TWI341854B - The microwave absorbing materials - Google Patents

The microwave absorbing materials Download PDF

Info

Publication number
TWI341854B
TWI341854B TW95140408A TW95140408A TWI341854B TW I341854 B TWI341854 B TW I341854B TW 95140408 A TW95140408 A TW 95140408A TW 95140408 A TW95140408 A TW 95140408A TW I341854 B TWI341854 B TW I341854B
Authority
TW
Taiwan
Prior art keywords
thickness
graphite powder
weight
graphite
composition
Prior art date
Application number
TW95140408A
Other languages
Chinese (zh)
Other versions
TW200821347A (en
Inventor
Kuang Ming Kuo
Ying Hsien He
Chi Ching Chang
Original Assignee
Chung Shan Inst Of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Shan Inst Of Science filed Critical Chung Shan Inst Of Science
Priority to TW95140408A priority Critical patent/TWI341854B/en
Publication of TW200821347A publication Critical patent/TW200821347A/en
Application granted granted Critical
Publication of TWI341854B publication Critical patent/TWI341854B/en

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Soft Magnetic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

1341854 七、 指定代表圖: (一) 本案指定代表圖為: 圖2樣本電磁波衰減與頻率關係曲線圖- (二) 本代表圖之元件符號簡單說明: 9樣本1石墨粉末25%薄片厚度lmm反射衰 減曲線。 1 0樣本2石墨粉末27.5%薄片厚度〇.97mm 反射衰減曲線。 1 1樣本3石墨粉末30%薄片厚度〇.97mm 血‘ 反射衰減曲線。 八、 本案若有化學式時,請揭示最能顯示發明 特徵的化學式: 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種可衰減微波的電磁波 材料,主要以微米尺寸粒徑的石墨粉、高分子 聚合物與分散助劑攪拌後,製成薄片貼復於金 屬表面,達到衰減電磁波之目的。1341854 VII. Designated representative map: (1) The representative representative figure of this case is as follows: Figure 2: Sample electromagnetic wave attenuation and frequency relationship graph - (2) Simple description of the component symbol of this representative figure: 9 sample 1 graphite powder 25% thin film thickness lmm reflection Attenuation curve. 1 0 sample 2 graphite powder 27.5% sheet thickness 〇.97 mm reflection attenuation curve. 1 1 sample 3 graphite powder 30% sheet thickness 〇.97mm blood ‘reflection decay curve. 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: IX. Description of the invention: [Technical field of the invention] The present invention relates to an electromagnetic wave material capable of attenuating microwaves, mainly of graphite having a micron size After the powder, the polymer and the dispersing aid are stirred, the sheet is applied to the metal surface to attenuate the electromagnetic wave.

【先前技術】 吸波材料按吸收劑的不同,大概可 性材料和介電吸波材料兩類。磁性吸波 通過控制添加的磁性材料的性質、重量 及厚度來獲得材料高導磁率的特性,藉 磁參數進行設計,來調節吸波材料的 能’使其能在設計厚度内達到所需的 配’從而獲得最佳的吸波效能。介電型 料是將材料設計成表面阻抗接近自由 ^ ’介電常數沿吸波材料厚度方向逐步 這樣有助於電磁波的穿透和吸收而減 4 1341854 反射’介電型損耗材料 化矽或碳化矽織維等, 墨、乙炔碳黑、碳[Prior Art] Absorbing materials are classified into two types according to the difference of the absorbent, the viscous material and the dielectric absorbing material. The magnetic absorbing wave obtains the high magnetic permeability of the material by controlling the nature, weight and thickness of the added magnetic material, and is designed by magnetic parameters to adjust the energy of the absorbing material to achieve the desired distribution within the designed thickness. 'To get the best absorbing performance. The dielectric type material is designed such that the surface impedance is close to the free ^' dielectric constant gradually along the thickness direction of the absorbing material, which contributes to the penetration and absorption of electromagnetic waves minus 4 1341854 reflection 'dielectric loss material 矽 or carbonization矽, etc., ink, acetylene carbon black, carbon

的電損耗正切角,依靠介是具有較高 極化、分子極化、界:::3子極化、離子 介電材料以碳黑使用最真衣減吸收電磁波。 輕,化學性能穩定性佳及古泛’因其有比重 而磁性粉末從50年代二^電常數等特性。 波材料,以鐵氧磁粉末最廣泛應用於吸 …性粉末較介粉電末性最材具=’在W… 寬及厚度,但:t古壬,材枓有較佳的吸收頻 Ji招Ϊ有重量過重的缺點。 改善頻寬及吸收性能可以 變外型來達成,由美國專利公報第、 6784419 及 6670546 ft 接屮南丨 ra 抓荆 < 外上 號徒出利用吸波材料結合 权计、磁性及介電性多層設計,來改 寬及吸收性能。雖然上述發明均 ^ ^ ,,強的特點,但在x_Band=2i έ ’存在厚度厚及重量重等缺點。The electrical loss tangent angle depends on the high polarization, molecular polarization, boundary:::3 sub-polarization, and the ion dielectric material uses carbon black to reduce the absorption of electromagnetic waves. Light, good chemical stability and ancient characteristics 'Because of its specific gravity, the magnetic powder has characteristics such as electric constant from the 1950s. Wave material, the most widely used ferrite powder is used to absorb the powder. The powder is the most suitable for the electrical end of the powder = 'W in W... width and thickness, but: t ancient, the material has a better absorption frequency Ji stroke Ϊ has the disadvantage of being overweight. The improvement of the bandwidth and the absorption performance can be achieved by changing the shape. The US Patent Publication No. 6784419 and 6670546 ft are connected to the 丨 丨 & & 外 外 外 外 外 外 外 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用Multi-layer design to widen and absorb performance. Although the above inventions are both strong and characteristic, there are disadvantages such as thick thickness and heavy weight at x_Band = 2i έ '.

介電材料以碳黑使用最為廣泛,因其有比 重輕,化學性能穩定性佳、高介電常數及高損 耗項等特性,但因其具有高損耗項特性,常造 成與自身高介電常數無法匹配,因此添加量被 限制在約25〜30%wt,造成厚度太厚為其缺點; 石墨為礙原素的同素異形體,同具有質量輕、 化學穩定佳’較高的介電常數值,與高分子材 料混合後’其損耗項較小,較易匹配,極適合 用於製做微波吸收材料’本發明藉由微米級石 墨粉末與環氧樹脂混合’並添加特殊分散助劑 製作薄片型吸收體,製得吸收效果佳、厚度 薄、重量輕的吸波體。 【發明内容】 理想的吸波材料的電磁參數應具有以下 特徵:在很寬的頻帶内μ==ε,且虛部大,即損 耗大。因此要吸收電磁波必需滿足兩個基本 條件:(1)電磁波入射到材料表面時,電磁 波能最大限度地進入材料内部(匹配特性)。 (2)進入材料内部的電磁波能迅速地幾乎全 部衰減掉(衰減特性)。電磁波前進遇到不同 介質時’可能行徑有反射、散射、穿透或在 介質内共振。一般而言,介質的電磁特性可 經由介電常數(ε)及導磁率(μ)加以描述。 ε及μ均為複數’ f = ,a 〃。金 屬表面上如貼覆一層均勻吸波材時,其厚度 為d,當電磁波入射至吸波材時,根據電磁波 基本的Maxwe丨丨,s Equations及邊界條件 (Boundary Condition),電磁波可能在介質 内產生共振現象,亦即入射電磁波能量藉由 共振轉換為介質内的自旋進動(Precession of Spin) ’最後變成熱能消散,宛若入射之電磁 波能量被介質吸收。根據電磁理論電場與磁 場邊界條件,平面電磁波入射到貼有金屬板 之薄片吸波體其示意如圖1.可推導電磁波反 射係數為 6 1341854Dielectric materials are most widely used in carbon black, because of their low specific gravity, good chemical stability, high dielectric constant and high loss, but they have high dielectric constants due to their high loss properties. Can not match, so the amount of addition is limited to about 25~30% wt, causing the thickness to be too thick, which is a disadvantage; graphite is an allotrope of the element, which has the same light weight and good chemical stability. The value, after mixing with the polymer material, has a small loss term and is easy to match. It is very suitable for making a microwave absorbing material. The present invention is prepared by mixing micron-sized graphite powder with epoxy resin and adding a special dispersing aid. The sheet type absorber has an absorber having a good absorption effect, a small thickness, and a light weight. SUMMARY OF THE INVENTION The electromagnetic parameters of an ideal absorbing material should have the following characteristics: μ == ε in a wide frequency band, and the imaginary part is large, that is, the loss is large. Therefore, it is necessary to satisfy two basic conditions for absorbing electromagnetic waves: (1) When electromagnetic waves are incident on the surface of the material, the electromagnetic waves can enter the inside of the material to the maximum extent (matching characteristics). (2) The electromagnetic wave entering the inside of the material is rapidly and almost completely attenuated (attenuation characteristic). When electromagnetic waves advance into different media, the path may reflect, scatter, penetrate, or resonate within the medium. In general, the electromagnetic properties of a medium can be described by a dielectric constant (ε) and a magnetic permeability (μ). Both ε and μ are complex ' f = , a 〃. When a uniform absorbing material is applied to the metal surface, its thickness is d. When electromagnetic waves are incident on the absorbing material, electromagnetic waves may be in the medium according to the fundamental Maxwe丨丨, s Equations and Boundary Condition of the electromagnetic wave. Resonance occurs, that is, the incident electromagnetic wave energy is converted into a precession of spin in the medium by resonance, and finally the heat energy is dissipated, as if the incident electromagnetic wave energy is absorbed by the medium. According to the electromagnetic field electric field and magnetic field boundary conditions, the plane electromagnetic wave is incident on the sheet absorbing body with the metal plate attached as shown in Fig. 1. The reversible conductive magnetic wave reflection coefficient is 6 1341854

Etanh(y Γ = 1_£_c_Etanh(y Γ = 1_£_c_

Stanh(y^5) + 1 V ε cStanh(y^5) + 1 V ε c

其中€ = 〆-/*£·",芦。因此,反射係數 Γ為(f、d、6*'、〆、〆、//")六個參數的方 程式,且osrsl,在此定義衰減值D,單位為 分貝(dB) Ζ)ξ201(^Γ|對衰減值超過 20dB,即 |Γ|<0.1,上述反射係數之六個參數需適當的匹 配始能達到。本發明使用的微米石墨粉末製 成的吸收體經由自由空間量測法,量得導磁 係數特性,實部趨近於1,虛部趨近於零,對 整體吸收性能影響很低可忽略,主要還是決 定於介電常數值的高低,故微米石墨可視為 純介電型吸波材料。Where € = 〆-/*£·", reed. Therefore, the reflection coefficient Γ is an equation of six parameters (f, d, 6*', 〆, 〆, ///quot;), and osrsl, here defines the attenuation value D in decibels (dB) Ζ) ξ 201 ( ^Γ|For the attenuation value exceeding 20dB, that is, |Γ|<0.1, the six parameters of the above reflection coefficient can be achieved by appropriate matching. The absorber made of micron graphite powder used in the present invention is subjected to free space measurement. The magnetic permeability coefficient is measured, the real part approaches 1 and the imaginary part approaches zero. The effect on the overall absorption performance is negligible, which is mainly determined by the value of the dielectric constant. Therefore, micron graphite can be regarded as pure media. Electrical absorbing material.

本發明採用粒徑為30;tzm石墨為吸收材 料,經由添加適當重量百分比的高分子聚合物 與分散助劑調整吸波體電磁參數匹配,於 X-Band頻段吸收值即可製得大於 20dB以 上,且厚度小於 1.0mm,重量小於 1.3kg/m2 的吸收体,此種厚度及重量,均己優於己發表 介電吸波材,厚度為 1.5mm~3.0mm,重量 2.0~3.0kg/m2 , 磁性吸波材,厚度為 1.5mm~2.0mm,重量 3.0~6.0kg/m2 之公開之資 料。 【實施方式】 本發明採用石墨德固公司代號為FF3 3之 1341854 3 0以m微米級石墨粉末,分別設計 2 5〜3 Ο % 重量百分比,與環氧樹脂依不同重量百分比混 合,加入適當陰離子性高分子介面活性劑為分 散助劑,並用三滚筒研磨分散至細度小於5私 m以下,將研磨完成之漿料置於均勻厚度之鋁 製模具中,將模具於適當溫度與壓力加熱,製 成薄片型後離形脫模即成。材料配方詳如表 1 ' 2 °The invention adopts the particle size of 30; tzm graphite as the absorbing material, and adjusts the electromagnetic parameter matching of the absorbing body by adding an appropriate weight percentage of the high molecular polymer and the dispersing aid, and the absorption value in the X-Band band can be more than 20 dB. The absorbent body having a thickness of less than 1.0 mm and a weight of less than 1.3 kg/m2 is superior to the published dielectric absorbing material, having a thickness of 1.5 mm to 3.0 mm and a weight of 2.0 to 3.0 kg/m2. , magnetic absorbing materials, thickness of 1.5mm ~ 2.0mm, weight 3.0 ~ 6.0kg / m2 of the public information. [Embodiment] The present invention adopts Graphite Degu Company's 1341854 3 0 micron-sized graphite powder, which is designed to be 2 5~3 Ο % by weight, respectively, and is mixed with epoxy resin according to different weight percentages, and a suitable anion is added. The polymer interface activator is a dispersing aid, and is dispersed by a three-roller to a fineness of less than 5 ng. The milled slurry is placed in an aluminum mold of uniform thickness, and the mold is heated at an appropriate temperature and pressure. After being made into a sheet type, it is released from the mold. The material formula is detailed as shown in Table 1 ' 2 °

比較例採用 CABOT公司代號為 XC-72 粒徑為0· 1 y m之碳黑粉末,分別設計25%重 量百分比,與環氧樹脂依不同重量百分比混 合,加入適當陰離子性高分子介面活性劑為分 散助劑,並用三滾筒研磨分散至細度小於5 # m以下,將研磨完成之漿料置於均勻厚度之鋁 製模具中,將模具於適當溫度與壓力加熱,製 成薄片型後離形脫模即成。材料配方詳如表 表1.材料配方成份表The comparative example uses CABOT company code XC-72 carbon black powder with particle size of 0·1 ym, respectively designed 25% by weight, mixed with epoxy resin according to different weight percentage, adding appropriate anionic polymer interface agent for dispersion Additives, and use three-roller grinding to disperse to less than 5 # m. The slurry is placed in a uniform thickness of aluminum mold, and the mold is heated at an appropriate temperature and pressure to form a sheet-shaped shape. The model is ready. The material formula is as shown in Table 1. Table of material formula ingredients

A材料編號及Wt% B 高分子 聚合物 Wt% 分散助劑 phr 對 A+B 編號 Wt°/〇 FF33 2 5% 75% 10 p h r FF33 2 7.5 % 72.5 10 phr FF33 3 0% 70% 10 phr VULCAN XC-72 2 5% 75% 10 phr 1341854 表2.高分子聚合物成分組成表 A環氧樹 脂 B軟質環氧 樹脂稀釋劑 C 硬化剤 對A + B D 分散劑 對A + B 70% 3 0% 3 5p h r 50phr 環氧樹脂:Shell Chemical EPON 828A material number and Wt% B polymer Wt% dispersing aid phr pair A+B number Wt°/〇FF33 2 5% 75% 10 phr FF33 2 7.5 % 72.5 10 phr FF33 3 0% 70% 10 phr VULCAN XC-72 2 5% 75% 10 phr 1341854 Table 2. Composition of polymer composition Table A Epoxy resin B Soft epoxy resin thinner C Hardened 剤 Pair A + BD Dispersant A + B 70% 3 0% 3 5p hr 50phr Epoxy: Shell Chemical EPON 828

軟質環氧樹脂稀釋劑:Dow Chemical DER 732Soft epoxy resin thinner: Dow Chemical DER 732

硬化刺:Jeffamine D-230 分散劑:ED211 範例一 ··取FF33石墨與表二之環氧樹脂 及分散助劑依重量比 25% : 75%及 10%之比 例混合攪拌均勻再經三滾筒研磨分散至5/zm 以下倒入銘製1mm模具中加壓至70kg/cm2、 加熱120°C、30分鐘脫模即成。 範例二:取FF3 3石墨與表二之環氧樹脂 及分散助劑依重量比27.5% : 72.5%及10%之 比例混合攪拌均勻再經三滾筒研磨分散至 5 仁m 以下倒入鋁製 1mm 模具中加壓至 7 0kg/cm2、加熱120 °C、30分鐘脫模即成。 範例三:取FF3 3石墨與表二之環氧樹脂 及分散助劑依重量比 30% : 70 %及 10%之比 例混合攪拌均勻再經三滚筒研磨分散至5仁m 以下倒入鋁製1mm模具中加壓至70k g/cm2、 加熱120°C、30分鐘脫模即成。 將製作完成之膠片以 Damaskos自由空 間法材質量測系統,量測樣本吸波特性。 9 1341854Hardening thorn: Jeffamine D-230 Dispersing agent: ED211 Example 1. Take FF33 graphite and Table 2 epoxy resin and dispersing aid according to the weight ratio of 25%: 75% and 10%, mix and stir evenly and then grind through three barrels. Disperse to 5/zm or less and pour into a 1mm mold to pressurize to 70kg/cm2, heat at 120°C, and release the mold for 30 minutes. Example 2: Take FF3 3 graphite and the epoxy resin and dispersing aid of Table 2 according to the weight ratio of 27.5%: 72.5% and 10%, mix and stir evenly and then disperse to 5 min. The mold was pressed to 70 kg/cm2, heated at 120 °C, and released for 30 minutes. Example 3: Take FF3 3 graphite and the epoxy resin and dispersing aid of Table 2 according to the weight ratio of 30%: 70% and 10%, mix and stir evenly and then disperse to 5 mins by three barrels and pour into 1mm of aluminum. The mold was pressed to 70 k g/cm2, heated at 120 ° C, and released for 30 minutes. The finished film was measured by the Damaskos free space material quality measurement system to measure the sample absorbing properties. 9 1341854

範例一微波量測結果 項目 範例一 厚度(mm) 1mm 重量(kg/m2) 1.27kg/m2 吸收特性圖 圖2中之曲線9 最大衰減強度(dB) 21.32dB 最大衰減頻率(GHz) 11.82GHz 範例二微波吸收特性量測結果: 項目 範例二 厚度(mm) 0.97mm 重量(kg/m2) 1.26kg/m2 吸收特性圖 圖2 中之曲線10 最大衰減強度(dB) 22.95dB 最大衰減頻率(GHz) 10.62GHz 範例三微波吸收特性量測結果: 項目 範例三 厚度(mm) 0.97mm 重量(kg/m2) 1.29kg/m2 吸收特性圖 圖2 中之曲線11 最大衰減強度(dB) 20.02dB 最大衰減頻率(GHz) 9.62GHzExample 1 Microwave Measurement Results Example 1 Thickness (mm) 1mm Weight (kg/m2) 1.27kg/m2 Absorption characteristic diagram Curve 9 in Figure 2 Maximum attenuation intensity (dB) 21.32dB Maximum attenuation frequency (GHz) 11.82GHz Example Two microwave absorption characteristics measurement results: Item Example 2 Thickness (mm) 0.97mm Weight (kg/m2) 1.26kg/m2 Absorption characteristic diagram Curve in Figure 2 Maximum attenuation intensity (dB) 22.95dB Maximum attenuation frequency (GHz) 10.62GHz Example 3 Microwave Absorption Characteristics Measurement Results: Item Example 3 Thickness (mm) 0.97mm Weight (kg/m2) 1.29kg/m2 Absorption characteristic diagram Curve in Figure 2 Maximum attenuation intensity (dB) 20.02dB Maximum attenuation frequency (GHz) 9.62GHz

比較例微波吸收特性量測結果: 項目 比較例 厚度(mm) 2.10mm 重量(kg/m2) 2.29kg/m2 最大衰減強度(dB) 22.02dB 10 1341854Comparative example Microwave absorption characteristics measurement results: Item Comparative example Thickness (mm) 2.10mm Weight (kg/m2) 2.29kg/m2 Maximum attenuation intensity (dB) 22.02dB 10 1341854

最大衰減頻率(GHz) 9.60GHz 實驗結果綜合分析: 項目 範例一 範例二 範例三 比較例 粉末粒徑 3 0 /z m 3 0 // m 3 0仁m 0 . 1 // m 粉末與樹脂 重量比% 25:75 27.5 : 72.5 30 : 70 25:75 厚度(mm) 1.00 0.97 0.97 2.10 重量 (kg/ m2) 1.27 1.26 1.29 2.29 最大衰減強 度(dB) 21.32 22.95 20.22 -20.02 最大衰減頻 率(GHz) 11.82 10.62 9.62 9.60 10dB 衰減 頻寬(GHz) 1.77 1.68 1.53 1.50 衰減 10dB 起始頻率 (GHz) 10.89〜 12.66 9.81 〜 11.49 8.88 〜 10.41 8.80- 14.30 20dB 頻寬 (GHz) 0.27 0.15 0.09 0.08 衰減 20dB 起始頻率 (GHz) 11.70〜 11.97 10.47 〜 10.62 9.57 〜 9.66 9.56 〜9.65 由上述比較表我們可以明顯看出,本發明 以微米粒徑石墨粉末25〜30 % wt與環氧樹脂 70〜75 % wt製成厚度小於或等於1mm,重量 小於 1.30kg/m2的薄片型吸收材料,於 8〜 12GHz主峰均有20dB以上的吸收性能表現, 1341854 10dB頻寬約為 2GHz,本發明成果有效減輕 重量及厚度,提昇X-Band頻段吸收性能。 因此本發明具有在 X-Band頻段重量較 輕、吸收效果較佳、厚度較薄、重量較輕等優 點,適合應用於X-Band頻段之吸波材料。 【圖式簡單說明】 圖1電磁波正向入射進入背面貼覆金屬板之 薄片吸收體示意圖。 圖2樣本電磁波衰減大於20 dB與頻率關係 圖。Maximum attenuation frequency (GHz) 9.60 GHz Comprehensive analysis of experimental results: Project example 1 Example 2 Example 3 Comparative example Powder particle size 3 0 /zm 3 0 // m 3 0 kernel m 0 . 1 // m Powder to resin weight ratio % 25:75 27.5 : 72.5 30 : 70 25:75 Thickness (mm) 1.00 0.97 0.97 2.10 Weight (kg/ m2) 1.27 1.26 1.29 2.29 Maximum attenuation strength (dB) 21.32 22.95 20.22 -20.02 Maximum attenuation frequency (GHz) 11.82 10.62 9.62 9.60 10dB Attenuation bandwidth (GHz) 1.77 1.68 1.53 1.50 Attenuation 10dB Starting frequency (GHz) 10.89~ 12.66 9.81 ~ 11.49 8.88 ~ 10.41 8.80- 14.30 20dB Bandwidth (GHz) 0.27 0.15 0.09 0.08 Attenuation 20dB Starting frequency (GHz) 11.70~ 11.97 10.47 ~ 10.62 9.57 ~ 9.66 9.56 ~ 9.65 From the above comparison table, it can be clearly seen that the present invention is made of a micron-sized graphite powder of 25 to 30% wt and an epoxy resin of 70 to 75 % wt to a thickness of less than or equal to 1mm, the sheet-type absorbing material with a weight less than 1.30kg/m2 has an absorption performance of 20dB or more at the main peak of 8~12GHz, and the 1341854 10dB bandwidth is about 2GHz, and the present invention effectively reduces the weight. Thickness, to enhance absorption performance X-Band frequency band. Therefore, the invention has the advantages of light weight in the X-Band frequency band, better absorption effect, thinner thickness and lighter weight, and is suitable for the absorbing material of the X-Band frequency band. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view of a sheet absorption body in which a positive wave of electromagnetic waves is incident on a back side of a metal plate. Figure 2 shows the relationship between sample electromagnetic wave attenuation greater than 20 dB and frequency.

【主要元件符號說明】 1介電型石墨粉吸收薄片。 2背覆金屬板。 3自由空間入射電磁波。 4吸波體電磁、介電參數。 5吸波體反射回自由空間電磁波。 6吸收薄片厚度為0的z軸位置。 7吸收薄片厚度為d的z轴位置。 8電磁波傳播行進+z軸方向。[Main component symbol description] 1 Dielectric graphite powder absorption sheet. 2 back cover metal plate. 3 free space incident electromagnetic waves. 4 electromagnetic and dielectric parameters of the absorber. 5 The absorber is reflected back to the free-space electromagnetic wave. 6 absorbs the z-axis position where the sheet thickness is zero. 7 absorbs the z-axis position of the sheet thickness d. 8 electromagnetic wave propagation travels +z axis direction.

9樣本1薄片厚度lmm石墨粉含量為25%之反 射衰減曲線。 10樣本2薄片厚度0. 9 7mm石墨粉含量為 27.5%之反射衰減曲線。 1 1樣本3薄片厚度0.97mm石墨粉含量為 30%之反射衰減曲線。9 sample 1 sheet thickness lmm graphite powder content is 25% of the reflection attenuation curve. 10 sample 2 sheet thickness 0. 9 7mm graphite powder content is 27.5% of the reflection attenuation curve. 1 1 sample 3 sheet thickness 0.97mm graphite powder content is 30% of the reflection attenuation curve.

Claims (1)

1341854 i-----l 十、申請專利範圍: :一----------- 1. 一種微米石墨粉X頻吸收材料组成物,包含: (a) —種粒徑25 〜35// m細解片狀的石墨 粉末,其含董為25〜30wt% ; (b) —種高分子聚合物,其含量為7 0〜75wt%; (c) 一種分散助劑,其含量為(a)與(b)總和的 〇>x2 10wt% ; 將(a)加入(b)及(c)中攪拌均勻後, 經三滾筒研磨分散後,倒入模具中加壓加熱 製成薄片狀即成》 2 ·如申請專利範圍第1項之組成物,其中(a) 石墨的純度為95.0〜97.0 %。 3·如申請專利範園第1項之组成物,其中(b) 係指環氧樹脂、環氧軟質稀釋劑及其硬化劑。 4·如申請專利範圍第1項之组成物,其中(c) 係指陰離子性高分子介面活性劑具有使石墨 粉末分散者。1341854 i-----l X. Patent application scope: :----------- 1. A micro-graphite powder X-frequency absorbing material composition, comprising: (a) a particle size of 25 〜35// m finely disintegrated graphite powder containing Dong to 25~30wt%; (b) a high molecular polymer content of 70~75wt%; (c) a dispersing aid The content is 总>x2 10wt% of the sum of (a) and (b); (a) is added to (b) and (c) and stirred uniformly, and then dispersed by three-roller grinding, poured into a mold and heated under pressure. In the form of a sheet, the composition of the first aspect of the patent application, wherein (a) the purity of the graphite is 95.0 to 97.0%. 3. For example, the composition of the first paragraph of the patent application garden, wherein (b) means epoxy resin, epoxy soft diluent and hardener. 4. The composition of claim 1 wherein (c) means that the anionic polymeric surfactant has a graphite powder dispersed.
TW95140408A 2006-11-01 2006-11-01 The microwave absorbing materials TWI341854B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95140408A TWI341854B (en) 2006-11-01 2006-11-01 The microwave absorbing materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95140408A TWI341854B (en) 2006-11-01 2006-11-01 The microwave absorbing materials

Publications (2)

Publication Number Publication Date
TW200821347A TW200821347A (en) 2008-05-16
TWI341854B true TWI341854B (en) 2011-05-11

Family

ID=44770446

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95140408A TWI341854B (en) 2006-11-01 2006-11-01 The microwave absorbing materials

Country Status (1)

Country Link
TW (1) TWI341854B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI401020B (en) * 2010-02-02 2013-07-01 Univ Feng Chia Microwave Absorbing Composites
RU2561453C2 (en) * 2012-10-23 2015-08-27 Павел Евгеньевич Александров Material absorbing electromagnetic waves
CN111380928B (en) * 2020-03-30 2022-12-02 北京工业大学 Reflection characteristic-based method for detecting wave-absorbing performance of carbon nanotube wave-absorbing material
CN113346249B (en) * 2021-06-10 2022-07-12 西安电子科技大学 Water-based interlayer super-surface adjustable coherent wave absorber

Also Published As

Publication number Publication date
TW200821347A (en) 2008-05-16

Similar Documents

Publication Publication Date Title
Liu et al. Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black
CN107638851B (en) Bell-shaped Fe3O4@void@SiO2Nano-chain and preparation method
CN112812660B (en) Coating with high thermal conductivity and high wave absorption performance and preparation method thereof
TWI341854B (en) The microwave absorbing materials
Xu et al. Effects of multi-walled carbon nanotubes on the electromagnetic absorbing characteristics of composites filled with carbonyl iron particles
Ma et al. Effect of surface modified SiO 2 powders on microwave absorbing properties of flaky FeSiAl coatings
Ren et al. Microwave absorption properties of double-layer absorber based on carbonyl iron/barium hexaferrite composites
Zhou et al. FeSiAl/ZnO-filled resin composite coatings with enhanced dielectric and microwave absorption properties
Qing et al. Aligned Fe microfiber reinforced epoxy composites with tunable electromagnetic properties and improved microwave absorption
CN109943018A (en) Wave absorbing agent, absorbing material and respective preparation method
CN110385903A (en) A kind of lightweight broad-band absorbing material and preparation method thereof based on impedance Meta Materials
Duan et al. Electromagnetic properties of carbonyl iron and their microwave absorbing characterization as filler in silicone rubber
Xie et al. Three-dimensional periodic structured absorber for broadband electromagnetic radiation absorption
Rezazadeh et al. Microwave absorption properties of double‐layer nanocomposites based on polypyrrole/natural rubber
Pan et al. Electromagnetic and microwave absorption properties of coatings based on spherical and flaky carbonyl iron
CN108822797A (en) A kind of titanium silicon-carbon composite wave-absorbing agent and the preparation method and application thereof
Saini et al. Dual band resonance in tetragonal BaTiO3/NBR composites for microwave absorption applications
Zhong et al. Sandwich-like graphite–fullerene composites with enhanced electromagnetic wave absorption
JP2014239236A (en) Thermally conductive sheet
RU2502766C1 (en) Radar absorbent material and method of making radar absorbent coating
RU2417491C1 (en) Radar absorbing material
JP2010186856A (en) Heat conductive sheet
Srikanth et al. Graphene/polymer nanocomposites as microwave absorbers
Jinghua et al. Electromagnetic parameters and microwave-absorption properties for the mixtures of mechanically milled spherical and flaky carbonyl iron powders
CN111017902A (en) Preparation method of three-dimensional continuous porous carbon material