1344031 、九、發明說明: . 【發明所屬之技術領域】 本發明係有關於一種液晶顯示器裝置,且特別是有 關於一種邊緣電場切換(FFS)型液晶顯示器裝置。 【先前技術】 液晶顯示器(LCD)具有許多的優點,例如體積小、 、 重量輕、及低電力消耗等,因而已經廣泛地被應用於行 • 動顯示裝置、筆記型電腦、個人電腦(PC)螢幕及電視(TV) 等電子產品。就大尺寸螢幕及電視的應用需求而論,其 關鍵在於必須具備快應答速度、高對比率、高透光性及 無色彩反轉的寬視角。橫向電場切換(in-plane switching,簡稱IPS)型液晶顯示器兼具上述高晝質影像 的關鍵性特點,且已成為主要應用之選擇之一。 邊緣電場切換(Fringe Field Switching,以下簡稱FFS) 型液晶顯示器是藉由邊緣電場使面板内幾乎均質排列的 ® 液晶分子沿電極表層橫向旋轉,進而產生傳統IPS型液 晶顯示器無法達成的高穿透性效應。典型的FFS型液晶 ' 顯示器包括畫素和共同電極設置於同一基板上的不同層 • 位置。上述晝素與共同電極之間的距離小於液晶層的間 隙,使得在電極周圍產生邊緣電場,進而產生高亮度及 廣視角效果。 美國專利第US 6,856,371號揭露一種邊緣電場切換 (FFS)型液晶顯示器的電極結構。藉由上、下對稱的電極 061 l-A32097TWF;A06025;jamngwo 6 1344031 • 0又计吏顯示器兼具高顯示品質,卻不致影響其穿透率。 • 第1圖係顯示傳統邊緣電場切換(FFS)型液晶題示 器的剖面示意圖一邊緣電場切換(FFS)型液晶顯示器、 包括一第一基板(或稱下基板)1〇、一第二基板(或稱上基 板)20以及一液晶層3〇夾置於第一基板ι〇與第二基板 20之間的空間,以構成一液晶胞。一相對電極 electrode) U以及複數條晝素電極13設置於第一基板ι〇 參上。一絕緣層15夾置於相對電極丨丨與畫素電極13之間。 -一:配向層Μ形成於絕緣層15上,且覆蓋晝素電極13。 一彩色濾光層25及一上配向層24設置於第二基板2〇的 内側表面,與液晶層30鄰接。 第2圖係顯示傳統邊緣電場切換(FFS)型液晶顯示 器的基板結構的上視圖。兩平行的閘極線3與兩平行的 資料線7彼此相隔且直交,其間所圍成的區域定義為一 個次畫素(sub-pixel)區。相對電極u與畫素電極13形成 參於次晝素區内。晝素電極13包括兩電極棒(bar) 13a平行 於資料線7以及複數條傾斜的電極臂13b。各電極臂i3b .的兩端分別與電極棒13a電性連接,且具一傾斜角ψ。應 注意的是’電極臂13b的傾斜角φ會直接影響FFS型液 .晶顯示器的驅動電壓(V〇p)。更明確地說,電極臂13b的 傾斜角φ愈大則FFS型液晶顯示器所需的驅動電壓亦愈 大。 就小面板而言’為了使FFS型液晶顯示器具低的驅 動電壓,電極臂13b的傾斜角φ則必須降低。然而,低 061 ] -A32097TWF;A06025Jamngwo 7 1344031 的傾斜角φ (例如小於7。)會造成黑線條效應(discHnati〇n effect)。此外,尚的傾斜角φ所需的驅動電壓導致薄膜 晶體元件TFT的面積必須增加,以提供足夠的電荷儲存 的能力。薄膜電晶體元件TFT的結構包括閘極3、通^ 與源極/汲極4、以及源極接觸6a/汲極接觸讣。汲極 6b藉由一接觸® 9與晝素電極〗3連接。然而,若増加薄 膜電晶體元件TFT所佔的面積,如此勢必壓縮晝素電極 13的面積,進而降低FFS型液晶顯示器的開口率(aperture ratio)與穿透率(transmittance)。 有鑑於此’業界亟需一種FFS型液晶顯示器的電極 結構設計’可兼顧其低驅動電壓(V〇p)的需求,又可避免 黑線條效應(disclination effect)及提高其開口率(aperture ratio)與穿透率(transmittance)。 【發明内容】 有鑑於此,本發明之目的在於提供一種FFS型液晶 顯示的電極結構,具多重曲折形狀設計,使其兼顧其低 驅動電壓(ν〇ρ)的需求,又可避免黑線條效應(disclination effect)及提高其開口率(aperture ratio)與穿透率 (transmittance) 〇 為達成上述目的,本發明提供一種液晶顯示器裝 置,包括:一第一基板與一第二基板對向設置且其間隔 以一特定距離;一液晶層夾置於第一基板與第二基板之 間;複數條閘極線與複數條資料線彼此垂直交錯設置於 0611-A32097TWF;A06025yamngwo 8 料续=上,其,複數的次晝素區域定義於㈣線與資 =之間的區域,·-相對電極設置於第—基板上各個次 =素區域中;以及一第一晝素電極設置於該相對電極 你間隔以至少-絕緣層;其以―晝素電極包括複 數條平行的電極臂,各條電極臂包括一第一節段、一第 m一第三節段,·其中第一節段與水平方向成-Θ -Μ與水平方向成—φ肖,第三節段與水平方 向成一 0角,且Θ角大於φ角。 應注意的是,上述液晶顯示器裝置,.更包括:一第 二畫素電極設置於該相對電極上,其間隔以至少-絕緣 層’其中該第二晝素電極包括複數條平行的電極臂,各 2極臂包括-第一節段、一第二節段、及一第三節段; /、中該第-節段與水平方向成〜θ角’該第二節段與水 平方向成一-cp角,該第三節段與水平方向成一 _θ角,且 該-Θ角大於該_φ角。更有甚者,該第一晝素電極與該第 一且素電極沿垂直方向或水平方向成鏡像對稱。 為達成上述目的,本發明另提供一種液晶顯示器裝 置,包括:一第一基板與一第二基板相對設置且其間隔 以特定距離,一液晶層夾置於第一基板與第二基板之 ,,複數條閘極線與複數條資料線彼此垂直交錯設置於 第基板上,其中複數的次晝素區域定義於閘極線與資 料線之間的區域;一相對電極設置於第一基板上各個次 畫素區域中;以及一晝素電極設置於相對電極上,其間 隔以一絕緣層;其中晝素電極包括複數條平行的電極 0611-A32097TWF; Α06025yamngwo 丄·344υ:31 滹丄各條電極臂包括一第—節段、一第二節段、及一第 =節段;其中第—節段與水平方向成-Θ角,第二節段 與水平方向成一 φ角’第三節段與水平方向成- Θ角, f二角大於φ角;以及其中畫素電極更包括複數個第四 :,連接第奇數條電極臂的第一節段與第偶數條電極 臂的第三節段,以及複數個第五節段各連接第奇數條電 極煮的第二節段與第偶數條電極臂的第一節段。 為達成上述目的,本發明又提供一種液晶顯示器裝 置包括.一第一基板與一第二基板相對設置且其間隔 :乂一特定距離;-液晶層失置於該第-基板與該第二基 反之間」複數條閘極線與複數條資料線彼此垂直交錯設 置^該第基板上,其中複數的次晝素區域定義於該閘 =與該資料線之間的區域;以及—相對電極設置於該 基板上各個次晝素區域中;—晝素電極設置於該相 ^極^ ’其間隔以至少―絕緣層;其中該晝素電極具 —部分’其包括複數條平行的電極臂,各條電極 第一節段、一第二節段、及一第三節段,並且 節段與水平方向成—θ角,該第二節段與水 十方向成-cp角’該第三節段與水平方向成—θ角,且 =θ 於該Φ角;以及其中該晝素電極具有一第二部 刀^、匕括複數條平行的電極臂,各條電極臂包括一第 即奴、一第二節段、及一第三節段, 節段與水平方向 … ,、甲这弟 成-θ角,該第二印段與水平方向成一 -Φ角’該苐三節段與水平方向成…^,且該_θ角大於 〇611-A32097TWF;A〇6〇25 waning w〇 10 U44031 該-φ角。 ^為使本發明之上述目的、特徵和優點能更明顯易 1 ’下文特舉k佳實施例,並配合所附圖式,細說 明如下: ° ° 【實施方式】 本發明提供一種邊緣電場驅動型液晶顯示器裝置, 鲁兼顧其低驅動電壓(Vqp)的需求,又可避免黑線條效應 (disclination effect)及提高其開 口率(aperture 邮〇)與穿 透率(transmittance)的效果。 、 第一實施例 第3圖係顯示根據本發明第一實施例之邊緣電場驅 動型液晶顯示器之晝素區的電極結構上視圖。於第3圖 主動元件陣列基板結構1Gla中,—單位電極結構包括複 • 數條閘極線103與複數條資料線ι〇7彼此垂直 •於-基…,其中複數的次畫素區域 .ι〇3與為料線107之間的區域。一相對電極(counter fectrode) 105設置於基板100上各個次晝素區域中。一 '第一晝素電極113設置於相對電極105上,其間隔以至 ^ 一絕緣層(請搭配第5圖之第一絕緣層】〇9及第二絕緣 層jio)’其中第一畫素電極1]3包括兩電極棒(bar) ]i3a 平行於資料線107以及複數條平行的傾斜電極臂1 ub, 各條傾斜電極臂包括一第一節段U3bl、一第二節段 〇6H-A32〇97TWF;A06025iiamngwo 11 1344031 113b2、及一第三節段H3b3。第一節段113bl與水平方 向成Θ角,第二節段Ii3b2與水平方向成φ角,第三節 段113b3與水平方向成0角,且θ角大於φ角。根據本 發明之較佳實施例,Θ角的範圍大抵介於1。至80。之間, 或者Φ角的範圍大抵介於0。至79。之間。由於靠近電極棒 (bar) 113a位置(區域D)傾斜電極臂的第三節段113b3與 水平方向所夹的Θ角大於φ角,因此可避免黑線條效應 (disclination effect)。 再請參閱第3圖,一薄膜電晶體元件TFT設置該於 閘極線103與資料線107交錯的位置,其結構包括閘極 103、通道與源極/汲極104、以及源極接觸i〇6a/汲極接 觸106b。汲極接觸l〇6b藉由一接觸窗109與晝素電極 113電性連接。並且由於將θ角設計成大於φ角,可達成 低驅動電壓(Vop)的需求,進而降低薄膜電晶體元件TFT 所佔的面積,因此進一步提高其開口率(aperture ratio)。 應注意的是,本發明實施例之基板結構101a上更可 包括一配向膜(未圖示)形成於晝素電極113上,以水平方 向研磨(rubbing)配向。 第4A至4F圖係顯示根據本發明實施例之邊緣電場 驅動型液晶顯示器的基板電極結構的製造方法的分解步 驟示意圖。請參閱第4A圖,首先提供一基板100,例如 透明玻璃基板或塑膠基板,並於基板100上形成圖案化 的相對電極(counter electrode)。請參閱第4B圖,形成圖 案化第一金屬層,其包括閘極線103及共同電極(common 0611-A32097TWF;A06025 jamngwo 12 1344031 第5圖係顯示第3圖之邊緣電場驅動型液晶顯示器 的基板電極結構沿Α · A,切割線的剖面示意圖。第6圖係1344031, IX. Description of the Invention: 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly to a fringe field switching (FFS) type liquid crystal display device. [Prior Art] Liquid crystal displays (LCDs) have many advantages, such as small size, light weight, and low power consumption, and thus have been widely used in mobile display devices, notebook computers, and personal computers (PCs). Electronic products such as screens and televisions (TVs). In terms of the application needs of large-size screens and televisions, the key is to have a wide viewing angle with fast response speed, high contrast ratio, high light transmission and no color reversal. The in-plane switching (IPS) type liquid crystal display has the key features of the above-mentioned high-quality image, and has become one of the main applications. The Fringe Field Switching (FFS) type liquid crystal display uses a fringe electric field to rotate the liquid crystal molecules which are almost homogeneously arranged in the panel laterally along the surface of the electrode, thereby producing high penetration which cannot be achieved by the conventional IPS type liquid crystal display. effect. A typical FFS type liquid crystal 'display includes a different layer of pixels and a common electrode disposed on the same substrate. The distance between the above-mentioned halogen and the common electrode is smaller than the gap of the liquid crystal layer, so that a fringe electric field is generated around the electrode, thereby producing a high brightness and a wide viewing angle effect. An electrode structure of a fringe field switching (FFS) type liquid crystal display is disclosed in U.S. Patent No. 6,856,371. The upper and lower symmetrical electrodes 061 l-A32097TWF; A06025; jamngwo 6 1344031 • 0 also show that the display has high display quality without affecting its penetration rate. • Figure 1 is a cross-sectional view showing a conventional edge electric field switching (FFS) type liquid crystal display. A fringe field switching (FFS) type liquid crystal display comprising a first substrate (or lower substrate) and a second substrate. (or upper substrate) 20 and a liquid crystal layer 3 are sandwiched between spaces between the first substrate ι and the second substrate 20 to constitute a liquid crystal cell. An opposite electrode electrode U and a plurality of halogen electrodes 13 are disposed on the first substrate. An insulating layer 15 is interposed between the opposite electrode and the pixel electrode 13. A: The alignment layer is formed on the insulating layer 15 and covers the halogen electrode 13. A color filter layer 25 and an upper alignment layer 24 are disposed on the inner side surface of the second substrate 2A, adjacent to the liquid crystal layer 30. Fig. 2 is a top view showing the substrate structure of a conventional edge electric field switching (FFS) type liquid crystal display. The two parallel gate lines 3 and the two parallel data lines 7 are spaced apart from each other and orthogonal, and the area enclosed therebetween is defined as a sub-pixel region. The opposite electrode u and the pixel electrode 13 are formed in the sub-tenoxine region. The halogen electrode 13 includes two electrode bars 13a parallel to the data line 7 and a plurality of inclined electrode arms 13b. Both ends of each electrode arm i3b. are electrically connected to the electrode rod 13a, respectively, and have an inclination angle ψ. It should be noted that the inclination angle φ of the electrode arm 13b directly affects the driving voltage (V〇p) of the FFS type liquid crystal display. More specifically, the larger the inclination angle φ of the electrode arm 13b, the larger the driving voltage required for the FFS type liquid crystal display. In the case of a small panel, in order to make the driving voltage of the FFS type liquid crystal display device low, the inclination angle φ of the electrode arm 13b must be lowered. However, the low 061 ] -A32097TWF; A06025Jamngwo 7 1344031 tilt angle φ (for example, less than 7.) will cause a discHnati〇n effect. In addition, the driving voltage required for the still tilt angle φ causes the area of the thin film crystal element TFT to be increased to provide sufficient charge storage capability. The structure of the thin film transistor element TFT includes a gate 3, a source/drain 4, and a source contact 6a/drain contact. The drain 6b is connected to the halogen electrode 〖3 by a contact® 9. However, if the area occupied by the TFT of the thin film transistor element is increased, the area of the pixel electrode 13 is inevitably compressed, thereby reducing the aperture ratio and the transmittance of the FFS type liquid crystal display. In view of this, the industry needs an electrode structure design of an FFS liquid crystal display to meet the demand of its low driving voltage (V〇p), avoiding the disclination effect and increasing its aperture ratio. And transmittance (transmittance). SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide an electrode structure of an FFS liquid crystal display, which has multiple zigzag shapes, which can meet the requirement of low driving voltage (ν〇ρ) and avoid black line effect. The present invention provides a liquid crystal display device comprising: a first substrate opposite to a second substrate and having a transmittance ratio and a transmittance thereof; The spacing is at a specific distance; a liquid crystal layer is sandwiched between the first substrate and the second substrate; the plurality of gate lines and the plurality of data lines are vertically staggered with each other at 0611-A32097TWF; A06025yamngwo 8 is continued = upper, The plurality of secondary halogen regions are defined in the region between the (four) line and the asset=, the opposite electrode is disposed on each of the first substrate and the prime region; and a first halogen electrode is disposed on the opposite electrode. At least - an insulating layer; the bismuth electrode includes a plurality of parallel electrode arms, each of the electrode arms including a first segment, an mth third segment, wherein the first -Θ -Μ segment with the horizontal direction with the horizontal direction -φ Shaw, the third segment and the horizontal direction at an angle 0, and the angle φ is greater than angle Θ. It should be noted that the liquid crystal display device further includes: a second pixel electrode disposed on the opposite electrode, spaced apart by at least an insulating layer, wherein the second pixel electrode includes a plurality of parallel electrode arms, Each of the 2-pole arms includes a first segment, a second segment, and a third segment; /, the first segment is at an angle of ~θ with the horizontal direction, and the second segment is one with the horizontal direction - The cp angle, the third segment forms an _θ angle with the horizontal direction, and the -Θ angle is greater than the _φ angle. What is more, the first halogen electrode is mirror-symmetrical to the first and second electrodes in a vertical direction or a horizontal direction. In order to achieve the above object, the present invention further provides a liquid crystal display device, comprising: a first substrate disposed opposite to a second substrate and spaced apart by a specific distance, a liquid crystal layer being sandwiched between the first substrate and the second substrate, a plurality of gate lines and a plurality of data lines are vertically arranged on the first substrate, wherein a plurality of secondary halogen regions are defined in a region between the gate lines and the data lines; and an opposite electrode is disposed on the first substrate a pixel region; and a halogen electrode disposed on the opposite electrode with an insulating layer; wherein the halogen electrode includes a plurality of parallel electrodes 0611-A32097TWF; Α06025yamngwo 丄·344υ: 31 滹丄 each electrode arm includes a first segment, a second segment, and a first segment; wherein the first segment is at an angle to the horizontal direction, and the second segment is at a φ angle to the horizontal direction. The third segment and the horizontal direction a - angle, where the two angles are greater than the φ angle; and wherein the pixel electrode further comprises a plurality of fourth: a first segment connecting the odd-numbered electrode arms and a third segment of the even-numbered electrode arms, and a plurality Each segment V connecting odd numbered electrode of the second segment and cooked even-numbered electrode of the first segment arm. In order to achieve the above object, the present invention further provides a liquid crystal display device comprising: a first substrate disposed opposite to a second substrate and spaced apart by: a specific distance; - the liquid crystal layer being lost to the first substrate and the second substrate a plurality of gate lines and a plurality of data lines are vertically arranged alternately with each other on the substrate, wherein a plurality of secondary halogen regions are defined between the gate = the region between the gate and the data line; and - the opposite electrode is disposed on Each of the sub-tenoxine regions on the substrate; the halogen electrode is disposed at the phase of the phase electrode to be spaced apart by at least an insulating layer; wherein the halogen electrode has a portion comprising a plurality of parallel electrode arms, each strip a first segment of the electrode, a second segment, and a third segment, and the segment forms an angle of -θ with the horizontal direction, and the second segment forms a -cp angle with the water ten direction. The horizontal direction is -θ angle, and =θ is at the Φ angle; and wherein the halogen electrode has a second portion, and a plurality of parallel electrode arms are included, and each of the electrode arms includes a first slave, a first Two segments, one third segment, segments and levels To ..., A, this is the -θ angle, the second print is at a -Φ angle with the horizontal direction. The third segment is horizontally ...^, and the _θ angle is greater than 〇611-A32097TWF; A〇6 〇25 waning w〇10 U44031 The -φ angle. The above objects, features and advantages of the present invention will become more apparent. The following is a detailed description of the preferred embodiment, and the following is a detailed description of the following: ° ° [Embodiment] The present invention provides a fringe electric field drive. The liquid crystal display device, in consideration of its low driving voltage (Vqp) requirements, can avoid the disclination effect and increase its aperture ratio (aperture) and transmittance. First Embodiment Fig. 3 is a top view showing an electrode structure of a halogen region of a fringe field-driven liquid crystal display according to a first embodiment of the present invention. In the active device array substrate structure 1G1a of FIG. 3, the unit electrode structure includes a plurality of gate lines 103 and a plurality of data lines ι7 are perpendicular to each other, and a plurality of sub-pixel regions. The area between 〇3 and the feed line 107. A counter fectrode 105 is disposed in each of the sub-tenox regions on the substrate 100. A 'first pixel electrode 113 is disposed on the opposite electrode 105, spaced apart to an insulating layer (please match the first insulating layer of FIG. 5) and the second insulating layer jio) where the first pixel electrode 1] 3 includes two electrode bars (bar) i3a parallel to the data line 107 and a plurality of parallel inclined electrode arms 1 ub, each of the inclined electrode arms including a first segment U3bl and a second segment 〇6H-A32 〇97TWF; A06025iiamngwo 11 1344031 113b2, and a third segment H3b3. The first segment 113b1 is at an angle to the horizontal direction, the second segment Ii3b2 is at an angle φ to the horizontal direction, the third segment 113b3 is at an angle of 0 to the horizontal direction, and the angle θ is greater than the angle φ. According to a preferred embodiment of the invention, the range of the corners is substantially equal to one. To 80. Between, or the range of Φ angles is greater than zero. To 79. between. Since the third segment 113b3 of the inclined electrode arm near the position of the electrode bar 113a (region D) is larger than the angle φ with the horizontal direction, the disclination effect can be avoided. Referring to FIG. 3 again, a thin film transistor element TFT is disposed at a position where the gate line 103 and the data line 107 are staggered, and the structure includes the gate 103, the channel and the source/drain 104, and the source contact i〇. 6a/bungee contact 106b. The drain contact l〇6b is electrically connected to the halogen electrode 113 via a contact window 109. Further, since the θ angle is designed to be larger than the φ angle, the demand for a low driving voltage (Vop) can be achieved, and the area occupied by the TFT of the thin film transistor element can be further reduced, thereby further increasing the aperture ratio. It should be noted that the substrate structure 101a of the embodiment of the present invention may further include an alignment film (not shown) formed on the halogen electrode 113 to be rubbed in a horizontal direction. 4A to 4F are views showing a decomposition step of a method of manufacturing a substrate electrode structure of a fringe field-driven liquid crystal display according to an embodiment of the present invention. Referring to FIG. 4A, a substrate 100, such as a transparent glass substrate or a plastic substrate, is first provided, and a patterned counter electrode is formed on the substrate 100. Referring to FIG. 4B, a patterned first metal layer is formed, which includes a gate line 103 and a common electrode (common 0611-A32097TWF; A06025 jamngwo 12 1344031, FIG. 5 shows a substrate of the edge electric field driven liquid crystal display of FIG. The electrode structure is along Α · A, a schematic view of the cutting line. Figure 6
二:5圖之邊緣電場驅動型液晶顯示器的基板電 ^構的纽電路圖。請參閱第5圖,畫素電㈣構的 ,極臂mb與相對電極105之間會產生儲存電容^虚 ,緣電容^。若電極臂131b與相對電極應之間重複區 域面積愈大,其間儲存電容Cst與邊緣電容^也愈大, 導致需要大的TFT元件控制其充放電。然而,大面積的 TFT兀件佔據過多的次畫素空間會導致顯示區域的開口 率ratl0)下降。有鑑於此,由於本發明實施例將 θ角设計成大於φ角’可達成低驅動㈣(V。的需求, 降低薄膜電晶體元件TFT所佔的面積,因此進一步 提咼其開口率(aperture ratio)。 第7圖係顯示根據本發明第一實施例的變化例之邊 緣電場驅動型液晶顯示器之晝素區的電極結構上視圖。 於第7圖主動元件陣列基板結構廳中,其主要結構類 似於,3圖之主動元件陣列基板結構1〇u,為簡明之故, 在此簡化其敘述,不同之處在於—第二晝素電極⑵包 括複數條平行的電極臂113b,各條電極臂包括一第一節 段、一第二節段、及一第三節段,其中該第一節段與水 =方向成一-Θ角,該第二節段與水平方向成一角,該 第二節段與水平方向成一角,且該_θ角大於該1角。 第8圖係顯示根據本發明第一實施例的另一變化例 之邊緣電場驅動型液晶顯示器之晝素區的電極結構上視 0611 -A32097TWF;A06025 y amngwo 14 圖。於第8圖中,其中該第一畫素電極Π3與該第二晝 素電極123沿水平方向成鏡像對稱。 旦 第9圖係顯示根據本發明第一實施例的又一變化例 之邊緣電場驅動型液晶顯示器之畫素區的電極 ^於第9、圖中,其中該第-晝素電極113與該第二晝 -電極123沿垂直方向成鏡像對稱。 第2實施例 第目絲特據本發㈣二#施例之邊緣 =第H晶顯示m素區的電極結構上視圖。請參 為了增加FFS型液晶顯示器的開Π率及穿透 複數二實施例之主動元件陣列基板結構101C, 2閘極線1〇3與複數條資料線1〇7 =-基板100上,其中複數的次晝素區域定義二 雨3與資科線1〇7之間的區域。各個次 :兩:f域,且電極結構對稱。一相對電極;05設置: 置上各個次晝素區域中。-畫素電極⑽ 極的上丰邱ί,1G3上,其間隔以至少-絕緣層。畫素電 臂包括-第-節段第二節段、Π節 其中該第-節段與水平方向成一-θ角,:;公:= im’該第三節段與水平方向成--e角,且-e ㈣角。旦素電極的下半部分包括複數條平行的電 極臂,各條電極臂包括一第一節段、= 〇611-A32097TWF;A06025uainngw〇 15 節奴,其中第一節段與水平方向成一 Θ角,第二節 &與水平方向成—9肖,第三節段與水平方 一, 且 Q 垒士 查:;φ角。應注意的是,晝素電極的上半部分與 旦素電極的下半部分沿垂直方向成鏡像對稱。 第3實施例 第11圖係顯示根據本發明第三實施例之邊緣電場 驅動型液晶顯示器之—畫素區的電極結構上視圖。請參 閱第11圖’為了進—步增加FFS型液晶顯示器的開口率 及穿透率,本發明第三實施例之主動元件陣列基板結構 1〇ld,其晝素區的電極結構包括複數條閘極線203與複 數條#料線207彼此垂直交錯設置於下基板上,其中複 數的··人旦素區域定義於閘極線2〇3與資料線之間的 區域。一相對電極(c〇unter electr〇de) 2〇5設置於下基板 上各個次晝素區域中。一晝素電極213設置於相對電極 205上,其間隔以一絕緣層,其中晝素電極213包括複數 條平行的傾斜電極臂213b,各條電極臂包括一第一節段 213bl、一第二節段213b2、及一第三節段213b3,其中 第一節段213M與水平方向成θ角,第二節段213b2與 水平方向成φ角,第三節段213b3與水平方向成θ角, 且Θ角大於φ角。以及,晝素電極213更包括複數個第 四節段213al各連接第奇數條電極臂的第一節段213Μ 與第偶數條電極臂的第三節段2i3b3,以及複數個第五節 段213a2各連接第奇數條電極臂的第三節段213b3與第 061 l-A32097TWF*,A06025yamngwo 16 1344031 條電極^的第—節段213bl。第四節段⑴心與第五 筇奴213a2罪近且平行於各資料線2〇7。更明確地說,晝 素,極213係一連續的s形折線結構。根據本發明之較 佳二%例,Θ角的範圍大抵介於厂至8〇。之間,或者屮角 :辜巳圍大抵介於〇 j_ 79。之間。由於傾斜電極臂的第三節 段213b3與水平方向所夾的Θ角大於φ角,因此可避免 黑線條效應(disclination effect)。 奸再者,畫素電極213的各個第四節段213al之間具 一第一開口 213c及各個第五節段213&2之間具一第二開 口 213c,以增加邊緣電場驅動型液晶顯示器裝置的穿透 率。根據本發明之較佳實施例,第一及第二開口 21化的 見度範圍大抵介於〇. 1 μη至1 之間。 再凊參閱第11圖,一薄膜電晶體元件TFT設置該 於閘極線203與資料線207交錯的位置,其結構包括閘 極203、通道與源極/汲極2〇4、以及源極接觸2〇6a/汲極 接觸206b。汲極接觸206b藉由一接觸窗209與畫素電極 213電性連接。並且由於將θ角設計成大於ψ角,可達成 低驅動電壓(Vcp)的需求,進而降低薄膜電晶體元件TFT 所佔的面積,因此進一步提高其開口率(aperturerati〇;)。 應注意的是’本發明第三實施例之基板結構l〇ld 上更可包括一配向膜(未圖示)形成於晝素電極213上,以 水平方向研磨(nibbing)配向。 本發明雖以較佳實施例揭露如上,然其並非用以限 定本發明的範圍’任何所屬技術領域中具有通常知識 0611-A32097TWF;A06025yaningwo 1344031 者,在不脫離本發明之精神和範圍内,當可做些許的更 動與潤飾,因此本發明之保護範圍當視後附之申請專利 範圍所界定者為準。 σ 【圖式簡單說明】 第1圖係顯示傳統邊緣電場切換(FFS)型液晶顯示 器的剖面示意圖; 龜 第2圖係顯示傳統邊緣電場切換(fFS)型液晶顯示 零器的上視圖; 、 第3圖係顯示根據本發明第一實施例之邊緣電場驅 動型液晶顯示器之畫素區的電極結構上視圖; 第4A至4F圖係顯示根據本發明實施例之邊緣電場 驅動型液晶顯示㈣基板電極結構的製造方法的分 驟示意圖; 第5圖係顯示第3圖之邊緣電場驅動型液晶顯示器 φ 的基板電極結構沿A_A,切割線的剖面示意圖; …第6圖係顯示第3與5圖之邊緣電場驅動型液晶顯 示器的基板電極結構的等效電路圖; ’ 第7圖係顯示根據本發明第-實施例的變化例之邊 •緣電場驅動型液晶顯示器之畫素區的電極結構上視圖; 第8圖係顯轉據本發明第—實施例的另—變化例 之邊緣f場驅動魏晶顯示器之晝素㈣電極結構上視 圖; 第9圖係顯示根據本發明第一實施例的又一變化例 061 l-A32097TWF;A06025yamngw< 18 1344031 之邊緣電場驅動型液晶_ 圖; 之畫素區的電極結構上视 第圖係顯示根據本發明第二實施例 驅動型液晶顯示弩之一佥去f運緣電~ ★ 貝丁斋之旦素Q的電極結構上視圖;以及 第U圖係顯示根據本發明第三實施例之邊 驅動型液晶顯示器之-晝素區的電極結構上視圖。每 【主要元件符號說明】 習知部分(第1、2圖) 1〜邊緣電場切換(FFS)型液晶顯示器 3〜閘極線; 5〜相對電極; 6b〜汲極接觸; 9〜接觸窗; Π〜相對電極; 13 a〜電極棒(bar); 14〜下配向層; 20〜第二基板; 25〜彩色濾光層; φ〜傾斜角;2: A circuit diagram of the substrate structure of the edge electric field-driven liquid crystal display of FIG. Please refer to Fig. 5, the structure of the pixel (four) structure, between the pole arm mb and the opposite electrode 105 will produce a storage capacitor ^ virtual, edge capacitance ^. If the area of the repeating region between the electrode arm 131b and the opposite electrode is larger, the storage capacitor Cst and the edge capacitance are larger, which results in the need for a large TFT element to control its charge and discharge. However, a large area of the TFT element occupies too much sub-picture space, which causes the aperture ratio of the display area to decrease. In view of this, since the embodiment of the present invention designs the angle θ to be larger than the angle φ, a low driving (four) (V.) requirement can be achieved, and the area occupied by the TFT of the thin film transistor element is reduced, thereby further improving the aperture ratio thereof. Fig. 7 is a top view showing an electrode structure of a halogen region of a fringe field-driven liquid crystal display according to a modification of the first embodiment of the present invention. In Fig. 7, the main structure of the active device array substrate structure hall Similarly, the active device array substrate structure 1〇u of FIG. 3 is simplified for the sake of brevity, except that the second halogen electrode (2) includes a plurality of parallel electrode arms 113b, and each electrode arm The invention includes a first segment, a second segment, and a third segment, wherein the first segment is at an angle to the water=direction, and the second segment is at an angle to the horizontal direction, the second segment The segment is at an angle to the horizontal direction, and the _θ angle is larger than the one angle. Fig. 8 is a view showing the electrode structure of the pixel region of the edge electric field-driven liquid crystal display according to another variation of the first embodiment of the present invention. 0611 -A32097TWF;A 06025 y amngwo 14 Figure. In Fig. 8, wherein the first pixel electrode Π3 and the second halogen electrode 123 are mirror-symmetrical in the horizontal direction. The ninth figure shows another embodiment according to the present invention. The electrode of the pixel region of the edge electric field-driven liquid crystal display of a variation is shown in FIG. 9, wherein the first-deuterium electrode 113 and the second meandering electrode 123 are mirror-symmetrical in the vertical direction. Example: According to the edge of the invention (4) 2, the edge of the H-th crystal shows the top view of the electrode structure of the m-region. Please refer to the example of increasing the opening ratio and penetrating complex of the FFS liquid crystal display. The active device array substrate structure 101C, the 2 gate line 1〇3 and the plurality of data lines 1〇7=-substrate 100, wherein the plurality of sub-tenox regions define an area between the rain 3 and the credit line 1〇7 Each time: two: f domain, and the electrode structure is symmetrical. A relative electrode; 05 setting: placed in each sub-tendin region. - pixel electrode (10) pole on the upper Feng Qiu, 1G3, the interval is at least - Insulation layer. The pixel arm includes a - segment - second segment, a section, and the first segment and level To become a-theta angle,:; public: = im' the third segment is at the angle of --e and the angle of -e (four). The lower half of the electrode includes a plurality of parallel electrode arms, each The electrode arm includes a first segment, = 〇 611-A32097TWF; A06025uainngw 〇 15 knot slaves, wherein the first segment is at an angle to the horizontal direction, the second segment & is horizontal with the direction - 9 XI, the third segment With the horizontal side, and Q barriers: φ angle. It should be noted that the upper half of the halogen electrode is mirror-symmetrical with the lower half of the denier electrode in the vertical direction. A top view of an electrode structure of a pixel region of a fringe field-driven liquid crystal display according to a third embodiment of the present invention is shown. Referring to FIG. 11 , in order to further increase the aperture ratio and transmittance of the FFS type liquid crystal display, the active device array substrate structure of the third embodiment of the present invention has a structure in which the electrode structure of the pixel region includes a plurality of gates. The pole line 203 and the plurality of stock lines 207 are vertically arranged on the lower substrate, wherein a plurality of human-drain regions are defined in a region between the gate line 2〇3 and the data line. A counter electrode (c〇unter electr〇de) 2〇5 is disposed in each sub-tenox region on the lower substrate. A unitary electrode 213 is disposed on the opposite electrode 205, and is separated by an insulating layer. The halogen electrode 213 includes a plurality of parallel inclined electrode arms 213b. Each of the electrode arms includes a first segment 213bl and a second segment. a segment 213b2, and a third segment 213b3, wherein the first segment 213M is at an angle θ with respect to the horizontal direction, the second segment 213b2 is at an angle φ with the horizontal direction, and the third segment 213b3 is at an angle θ with the horizontal direction, and The angle is greater than the angle φ. And, the halogen electrode 213 further includes a plurality of fourth segments 213a1, a first segment 213Μ connecting the odd-numbered electrode arms and a third segment 2i3b3 of the even-numbered electrode arms, and a plurality of fifth segments 213a2 The third segment 213b3 of the odd-numbered electrode arm is connected to the first segment 213b1 of the electrode 061 l-A32097TWF*, A06025yamngwo 16 1344031. The fourth segment (1) is close to the sin of the fifth slave 213a2 and parallel to the data line 2〇7. More specifically, the element 213 is a continuous s-fold line structure. According to a preferred example of the present invention, the range of the horns is generally between 8 and 8 inches. Between, or the corner: the circumference is mostly between 〇 j_ 79. between. Since the third segment 213b3 of the inclined electrode arm and the horizontal direction are larger than the angle φ, the disclination effect can be avoided. Further, each of the fourth segments 213a of the pixel electrodes 213 has a first opening 213c and a second opening 213c between each of the fifth segments 213 & 2 to increase the edge electric field-driven liquid crystal display device. The penetration rate. According to a preferred embodiment of the present invention, the first and second openings 21 have a visibility range between 〇. 1 μη and 1. Referring to FIG. 11, a thin film transistor element TFT is disposed at a position where the gate line 203 and the data line 207 are staggered, and the structure includes the gate 203, the channel and the source/drain 2 〇 4, and the source contact. 2〇6a/汲 pole contact 206b. The drain contact 206b is electrically connected to the pixel electrode 213 via a contact window 209. Further, since the θ angle is designed to be larger than the corner angle, the demand for a low driving voltage (Vcp) can be achieved, and the area occupied by the TFT of the thin film transistor element can be further reduced, thereby further increasing the aperture ratio thereof. It should be noted that the substrate structure 10d of the third embodiment of the present invention may further include an alignment film (not shown) formed on the halogen electrode 213 to be aligned in a horizontal direction. The present invention has been disclosed in the above preferred embodiments, and is not intended to limit the scope of the invention, which is to be construed as being in the scope of the present invention. A number of changes and modifications may be made, and the scope of the present invention is defined by the scope of the appended claims. σ [Simple description of the drawing] Fig. 1 is a schematic cross-sectional view showing a conventional edge electric field switching (FFS) type liquid crystal display; Turtle Fig. 2 is a top view showing a conventional edge electric field switching (fFS) type liquid crystal display device; 3 is a top view showing an electrode structure of a pixel region of a fringe field-driven liquid crystal display according to a first embodiment of the present invention; FIGS. 4A to 4F are diagrams showing a fringe field-driven liquid crystal display (4) substrate electrode according to an embodiment of the present invention; Schematic diagram of the manufacturing method of the structure; Fig. 5 is a schematic cross-sectional view showing the substrate electrode structure of the edge electric field-driven liquid crystal display φ of Fig. 3 along A_A, the cutting line; ... Fig. 6 shows the third and fifth figures An equivalent circuit diagram of a substrate electrode structure of a fringe field-driven liquid crystal display; 'Fig. 7 is a top view showing an electrode structure of a pixel region of a side-edge electric field-driven liquid crystal display according to a variation of the first embodiment of the present invention; Figure 8 is a top view showing the structure of the electrode (four) electrode of the Wei crystal display by the edge f field driving according to another variation of the first embodiment of the present invention; Shows another variation of the first embodiment of the present invention, 061 l-A32097TWF; A06025yamngw < 18 1344031, a fringe field-driven liquid crystal _ diagram; the electrode structure of the pixel region is shown in the second figure according to the present invention. Embodiment of the driving type liquid crystal display 佥 佥 运 运 ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ - Upper view of the electrode structure of the halogen region. [Main component symbol description] Conventional part (1st and 2nd drawings) 1~Edge electric field switching (FFS) type liquid crystal display 3 to gate line; 5~ opposite electrode; 6b~汲 pole contact; 9~ contact window; Π~counter electrode; 13 a~electrode rod (bar); 14~lower alignment layer; 20~second substrate; 25~color filter layer; φ~tilt angle;
4〜通道與源極/汲極; 6a〜源極接觸; 7〜資料線; 10〜第一基板; 13〜畫素電極; 13b〜傾斜的電極臂; 15〜絕緣層; 24〜上配向層; 3 0〜液晶層, TFT〜薄膜電晶體元件。 本案部分(第1〜20圖) 100〜基板; 100a、100b、100c、100d〜主動元件陣列基板結構; 0611-A32097TWF;A06025jamngwo 19 1344031 103、 203〜閘極線; 104、 204〜半導體島; 105、 205〜相對電極(counter electrode); 106a、206a〜源極接觸; 106b、206b〜沒極接觸; 107、 207〜資料線; 108、 208〜共同電極(common electrode)線; 109、 209〜接觸窗; 113、123、133、213〜晝素電極; 113 a〜電極棒(bar); 113b、213b〜傾斜的電極臂; 213a2〜第五節段; φ、Θ〜傾斜角; Cst〜儲存電容; D〜區域。 113bl、213bl〜第一節段; 113b2、213b2〜第二節段; 113b3、213b3〜第三節段; 213al〜第四節段; 213c〜第一、第二開口; TFT〜薄膜電晶體元件; C f~邊緣電容, 0611-A32097TWF;A06025;jamngwo 204~ channel with source/drain; 6a~ source contact; 7~ data line; 10~ first substrate; 13~ pixel electrode; 13b~ slanted electrode arm; 15~ insulating layer; 24~ upper alignment layer ; 3 0 ~ liquid crystal layer, TFT ~ thin film transistor components. Part of the case (Figs. 1-20) 100~substrate; 100a, 100b, 100c, 100d~ active device array substrate structure; 0611-A32097TWF; A06025jamngwo 19 1344031 103, 203~ gate line; 104, 204~ semiconductor island; 205~counter electrode; 106a, 206a~ source contact; 106b, 206b~ immersion contact; 107, 207~ data line; 108, 208~common electrode line; 109, 209~ contact Window; 113, 123, 133, 213 ~ halogen electrode; 113 a ~ electrode rod (bar); 113b, 213b ~ inclined electrode arm; 213a2 ~ fifth segment; φ, Θ ~ tilt angle; Cst ~ storage capacitor ; D ~ area. 113b1, 213b1 to the first segment; 113b2, 213b2 to the second segment; 113b3, 213b3 to the third segment; 213al to the fourth segment; 213c to the first and second openings; TFT~ thin film transistor element; C f ~ edge capacitance, 0611-A32097TWF; A06025; jamngwo 20