorporating two data busses for memory array block selection
TWI345790B (en) Method and apparatus for dual data-dependent busses for coupling read/write circuits to a memory array
TWI345787B (en) Method and apparatus for hierarchical bit line bias bus for block selectable memory array

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees