TW200821347A - A microwave absorbing material - Google Patents

A microwave absorbing material Download PDF

Info

Publication number
TW200821347A
TW200821347A TW95140408A TW95140408A TW200821347A TW 200821347 A TW200821347 A TW 200821347A TW 95140408 A TW95140408 A TW 95140408A TW 95140408 A TW95140408 A TW 95140408A TW 200821347 A TW200821347 A TW 200821347A
Authority
TW
Taiwan
Prior art keywords
weight
thickness
absorption
band
composition
Prior art date
Application number
TW95140408A
Other languages
Chinese (zh)
Other versions
TWI341854B (en
Inventor
Kuang-Ming Kuo
Ying-Hsien He
Chi-Ching Chang
Original Assignee
Chung Shan Inst Of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Shan Inst Of Science filed Critical Chung Shan Inst Of Science
Priority to TW95140408A priority Critical patent/TWI341854B/en
Publication of TW200821347A publication Critical patent/TW200821347A/en
Application granted granted Critical
Publication of TWI341854B publication Critical patent/TWI341854B/en

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Soft Magnetic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

This invention discloses a microwave absorbing materials made from graphite powders of micrometer particle size that compresis: (a) a 25 to 30wt% graphite powder with a particle size of 25 to 35μm (b) a 70 to 75wt% polymer (c) a 0 to 10wt% dispersive agent The production method is adding (a) into (b) and (c) while stirring homogeneously. After grinding and dispersion through a three roller machine, the material is pour into a mold and pressed and heated into a sheet. The material of this invention may be used for microwave band (mainly the X-band) absorption or interference prevention. The total thickness is 0.95 to 1.0mm, the weight is 1.25-1.3kg/m .sup.2 and the 10dB bandwidth is about 2GHz. Compare to 20dB absorption at X-band of the ordinary ferro-oxide magnetic powders that at least having 60 to 85% in the composition and with a 1.5 to 3.3mm in thickness and 5kg/m2 or more in weight, while dielectric materials (such as electro-conductive carbon black and nanometer carbon tubes) at X-band needs a 6 to 50% in the composition for thickness of 1.8 to 7mm, and weight of 4kg/m2 or more that shows these published data for both the magnetic and dielectric materials are both too thick and too heavy. This invention not only reduces weight and thickness of the absorption sheet but also maximizes absorption peaks higher than 20dB and the X-band at 10dB bandwidth is about 2GHz, in that may effectively improves drawbacks of over thickness and over weight of ordinary magnetic absorption and electric conductive materials.

Description

200821347 七、 指定代表圖: (一) 本案指定代表圖為: 圖2樣本電磁波衰減與頻率關係曲線圖。 (二) 本代表圖之元件符號簡單說明: 9樣本1石墨粉末25%薄片厚度imin反射衰 減曲線。 1 〇樣本2石墨粉末27.5%薄片厚度〇·9 7mm 反射衰減曲線。 1 1樣本3石墨粉末30%薄片厚度0.9 7mm 反射衰減曲線。 八、 本案若有化學式時,請揭示最能顯示發明 特徵的化學式: 九、 發明說明: 【發明所屬之技術領域】 本發明係關於一種可衰減微波的電磁波 12 ’主要以微米尺寸粒徑的石墨粉、高分子 $合物與分散助劑攪拌後,製成薄片貼覆於金 1表面’達到衰減電磁波之目的。 【先前技術】 性 ^波材料按吸收劑的不同,大概可分為磁 通過料和介電吸波材料兩類。磁性吸波材料是 控制添加的磁性材料的性質、重量百分比 磁來獲得材料高導磁率的特性,藉由對電200821347 VII. Designation of representative representatives: (1) The representative representative figure of this case is as follows: Figure 2 is a graph showing the relationship between sample electromagnetic wave attenuation and frequency. (2) The symbol of the symbol of this representative figure is simple: 9 sample 1 graphite powder 25% thin film thickness imin reflection attenuation curve. 1 〇 sample 2 graphite powder 27.5% sheet thickness 〇 · 9 7mm reflection attenuation curve. 1 1 sample 3 graphite powder 30% sheet thickness 0.9 7mm reflection attenuation curve. 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: IX. Description of the invention: [Technical field of the invention] The present invention relates to an electromagnetic wave capable of attenuating microwaves 12' mainly graphite having a micron size After the powder, the polymer compound and the dispersing aid are stirred, the sheet is applied to the surface of the gold 1 to achieve the purpose of attenuating electromagnetic waves. [Prior Art] The material of the wave is classified into two types, magnetic flux and dielectric absorbing material, depending on the absorbent. The magnetic absorbing material is used to control the properties of the added magnetic material, the weight percentage, and the magnetic property to obtain the high magnetic permeability of the material.

4 200821347 反射,介電型損耗材料如石墨、乙、 化梦織維等,其主要特點是具有較Ϊ ,電知耗正切角,依靠介質的電子極化、離子 S 2子1化、界面極化衰減吸收電磁波。 μ電材料以碳黑使用最為廣泛,因豆 :二化學性能穩定性佳及高介電常數等特性。 粉末^^5〇年代至今仍被廣泛應用於吸 枓,以鐵氧磁粉末最具代表性,在x_Band Γ t ,,,性粉末較介電性材料有較佳的吸收頻 寬及厚度,但其有重量過重的缺點。 改善頻寬及吸收性能可以使用多層與改 變外型來達成,由美國專利公報第6943286、 17=419^及6670546號提出利用吸波材料結合 外型設計、磁性及介電性多層設計,來改盖頻 寬及吸收性能。雖然上述發明均 ^ in”特點,但在一以 έ ’存在厚度厚及重量重等缺點。 介電材料以碳黑使用最為廣泛,因 學性能穩^佳、高介電常數及高損 耗項等特但因其具有高損耗項特性,常造 成與自身咼介電常數無法匹配,因此添加 限制在約25~3〇%Wt,造成厚度太厚為其缺點 石墨為碳原素的同素異形體,同具有質量輕、 κ!ί佳装ΐ is介電常數值’與高分子材 料混合後,其扣耗項較小,較易匹配,極適合 用於製做微波吸收材料,本發明藉由微米級石 墨粉末與環氧樹脂混合,並添加特殊分散助劑 製作薄片型吸收體,製得吸收效果佳、4 200821347 Reflective, dielectric loss materials such as graphite, B, and woven dreams, etc., whose main features are relatively ambiguous, electrical tangential angles, electron polarization based on medium, ion S 2 , interface Attenuation absorbs electromagnetic waves. The μ electrical material is most widely used in carbon black, because of its good chemical properties and high dielectric constant. Powder ^^5〇 is still widely used in sucking, and ferrite powder is the most representative. In x_Band Γ t , , powder has better absorption bandwidth and thickness than dielectric material, but It has the disadvantage of being overweight. The improvement of the bandwidth and the absorption performance can be achieved by using multiple layers and changing the appearance. It is proposed by U.S. Patent Nos. 6,943,286, 17=419, and 6,670,546 to use absorbing materials in combination with external design, magnetic and dielectric multilayer design. Cover width and absorption performance. Although the above inventions all have the characteristics, they have the disadvantages of thick thickness and heavy weight in the first layer. Dielectric materials are most widely used in carbon black, and the properties are stable, high dielectric constant and high loss. However, due to its high loss term characteristics, it often causes mismatch with its own 咼 dielectric constant, so the addition is limited to about 25~3〇%Wt, resulting in a thickness that is too thick. Its disadvantage is that graphite is a carbon-like allotrope. With the light weight, κ! ί ΐ ΐ is the dielectric constant value 'mixed with the polymer material, the deduction is less, easier to match, very suitable for making microwave absorbing materials, the present invention by The micron-sized graphite powder is mixed with an epoxy resin, and a special dispersing aid is added to prepare a sheet-shaped absorber, and the absorption effect is good.

薄、重量輕的吸波體。 X 5 200821347 【發明内容】 理想的吸波材料的電磁參數應具有以下 特徵:在很寬的頻帶内μ = ε,且虛部大,即損 耗大。因此要吸收電磁波必需滿足兩個基本 條件·( 1 )電磁波入射到材料表面時,電磁 波能最大限度地進入材料内部(匹配特性)。 (2)進入材料内部的電磁波能迅速地幾乎全 部衰減掉(衰減特性)。電磁波前進遇到不同 介質時,可能行徑有反射、散射、穿透或在 介質内共振。一般而言,介質的電磁特性可 經由介電常數(ε)及導磁率(μ)加以描述。 ε及μ均為複數,y*〆’。金 屬表面上如貼覆一層均勻吸波材時,其厚度 為d,當電磁波入射至吸波材時,根據電磁波 基本的Maxwell’s Equations及邊界條件 (Boundary Condition),電磁波可能在介質 内產生共振現象,亦即入射電磁波能量藉由 共振轉換為介質内的自旋進動(Precessionof Spin),最後變成熱能消散,宛若入射之電磁 波能量被介質吸收。根據電磁理論電場與磁 場邊界條件,平面電磁波入射到貼有金屬板 之薄片吸波體其示意如圖1·可推導電磁波反 射係數為 6 200821347 ^tanh(y^^)-l Γ= V g_£_ A/^tanh〇-^^) + lThin, lightweight absorber. X 5 200821347 SUMMARY OF THE INVENTION The electromagnetic parameters of an ideal absorbing material should have the following characteristics: μ = ε in a wide frequency band, and the imaginary part is large, that is, the loss is large. Therefore, it is necessary to satisfy two basic conditions for absorbing electromagnetic waves. (1) When electromagnetic waves are incident on the surface of the material, the electromagnetic waves can enter the inside of the material to the maximum extent (matching characteristics). (2) The electromagnetic wave entering the inside of the material is rapidly and almost completely attenuated (attenuation characteristic). When electromagnetic waves advance to different media, the path may reflect, scatter, penetrate, or resonate within the medium. In general, the electromagnetic properties of a medium can be described by a dielectric constant (ε) and a magnetic permeability (μ). Both ε and μ are complex numbers, y*〆'. When a uniform absorbing material is applied to the surface of the metal, its thickness is d. When electromagnetic waves are incident on the absorbing material, electromagnetic waves may resonate in the medium according to the fundamental Maxwell's Equations and Boundary Condition of the electromagnetic wave. That is, the incident electromagnetic wave energy is converted into a Precession of Spin in the medium by resonance, and finally becomes heat energy dissipated, as if the incident electromagnetic wave energy is absorbed by the medium. According to the electromagnetic field electric field and magnetic field boundary conditions, the plane electromagnetic wave is incident on the sheet absorbing body with the metal plate attached as shown in Fig. 1. The conductive magnetic wave reflection coefficient is 6 200821347 ^tanh(y^^)-l Γ= V g_£ _ A/^tanh〇-^^) + l

V 6: C 其中f = 〆-/*〆,// =〆 — /*〆。因此,反射係數 Γ為(f、d、〆、〆、〆、//’)六個參數的方 程式,且Osrsl,在此定義衰減值D,單位為 分貝(dB) D = 201og|r|對衰減值超過 20dB,即 |Γ|幺0.1,上述反射係數之六個參數需適當的匹 配始能達到。本發明使用的微米石墨粉末製 成的吸收體經由自由空間量測法,量得導磁 係數特性,實部趨近於1,虛部趨近於零,對 整體吸收性能影響很低可忽略,主要還是決 定於介電常數值的高低,故微米石墨可視為 純介電型吸波材料。 本發明採用粒徑為30/zm石墨為吸收材 料,經由添加適當重量百分比的高分子聚合物 與分散助劑調整吸波體電磁參數匹配,於 X-Band頻段吸收值即可製得大於 20dB 以 上,且厚度小於 1.0mm,重量小於 1.3kg/m2 的吸收体,此種厚度及重量,均己優於己發表 介電吸波材,厚度為 1 · 5mm〜3. Omm,重量 2.0〜3.0kg/m2 , 磁性吸波材,厚度為 1. 5mm〜2. Omm,重量 3.0〜6.0kg/m2之公開之資 【實施方式】 本發明採用石墨德固公司代號為FF33之 7 200821347 3 0 // m微米級石墨粉末,分別設計2 5〜3 0 °/〇 重量百分比,與環氧樹脂依不同重量百分比混 合,加入適當陰離子性高分子介面活性劑為分 散助劑,並用三滚筒研磨分散至細度小於5从 m以下,將研磨完成之漿料置於均勻厚度之鋁 製模具中,將模具於適當溫度與壓力加熱,製 成薄片型後離形脫模即成。材料配方詳如表 1 - 2 〇 比較例採用 CABOT公司代號為XC-72 粒徑為0·1 // m之碳黑粉末,分別設計25%重 量百分比,與環氧樹脂依不同重量百分比混 合,加入適當陰離子性高分子介面活性劑為分 散助劑,並用三滾筒研磨分散至細度小於 m以下,將研磨完成之漿料置於均勻厚度之銘 製模具中,將模具於適當溫度與壓力加熱’製 成薄片型後離形脫模即成。材料配方詳如表 1 - 2 〇 表1·材料配方成份表 A材料編號及Wt% B 南分子 聚合物 Wt% 分散助劑 p h r 對 A + B 編號 Wt% FF33 25% 75% 10 phr FF33 27.5% 72.5 10 phr FF33 30% 70% 10 phr VULCAN XC-72 25% 75% 10 phr 8 200821347V 6: C where f = 〆-/*〆, // =〆 — /*〆. Therefore, the reflection coefficient Γ is an equation of six parameters (f, d, 〆, 〆, 〆, //'), and Osrsl, here defines the attenuation value D in decibels (dB) D = 201og|r| The attenuation value exceeds 20 dB, that is, |Γ|幺0.1, and the six parameters of the above reflection coefficient are required to be properly matched. The absorber made of the micro-graphite powder used in the invention has the permeability coefficient characteristic through the free space measurement method, the real part approaches 1 and the imaginary part approaches zero, and the influence on the overall absorption performance is negligible. It is mainly determined by the value of the dielectric constant, so micron graphite can be regarded as a pure dielectric absorbing material. The invention adopts the particle size of 30/zm graphite as the absorbing material, and adjusts the electromagnetic parameter matching of the absorbing body by adding an appropriate weight percentage of the high molecular polymer and the dispersing auxiliary agent, and the absorption value in the X-Band frequency band can be more than 20 dB. Omm, weight 2.0~3.0kg, and the thickness of the absorber is less than 1.0mm, the weight is less than 1.3kg / m2, the thickness and weight are better than the published dielectric absorbing material, the thickness is 1 · 5mm~3. Omm, the weight is 2.0~3.0kg /m2, magnetic absorbing material, thickness of 1. 5mm~2. Omm, weight 3.0~6.0kg/m2 of the disclosure of the capital [embodiment] The invention adopts graphite Degu company code FF33 of 7 200821347 3 0 // m micron-sized graphite powder, designed to be 2 5~3 0 ° / 〇 weight percentage, mixed with epoxy resin according to different weight percentages, adding appropriate anionic polymer interface activator as dispersing aid, and dispersed to fine with three-roller grinding When the degree is less than 5 and less than m, the slurry which has been ground is placed in an aluminum mold having a uniform thickness, and the mold is heated at an appropriate temperature and pressure to form a sheet type and then released into a mold. The material formulation is detailed in Table 1 - 2 〇 The comparative example uses CABOT company code XC-72 carbon black powder with particle size of 0·1 // m, respectively designed 25% by weight, mixed with epoxy resin according to different weight percentages. Adding an appropriate anionic polymer interface activator as a dispersing aid, and dispersing it to a fineness of less than m by three-roller grinding, placing the ground slurry in a mold of uniform thickness, and heating the mold at an appropriate temperature and pressure 'It is made into a sheet type and then released from the mold. The material formulation is detailed in Table 1 - 2 〇 Table 1 · Material Formulation Composition Table A Material Number and Wt% B South Molecular Polymer Wt% Dispersing Aid phr to A + B No. Wt% FF33 25% 75% 10 phr FF33 27.5% 72.5 10 phr FF33 30% 70% 10 phr VULCAN XC-72 25% 75% 10 phr 8 200821347

表2·高分子聚合物成分組成表 A環氧樹 脂 B軟質環氧 樹脂稀釋劑 C 硬化劑 對A + B D 分散劑 對A + B 70% 30% 35phr 50phr 環氧樹脂:Shell Chemical ΕΡΟΝ 828 軟質環氧樹脂稀釋劑:Dow Chemical DER 732 硬化劑:JeffamineD-230 分散劑:ED211 範例一 ··取FF33石墨與表二之環氧樹脂 及分散助劑依重量比 25% : 75 %及 10%之比 例混合攪拌均勻再經三滾筒研磨分散至5 // m 以下倒入銘製1mm模具中加壓至70kg/cm2、 加熱120°C、30分鐘脫模即成。 範例二:取FF3 3石墨與表二之環氧樹脂 及分散助劑依重量比27.5% : 72.5%及10%之 比例混合攪拌均勻再經三滾筒研磨分散至5 以下倒入鋁製 1mm模具中加壓至 7〇kg/cm2、加熱12〇。〇、3〇分鐘脫模即成。 範例三··取FF33石墨與表二之環氧樹脂 及分散助劑依重量比30% ·· 70%及1〇 %之比 例混合攪拌均勻再經三滾筒研磨分散至5 # m 以下倒入銘製lmm模具中加壓至70kg/cm2、 加熱120°c、30分鐘脫模即成。 將製作完成之膠片以Damaskos自由空 間法材質量測系統,量測樣本吸波特性。 9 200821347 範例一微波量測結果 項目 範例一 厚度(mm) 1mm 重量(kg/m2) 1.27kg/m2 吸收特性圖 圖2 中之曲線9 最大衰減強度(dB) 21.32dB 最大衰減頻率(GHz) 11.82GHz 範例二微波吸收特性量測結果: 項目 範例二 厚度(mm) 0.97mm 重量(kg/m2) 1.26kg/m2 吸收特性圖 圖2 中之曲線10 最大衰減強度(dB) 22.95dB 最大衰減頻率(GHz) 10.62GHz 範例三微波吸收特性量測結果: 項目 範例三 厚度(mm) 0.97mm 重量(kg/m2) 1.29kg/m2 吸收特性圖 圖2中之曲線11 最大衰減強度(dB) 20.02dB 最大衰減頻率(GHz) 9.62GHzTable 2·Polymer Polymer Composition Table A Epoxy Resin B Soft Epoxy Resin Diluent C Hardener Pair A + BD Dispersant Pair A + B 70% 30% 35phr 50phr Epoxy Resin: Shell Chemical ΕΡΟΝ 828 Soft Ring Oxygen resin thinner: Dow Chemical DER 732 Hardener: Jeffamine D-230 Dispersant: ED211 Example 1 · Take FF33 graphite and Table 2 epoxy resin and dispersing aid 25% by weight: 75 % and 10% ratio Mix and stir evenly and then disperse it to 5 // m by three-roller grinding. Pour into a 1mm mold and pressurize it to 70kg/cm2, heat it at 120°C, and release it for 30 minutes. Example 2: Take FF3 3 graphite and the epoxy resin and dispersing aid of Table 2 according to the weight ratio of 27.5%: 72.5% and 10%, mix and stir evenly and then disperse to 5 below by three-roller grinding and pour into aluminum 1mm mold. Pressurize to 7 〇kg/cm2 and heat 12 〇. 〇, 3 minutes to release the mold. Example 3·· Take FF33 graphite and the epoxy resin and dispersing aid of Table 2 according to the weight ratio of 30% ·· 70% and 1〇%, mix and stir evenly and then disperse to 5 # m below the 3 # m The mold was pressed to 70 kg/cm2 in a lmm mold, and heated at 120 ° C for 30 minutes to release the mold. The finished film was measured for the sample absorbing properties using a Damaskos free space material quality measurement system. 9 200821347 Example 1 Microwave Measurement Results Example 1 Thickness (mm) 1mm Weight (kg/m2) 1.27kg/m2 Absorption characteristic diagram Curve in Figure 2 Maximum attenuation intensity (dB) 21.32dB Maximum attenuation frequency (GHz) 11.82 GHz Example 2 Microwave Absorption Characteristics Measurement Results: Item Example 2 Thickness (mm) 0.97mm Weight (kg/m2) 1.26kg/m2 Absorption characteristic diagram Curve in Figure 2 Maximum attenuation intensity (dB) 22.95dB Maximum attenuation frequency ( GHz) 10.62GHz Example 3 Microwave Absorption Characteristics Measurement Results: Item Example 3 Thickness (mm) 0.97mm Weight (kg/m2) 1.29kg/m2 Absorption characteristic diagram Curve in Figure 2 Maximum attenuation intensity (dB) 20.02dB Maximum Attenuation frequency (GHz) 9.62GHz

比較例微波吸收特性量測結果: 項目 比較例 厚度(mm) 2.10mm 重量(kg/m2) 2.29kg/m2 最大衰減強度(dB) 22.02dB 10 200821347 最大衰減頻率(GHz) 9.60GHz 實驗結果綜合分析: 項目 範例一 範例二 範例三 比較例 粉末粒徑 3 0 /z m 3 0 /z m 30 μ m 0 Λ β m 粉末與樹脂 重量比% 25:75 27.5 : 72.5 30 : 70 25:75 厚度(mm) 1.00 0.97 0.97 2.10 重量 (kg/ m2) 1.27 1.26 1.29 2.29 最大衰減強 度(dB) 21.32 -22.95 -20.22 20.02 最大衰減頻 率(GHz) 11.82 10.62 9.62 9.60 10dB 衰減 頻寬(GHz) 1.77 1.68 1.53 1.50 衰減 10dB 起始頻率 (GHz) 10.89 〜 12.66 9·81 〜 11.49 8.88 〜 10.41 8.80 〜 14.30 20dB 頻寬 (GHz) 0.27 0.15 0.09 0.08 衰減 20dB 起始頻率 (GHz) 11.70 〜 11.97 10.47 〜 10.62 9.57 〜 9.66 9.56〜9.65 由上述比較表我們可以明顯看出,本發明 以微米粒徑石墨粉末25〜30 % wt與環氧樹脂 70〜75 % wt製成厚度小於或等於1mm,重量 小於 1.30kg/m2的薄片型吸收材料,於 8〜 12 GHz主峰均有20 dB以上的吸收性能表現, 200821347 10dB頻寬約為 2GHz,本發明成果有效減輕 重量及厚度,提昇X-Band頻段吸收性能。 因此本發明具有在 X-Band頻段重量較 輕、吸收效果較佳、厚度較薄、重量較輕等優 點,適合應用於X-Band頻段之吸波材料。 【圖式簡單說明】 圖1電磁波正向入射進入背面貼覆金屬板之 薄片吸收體示意圖。 圖2樣本電磁波衰減大於 20 dB與頻率關係 圖。 $ 【主要元件符號說明】 1介電型石墨粉吸收薄片。 2背覆金屬板。 3自由空間入射電磁波。 4吸波體電磁、介電參數。 5吸波體反射回自由空間電磁波。 6吸收薄片厚度為0的z軸位置。 7吸收薄片厚度為d的z轴位置。 8電磁波傳播行進+ z轴方向。 I 9樣本1薄片厚度1mm石墨粉含量為25%之反 射衰減曲線。 1 0樣本2薄片厚度 0.97mm石墨粉含量為 27. 5%之反射衰減曲線。 1 1樣本3薄片厚度0.97mm石墨粉含量為 30 %之反射衰減曲線。 12Comparative Example Microwave Absorption Characteristics Measurement Results: Item Comparison Example Thickness (mm) 2.10mm Weight (kg/m2) 2.29kg/m2 Maximum Attenuation Strength (dB) 22.02dB 10 200821347 Maximum Attenuation Frequency (GHz) 9.60GHz Comprehensive Analysis of Experimental Results : Project Example 1 Example 2 Example 3 Comparative Example Powder Particle Size 3 0 /zm 3 0 /zm 30 μ m 0 Λ β m Powder to Resin Weight Ratio 25:75 27.5 : 72.5 30 : 70 25:75 Thickness (mm) 1.00 0.97 0.97 2.10 Weight (kg/ m2) 1.27 1.26 1.29 2.29 Maximum attenuation strength (dB) 21.32 -22.95 -20.22 20.02 Maximum attenuation frequency (GHz) 11.82 10.62 9.62 9.60 10dB attenuation bandwidth (GHz) 1.77 1.68 1.53 1.50 attenuation from 10dB Starting frequency (GHz) 10.89 ~ 12.66 9·81 ~ 11.49 8.88 ~ 10.41 8.80 ~ 14.30 20dB Bandwidth (GHz) 0.27 0.15 0.09 0.08 Attenuation 20dB Starting frequency (GHz) 11.70 ~ 11.97 10.47 ~ 10.62 9.57 ~ 9.66 9.56~9.65 As can be clearly seen from the above comparison table, the present invention has a thickness of less than or equal to 1 mm and a weight of less than 1.3 by a micron-sized graphite powder of 25 to 30% wt and an epoxy resin of 70 to 75 % wt. The 0kg/m2 sheet-type absorbing material has an absorption performance of 20 dB or more at the main peak of 8 to 12 GHz, and the 200811347 10 dB bandwidth is about 2 GHz. The present invention effectively reduces the weight and thickness and improves the absorption performance of the X-Band band. Therefore, the invention has the advantages of light weight in the X-Band frequency band, better absorption effect, thinner thickness and lighter weight, and is suitable for the absorbing material of the X-Band frequency band. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view of a sheet absorption body in which a positive wave of electromagnetic waves is incident on a back side of a metal plate. Figure 2 shows the sample electromagnetic wave attenuation greater than 20 dB versus frequency. $ [Main component symbol description] 1 Dielectric graphite powder absorption sheet. 2 back cover metal plate. 3 free space incident electromagnetic waves. 4 electromagnetic and dielectric parameters of the absorber. 5 The absorber is reflected back to the free-space electromagnetic wave. 6 absorbs the z-axis position where the sheet thickness is zero. 7 absorbs the z-axis position of the sheet thickness d. 8 electromagnetic wave propagation travel + z-axis direction. I 9 sample 1 sheet thickness 1 mm graphite powder content of 25% reflectance decay curve. 1 0 sample 2 sheet thickness 0.97 mm graphite powder content is 27.5% of the reflection attenuation curve. 1 1 sample 3 sheet thickness 0.97mm graphite powder content is 30% of the reflection attenuation curve. 12

Claims (1)

200821347 十、申請專利範圍: : 1 · 一種微米石墨粉X頻吸收材料包含: 1 (a) —種粒徑25从m〜35/zm的石墨粉末,其含量 為25〜30,{%; * (b) —種高分子聚合物,其含量為70〜75wt% ; (c) 一種分散助劑,其含量為(a)與(b)總和的 0〜10wt%;將(a)加入(b)及(c)中攪拌 均勻後,經三滾筒研磨分散後,倒入模具中加 • 壓加熱製成薄片狀即成。 2·如申請專利範圍第1項之組成物,其中(a)石 墨的純度為95·0〜97.0%,主要為96.5%。 3·如申請專利範圍第1項之組成物,其中(a )其 形狀為細鱗片狀。 4·如申請專利範圍第1項之組成物,其中(b )係 指環氧樹脂、環氧軟質稀釋劑及其硬化劑。 _ 5·如申請專利範圍第1項之組成物,其中(c )係 指陰離子性高分子介面活性劑具有使石墨粉末 分散者。 13200821347 X. Patent application scope: : 1 · A micron graphite powder X-frequency absorption material comprises: 1 (a) a graphite powder with a particle size of 25 from m~35/zm, the content of which is 25~30, {%; * (b) a high molecular polymer in an amount of 70 to 75 wt%; (c) a dispersing aid in an amount of from 0 to 10% by weight based on the sum of (a) and (b); (a) added (b) After stirring evenly in (c), after being dispersed by three-roller grinding, it is poured into a mold and heated to form a flake. 2. The composition of claim 1 wherein (a) the purity of the graphite is 95·0 to 97.0%, mainly 96.5%. 3. The composition of claim 1 wherein (a) is in the form of a fine scale. 4. The composition of claim 1 wherein (b) refers to an epoxy resin, an epoxy soft diluent, and a hardener thereof. _5. The composition of claim 1, wherein (c) is an anionic polymeric surfactant having a dispersion of graphite powder. 13
TW95140408A 2006-11-01 2006-11-01 The microwave absorbing materials TWI341854B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95140408A TWI341854B (en) 2006-11-01 2006-11-01 The microwave absorbing materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95140408A TWI341854B (en) 2006-11-01 2006-11-01 The microwave absorbing materials

Publications (2)

Publication Number Publication Date
TW200821347A true TW200821347A (en) 2008-05-16
TWI341854B TWI341854B (en) 2011-05-11

Family

ID=44770446

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95140408A TWI341854B (en) 2006-11-01 2006-11-01 The microwave absorbing materials

Country Status (1)

Country Link
TW (1) TWI341854B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI401020B (en) * 2010-02-02 2013-07-01 Univ Feng Chia Microwave Absorbing Composites
RU2561453C2 (en) * 2012-10-23 2015-08-27 Павел Евгеньевич Александров Material absorbing electromagnetic waves
CN111380928A (en) * 2020-03-30 2020-07-07 北京工业大学 Reflection characteristic-based method for detecting wave-absorbing performance of carbon nanotube wave-absorbing material
CN113346249A (en) * 2021-06-10 2021-09-03 西安电子科技大学 Water-based interlayer super-surface adjustable coherent wave absorber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI401020B (en) * 2010-02-02 2013-07-01 Univ Feng Chia Microwave Absorbing Composites
RU2561453C2 (en) * 2012-10-23 2015-08-27 Павел Евгеньевич Александров Material absorbing electromagnetic waves
CN111380928A (en) * 2020-03-30 2020-07-07 北京工业大学 Reflection characteristic-based method for detecting wave-absorbing performance of carbon nanotube wave-absorbing material
CN111380928B (en) * 2020-03-30 2022-12-02 北京工业大学 Reflection characteristic-based method for detecting wave-absorbing performance of carbon nanotube wave-absorbing material
CN113346249A (en) * 2021-06-10 2021-09-03 西安电子科技大学 Water-based interlayer super-surface adjustable coherent wave absorber

Also Published As

Publication number Publication date
TWI341854B (en) 2011-05-11

Similar Documents

Publication Publication Date Title
Ling et al. Broadband microwave absorbing materials based on MWCNTs’ electromagnetic wave filtering effect
Jafarian et al. Promoting the microwave absorption characteristics in the X band using core-shell structures of Cu metal particles/PPy and hexaferrite/PPy
JP7007489B2 (en) Polytetrafluoroethylene hexaferrite composite material
Kumar et al. Enhanced absorption of microwave radiations through flexible polyvinyl alcohol-carbon black/barium hexaferrite composite films
JP4849220B2 (en) Electromagnetic interference suppression sheet and manufacturing method thereof, flat cable for high-frequency signal, and flexible printed circuit board
Pawar et al. High performance electromagnetic wave absorbers derived from PC/SAN blends containing multiwall carbon nanotubes and Fe 3 O 4 decorated onto graphene oxide sheets
Zhang et al. Microwave absorption and shielding property of composites with FeSiAl and carbonous materials as filler
JP5177542B2 (en) Composite magnetic body, circuit board using the same, and electronic component using the same
Verma et al. Microwave studies on strontium ferrite based absorbers
KR101385823B1 (en) Sheet for prevention of electromagnetic wave interference, flat cable for high-frequency signal, flexible print substrate, and method for production of sheet for prevention of electromagnetic wave interference
CN112812660B (en) Coating with high thermal conductivity and high wave absorption performance and preparation method thereof
Saini et al. Ni/graphitic carbon core–shell nanostructure-based light weight elastomeric composites for Ku-band microwave absorption applications
Yang et al. Ultrathin, flexible, and high-strength polypyrrole/Ti 3 C 2 T x film for wide-band gigahertz and terahertz electromagnetic interference shielding
Belaabed et al. X-band microwave absorbing properties of epoxy resin composites containing magnetized PANI-coated magnetite
TW200821347A (en) A microwave absorbing material
JP4446593B2 (en) Electromagnetic wave absorber
Abbas et al. Synthesis and microwave absorption studies of ferrite paint
Jang et al. Microwave absorption properties of carbonyl iron particles filled in polymer composites
KR100764659B1 (en) Glass Fiber Reinforced Nano Composites For Outdoor Antenna Having Microwave Shielding Property
RU2821836C1 (en) Method of producing conducting radiation-absorbent material and material obtained using this method
WO2011101989A1 (en) Thermally conductive sheet
KR102539178B1 (en) Composite powder and Electromagnetic shielding sheet comprising the same
Li et al. Centimeter-and millimeter-wave attenuation properties of carbonyl iron fiber-filled foam composites
KR102578285B1 (en) Electromagnetic shielding composite material and its manufacturing method
Chakraborty et al. Single layered wide bandwidth nanosized strontium hexa-ferrite filled LLDPE absorber in X-band