TWI339221B - Method for preparing nano metallic particles and method for preparing carbon nanotubes and method for preparing light-emitting device using the same - Google Patents

Method for preparing nano metallic particles and method for preparing carbon nanotubes and method for preparing light-emitting device using the same Download PDF

Info

Publication number
TWI339221B
TWI339221B TW095141252A TW95141252A TWI339221B TW I339221 B TWI339221 B TW I339221B TW 095141252 A TW095141252 A TW 095141252A TW 95141252 A TW95141252 A TW 95141252A TW I339221 B TWI339221 B TW I339221B
Authority
TW
Taiwan
Prior art keywords
conductive substrate
preparing
nano metal
ion
metal particles
Prior art date
Application number
TW095141252A
Other languages
Chinese (zh)
Other versions
TW200821404A (en
Inventor
Yu Tsan Tseng
Cheng Hsuan Lin
Po Ling Shiao
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW095141252A priority Critical patent/TWI339221B/en
Priority to US11/674,507 priority patent/US20080105560A1/en
Publication of TW200821404A publication Critical patent/TW200821404A/en
Application granted granted Critical
Publication of TWI339221B publication Critical patent/TWI339221B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/001Magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/006Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Power Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Cold Cathode And The Manufacture (AREA)

Description

1339221 九、發明說明: 【發明所屬之技術領域】 本發明係、關於-種奈米金屬粒子之製備方法及其奈米碳 管之製備方法與其發光元件之製備方法,特別係關於-種 利用電鑛製程還原金屬離子之奈米金屬粒子之製備方法及 其奈米碳管之製備方法與其發光元件之製備方法。 【先前技術】1339221 IX. Description of the Invention: [Technical Field] The present invention relates to a method for preparing a nano metal particle, a method for preparing the same, and a method for preparing the same, and particularly for Method for preparing nano metal particles for reducing metal ions in a mineral process and preparation method thereof, and method for preparing the same. [Prior Art]

研究人員根據不同的原理,目前已經發展出許多種奈米 金屬粒子列陣技術,例如電子束刻寫法、陽極氧化鋁模板 法、微接觸印刷法及團聯式高分子模板法。 電子束刻寫法(參見:j. Mater. Res.,ν〇ι· 16,p3246 ,2〇〇1)雖然可任意精準地佈植奈米金屬粒子,然而其刻寫程 序相當耗時,不適於講求效率及大面積的量產製程。此外 ,電子束刻寫法亦必須使用複雜的曝光微影蝕刻製程,因 而其量產及大面積化之製造成本相當昂貴。According to different principles, researchers have developed a variety of nano metal particle array technologies, such as electron beam writing, anodized aluminum template, microcontact printing, and agglomerated polymer template. Electron beam engraving (see: j. Mater. Res., ν〇ι· 16, p3246, 2〇〇1) Although the nano metal particles can be implanted with precision, the writing process is quite time consuming and unsuitable. Efficiency and large-scale production process. In addition, the electron beam writing method must also use a complicated exposure lithography process, so that the mass production and large-area manufacturing cost are quite expensive.

陽極氧化紹模板法(參見:Appl· Phys. Lett., Vol. 75 P367,1999)係利用預先製作之模具在高純度的鋁基板上壓 印出小圓柱孔洞列陣’再將此表面圖案化之鋁基板浸入化 子電鍍液中當作陽極,進行氧化鋁的單晶沈積。由於鋁基 板表面具有圓孔洞’導致氧化鋁之磊晶速度不同,因而可 形成一圓柱孔洞列陣。然而’陽極氧化鋁模板法僅可適用 於純铭基板’且成長氧化鋁需要在一高溫的化學液中進行 微接觸印刷法(參見:Appl. Phys Lett., 76,2071,2000)係The anodic oxidation method (see: Appl· Phys. Lett., Vol. 75 P367, 1999) uses a pre-made mold to emboss a small cylindrical hole array on a high-purity aluminum substrate and then pattern this surface. The aluminum substrate is immersed in the electroless plating solution to serve as an anode, and single crystal deposition of alumina is performed. Since the surface of the aluminum substrate has a circular hole, the epitaxial speed of the alumina is different, so that a cylindrical array of holes can be formed. However, the anodized aluminum stencil method can only be applied to a pure substrate, and the grown alumina needs to be microcontacted in a high temperature chemical solution (see: Appl. Phys Lett., 76, 2071, 2000).

U4580.DOC 1339221 ‘ 利用微光刻電鑄模造法(LIGA)製作出模具(作為印章),並 使用含有金屬觸媒之溶液作為墨纟,再㈣蓋£卩章t㈣ 將金屬觸媒溶液印在基板表面上。然而,微接觸印刷法受 限於傳統LIGA製程的尺度,無法將金屬觸媒作奈米級的列 陣(僅可作微米級列陣)。此外,微接觸印刷法亦易於產生局 部的金屬聚集。 團聯式高分子模板法(參見:曰本專利公開案 JP2003342012-A及美國專利公開案US 20030185985-A1)係 利用團聯式高分子之自組裝而形成圖案於基板上,並利用 紫外光(UV)或反應性離子蝕刻(RIE)對團聯式高分子之其 , 中一個成份作選擇性蝕刻,再將自組裝後的圖案轉印至下 一層材料。然而,為提高其圖案之深寬比,必需使用 曰 - 不同材料作為轉印層並經過複數次之轉印程序,才能提昇 孔洞結構之深寬比到可應用的範圍。完成深寬比孔洞之後 ’再使用沈積技術將金屬媒觸沈積於高深寬比之孔洞内, φφ 最後再洗去基板上之轉印層,而奈米金屬粒子則形成於基 板上之奈米孔洞中。團聯式高分子模板法類似於半體導曝 光微影蝕刻製程,其利用多層結構及蝕刻速率差異性因而 轉印製程過於繁複且生產成本相當高,故不具產業應用價 值。 【發明内容】 本發明提供一種利用電鍍製程還原金屬離子之奈米金屬 粒子之製備方法及其奈米碳管之製備方法與其發光元件之 製備方法。 (.S )U4580.DOC 1339221 ' Using a microlithography electroforming method (LIGA) to make a mold (as a stamp), and using a solution containing a metal catalyst as an ink cartridge, and then (4) cover the stamp (t) to print the metal catalyst solution On the surface of the substrate. However, the microcontact printing method is limited to the scale of the conventional LIGA process, and the metal catalyst cannot be used as a nano-scale array (only for micron arrays). In addition, microcontact printing is also prone to localized metal buildup. The group-linked polymer template method (see: 曰本专利 Publication JP2003342012-A and US Patent Publication No. US 20030185985-A1) is formed by patterning a substrate on a substrate by self-assembly of a cluster-linked polymer, and utilizing ultraviolet light ( UV) or reactive ion etching (RIE) selectively etches one of the components of the coalescent polymer and transfers the self-assembled pattern to the next layer of material. However, in order to increase the aspect ratio of the pattern, it is necessary to use 曰 - different materials as the transfer layer and multiple transfer procedures to increase the aspect ratio of the hole structure to an applicable range. After completing the aspect ratio hole, 'deposition technique is used to deposit the metal medium into the hole of high aspect ratio, φφ finally wash away the transfer layer on the substrate, and the nano metal particles are formed on the nano hole in the substrate. in. The group-linked polymer template method is similar to the half-body exposure lithography process, which utilizes a multi-layer structure and etch rate difference, so that the transfer process is too complicated and the production cost is relatively high, so it has no industrial application value. SUMMARY OF THE INVENTION The present invention provides a method for preparing a nano metal particle for reducing metal ions by an electroplating process, a method for preparing the carbon nanotube, and a method for preparing the same. (.S)

114580 DOC 1339221 ‘ 本發明之奈米金屬粒子之製備方法係將一導電基板浸泡 於一包含金屬離子之電鍍液中,再進行一電鍍製程以還原 該金屬離子而形成奈米金屬粒子於該導電基板之上。 本發明之奈米碳管之製備方法係將一導電基板浸泡於一 包含金屬離子之電鍍液中,再進行一電鍍製程以還原該金 屬離子而形成奈米金屬粒子於該導電基板之上。之後,利 用該奈米金屬粒子為催化劑,進行一化學氣相沈積製程以 形成奈米碳管於該導電基板上。114580 DOC 1339221 The preparation method of the nano metal particles of the present invention is to immerse a conductive substrate in a plating solution containing metal ions, and then perform an electroplating process to reduce the metal ions to form nano metal particles on the conductive substrate. Above. The carbon nanotube of the present invention is prepared by immersing a conductive substrate in a plating solution containing metal ions, and performing an electroplating process to reduce the metal ions to form nano metal particles on the conductive substrate. Thereafter, using the nano metal particles as a catalyst, a chemical vapor deposition process is performed to form a carbon nanotube on the conductive substrate.

本發明之發光元件之製備方法係將一導電基板浸泡於— 包含金屬離子之電鍍液中,再進行一電鍍製程以還原該金 屬離子而形成奈米金屬粒子於該導電基板之上。其次,利 用該奈米金屬粒子為催化劑,進行一化學氣相沈積製程以 形成奈米碳管於該導電基板上。之後,形成一螢光物質於 該奈米碳管之上方。 習知奈米金屬粒子列陣技術都具有過程繁複且製作及時 間成本高的缺點。本發明提拱一種較直接、低成本且間距 尺寸調控裕度較大之奈米金屬粒子之製備技術,其不需要 繁複的製作程序,僅需在導電基板上進行表面處理(例如利 用電漿轟擊導電基板表面)。申言之,表面處理後之導電基 板的表面粗糙度係隨位置變化在奈米尺度,本發明再將電 鍍製程施加之電位設計在該金屬離子之標準還原電位區間 附近,藉以控制成核點。當成核生成後,即可以調整電鍍 製程之遁還圈數以控制後續奈米金屬粒子之成長尺寸,因 而可任意地在經過表面處理之導電基板上佈植尺寸可控制The light-emitting device of the present invention is prepared by immersing a conductive substrate in a plating solution containing metal ions, and performing an electroplating process to reduce the metal ions to form nano metal particles on the conductive substrate. Next, using the nano metal particles as a catalyst, a chemical vapor deposition process is performed to form a carbon nanotube on the conductive substrate. Thereafter, a phosphor is formed above the carbon nanotubes. The conventional nano metal particle array technology has the disadvantages of complicated process and high cost in production time. The invention provides a preparation technology of a nano metal particle which is relatively straightforward, low-cost and has a large margin of size adjustment, and does not require complicated fabrication procedures, and only needs to be surface-treated on a conductive substrate (for example, using a plasma bombardment). Conductive substrate surface). It is claimed that the surface roughness of the surface-treated conductive substrate varies with position on the nanometer scale, and the present invention further designs the potential applied by the electroplating process near the standard reduction potential interval of the metal ion to control the nucleation point. When the nucleation is generated, the number of turns of the electroplating process can be adjusted to control the growth size of the subsequent nano metal particles, so that the size of the implanted conductive substrate can be arbitrarily controlled.

1I4580.DOC (S > -8- 1339221 之奈米金屬粒子。此外,若使用微影技術預先在導電基板 上製作導電區域/非導電區域,本發明更可製作出較多元化 的奈米金屬粒子列陣佈局。 【實施方式】1I4580.DOC (S > -8- 1339221 nano metal particles. In addition, if a conductive region/non-conductive region is formed on a conductive substrate in advance using lithography, the present invention can produce a more diverse nano metal. Particle array layout.

圖1(a)及圖1(b)例示本發明之奈米金屬粒子丨6之製備方 法。本發明之製備方法係將一導電基板12浸泡於一包含金 屬離子22之電鍍液20中,再進行一電鍍製程(例如循環電位 電鍍製程)以還原該金屬離子22而形成奈米金屬粒子丨6於 該導電基板12之上。較佳地,該奈米金屬粒子16之尺寸係 介於1奈米至150奈米之間。該導電基板12可包含晶格尺寸 介於5奈米至500奈米之氧化銦錫(ITO),該電鍍液2〇可包含 硕酸錄、硫酸鎳或氣化鎳,而該奈米金屬粒子16可為鎳金 屬粒子。此外’該電鍍液2〇亦可為鐵離子或鈷離子等磁性 金屬離子,而該奈米金屬粒子16可為鐵金屬或鈷金屬等磁 性金屬粒子。Fig. 1 (a) and Fig. 1 (b) illustrate a method of preparing the nano metal particles 丨6 of the present invention. In the preparation method of the present invention, a conductive substrate 12 is immersed in a plating solution 20 containing metal ions 22, and then subjected to an electroplating process (for example, a cyclic potential plating process) to reduce the metal ions 22 to form nano metal particles 丨6. Above the conductive substrate 12. Preferably, the nano metal particles 16 have a size between 1 nm and 150 nm. The conductive substrate 12 may include indium tin oxide (ITO) having a lattice size of 5 nm to 500 nm, and the plating solution 2 may contain a sulphuric acid, nickel sulfate or nickel vapor, and the nano metal particles 16 may be nickel metal particles. Further, the plating solution 2 may be a magnetic metal ion such as iron ion or cobalt ion, and the nano metal particle 16 may be a magnetic metal particle such as an iron metal or a cobalt metal.

參考圖1(b)’該導電基板12可預先以微影技術形成複數 個導電區域14Α及非導電區域14Β,而該奈米金屬粒子16係 選擇性地成長於該導電區域14Α之上。該導電基板12之導電 區域14Α的表面粗糙度較佳地係介於奈米尺度(例如5奈米 至10微米之間)。另,若該導電基板12之表面粗糙度太小, 本發明可在進行該循環電位電鍍製程之前,另在該導電基 板12表面進行一表面粗化製程(例如拋光製程或電漿轟擊 製程)’使得該導電基板12之表面粗糙度介於奈米尺度。 圖2(a)至3(c)例示表面粗糙度對成核(nucleation)及成長Referring to FIG. 1(b), the conductive substrate 12 may be formed by a lithography technique in advance to form a plurality of conductive regions 14 and non-conductive regions 14A, and the nano metal particles 16 are selectively grown over the conductive regions 14A. The surface roughness of the conductive region 14 of the conductive substrate 12 is preferably on the nanometer scale (e.g., between 5 nm and 10 microns). In addition, if the surface roughness of the conductive substrate 12 is too small, the present invention may perform a surface roughening process (for example, a polishing process or a plasma bombardment process) on the surface of the conductive substrate 12 before performing the cyclic potential plating process. The surface roughness of the conductive substrate 12 is made to be on the nanometer scale. Figures 2(a) to 3(c) illustrate surface roughness versus nucleation and growth

"4580 D〇C -9- 1339221 ."4580 D〇C -9- 1339221 .

(growing)機制之影響。由於該導電基板12之表面粗糙度隨 位置變化係在奈米尺度’因此進行電鍍製程時金屬離子22 之還原反應會在奈米尺度之空間下選擇性地成長於特定表 面’例如導電基板12之ITO晶粒(grain)邊緣。本發明可藉由 6又疋施加電位在金屬離子2 2之標準還原電位區間附近以控 制其成核點。當成核生成後’則可以遁還圈數來控制後續 結晶成長,以獲得具有較均勻尺寸之奈米金屬粒子1 6,如 圖2(a)及3(a)所示。如此,本發明即可任意在表面處理之導 電基板12上製備間距及尺寸可控制之奈米金屬粒子丨6。 相對地,若電鍍反應係在一相當平整之金屬表面進行, 例如賤鍍技術製備之高度平整銅表面,由於其表面粗糙度 相當小’因此在進行電鑛反應時,金屬離子22之還原反應 幾乎沒有"位置選擇性"地在銅金屬之平整表面進行,甚至 是以一層一層原子堆疊上去如此,製備之奈米金屬粒子 1 6並無法以奈米間距佈植’如圖2(b)、3(b)及圖3(c)所示。The influence of the (growing) mechanism. Since the surface roughness of the conductive substrate 12 is changed at a nanometer scale with position, the reduction reaction of the metal ions 22 selectively grows on a specific surface in a space of a nanometer scale, for example, the conductive substrate 12 ITO grain edge. The present invention can control the nucleation sites by applying a potential near the standard reduction potential interval of the metal ion 2 2 by applying a potential. When nucleation is generated, then the number of turns can be used to control the subsequent crystal growth to obtain nano metal particles 16 having a relatively uniform size as shown in Figs. 2(a) and 3(a). Thus, in the present invention, the nano metal particles 丨6 whose pitch and size can be controlled can be prepared arbitrarily on the surface-treated conductive substrate 12. In contrast, if the electroplating reaction is carried out on a fairly flat metal surface, such as a highly flat copper surface prepared by a ruthenium plating technique, since the surface roughness is relatively small, the reduction reaction of the metal ion 22 is almost performed during the electromineral reaction. There is no "position selectivity" on the flat surface of copper metal, even stacked on a layer of atoms, so that the prepared nano metal particles 16 can not be implanted at the nanometer spacing] Figure 2 (b) , 3(b) and Figure 3(c).

圖4(a)及圖4(b)例示電鍍模式對成核及成長機制之影響 。圖4(a)例示本發明利用循環電位電鍍製程製備奈米金屬粒 子16,其可使奈米金屬粒子16選擇性地成長於該導電基板 1 2之晶粒邊緣。相對地’若使用具有相同表面粗糙度分佈 之導電基板12 ’但採用不同之電鍍模式(例如使用直流電進 行電鍍反應)’則易於使成核點分佈不均’造成金屬局部聚 集(local aggregation)。由於電鍵反應之啟動需要電鑛系統 之電動勢(potential)或是電位(v〇itage)達到待鍵金屬之還原 電位值’然而’電錄液2〇内含不同濃度之物種(Specie)且物 114580.DOC -10- 1339221 . 種之"質傳效應(mass transfer)"亦影響電錄反應之進行,因 此電鍍系統使用直流電並無法有效控制電鍍液2〇内發生之 電鍍反應(包含析鍍量及位置),因而易於使成核點分佈不均 ’造成金屬局部聚集(丨ocal aggregation),如圖4(b)所示**Figures 4(a) and 4(b) illustrate the effects of plating mode on nucleation and growth mechanisms. Fig. 4(a) illustrates the preparation of nano metal particles 16 by a cyclic potential plating process which selectively grows nano metal particles 16 at the grain edges of the conductive substrate 12. Relatively, if a conductive substrate 12' having the same surface roughness distribution is used, but a different plating mode (e.g., electroplating reaction using direct current) is employed, it is easy to cause uneven distribution of nucleation sites, resulting in local local aggregation of the metal. Since the activation of the key reaction requires the electromotive system's potential or potential (v〇itage) to reach the reduction potential of the metal to be bonded 'however' the electroacupuncture 2 contains different concentrations of species (Specie) and 114580 .DOC -10- 1339221 . The “mass transfer” also affects the progress of the electro-recording reaction. Therefore, the electroplating system uses direct current and cannot effectively control the electroplating reaction occurring in the plating solution (including plating). Quantity and position), thus it is easy to make the nucleation point unevenly distributed, resulting in 丨ocal aggregation, as shown in Figure 4(b)**

圖5(a)至圖6(b)例示導電基板12之表面結構對成核及成 長機制之影響。圖5(a)係在一晶圓上濺鍍銀(Ag)後之表面結 構’其表面結構相當平整,因此在進行鎳電鍍反應時,金 屬離子22之還原反應幾乎沒有"位置選擇性"地在銀金属之 平整表面進行’如圖5(b)所示。特而言之,鎳金屬甚至是以 一層一層原子堆疊方式形成於銀金屬之平整表面,因此錄 金屬無法以奈米間距佈植,如圖3(b)及圖3(c)所示。圖6(a) 係在一晶圓上滅鍍金(Au)後之表面結構,同樣可觀察到金 屬離子22之還原成長均勻性相當高,幾乎也是以一層一層 原子堆疊形成金屬層,因此亦無法形成以數十至數百奈米 間距分佈之奈米金屬粒子,如圖6(b)所示。5(a) to 6(b) illustrate the influence of the surface structure of the conductive substrate 12 on the nucleation and growth mechanism. Fig. 5(a) shows that the surface structure after sputtering silver (Ag) on a wafer has a relatively flat surface structure, so that when the nickel plating reaction is performed, the reduction reaction of the metal ions 22 is hardly "position selectivity" The ground is carried out on the flat surface of the silver metal as shown in Fig. 5(b). In particular, nickel metal is formed on the flat surface of silver metal even by layer-by-layer atomic stacking, so that the recorded metal cannot be implanted at a nanometer pitch, as shown in Fig. 3(b) and Fig. 3(c). Fig. 6(a) shows the surface structure after gold plating (Au) on a wafer. It can also be observed that the reduction uniformity of the metal ions 22 is quite high, and the metal layer is almost formed by layer-by-layer atomic stacking. Nano metal particles distributed at intervals of tens to hundreds of nanometers are formed as shown in Fig. 6(b).

圖7例示本發明之表面處理後之導電基板丨2的電子影像 圖。該導電基板12之氧化銦錫(ITO)具有奈米尺度之表面粗 糙度。 圖8(a)至圖8(c)例示本發明利用循環電位電鍍法製備之 奈米金屬粒子16的電子影像圖,其倍率分別為】5〇倍' 10,000倍及50,_倍。本發明在表面處理後之導電基板12 表面(具有導電區域14Α/非導㈣域14β)進行循環電位電 鍍法’其係'以電㈣間-ΟΜΙΟ伏特進行2〇〇圈循環進行 錄金屬離子22之還原反應,可得到間距分佈在⑽至2〇〇奈Fig. 7 is a view showing an electron image of the surface-treated conductive substrate 2 of the present invention. Indium tin oxide (ITO) of the conductive substrate 12 has a surface roughness of a nanometer scale. 8(a) to 8(c) are diagrams showing an electron image of the nano metal particles 16 prepared by the cyclic potential plating method of the present invention, the magnifications of which are respectively 5 〇 ' 10,000 times and 50 _ times. According to the present invention, the surface of the conductive substrate 12 after surface treatment (having a conductive region 14Α/non-conductive (four) domain 14β) is subjected to a cyclic potential plating method, and the system is subjected to a two-turn cycle for recording metal ions 22 by electricity (four)-ΟΜΙΟ volts. The reduction reaction can be obtained with a pitch distribution of (10) to 2

I14S80.DOC -11· 1339221 米之間且直徑約60奈米之鎳奈米金屬粒子16。 圖9⑷至圖9⑷例示本發明利用循環電位電鍵法製備之 奈米金屬粒子16的電子影像圖,其倍率分別為2,_倍、 10,000倍及50,_倍。本發明在表面處理後之導電基板12 表面(具有導電區域14A/非導電區域14B)進行循環電位電 鍍法’其係以電位區間_〇 6至_0 75伏特進行5〇〇圈進行錄金 屬離子22之還原反應,可得到間距分佈在·至⑺⑼奈米之 ^直徑約120奈米之鎮奈米金屬粒子16。*圖8⑷至圖9(e) 所示之實施例可知’本發明使用表面處理之導電基板12配 合電鍍模式控制可得到間距分佈及直徑之調控裕度 (control window)在數十至數百奈米之奈米金屬粒子丨6。又 圖10(a)至圖l〇(c)例示本發明製備之奈米碳管的電子影 像圖,其倍率分別為200倍、5,〇〇〇倍及1〇〇,000倍。本發明 係使用圖7之導電基板丨2進行循環電位電鍍法形成奈米金 屬粒子16於該導電基板12之上。之後,以奈米金屬粒子 φφ 為催化劑,進行一電漿加強化學氣相沈積製程以製備平均 管徑約為30奈米、結構完整均勻且呈筆直形態排列之奈米 石厌官。特而言之,電漿加強化學氣相沈積製程之反應氣體 可包含乙炔及氨,反應壓力約為丨_1〇陶爾(t〇rr)。 圖Π (a)及圖11 (b)例示本發明製備之發光元件3〇,其係採 一極(diode)設計且可作為背光源(backing iight)或顯示器。 本發明在該奈米碳管18上形成複數個間隔器24(spacer),再 於該間隔器24上形成一螢光基板26(包含一透明導電基板 及一螢光物質)而完成該發光元件3〇。當施加一預定電壓(I14S80.DOC -11· 1339221 Nickel nano metal particles 16 between meters and having a diameter of about 60 nm. Fig. 9 (4) to Fig. 9 (4) illustrate an electron image of the nano metal particles 16 prepared by the cyclic potential electric key method of the present invention, the magnifications thereof being 2, _, 10,000 and 50, _ times, respectively. According to the present invention, the surface of the conductive substrate 12 after the surface treatment (having the conductive region 14A/non-conductive region 14B) is subjected to a cyclic potential plating method, and the metal ion is recorded at a potential interval of 〇6 to _075 volts for 5 turns. In the reduction reaction of 22, a town nanoparticle 16 having a pitch distribution of about 120 nm in diameter to (7) (9) nm can be obtained. * The embodiment shown in Fig. 8(4) to Fig. 9(e) shows that the control window of the present invention can be obtained by using the surface-treated conductive substrate 12 in combination with the plating mode control to obtain the pitch distribution and the diameter of the control window in the tens to hundreds of nanometers. Rice nanometer particles 丨6. Further, Fig. 10(a) to Fig. 1(c) illustrate an electron image of the carbon nanotube prepared by the present invention, the magnifications thereof being 200 times, 5, 〇〇〇 times and 1 〇〇, 000 times, respectively. In the present invention, the nano-particles 16 are formed on the conductive substrate 12 by cyclic potential plating using the conductive substrate 丨 2 of FIG. Thereafter, a plasma-enhanced chemical vapor deposition process was carried out using the nano metal particles φφ as a catalyst to prepare a nano-stone with an average diameter of about 30 nm, a uniform structure and a straight shape. In particular, the reactive gas of the plasma enhanced chemical vapor deposition process may comprise acetylene and ammonia at a reaction pressure of about 丨_1 〇 尔 (r〇rr). Figure (a) and Figure 11 (b) illustrate a light-emitting element 3〇 prepared by the present invention which is designed as a diode and can be used as a backlight or display. In the present invention, a plurality of spacers 24 are formed on the carbon nanotubes 18, and a fluorescent substrate 26 (including a transparent conductive substrate and a fluorescent substance) is formed on the spacers 24 to complete the light-emitting elements. 3〇. When a predetermined voltage is applied (

1H580.DOC -12- 1339221 例如350伏特)於該導電基板12與該螢光基板26之間,該導 電基板12上之奈米碳管18將因尖端放電效應而射出電子, 其轟擊該螢光基板26之螢光物質而產生光束,如圖H(b)所 示。1H580.DOC -12- 1339221, for example, 350 volts) between the conductive substrate 12 and the fluorescent substrate 26, the carbon nanotube 18 on the conductive substrate 12 will emit electrons due to the tip discharge effect, which bombards the fluorescent light The phosphor material of the substrate 26 generates a light beam as shown in Fig. H(b).

圖12例示本發明製備之發光元件40,其係採三極(tri〇de) 設計。本發明可在該導電基板丨2與該間隔器24之間形成— 介電區塊32以及一導電區塊34,因而具有三個導電端(即導 電區域34、螢光基板26及導電基板12),如圖12所示。Figure 12 illustrates a light-emitting element 40 prepared in accordance with the present invention in a tri-polar design. The present invention can form a dielectric block 32 and a conductive block 34 between the conductive substrate 2 and the spacer 24, thereby having three conductive ends (ie, the conductive region 34, the fluorescent substrate 26, and the conductive substrate 12). ), as shown in Figure 12.

習知奈米金屬粒子列陣技術都具有過程繁複且製作及時 間成本高的缺點。本發明提拱一種較直接、低成本且間距 尺寸調控裕度較大之奈米金屬粒子16的製備技術,其不需 要繁複的製作程序,僅需在導電基板12上進行表面處理(例 如利用電漿轟擊導電基板表面)。申言之,表面處理後之導 電基板12的表面粗糙度係隨位置變化在奈米尺度,本發明 再將電鍍製程施加之電位值設計在該金屬離子22之標準還 原電位區間附近,藉以控制成核點。當成核生成後,即可 以調整電鍍製程之遁還圈數以控制後續奈米金屬粒子丨6之 成長尺寸,因而可任意地在經過表面處理之導電基板丨2上 佈植尺寸可控制之奈米金屬粒子丨6。此外’若使用微影技 術預先在導電基板12上製作導電區域14A/非導電區域丨佔 ’本發明更可製作出較多元化的奈米金屬粒子列陣佈局。 此外,為避免發生場發射之屏蔽效應 ,奈米碳管需要以 一預定之間距(依碳管長度而有所不同,文獻提出管長與間 距的比例約為1:1或是1:2)予以分隔。一般而言,高分子自The conventional nano metal particle array technology has the disadvantages of complicated process and high cost in production time. The invention provides a preparation technology of a nano metal particle 16 which is relatively straightforward, low-cost and has a large margin of size adjustment. It does not require complicated fabrication procedures and only needs to be surface-treated on the conductive substrate 12 (for example, using electricity). The slurry bombards the surface of the conductive substrate). It is claimed that the surface roughness of the surface-treated conductive substrate 12 varies with position on the nanometer scale, and the present invention further designs the potential value applied by the electroplating process near the standard reduction potential interval of the metal ion 22, thereby controlling the formation. Nuclear point. After the nucleation is formed, the number of turns of the electroplating process can be adjusted to control the growth size of the subsequent nano metal particles 丨6, so that the size-controlled nanometer can be arbitrarily implanted on the surface-treated conductive substrate 丨2. Metal particles 丨6. In addition, if the conductive region 14A/non-conductive region is formed on the conductive substrate 12 by using lithography, the present invention can produce a more diverse array of nano metal particle arrays. In addition, in order to avoid the shielding effect of field emission, the carbon nanotubes need to be separated by a predetermined distance (depending on the length of the carbon tube, and the ratio of tube length to spacing is about 1:1 or 1:2 in the literature). Separate. In general, the polymer itself

I14580.DOC •13- 1339221 . 組裝製作之間距難以超過100奈米,因而限縮其應用範圍β 相對地,本發明可將導電區域丨4Α/非導電區域丨4Β之間距設 β十而調控奈米喊官之佈植間距在奈米以下至數百奈米 之間,不會受限於場發射之屏蔽效應。I14580.DOC • 13- 1339221 . The distance between assembly and fabrication is difficult to exceed 100 nm, so the application range β is limited. In contrast, the present invention can set the distance between the conductive region 丨4Α/non-conductive region 丨4Β to ββ. The spacing between the meters and the hundreds of nanometers is not limited by the shielding effect of field emission.

本發明之技術内谷及技術特點已揭示如上,然而熟悉本 項技術之人士仍可能基於本發明之教示及揭示而作種種不 奇離本發明精神之替換及修飾。因此’本發明之保護範圍 應不限於實施例所揭示者,而應包括各種不背離本發明之 替換及修飾’並為以下之申請專利範圍所涵蓋。 【圖式簡要說明】 圖1(a)及圖1(b)例示本發明之奈米金屬粒子之製備方法; 圖2(a)至3(c)例示表面粗糙度對成核及成長機制之影響; 圖4(a)及圖4(b)例示電鍍模式對成核及成長機制之影響; 圖5(a)至圖6(b)例示導電基板之表面結構對成核及成長 機制之影響; 圖7例示本發明之表面處理後之導電基板的表面電子影 像圖; / 圖8(a)至圖8(c)例示本發明利用循環電位電鍍法製備之 奈米金屬粒子的電子影像圖; 圖9(a)至圖9(c)例示本發明利用循環電位電鍍法製備之 奈米金屬粒子的電子影像圖; 圖10(a)至圖l〇(c)例示本發明製備之奈米碳管的電子影 像圖; / 圖 11(a)及圖11(b)例示本發明製備之二極發光元件;以及The technical and technical features of the present invention have been disclosed above, but those skilled in the art will be able to make various substitutions and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is not limited by the scope of the invention, and the invention is intended to be embraced by the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1(a) and FIG. 1(b) illustrate a method of preparing a nano metal particle of the present invention; FIGS. 2(a) to 3(c) illustrate surface roughness versus nucleation and growth mechanism. Figure 4 (a) and Figure 4 (b) illustrate the effect of plating mode on nucleation and growth mechanism; Figure 5 (a) to Figure 6 (b) illustrate the effect of surface structure of the conductive substrate on nucleation and growth mechanism Figure 7 is a view showing a surface electron image of the surface-treated conductive substrate of the present invention; / Figures 8(a) to 8(c) illustrate an electron image of the nano metal particles prepared by the cyclic potential plating method of the present invention; 9(a) to 9(c) are diagrams showing an electron image of nano metal particles prepared by the cyclic potential plating method of the present invention; FIGS. 10(a) to 1(c) illustrate the carbon carbon prepared by the present invention. An electron image of the tube; / Figures 11(a) and 11(b) illustrate a dipole light-emitting element prepared by the present invention;

iM580.DOC -14- 1339221 圖1 2例示本發明製備之三極發光元件。 【主要元件符號說明】 12 導電基板 14A 導電區域 14B 非導電區域 16 奈米金屬粒子 18 奈米碳管 20 電鍍液 22 金屬離子 24 間隔器 26 榮光基板 30 發光元件 40 發光元件iM580.DOC -14- 1339221 Figure 1 2 illustrates a three-pole light-emitting element prepared by the present invention. [Main component symbol description] 12 Conductive substrate 14A Conductive area 14B Non-conductive area 16 Nano metal particles 18 Carbon nanotubes 20 Electroplating solution 22 Metal ions 24 Spacer 26 Glow substrate 30 Light-emitting element 40 Light-emitting element

II4580.DOC - 15 *II4580.DOC - 15 *

Claims (1)

13392211339221 q 095丨41252號專利申請案 文申請專利範®替換本(99年12月) 】·一種奈米金屬粒子之製備方法,包含: 在-導電基板表面進行一表面粗化製程’使得該導電 基板之表面粗糙度介於奈米尺度; 》又泡該導電基板於一包令今屈雜 ^ 匕3生屬離子之電鍍液中丨以及 進4亍 電鑛製程以還肩該舍屬雜T- 疋屌忑鱼屬離子而形成奈米金屬粒 子於該導電基板之上。Q 095 丨 41252 Patent Application Serial No. Patent Application (December 1999) 】 A method for preparing nano metal particles, comprising: performing a surface roughening process on the surface of a conductive substrate to make the conductive substrate The surface roughness is on the nanometer scale; 》the bubble is also fused to the conductive substrate in a plating solution of the current 屈3 生3 genist ion and into the 4 亍 electric ore process to return the genus T- 疋The squid ion forms a nano metal particle on the conductive substrate. 2·根據請求項1之奈米金屬粒子之製備方法, 板之表面粗糙度係介於奈米尺度。 3. 根據請求項2之奈米金屬粒子之製備方法, 糖度係介於5奈米至1〇微米之間。 4. 根據請求項丨之奈米金屬粒子之製備方法, 板具有導電區域及非導電區域。 5. 根據請求項丨之奈米金屬粒子之製備方法, 板包含姻錫氧化物。 6·根據請求項1之奈米金屬粒子之製備方法 子係磁性金屬離子。2. According to the preparation method of the nano metal particles of claim 1, the surface roughness of the plate is on the nanometer scale. 3. According to the preparation method of the nano metal particles of claim 2, the sugar content is between 5 nm and 1 μm. 4. According to the preparation method of the nano metal particles of the request item, the plate has a conductive region and a non-conductive region. 5. According to the preparation method of the nano metal particles of the claim, the plate comprises a tin oxide. 6. Preparation method of nano metal particles according to claim 1 Sub-system magnetic metal ions. 申請專利範園 其中該導電基 其中該表面粗 其中該導電基 其t該導電基 其中該金屬離 其中該金屬離 其中該表面粗 其t該電鍍製 其中該奈米金 7·根據請求項丨之奈米金屬粒子之製備方法 子係鐵離子、鈷離子或鎳離子。 8·根據請求項丨之奈米金屬粒子之製備方法 化製程係一拋光製程或電漿轟擊製程。 9·根據請求項1之奈米金屬粒子之製備方法 程係一循環電位電鍍製程。 10.根據請求項丨之奈米金屬粒子之製備; 屬粒子之尺寸係介於1奈米至150奈米 I I4580>REV.DOC 1339221 II· 一種奈米碳管之製備方法,包含: 在一導電基板表面進行一表面粗化製程,使得該導電 基板之表面粗縫度介於奈米尺度; 浸泡一導電基板於一包含金屬離子之電鍍液中; 進仃-電鍍製程以還原該金屬離子而形成奈米金屬粒 子於該導電基板之上;以及 利用該奈米金屬粒子為催化劑’進行一化學氣相沈積 製程以形成奈米碳管於該導電基板上。 12. 根據請求項U之奈米碳管之製備方法,其中該導電基板之 表面粗链度係介於奈米尺度β 13. 根據請求項12之奈米碳管之製備方法,其中該表面粗縫度 係介於5奈米至1〇微米之間。 η.根據請求項η之奈米碳管之製備方法,其中該導電基板具 有導電區域及非導電區域。 15. ^據請求項η之奈米碳管之製備方法,其中 含銦錫氡化物。 土低匕 16.2請求項U之奈米礙管之製備方法,其中該金屬離子俘 磁性金屬離子。 卞保 請求項η之奈米碳管之製備方法,其中該金屬離子係 鐵離子、姑離子或録離子。 :、 18.根據請求項η之奈米碳管之製備 程係-抛光製程或電漿爲擊製程。,、中該表面粒化製 Α根據請求項此奈米碳管之製備方法,其中 一循環電位電鍍製程。 ^ ’又1程係 20.根據請求項i丨之奈米碳管之製備方 去其中該奈米金屬幸立 U4580-REV.DOC 1339221 子之尺寸係介於1奈米至丨5〇奈米之間。 21. —種發光元件之製備方法,包含: 在一導電基板表面進行一表面粗化製程,使得該導電 基板之表面粗縫度介於奈米尺度; 浸泡該導電基板於一包含金屬離子之電鍍液中; 進行一電鍍製程以形成奈米金屬粒子於該導電基板之 上; 利用該奈米金屬粒子為催化劑,進行_化學氣相沈積 製程以形成奈米碳管於該導電基板上;以及 形成一螢光物質於該奈米碳管之上方。 2 2.根據請求項21之發光元件之製備方法,其中該導電基板之 表面粗糙度係介於奈米尺度。 2 3.根據請求項2 2之發光元件之製備方法,其中該表面粗糙度 係介於5奈米至10微米之間。 24. 根據請求項21之發光元件之製備方法,其中該導電基板具 有導電區域及非導電區域。 25. 根據請求項21之發光元件之製備方法,其中該導電基板包 含銦錫氧化物。 26. 根據請求項21之發光元件之製備方法,其中該金屬離子係 磁性金屬離子。 27. 根據請求項21之發光元件之製備方法,其中該金屬離子係 鐵離子、鈷離子或鎳離子。 28. 根據請求項21之發光元件之製備方法,其中該表面粗化製 程係一拋光製程或電漿轟擊製程。 29·根據請求項21之發光元件之製備方法,其中該電鍍製程係 1I458〇.revd〇C 1335221 一循環電位電鍍製程。 30.根據請求項21之發光元件之製備方法,其中該奈米金屬粒 子之尺寸係介於1奈米至1 50奈米之間。The patent application wherein the surface of the conductive group is thick, wherein the conductive group is the conductive group, wherein the metal is away from the metal, wherein the metal is thicker than the surface thereof, and the metal is electroplated, wherein the nano gold is in accordance with the request The preparation method of the nano metal particles is a ferrite ion, a cobalt ion or a nickel ion. 8. The preparation method of the nano metal particles according to the request item is a polishing process or a plasma bombardment process. 9. The method for preparing nano metal particles according to claim 1 is a cyclic electric potential plating process. 10. Preparation of nano metal particles according to the request item; genus particle size ranging from 1 nm to 150 nm I I4580> REV.DOC 1339221 II · A method for preparing a carbon nanotube comprising: Conducting a surface roughening process on the surface of the conductive substrate such that the surface of the conductive substrate has a coarseness on the nanometer scale; soaking a conductive substrate in a plating solution containing metal ions; and introducing a plating process to reduce the metal ions Forming a nano metal particle on the conductive substrate; and performing a chemical vapor deposition process using the nano metal particle as a catalyst to form a carbon nanotube on the conductive substrate. 12. The method for preparing a carbon nanotube according to claim U, wherein the surface of the conductive substrate is in a nanometer scale β. 13. The method for preparing a carbon nanotube according to claim 12, wherein the surface is coarse The degree of seam is between 5 nm and 1 μm. η. The method of preparing a carbon nanotube according to claim η, wherein the conductive substrate has a conductive region and a non-conductive region. 15. The method for preparing a carbon nanotube according to claim η, which comprises indium tin antimonide. Soil 匕 匕 16.2 The method of preparing a nano tube of claim U, wherein the metal ion captures a magnetic metal ion. The method for preparing a carbon nanotube of claim η, wherein the metal ion is an iron ion, a cation or a recording ion. :, 18. Preparation of the carbon nanotube according to the request item η - polishing process or plasma is the process of the shot. , the surface granulation process according to the preparation method of the carbon nanotubes, wherein a cyclic potential plating process. ^ '一一程系20. According to the preparation of the carbon nanotubes of the request item i to go to the nano metal U4580-REV.DOC 1339221 sub-size is between 1 nm to 丨 5 〇 nanometer between. 21. A method of fabricating a light-emitting device, comprising: performing a surface roughening process on a surface of a conductive substrate such that a surface of the conductive substrate has a coarseness on a nanometer scale; soaking the conductive substrate in a plating containing metal ions In the liquid; performing an electroplating process to form nano metal particles on the conductive substrate; using the nano metal particles as a catalyst, performing a chemical vapor deposition process to form a carbon nanotube on the conductive substrate; and forming A fluorescent substance is above the carbon nanotubes. 2. The method of producing a light-emitting element according to claim 21, wherein the surface roughness of the conductive substrate is on a nanometer scale. 2. The method of producing a light-emitting element according to claim 2, wherein the surface roughness is between 5 nm and 10 μm. 24. The method of fabricating a light-emitting element according to claim 21, wherein the conductive substrate has a conductive region and a non-conductive region. 25. The method of producing a light-emitting element according to claim 21, wherein the conductive substrate comprises indium tin oxide. 26. The method of producing a light-emitting element according to claim 21, wherein the metal ion is a magnetic metal ion. 27. The method of producing a light-emitting element according to claim 21, wherein the metal ion is iron ion, cobalt ion or nickel ion. 28. The method of producing a light-emitting element according to claim 21, wherein the surface roughening process is a polishing process or a plasma bombardment process. The method of producing a light-emitting element according to claim 21, wherein the electroplating process is a cycle electroplating process of 1I458〇.revd〇C 1335221. The method of producing a light-emitting element according to claim 21, wherein the nano metal particles have a size of between 1 nm and 150 nm. 114580.REV.DOC -4-114580.REV.DOC -4-
TW095141252A 2006-11-08 2006-11-08 Method for preparing nano metallic particles and method for preparing carbon nanotubes and method for preparing light-emitting device using the same TWI339221B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW095141252A TWI339221B (en) 2006-11-08 2006-11-08 Method for preparing nano metallic particles and method for preparing carbon nanotubes and method for preparing light-emitting device using the same
US11/674,507 US20080105560A1 (en) 2006-11-08 2007-02-13 Method for Preparing Nano Metallic Particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW095141252A TWI339221B (en) 2006-11-08 2006-11-08 Method for preparing nano metallic particles and method for preparing carbon nanotubes and method for preparing light-emitting device using the same

Publications (2)

Publication Number Publication Date
TW200821404A TW200821404A (en) 2008-05-16
TWI339221B true TWI339221B (en) 2011-03-21

Family

ID=39358818

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095141252A TWI339221B (en) 2006-11-08 2006-11-08 Method for preparing nano metallic particles and method for preparing carbon nanotubes and method for preparing light-emitting device using the same

Country Status (2)

Country Link
US (1) US20080105560A1 (en)
TW (1) TWI339221B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008019A1 (en) * 2011-07-12 2013-01-17 University Of Bristol Filter
KR101548420B1 (en) * 2012-07-24 2015-08-28 주식회사 엘지화학 Preparation of metal particle layer and light emitting device manufactured by using same
WO2014017793A1 (en) * 2012-07-24 2014-01-30 주식회사 엘지화학 Method for forming metal particle layer, and light-emitting element produced using same
CN110075570B (en) * 2019-05-05 2021-10-15 四川农业大学 One-step method for preparing super-hydrophilic/underwater super-oleophobic oil-water separation mesh membrane and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030158985A1 (en) * 2002-02-15 2003-08-21 Edward Fried Systems and methods for fair arbitration between multiple request signals

Also Published As

Publication number Publication date
US20080105560A1 (en) 2008-05-08
TW200821404A (en) 2008-05-16

Similar Documents

Publication Publication Date Title
US7070472B2 (en) Field emission display and methods of forming a field emission display
US6891319B2 (en) Field emission display and methods of forming a field emission display
KR100907758B1 (en) Metallization of Carbon Nanotubes for Field Emission Applications
US7582507B2 (en) Catalyst support substrate, method for growing carbon nanotubes using the same, and the transistor using carbon nanotubes
US9269522B2 (en) Electric field emitting source, element using same, and production method therefor
JP4434658B2 (en) Structure and manufacturing method thereof
TWI339221B (en) Method for preparing nano metallic particles and method for preparing carbon nanotubes and method for preparing light-emitting device using the same
JP4681939B2 (en) Method for producing nanostructure
KR100836538B1 (en) Metallization of carbon nanotubes for field emission applications
CN102431962A (en) Preparation method and application of nanoimprint template
Savaloni et al. Fabrication, characterization and some applications of graded chiral zigzag shaped nano-sculptured silver thin films
Wang et al. Electrodeposition of vertically standing Ag nanoplates and nanowires on transparent conductive electrode using porous anodic aluminum oxide template
EP2615062A2 (en) Method of growing carbon nanotubes laterally, and lateral interconnections and field effect transistor using the same
JP4340433B2 (en) Nozzle for ultrafine ink jet printing and method for producing the same
Srisuai et al. Growth of highly uniform size-distribution ZnO NR arrays on sputtered ZnO thin film via hydrothermal with PMMA template assisted
CN101190786B (en) Nano metal particle and its nano carbon tube and its luminous element preparation method
JP2004190089A (en) Method for manufacturing inorganic-nanoparticle fusion or accretion structure, and fusion or accretion structure
JP4133655B2 (en) Method for producing nanocarbon material and method for producing wiring structure
KR100743018B1 (en) Method for producing field emitter electrode and field emitter electrode produced by using the same
KR100791352B1 (en) Method for producing nano array using metal stamp and method for producing field emitter electrode and magnetic storage device using the same
WO2019109966A1 (en) Plasma generator electrode and manufacturing method thereof
TWI343901B (en) Method and apparatus for manufacturing carbon nanotube
KR101388839B1 (en) Metal nanowire with carbon nanotube and method for manufacturing the same
Lee et al. Fabrication of large-area CoNi mold for nanoimprint lithography
KR20130124260A (en) Metal nanowire with carbon nanotube and method for manufacturing the same