TWI336193B - Method and apparatus for space-frequency equalization for oversampled received signals - Google Patents

Method and apparatus for space-frequency equalization for oversampled received signals Download PDF

Info

Publication number
TWI336193B
TWI336193B TW95115384A TW95115384A TWI336193B TW I336193 B TWI336193 B TW I336193B TW 95115384 A TW95115384 A TW 95115384A TW 95115384 A TW95115384 A TW 95115384A TW I336193 B TWI336193 B TW I336193B
Authority
TW
Taiwan
Prior art keywords
frequency
equalizer
spatial
symbols
signal
Prior art date
Application number
TW95115384A
Other languages
Chinese (zh)
Other versions
TW200707992A (en
Inventor
Byoung-Hoon Kim
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW200707992A publication Critical patent/TW200707992A/en
Application granted granted Critical
Publication of TWI336193B publication Critical patent/TWI336193B/en

Links

Landscapes

  • Radio Transmission System (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

1336193 九、發明說明: 【發明所屬之技術領域】 本揭示案大體而言係關於通信,且更具體言之係關於用 於在一通信系統中之接收器處執行等化之技術。 N 【先前技術】 在一通信系統中,一傳輸器通常處理(例如,編碼、交錯、 符號映射、擴展及混雜)訊務資料以產生一晶片序列。該傳 鲁輸器接著處理該晶片序列以產生一射頻(RF)信號且經由— 通信通道傳輸該RF信號。該通信通道以一通道響應使該所 傳輸之RF信號失真且另外以自其他傳輸器之雜訊與干擾使 該信號退化。 上一接收器接收該戶斤傳輸之R F信號並處理該所接收之r F ㈣以獲得樣本。該接收器可執行樣本之等化以獲得由傳 輸盗發送之晶片的估計。該接收器接著處理(例如,解混 雜、解擴展、解調變、解交錯及解碼)該等晶片估計以獲得 經解碼之資料°該接收器執行之等化通常對該等晶片估計 之品質及整個性能具有报大影響。 因此在此項技術中存在斜以德、去* 卜松 仔在對以一種達成良好性能的方式執 订#化的技術的需要。 【發明内容】 本文描述用於執行在頻 的技術。冑間頻率等化父 頻率專化及空間等化 ^ pa ^ 、 在二間及頻率維上組合信號成分而 工間等化在空間上組合信號成分。 根據本發明之一實施 也述一包括至少一處理器及_ 110773.doc 1336193 :憶體之裳置。該(等)處理器自多個純天線及過度取樣得 =用於多個信號複本(或光譜複本)之等化器係數。該(等) …接者用該等等化器係數過遽用於該等多個信號複本 之輸入符號以獲得輸出符號。 根據另-實施例’提供一種方法,其中自多個接收天線 及過度取樣得到用於多個信號複本之等化器係數。該方法 用該等等化器係數㈣用於料多個信號複本之輸入符 號。 根據又-實施例’描述一種裝置’該裝置包括用於自多 個接收天線及過度取樣得❹於多個信號複本之等化器係 數的構件。該裝置進-步包括用於用該等等化器係數過遽 用於該等信號複本之輸入符號的構件。1336193 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present disclosure relates generally to communications, and more particularly to techniques for performing equalization at a receiver in a communication system. N [Prior Art] In a communication system, a transmitter typically processes (e.g., encodes, interleaves, symbol maps, spreads, and blends) traffic data to produce a sequence of wafers. The relay then processes the wafer sequence to produce a radio frequency (RF) signal and transmits the RF signal via a communication channel. The communication channel distort the transmitted RF signal with a channel response and additionally degrades the signal with noise and interference from other transmitters. The previous receiver receives the R F signal transmitted by the user and processes the received r F (4) to obtain a sample. The receiver can perform equalization of the samples to obtain an estimate of the wafers transmitted by the pirates. The receiver then processes (e.g., de-mixes, despreads, demodulates, deinterleaves, and decodes) the wafer estimates to obtain decoded data. The equalization performed by the receiver typically determines the quality of the wafers and The overall performance has a big impact. Therefore, there is a need in the art for the technology to be implemented in a way that achieves good performance. SUMMARY OF THE INVENTION Techniques for performing on-frequency are described herein. The inter-day frequency equalization of the parent frequency specialization and space equalization ^ pa ^, combining the signal components in the two and frequency dimensions and the equalization of the signals spatially combines the signal components. Also described in accordance with one embodiment of the present invention includes at least one processor and _ 110773.doc 1336193: the appearance of the memory. The processor is derived from multiple pure antennas and oversampled = equalizer coefficients for multiple signal replicas (or spectral replicas). The (etc.) operator uses the equalizer coefficients to pass the input symbols for the plurality of signal replicas to obtain an output symbol. According to a further embodiment, a method is provided in which equalizer coefficients for a plurality of signal replicas are obtained from a plurality of receiving antennas and oversampling. The method uses the equalizer coefficient (4) to feed the input symbols of the plurality of signal replicas. A device is described in accordance with yet another embodiment. The device includes means for equalizer coefficients from a plurality of receive antennas and oversampling for multiple signal replicas. The apparatus further includes means for using the equalizer coefficients to pass the input symbols for the copies of the signals.

根據又一實施例,描述一種裝置,該裝置包括至少一處 理器及-記憶體。該(等)處理器自多個⑻接收天線及多次 (c)過度取樣獲得用於多個(M)信號複本之輸入符號,其中m 等於R乘以C。該(等)處理器得到用於M個信號複本之等化 器係數,用該4 4化器係數過遽用於該等M個信號複本之 該等輸入符號且將用於該等M個信號複本之該等經過濾之 符號組合以獲得輸出符號。 根據又一實施例,提供一種方法,其中自R個接收天線及 C次過度取樣獲得用於μ個信號複本之輸入符號。得到用於 該等Μ個信號複本之等化器係數。用該等等化器係數過渡 用於該荨Μ個t號複本之該等輸入符號。組合用於該等μ個 信號複本之該等經過濾之符號以獲得輸出符號。 110773.doc β) 根據又一實施例,描述一種裝置,該.裝置包括自R個接收 ‘天線及C次過度取樣獲得用於Μ個信號複本之輸入符號的 .構件、用於得到用於Μ個信號複本之等化器係數的構件、 用於用該等等化器係數過遽用於該等Μ個信號複本之該等 輪入符號的構件及用於組合用於該等Μ個信號複本之該等 經過據之符號的構件。 根據又一實施例,描述一種裝置,該裝置包括至少一處 Φ 理器及一記憶體。該(等)處理器建構至少一空間頻率等化器 及至少一空間等化器。每一空間頻率等化器在空間及頻率 維上組合信號成分。每一空間等化器在空間維上組合信號 成分》 ° ' 根據又一實施例,提供一種方法,其中為一第一組至少 一頻率槽在空間及頻率維上組合信號成分;且為一第二組 至少一頻率槽在空間維上組合信號成分。 根據又一實施例,描述一種裝置,該裝置包括用於為一 _ 組至少-頻率槽在空間及頻率維上組合信號成分的構 件;及用於為一第二組至少一頻率槽在空間維上組合信號 成分的構件。 下文進一步詳細描述本發明之各種態樣及實施例。 【實施方式】 本文所使用之詞"例示性"意謂"作為一實例、例子或說明"。 本文所描述之作為"例示性,,之任何實施例不必理解為比其 他實施例較佳或有利。 為清楚起見,對以下大部分描述使用下列命名法。以具 110773.doc 有用於樣本週期之指數„的小寫本文表.示時域標量’例如, (n)以具有用於頻率槽之指數k的大寫本文表示頻域標 量’例如’ H(k)。以粗體小寫本文表示向量,例如,包,且 以粗體大寫本文表示矩陣,例如,迀。 圖1展示一具有兩個傳輸器110?(及11〇y與一個接收器15〇 之通信系統100。傳輸器11〇χ裝備有單—天線心,傳輸器 H〇y裝備有多個(Τ)天線112&至1121,且接收器15〇裝備有多 個(R)天線152a至152r。傳輸器ι10χ之單一天線及接收器15〇 之R個天線形成一單輸入多輸出(SIM〇)通道。傳輸器u〇y 之T個天線及接收器150之R個天線形成一多輸入多輸出 (ΜΙΜΟ)通道。對於傳輸器11〇x&u〇y,在每一對傳輸器/ 接收器天線之間存在一單輸入單輸出(SIS〇)通道。該SIS〇 通道特徵可在於一時域通道脈衝響應h(n)或一頻域通道頻 率響應H(k)。 可用K點快速傅立葉變換(FFT)或κ點離散傅立葉變換 (DFT)將一時域表示轉換成一頻域表示,其可表示為: 其中指數中之π-1"係由於指數η及k從1開始而不是從〇開 始。 可用K點逆FFT(IFFT)或一 K點逆DFT(IDFT)將一頻域表 示轉換成一時域表示,其可表示為:According to yet another embodiment, an apparatus is described that includes at least one processor and a memory. The (etc.) processor obtains input symbols for a plurality of (M) signal replicas from a plurality (8) of receiving antennas and a plurality of (c) oversamplings, where m is equal to R times C. The (equal) processor obtains equalizer coefficients for the M signal replicas, and the input symbols for the M signal replicas are passed over the four coefficients and will be used for the M signals The filtered symbols are combined to obtain an output symbol. According to yet another embodiment, a method is provided in which input symbols for μ signal replicas are obtained from R receive antennas and C oversampling. The equalizer coefficients for the copies of the signals are obtained. The equalizer coefficients are used to transition the input symbols for the one of the t-number replicas. The filtered symbols for the replicas of the μ signals are combined to obtain an output symbol. 110773.doc β) According to yet another embodiment, a device is described that includes means for obtaining an input symbol for a plurality of signal replicas from R receiving 'antennas and C times oversampling, for obtaining for Μ a component of the equalizer coefficients of the plurality of signal replicas, means for using the equalizer coefficients for the rounded symbols for the copies of the plurality of signals, and for combining the copies of the signals for the signals The components that have passed the symbol. According to yet another embodiment, an apparatus is described that includes at least one MEMS and a memory. The (etc.) processor constructs at least one spatial frequency equalizer and at least one spatial equalizer. Each spatial frequency equalizer combines the signal components in spatial and frequency dimensions. Each spatial equalizer combines signal components in a spatial dimension. According to yet another embodiment, a method is provided in which a signal component is combined in a spatial and frequency dimension for a first set of at least one frequency bin; Two sets of at least one frequency slot combine signal components in a spatial dimension. According to yet another embodiment, an apparatus is described, the apparatus comprising means for combining signal components in a spatial and frequency dimension for a set of at least - frequency slots; and for spatially dimensioning a second set of at least one frequency slot A component that combines signal components. Various aspects and embodiments of the invention are described in further detail below. [Embodiment] The term "exemplary" means " as an example, an example or a description ". Any embodiment described herein as "exemplary," is not necessarily to be construed as preferred or advantageous over other embodiments. For the sake of clarity, the following nomenclature is used for most of the following descriptions. In the lower case of the index with the 110773.doc for the sample period, the time domain scalar is shown, for example, (n) in the uppercase with the exponent k for the frequency bin, the frequency domain scalar 'for example 'H(k) The vector is represented in bold lowercase, for example, the package, and the matrix is represented in bold uppercase, for example, 迀. Figure 1 shows a communication with two transmitters 110? (and 11〇y and one receiver 15〇) System 100. Transmitter 11 is equipped with a single-antenna core, transmitter H〇y is equipped with a plurality of (Τ) antennas 112 & to 1121, and receiver 15 is equipped with a plurality of (R) antennas 152a to 152r. The single antenna of the transmitter 及10χ and the R antennas of the receiver 15〇 form a single input multiple output (SIM〇) channel. The T antennas of the transmitter u〇y and the R antennas of the receiver 150 form a multiple input multiple output. (ΜΙΜΟ) channel. For the transmitter 11〇x&u〇y, there is a single-input single-output (SIS〇) channel between each pair of transmitter/receiver antennas. The SIS〇 channel can be characterized by a time domain channel. Impulse response h(n) or frequency domain channel frequency response H(k). A Fourier Transform (FFT) or a κ-point Discrete Fourier Transform (DFT) converts a time domain representation into a frequency domain representation, which can be expressed as: where π-1" in the index is due to the exponents η and k starting from 1 instead of 〇 Initially, a frequency domain representation can be converted to a time domain representation by K-point inverse FFT (IFFT) or a K-point inverse DFT (IDFT), which can be expressed as:

咖)=丄.|//(灸).e_y2jr(A:一1)(n-1)/K咖)=丄.|//(moxibustion).e_y2jr(A:1)(n-1)/K

Eq(2) 110773.doc 1336193 圖2展示—用於自單一天線傳輸器η〇χ至多個天線接收 器150之資料傳輸的信號流程200。接收器150使用接收差 異’其為用多個接收天線接收單一資料流。為簡便起見, 圖2展示—種接收器150具有兩個天線且對來自每一接收天 線之接收信號兩次(2x)過度取樣的情況。圖2展示一空間區 段頻域等化器(FDE)之使用,其執行頻域中之等化。該術語Eq(2) 110773.doc 1336193 Figure 2 shows a signal flow 200 for data transmission from a single antenna transmitter n to multiple antenna receivers 150. Receiver 150 uses the reception difference' which is to receive a single data stream with multiple receive antennas. For simplicity, Figure 2 shows a case where the receiver 150 has two antennas and oversampling the received signal from each receiving antenna twice (2x). Figure 2 shows the use of a spatial segment frequency domain equalizer (FDE) that performs equalization in the frequency domain. The term

’’空間區段’’係指用比奈奎斯取樣定理所需速率更高之速率 取樣》 傳輸器110x處理訊務資料並以晶月速率產生傳輸晶片 x(n )其中n’為用於晶片週期之指數。該傳輸器可對每一 Κ/2傳輸晶片塊附加一循環前綴。該循環前綴為該資料塊之 重複。I5刀且使用其抗擊頻率選擇衰落引起之符際干擾, 忒頻率選擇衰落係一種在該系統頻寬上並不平坦之頻率響 應。。。在一實際系統中,該傳輸器發送傳輸晶片序列至該接 收器。對於信號流程2〇〇, 一升取樣器21〇在每—傳輸晶片 後插入零且以樣本速率產生傳輸樣本X⑻,該樣本速率為 用於2次過度取樣之晶片速率的兩倍,其中η為樣本週期之 一指數。 該等傳輸樣本自該單—發射天線發送且經由該sim〇通 至s亥專兩個接收1嫂 線°#由—在方塊中之通道脈衝 ^ 及經由—加法器咖之附加雜訊η㈣將用於該 二=線之SIS〇通道模型化。用於該第二接收天線之 :力广精由一在方塊讓中之通道脈衝響應…及經 由-加一之附加雜訊n2⑷模型化。用於每一接)收天 110773.doc 1336193 線K其中ΜΑ之通道脈衝響應上⑻包括該傳輸器處之任 •何脈衝整形遽波器、該傳播通道、接收器處之任何前端遽 波器等的效應。 接收器150以兩倍於晶片速率之速率數位化來自每一接 f 收天線之接收信號且以樣本速率獲得輸入樣本(未在圖^中 展示)。若該傳輸器在每-資料塊中附加任何循環前綴,則 該接收器可移除該循環前綴。藉由一單元23〇a用一 κ點 #附/附將來自該第一接收天線之時域輸入樣本。⑷轉換 成該頻域以獲得頻域輸入符號心化),其中k==i,…,κ。如圖 4A中所示’該2次過度取樣導致每—接收天線可用兩份信號 光譜複本。將對於每一接收天線之過度取樣光譜中之兩個 冗餘信號複本表示為一較低複本(L)及-較高複本⑼。亦可 將一信號複本稱為一光譜複本或稱為某些其他術語。將第 K/2輸入4號1^(1^(其中k = l,".,K/2)表示為用於較低複本 之符號R,,L(k),其中k=1,…,κ/2,且將其提供給一等化器 | 240a。將末尾之κ/2輸入符號尺丨(]〇(其中k=K/2+i,…,q表示 為用於k问複本之符號Ri u(k),其十k=l,...,κ/2,且將其提 供給一專化^§ 242 a。 類似地,藉由一單元230b用一〖點fft/df丁將來自該第二 接收天線之時域輸入樣本r 2 (n)轉換成頻域以獲得頻域輸入 捋號R2(k),其中k叫,...,κ。將第_^/2輸入符號R2(k)(其中 k=l,…,K/2)表示為用於較低複本之符號,其中於 k—】,…,K/2,且將其提供給一等化器240b。將末尾之K/2輸 入符號R2(k)(其中k=K/2+1,.··,κ)表*為用於較高複本之符 I10773.doc 1336193 號尺2,1;(1〇,其中k=l,…,Κ/2,且將其提梃給一等化器242b。 等化器240a用其之係數過濾其之輸入符號心丄(1〇並 . 提供經過遽之符號其中”*,,表示一共軛複數。等化 器242a用其之係數過濾其之輸入符號h,u(k)並提供 經過濾之符號Yi.iKk)。等化器240b用其之係數灰2*丄⑻過濾其 之輸入符號R2,L(k)並提供經過濾之符號Y2,L(k)。等化器 242b用其之係數w^k)過濾其之輸入符號R2 u(k)並提供經 _ 過濾之符號Y2,u(k)。一加法器244a將分別自等化器以以與 240b之經過濾之符號Yl,L(k)與Y2,L(k)相加並提供用於較 低複本之輸出符號YL(k)。一加法器244b將分別自等化器 242a與242b之經過濾之符號γ丨,u(k)與Y2,u(k)相加並提供用 於較尚複本之輸出符號Yu(k)。一單元250對輸出符號YL(k) 及Yu(k)執行一 K點IFFT/IDFT並以樣本速率提供輸出樣本 y(n)。一降取樣器252每隔一個丟棄輸出樣本並以晶片速率 提供輸出樣本yrhV。該等輸出樣本經進一步處理以獲得 Β 解碼資料。 圖3展示一用於一空間區段FDE之對於接收差異的頻域 信號流程300。信號流程300與圖2中之信號流程2〇〇等效且 亦使用於具有兩個接收天線並2次過度取樣之情況。 傳輸器110x處理訊務資料並產生傳輸晶月。在一實 際系統中,該傳輸器發送傳輸晶片序列至該接收器且不執 行任何FFT/DFT。然而,對於信號流程3 〇〇 , 一單元3〗〇對 該等傳輸晶片难,)執行一 Κ/2點FFT/DFT並提供頻域傳輸符 號义⑻,其中hU.,K/2。傳輸符號义⑻自該單一發射天線發送 110773.doc 1336193 並經由SIMO通道該等至該等兩個接收;天線。藉由(1)方塊 320a中之頻率響應H],L(k)及經由用於較低複本之一加法器 324a之附加雜訊N】,L(k)及(2)方塊322a中之頻率響應Hi u(k) 及經由用於較高複本之一加法器326a之附加雜訊Ni,u(k)將 . 用於該第一接收天線之該siso通道模型化。一單元328a轉 - 換時域雜訊ηι(η)並提供頻域雜訊lVL(k)與Nl u(k)。類似 地,藉由(1)方塊320b中之頻率響應H2L(k)及經由用於較低 • 複本之一加法器324b之附加雜訊N2,L(k)及(2)方塊322b中之 頻率響應H2,u(k)及經由用於較高複本之一加法器32补之附 加雜訊N2,u(k)將用於該第二接收天線之該SIS〇通道模型 化。一單元328b轉換時域雜訊〜(11)並提供頻域雜MN2L(k) 與N2,u(k)。如圖3中所示,傳輸符號义㈨經由所有四個方塊 320a、320b、322a、322b發送。 ,接收器150處,一等化器340&自加法器32牦接收頻域輸 入符號Rl,L(k),用其之係數⑷過濾該等輸入符號,並提 _供經^慮之符號Yl,L(k)。一等化器342a自加法器咖接收 輸入符號R〗,u(k) ’用其之係數過濾該等輸入符號,並 提供經過濾之符號Y,,u(k)e 一等化器34〇b自加法器32仆接 收輸入符號Uk),用其之係數%過濾該等輸入符號, 並提供經過濾之符號Y2L(k)。一等化器342b自加法器32讣 接收輸入符號R2,u(k),用其之係數灰2^(幻過濾該等輸入符 號’並提供經過濾之符號Y2iU(k)。 一加法器344a將分別自等化器34〇3與342a之經過濾之符 號Y^iXk)與YllJ(k)相加並提供用於該第一接收天線之經過 110773.doc 濾符號Y】(k)。一加法器344b將分別自等化器340b與342b之 經過濾之符號Y2,L(k)與Y2,u(k)相加並提供用於該第二接收 天線之經過濾之符號Y2(k)。一加法器346將該等經過濾之 符號Yi(k)與Y2(k)相加。一增益元件348用1/2增益縮放加法 器346之輸出並提供輸出符號y⑻。一單元350對輸出符號 Γ⑷執行一 K/2點IFFT/IDFT並以晶片速率提供時域輸出樣 本少(《’)。 在比較信號流程200與300時,藉由圖2中之升取樣器210 對;c(〇之2次上升取樣繼之以一K點FFT/DFT等價於藉由圖3 中之單元310對_')執行一K/2點FFT/DFT並複製Z⑷用於該 過度取樣光譜之較低及較高複本。圖2中之藉由加法器244a 之將Y!,L(k)與Y2,L(k)相加,藉由加法器244b之將Yi^k) 與Y2,u(k)相加,藉由單元250執行一 K點IFFT/IDFT及藉由 抽取器252之以2為因子之抽取的系列操作等效於圖3中之 藉由加法器344a之將Y^dk)與YiMk)相加,藉由加法器 344b之將Y2,L(k)與Y2,u(k)相加,藉由加法器346之將Y,(k) 與Y.2(k)相加、藉由單元348縮放1/2及藉由單元350執行一 K/2點IFFT/IDFT的系列操作。在圖3中,加法器344a與344b 執行光譜求和及加法器346執行空間求和。亦可用其他方式 執行光譜及空間求和。例如,在圖3中,可將Y^Jk)與Y2,L(k) 相加以獲得YL(k)(其對應圖2中加法器244a之輸出),可將 Yi,u(k)與Y2,u(k)相加以獲得Yu(k)(其對應圖2中加法器 244b之輸出),且可將相加再縮放1/2以獲得 Y(k)。 110773.doc •13· 1336193 圖4A展示具有2次過度取樣之兩個接收天線之例示性光 譜圖。資料晶片咖〇係以晶片速率fc。對應光譜具有一單側 頻寬fc/2,或等效地’具有一雙側頻寬心,及該傳輸器之該 脈衝整形滤波器判定之滾降。用樣本速率心數位化自每一接 收天線之接收信號,該速率為晶片速率的兩倍,或匕=2匕。 對於每一接收天線,較低複本覆蓋〇〇至匕/2的頻率範圍, 其對應於k = 1至K/2的槽指數’且較高複本覆蓋匕/2至fs的 頻率範圍’其對應於k = K/2 + iK的槽指數。為簡便起見, 圖4 A展不用於兩個接收天線之類似光譜圖。一般而言,每 一接收天線r之光譜圖具有一由對該天線之頻率響應 判定之形狀。若H1(k)不等於H2(k),則該等兩個接收天線之 光譜圖可不同,其通常為該情況且由於接收差異而使用。 如圖4 A中所示’ δ亥接收器自該等兩個接收天線之冗餘因 子二及該2次過度取樣之另一冗餘因子二獲得四個信號複 本。圖4Α亦展示應如何組合該等四個信號複本令之四個冗 餘信號成分。藉由[/2距離《/2頻率槽分隔每—接收天線 之兩個冗餘信號成分。 如圖4Α中所示,可對每一頻率槽k使用一空間頻率等化 器,其中々=!,._.,K/2。用於頻率槽k之空間頻率等化器可為兩 :接收天線組合關於槽kAk + κ/2的冗餘信號成分個 空間頻率等化器可用於κ/2個頻率槽。為清楚起見,以下描 述一頻率槽k之處理。可對Κ/2個頻率槽之每一者執行相同 之處理’或其中k=1,奶。 對於自傳輸器110x至接收器150之SIMO傳輸,可將該接 110773.doc 14 1336193 收器處之頻域輸入符號表示為··''Spatial Section'' refers to sampling at a higher rate than the rate required by the Nyquist sampling theorem.] Transmitter 110x processes the traffic data and generates the transmission wafer x(n) at a crystal monthly rate where n' is for the wafer. The index of the cycle. The transmitter can append a cyclic prefix to each Κ/2 transport tile. The loop prefix is a repetition of the data block. The I5 knife uses its anti-shock frequency to select the inter-symmetry interference caused by fading. The 忒 frequency selective fading is a frequency response that is not flat on the system bandwidth. . . In an actual system, the transmitter transmits a sequence of transmission wafers to the receiver. For signal flow 2, a one liter sampler 21 inserts zero after each transfer wafer and produces a transfer sample X(8) at a sample rate that is twice the wafer rate for 2 oversamplings, where η is One of the sample periods is an index. The transmission samples are sent from the single-transmitting antenna and are passed through the sim to the two receiving 1嫂 lines##-the channel pulse in the block^ and the additional noise η(4) via the adder The SIS channel modeling for the two = line. For the second receiving antenna: Li Guangjing is modeled by a channel impulse response in the block and by additional noise n2 (4). For each connection) receiving day 110773.doc 1336193 line K where the channel impulse response (8) includes any pulse shaping chopper at the transmitter, the propagation channel, any front-end chopper at the receiver The effect of etc. Receiver 150 digitizes the received signal from each of the receive antennas at twice the rate of the wafer and obtains the input samples at the sample rate (not shown in Figure 2). If the transmitter attaches any cyclic prefix to each data block, the receiver can remove the cyclic prefix. The time domain input samples from the first receiving antenna are input by a unit 23A using a κ point #attachment/attachment. (4) Converting to the frequency domain to obtain frequency domain input symbolization), where k == i, ..., κ. As shown in Figure 4A, the 2 oversampling results in two signal spectral replicas per receive antenna. A copy of the two redundant signals in the oversampled spectrum for each receive antenna is represented as a lower copy (L) and a higher copy (9). A signal replica can also be referred to as a spectral replica or as some other term. Enter K/2 input 4 No. 1^(1^(where k = l, "., K/2) as the symbol R, L(k) for the lower replica, where k=1,... , κ/2, and provide it to the equalizer | 240a. Enter the last κ/2 input symbol 丨 〇 (] 〇 (where k = K / 2 + i, ..., q is expressed for the k-question copy The symbol Ri u(k), which is ten k=l,...,κ/2, and provides it to a specialization ^ 242 a. Similarly, a unit 230b uses a point fft/df The time domain input sample r 2 (n) from the second receiving antenna is converted into a frequency domain to obtain a frequency domain input nickname R2(k), where k is called, ..., κ. The input symbol R2(k) (where k=l, . . . , K/2) is represented as a symbol for the lower replica, where k—], . . . , K/2, and is supplied to the equalizer 240b. Enter K/2 at the end of the symbol R2(k) (where k=K/2+1, .··, κ) is * for the higher copy I10773.doc 1336193 ruler 2,1; 1〇, where k=l,...,Κ/2, and extract it to the equalizer 242b. The equalizer 240a filters its input symbol with its coefficients (1〇 and provides the 遽Symbol of which "*,, table A conjugate complex number is used. The equalizer 242a filters its input symbols h, u(k) with its coefficients and provides a filtered symbol Yi.iKk). The equalizer 240b filters its coefficient ash 2*丄(8) The symbols R2, L(k) are input and the filtered symbols Y2, L(k) are provided. The equalizer 242b filters its input symbol R2 u(k) with its coefficient w^k) and provides a _ filtered symbol Y2, u(k). An adder 244a will be separately from the equalizer to add the filtered symbols Yl, L(k) and Y2, L(k) with 240b and provide output for the lower replica. Symbol YL(k). An adder 244b adds the filtered symbols γ丨, u(k) and Y2, u(k) from equalizers 242a and 242b, respectively, and provides output symbols for the more replicas. Yu(k). A unit 250 performs a K-point IFFT/IDFT on the output symbols YL(k) and Yu(k) and provides an output sample y(n) at a sample rate. A downsampler 252 discards the output samples every other time. The output samples yrhV are provided at a wafer rate. The output samples are further processed to obtain Β decoded data. Figure 3 shows a frequency domain signal flow 300 for receiving differences for a spatial segment FDE. Signal Flow 300 The signal flow in Figure 2 is equivalent and is also used in the case of having two receive antennas and oversampling twice. The transmitter 110x processes the traffic data and generates a transmission crystal. In an actual system, the transmitter The transmit wafer sequence is sent to the receiver and no FFT/DFT is performed. However, for signal flow 3 〇〇 , a unit 3 〇 is difficult for the transfer wafers, a Κ / 2 point FFT / DFT is performed and a frequency domain transmission symbol (8) is provided, where hU., K/2. The transmission symbol (8) is transmitted from the single transmit antenna 110773.doc 1336193 and via the SIMO channel to the two receive; antenna. By (1) the frequency response H], L(k) in block 320a and the additional noise N through the adder 324a for the lower replica, L(k) and (2) the frequency in block 322a The siso channel for the first receive antenna is modeled in response to Hi u(k) and via additional noise Ni, u(k) for one of the higher replica adders 326a. A unit 328a converts - time domain noise ηι(η) and provides frequency domain noises lVL(k) and Nl u(k). Similarly, the frequency in (1) the frequency response H2L(k) in block 320b and the additional noise N2, L(k) and (2) in block 322b via one of the lower/replica adders 324b The SIS〇 channel for the second receive antenna is modeled in response to H2, u(k) and via additional noise N2, u(k) complemented by one of the higher replicas 32. A unit 328b converts the time domain noise ~(11) and provides the frequency domain MN2L(k) and N2, u(k). As shown in Figure 3, the transmission symbol (9) is transmitted via all four blocks 320a, 320b, 322a, 322b. At the receiver 150, the first equalizer 340& self-adder 32 receives the frequency domain input symbols R1, L(k), filters the input symbols with the coefficients (4) thereof, and provides the symbol Y1 for the consideration. , L(k). The equalizer 342a receives the input symbol R from the adder, u(k) 'filters the input symbols with their coefficients, and provides a filtered symbol Y, u(k)e, equalizer 34〇 b The adder 32 receives the input symbol Uk), filters the input symbols with its coefficient %, and provides the filtered symbol Y2L(k). The equalizer 342b receives the input symbols R2, u(k) from the adder 32, using its coefficients ash 2^ (magnesizes the input symbols' and provides the filtered symbols Y2iU(k). An adder 344a The filtered symbols Y^iXk) from the equalizers 34〇3 and 342a, respectively, are added to YllJ(k) and provide a 110773.doc filter symbol Y](k) for the first receive antenna. An adder 344b adds the filtered symbols Y2, L(k) and Y2, u(k) from equalizers 340b and 342b, respectively, and provides filtered symbols Y2 for the second receive antenna (k). ). An adder 346 adds the filtered symbols Yi(k) to Y2(k). A gain element 348 scales the output of adder 346 with a 1/2 gain and provides an output symbol y(8). A unit 350 performs a K/2 point IFFT/IDFT on the output symbol Γ(4) and provides a time domain output sample at the wafer rate ("'). In comparing signal flows 200 and 300, by upsampler 210 in Figure 2; c (2 times upsampling followed by a K-point FFT/DFT is equivalent to unit 310 in Figure 3 _') Perform a K/2 point FFT/DFT and copy Z(4) for the lower and higher copies of the oversampled spectrum. In FIG. 2, Y!, L(k) is added to Y2, L(k) by the adder 244a, and Yi^k) is added to Y2, u(k) by the adder 244b. A series of operations performed by unit 250 for a K-point IFFT/IDFT and by a factor 2 of decimator 252 is equivalent to adding Y^dk) and YiMk) by adder 344a in FIG. Y2, L(k) are added to Y2, u(k) by adder 344b, and Y, (k) and Y.2(k) are added by adder 346, and scaled by unit 348. 1/2 and a series of operations of K/2 point IFFT/IDFT performed by unit 350. In FIG. 3, adders 344a and 344b perform spectral summation and adder 346 performs spatial summation. Spectral and spatial summation can also be performed in other ways. For example, in FIG. 3, Y^Jk) can be added to Y2, L(k) to obtain YL(k) (which corresponds to the output of adder 244a in FIG. 2), and Yi, u(k) and Y2 can be obtained. , u(k) is added to obtain Yu(k) (which corresponds to the output of adder 244b in FIG. 2), and the addition can be further scaled by 1/2 to obtain Y(k). 110773.doc • 13· 1336193 Figure 4A shows an exemplary spectrogram of two receive antennas with 2 oversamplings. The data chip is based on the wafer rate fc. The corresponding spectrum has a one-sided bandwidth fc/2, or equivalently has a double-sided bandwidth, and the roll-off of the transmitter's pulse shaping filter determines. The sample rate heart is used to digitize the received signal from each of the receiving antennas at a rate that is twice the wafer rate, or 匕 = 2 匕. For each receive antenna, the lower replica covers the frequency range from 〇〇 to 匕/2, which corresponds to the slot index ' of k = 1 to K/2 and the higher replica covers the frequency range 匕/2 to fs' The groove index at k = K/2 + iK. For the sake of simplicity, Figure 4A shows a similar spectrum for two receive antennas. In general, the spectrum of each receiving antenna r has a shape determined by the frequency response of the antenna. If H1(k) is not equal to H2(k), the spectral patterns of the two receiving antennas may be different, which is usually the case and is used due to reception differences. Four signal replicas are obtained from the redundancy factor 2 of the two receive antennas and the other redundancy factor 2 of the two oversamplings as shown in Figure 4A. Figure 4Α also shows how the four redundant signal components of the four signal replicas should be combined. The two redundant signal components of each receive antenna are separated by [/2 distance "/2 frequency slots. As shown in Figure 4A, a spatial frequency equalizer can be used for each frequency bin k, where 々 = !, ._., K/2. The spatial frequency equalizer for frequency slot k can be two: the receive antenna combination of redundant signal components for slot kAk + κ/2. The spatial frequency equalizer can be used for κ/2 frequency slots. For the sake of clarity, the processing of a frequency bin k is described below. The same processing can be performed for each of Κ/2 frequency bins or where k = 1, milk. For SIMO transmission from transmitter 110x to receiver 150, the frequency domain input symbol at the receiver of 110773.doc 14 1336193 can be expressed as ···

Eq(3) 4 X 1輸入符號向 T(k) = h(k)X(k) + n(k) 量, 蚴)=间’lW A,lW岣,uW //印⑴]7·為為一 4χ1通道增益向量, ⑽)=[心1^)心,1^)心1^)~(邮為為一4><1雜訊向量,且 ”Γ"表示轉置。 藉由下標U及L分別表示每一接收天線之較高及較低複 本,且如圖4Α中所示,其藉由κ/2頻率槽分隔。 可將FDE之頻域輸出符號表示為: Y(k) = wH(k)-r(k),Eq(3) 4 X 1 input symbol to T(k) = h(k)X(k) + n(k) quantity, 蚴)= between 'lW A, lW岣, uW //印(1)]7· For a 4χ1 channel gain vector, (10))=[heart 1^) heart, 1^) heart 1^)~ (mail is a 4><1 noise vector, and "Γ" indicates transposition. The labels U and L represent the higher and lower replicas of each receiving antenna, respectively, and are separated by a κ/2 frequency slot as shown in Fig. 4A. The frequency domain output symbols of the FDE can be expressed as: Y(k ) = wH(k)-r(k),

Eq(4) =(k) · h(k) - X(k) + wH (k) · «(k), = B(k)X(k) + V(k), 其中<lW/2 <uW/2 π。㈨/2]為一用於頻率 φ 槽!^之等化器係數之4x1行向量, 刀⑷=冱"⑷尘⑷為之縮放比例, F㈨=及"㈨·邮)為义(幻之經過濾之雜訊,且 "β "表示一共軛轉置。 在等式(4)中,等化器係數包括圖3中之增益元件348 的縮放因子1 /2 ^ 可基於一最小均方誤差(MMSE)技術、一強制歸零技 術 最大比率結合(MRC)技術等得到該等等化器係數。 對於MMSE技術,等化器係數滿足以下條件: II0773.doc (?) 15Eq(4) =(k) · h(k) - X(k) + wH (k) · «(k), = B(k)X(k) + V(k), where <lW/2 <uW/2 π. (9)/2] is a 4x1 line vector for the equalizer coefficient of frequency φ slot!^, knives (4)=冱"(4)dust (4) for scaling, F(nine)= and "(9)·post) for meaning (magic The filtered noise, and "β " denotes a conjugate transpose. In equation (4), the equalizer coefficient includes the scaling factor 1 /2 ^ of the gain element 348 in Figure 3 can be based on a minimum The mean square error (MMSE) technique, a forced zeroing technique maximum ratio combining (MRC) technique, etc. obtain the equalizer coefficients. For the MMSE technique, the equalizer coefficients satisfy the following conditions: II0773.doc (?) 15

Eq(5) 其中£{}為一期雙:j重曾7 運π子。荨式(5)最小化該FDE輸出y⑷ 與該傳輸符號雄)之間的均方誤差。 可將等式(5)之MMSE解表示為: = .作條》姻伽+剛' Eq(6) 其中邶)=£{丨尤州2}為傳輸晶片X扪之能譜,且 组幻=玛姒).〆(叫為4X4雜訊協方差矩陣。 可對等式(6)應用矩陣求逆引理。則等化器係數可表示 ⑷: l + S(k)-hH(k).^j^k) 等式(7)具有一用於每一頻率槽让之4><4逆矩陣p⑷。等式 (7)可如下文所述簡化。 在若過度取樣光譜之較低及較高複本具有非相關雜訊或 具有可忽略之雜訊相關則可使用之第一簡化方案中,雜訊 協方差矩陣具有以下分塊對角型式: RlW 〇 ^Eq(5) where £{} is a double period: j is heavy and 7 is π. Equation (5) minimizes the mean square error between the FDE output y(4) and the transmitted symbol. The MMSE solution of equation (5) can be expressed as: = . "Song gamma + just ' Eq (6) where 邶) = £ {丨 Youzhou 2} is the energy spectrum of the transmission chip X扪, and the group illusion = 玛姒).〆 (called 4X4 noise covariance matrix. You can apply matrix inversion lemma to equation (6). The equalizer coefficient can represent (4): l + S(k)-hH(k) .^j^k) Equation (7) has a 4><4 inverse matrix p(4) for each frequency bin. Equation (7) can be simplified as described below. In a first simplification scheme that can be used if the lower and higher replicas of the oversampled spectrum have uncorrelated noise or have negligible noise correlation, the noise covariance matrix has the following block diagonal versions: RlW 〇 ^

Eq⑺ ) 其中 0 RuW RCW =Eq(7) ) where 0 RuW RCW =

Eq(8)Ά)Ά).λ:⑻ 〇lc(k) :(Α〇==£{|Ά)丨2}為用於自天線r之複本c之雜訊方差; 〇jk)^E{Ni^k)-N24k)}, ’ 為該等兩個接收天線之間之雜訊相關 係數,Eq(8)Ά)Ά).λ:(8) 〇lc(k) :(Α〇==£{|Ά)丨2} is the noise variance for the replica c from the antenna r; 〇jk)^E {Ni^k)-N24k)}, ' is the noise correlation coefficient between the two receiving antennas,

Tlc\ ee{L,U}為用於較低及較高複本之指數,且 110773.doc •16- 1336193 re{l,2)為用於兩個接收天線之指.數。、 ⑻為用於信號複本c中之一頻率槽k之兩個接收天線的 —2x2雜ifl協方差矩陣。若可忽略兩個接收天線之間之相關 但較低及較南複本中之雜訊成分光譜相關,則亦可進行等 式(8)中之簡化。在該情況中,可重新排列等式(3)之4χ1向 量以獲得等式(8)中所示之分塊對角矩陣。 當R㈨如等式(8)中所示界定時,五幻中之等化器係數可Tlc\ ee{L,U} is an index for lower and higher replicas, and 110773.doc •16-1336193 re{l,2) is the number of fingers used for the two receiving antennas. (8) is a -2x2 hetero-ifl covariance matrix for two receive antennas of one of the frequency bins k of the signal replica c. The simplification in equation (8) can also be performed if the correlation between the two receiving antennas can be ignored but the spectral correlation of the noise components in the lower and south replicas can be ignored. In this case, the 4 χ 1 vector of equation (3) can be rearranged to obtain the block diagonal matrix shown in equation (8). When R(9) is defined as shown in equation (8), the equalizer coefficient in the five illusion can be

表》為· 2 D(k) 其中r = l,2 且 c = 4 ¢/Table is · 2 D(k) where r = l, 2 and c = 4 ¢/

Eq(9) 其中hcW = [//i,cW Ά)]Γ為一用於複本c之槽k之2x1通道增 益向量, [h?W-Hi〇^^(k)clc(k).a2c(k)Eq(9) where hcW = [//i, cW Ά)] Γ is a 2x1 channel gain vector for the slot k of the replica c, [h?W-Hi〇^^(k)clc(k).a2c (k)

Glc{k)-〇lc{k)-{\-\pc{k)\2) [h?w^w]2=·办).y ~2,#) ffUk)-alc(k)-(\-\pc(h)\2) ,及 O(k) = 1 + S(k) [h« (k) · R-] (k). hL (k) + h« (k). r-i (k). hu (k)] D(k)之成分可展開如下: 丨〜⑻I2 +1'c⑽2仃心々)-2叫吨(明2押八⑽.'c⑻%(々) °Uk)alc(k)-(\-\pc(k)\2) ·Glc{k)-〇lc{k)-{\-\pc{k)\2) [h?w^w]2=·do).y ~2,#) ffUk)-alc(k)-( \-\pc(h)\2) , and O(k) = 1 + S(k) [h« (k) · R-] (k). hL (k) + h« (k). ri ( k). hu (k)] The composition of D(k) can be expanded as follows: 丨~(8)I2 +1'c(10)2仃心々)-2 ton (Ming 2 八八(10).'c(8)%(々) °Uk)alc (k)-(\-\pc(k)\2) ·

Eq(10) 在一若雜訊空間及光譜不相關且具有一空間及光譜相等 的雜訊方差則可使用的第二簡化方案中,該雜訊協方差矩 陣E⑷具有以下形式: m)-c2{k)l 110773.docEq(10) In a second simplified scheme in which the noise space and the spectrum are uncorrelated and have a spatial and spectrally equal noise variance, the noise covariance matrix E(4) has the following form: m)-c2 {k)l 110773.doc

其中 4(*) = 0^(灸)= /\ (&) = Pu (A) = 0,且 2⑷為雜訊方差 L為一單位矩陣。 當_°等式(1〇)中所示界定時,6)中之等化器係數可 表不為· __、J r.c y^j S(k).|^(k)| + CJ2(k),其中r = l,2 且 c =々以, 其中 ||iiW||= 〜(*) + //2l(a) 2+ 好 2 2 ' 丨,υ · IliWl為用於 K(k) S(k).H^j〇 — ~~ 一… Eq(ll) 2 槽k之通道響應向量祕)蘇 丄 ·丨丨-、π” ’’…、 之耗數。如等式(11)中所示,即使雜 訊空間及光譜不關聯 s , F 但疋四個等化器係數 ^l,L W /2 ? H^2,L W /2 } PFjt, (k) 12 Ji W* (k\ η ’ 2’υ()/2由四個空間及光譜隔離之 通道增益巧洲共同判定。 在右用於兩個接收天線之雜訊成分不相關使得等式⑻ 中之副=副=0則可使用的第三簡化方案中,雜訊協方差 矩陣S㈧具有如下形式: 占(k) = L(k) 0 0 0 0 0L(k) 0 0 0 0 σί#) 〇 0 0 0 ‘00Where 4(*) = 0^(moxibustion)= /\ (&) = Pu (A) = 0, and 2(4) is the noise variance L is a unit matrix. When defined as shown in _° equation (1〇), the equalizer coefficient in 6) can be expressed as · __, J rc y^j S(k).|^(k)| + CJ2(k ), where r = l, 2 and c = 々, where ||iiW||= ~(*) + //2l(a) 2+ is good 2 2 ' 丨,υ · IliWl is for K(k) S(k).H^j〇— ~~ one... Eq(ll) 2 channel k response vector secret) Su Shi·丨丨-, π” ''..., the consumption. For example, equation (11) As shown, even if the noise space and spectrum are not related to s, F, but four equalizer coefficients ^l, LW /2 H ^ 2, LW /2 } PFjt, (k) 12 Ji W* (k\ η ' 2'υ()/2 is jointly determined by four spatial and spectrally isolated channel gains. The noise components used for the two receiving antennas on the right are irrelevant such that the sub = sub = 0 in equation (8) In a third simplified scheme that can be used, the noise covariance matrix S(8) has the following form: 占(k) = L(k) 0 0 0 0 0L(k) 0 0 0 0 σί#) 〇0 0 0 '00

Eq(12) 對於#式(12)中所示之雜訊協方差矩陣,對不同之信號複本 可獲得不同之雜訊變量。可基於如等式(12)中所示界定之 E㈨得到等化器係數竺"㈨。 對於其他條件亦可進行其他簡化。例如,兩個接收天線 之間之雜訊相關可為頻率不變量,使得外w =八且外w = /?u。 該等不同簡化減少等式(7)中所示之對等化器係數之計算。 對於晶片速率輸出樣本y(n,)之訊雜比(SNR)可表示為: 110773.doc •18、 1336193 Κ/2Eq(12) For the noise covariance matrix shown in #式(12), different noise variables can be obtained for different signal replicas. The equalizer coefficient 竺"(9) can be obtained based on E(9) as defined in equation (12). Other simplifications can be made for other conditions. For example, the noise correlation between two receive antennas can be a frequency invariant such that w = eight and w = /?u. These different simplifications reduce the calculation of the equalizer coefficients shown in equation (7). The signal-to-noise ratio (SNR) for the wafer rate output sample y(n,) can be expressed as: 110773.doc •18, 1336193 Κ/2

SNR ZS(k) ‘晶片—κη 2nFB(k)-l|2S(k) + |F|2.〇2v(k);SNR ZS(k) ‘wafer—κη 2nFB(k)−l|2S(k) + |F|2.〇2v(k);

Eq(13)Eq(13)

F K/2 K/2Ϊ>(*) 為一缩放因子,且 φ ^為輸出樣本之晶片SNR。 等式(4)提供/⑷之偏誤MMSE估計。縮放因子F可應用至 y(幻或以分別獲得幻或之無偏估計。若一資料符號 用一展頻碼(例如’一沃爾什編碼或一 〇VSF編碼)在Μ個晶 片上擴展’則可藉由晶片SNR乘以展頻碼長度μ獲得資料符 號之符號SNR。 上述至兩個接收天線之SIM〇傳輸之空間區段FDE可延伸 為至任何數量接收天線之SIMO傳輸《亦可延伸該FDE至自 • 多個(T)發射天線至多個(R)接收天線之ΜΙΜΟ傳輸。為清楚 起見,以下描述一具有兩個發射天線、兩個接收天線及2 次過度取樣之2Χ2 ΜΙΜΟ傳輸。 。。對於一自傳輸器110y至接收器⑼之ΜΙΜ〇傳輸,該接收 益之該等頻域輸入符號可表示為:F K/2 K/2 Ϊ > (*) is a scaling factor, and φ ^ is the wafer SNR of the output sample. Equation (4) provides a bias of MMSE for /(4). The scaling factor F can be applied to y (magic or to obtain an unbiased estimate of the phantom or separately. If a data symbol is spread over a single chip with a spread code (eg 'a Walsh code or a VSF code') The symbol SNR of the data symbol can be obtained by multiplying the SNR of the wafer by the spread code length μ. The space segment FDE of the SIM〇 transmission to the two receiving antennas can be extended to SIMO transmission to any number of receiving antennas. The FDE is transmitted from multiple (T) transmit antennas to multiple (R) receive antennas. For clarity, the following describes a 2Χ2 transmission with two transmit antennas, two receive antennas, and two oversamplings. For a transmission from the transmitter 110y to the receiver (9), the frequency domain input symbols of the receiving benefit can be expressed as:

[⑷=石】⑷.义1W+赵2 W.义2 W+nW ^ , . Eq(14) _中Σ()為一 4χ1輸入符號向量, 勾⑻及尤2(幻分別為自發射天線1及2發送之符號, _1()為一用於發射天線1之4x1通道增益向量, 110773.doc -19- 1336193 h2(A)為:τ用於發射天線2之4χ1通道增益向量,且 2(幻為一 4x1雜訊向量。 二量办),_,_,及_具有等式(3)中所示之形式。 可得到兩個等化器係數向量岌]//(*)與义,以分別為每一 頻率槽k恢復該等兩個傳輸符號4㈨與尤2(幻。可基於 MMSE,強制歸零,MRC或某些其他技術得到等化器係數 向量。[(4)=石](4).义1W+赵2 W.义2 W+nW ^ , . Eq(14) _中Σ() is a 4χ1 input symbol vector, hook (8) and especially 2 (the illusion is self-transmitting antenna 1 And 2 transmitted symbols, _1 () is a 4x1 channel gain vector for transmitting antenna 1, 110773.doc -19- 1336193 h2 (A) is: τ is used for transmitting antenna 2 4 χ 1 channel gain vector, and 2 ( The magic is a 4x1 noise vector. The second quantity), _, _, and _ have the form shown in equation (3). Two equalizer coefficient vectors 岌]//(*) and meaning can be obtained. The two transmission symbols 4 (9) and 2 (illusion can be recovered for each frequency slot k, respectively. The equalizer coefficient vector can be obtained based on MMSE, forced return to zero, MRC or some other technique.

„可將用於每;;f射天線之MMSE等化器係數表示為: (k)==---i(k)__uHn\ ^ ⑻,其中 t = 1, 2 Eq(15) 其中〖為兩個發射天線之指數, Η 迅(k)為發射天線ί之一 1x4等化器係數向量, ^⑷-£{丨4⑻丨}為自天線ί發送之之能譜,且 骂㈨為發射天線/之一4Χ4雜訊與干擾協方差矩陣。 可將兩個發射天線之雜訊與干擾協方差矩陣表示為: 里1(灸)=52(幻.112(幻.]1《(幻+远(女),及„The MMSE equalizer coefficients for each antenna; can be expressed as: (k)==---i(k)__uHn\ ^ (8), where t = 1, 2 Eq(15) where 〖 The index of the two transmitting antennas, Η (k) is the transmitting antenna ί 1x4 equalizer coefficient vector, ^(4)-£{丨4(8)丨} is the energy spectrum transmitted from the antenna ί, and 骂(9) is the transmitting antenna / 4 Χ 4 noise and interference covariance matrix. The noise and interference covariance matrix of two transmitting antennas can be expressed as: 里1 (moxibustion) = 52 (magic. 112 (magic.) 1" (magic + far (female), and

.»· ^.i>(k) = S}(k)· h, (k) hf (k) + R(k) Eq(16) 等式(16)表示發射天線t之雜訊與干擾協方差矩陣骂⑷包 括.(1)可用於該等兩個發射天線之雜訊協方差矩陣以幻及 (2)自另一發射天線Z發送之資料流之干擾,其為 ^ bW。藉由另一發射天線r之通道響應向量H;⑷及 能譜》⑷判定流間干擾。 上述用於SIMO傳輸之簡化通常並不適用於MIM〇傳輸。 此係由於土,㈨包括來自其他發射天線之流間干擾。因此, 即使K⑷由於空間及光譜不相關雜訊為一對角矩陣,流間干 H0773.doc -20* 1336193 擾通常亦不為一對角矩陣。因此,可執 羽*仃一矩陣求逆以聛 得用於等式(15)之獲 可將等化器係數向量·及咖)應用至輪入向量㈣ 分別獲得輸出符號¥)及Y2⑻,其分別為傳輸符號^⑻ 及X2(k)之估計。可將自FDE之頻域輪出符號表示為. Y,(k) = (k)·r(k) = Bt(k)-X,(k) + Vt(k), 其中 t = i, 2 Eq(17) 其中K⑹為自發射天線t發送之A㈧之估計, 擾.·· ^.i>(k) = S}(k)· h, (k) hf (k) + R(k) Eq(16) Equation (16) represents the noise and interference protocol of the transmitting antenna t The variance matrix 骂(4) includes (1) the interference of the noise covariance matrix that can be used for the two transmit antennas, and (2) the interference of the data stream transmitted from the other transmit antenna Z, which is ^ bW. The inter-stream interference is determined by the channel response vector H of another transmitting antenna r; (4) and the energy spectrum (4). The above simplification for SIMO transmission is generally not applicable to MIM〇 transmission. This is due to the soil, (9) including inter-stream interference from other transmitting antennas. Therefore, even if K(4) is a pair of angular matrices due to spatial and spectral uncorrelated noise, the inter-flow interference H0773.doc -20* 1336193 is usually not a diagonal matrix. Therefore, the executable can be used to invert the matrix to obtain the equation (15), and the equalizer coefficient vector and coffee can be applied to the wheel vector (4) to obtain the output symbols ¥) and Y2 (8), respectively. Estimates for the transmission symbols ^(8) and X2(k), respectively. The frequency domain rounding symbol from FDE can be expressed as . Y,(k) = (k)·r(k) = Bt(k)-X,(k) + Vt(k), where t = i, 2 Eq(17) where K(6) is the estimate of A(8) transmitted from the transmitting antenna t, the interference

WWW·[掛¥) + η⑽為項之經過遽之雜訊與干 可將每一發射天線之晶片SNR表示為: Κ/2WWW·[hang¥) + η(10) is the noise and dryness of the item. The SNR of each transmit antenna can be expressed as: Κ/2

Es.(k)Es.(k)

Eq(18) 續晶片,,=77^-^--Eq(18) Continued wafer,,=77^-^--

XnFt-Bt(k)-l|2.St(k) + |Ft|2-a^t(k); k = l 其中<#) =五{RW|2卜五f⑷為之方差 • 1 κη Ί ·】 F,ss 為發射天線t之一縮放因子,且 為發射天線t之晶片SNR。 等式(17)提供冬⑷之偏誤MMSE估計。可將縮放因子巧應 用至巧㈨或M”')以分別獲得勾⑷或々(《')之無偏估計。若一資 料符號用一展頻碼在Μ個晶片上擴展,則藉由晶片SNR乘以 展頻碼長度Μ可獲得資料符號之符號SNR。 可對一 SIMO傳輸或一 ΜΙΜΟ傳輸使用一空間頻率等化器 結構。如上所述,一空間頻率等化器將所有天線之關於槽k 及k + N/2之冗餘信號成分組合。對於具有R=2及2次過度取 110773.doc 1336193 樣之情況,可分別對每一等化器係數向量冱〃(*)或〇t)執行 RW或里,(幻之一 4x4矩陣求逆。 參看圖4A ’ M々)= Fi,lW化丄⑷]7·為較低複本中之通頻帶及 過渡頻帶之非零。類似地,hu⑷=[i/卬㈧為較高複本 ’ 中之通頻帶及過渡頻帶之非零。ilL㈨或ilu㈧對於通頻帶及 • 過渡頻帶之外之頻率槽均很小或為零。因此,由於k或k + K/2之信號成分實際上為零’所以對於一些頻率槽,僅存在 φ 兩個(而不是四個)待組合之冗餘信號成分。 在一態樣中’對K/2頻率槽使用空間頻率等化器及空間等 化器之組合以減少複雜性。可對其中在較低複本中之槽k 及較高複本中之槽k+K/2上存在不可忽略之信號成分的每 一頻率槽k使用一空間頻率等化器❶可對其中僅在較低複本 中之槽k或較高複本中之槽k+K/2上存在信號成分之每一頻 率槽k使用一空間等化器。 圖4B展示用於一接收天線之兩個信號複本之一光譜圖。 • 如圖4B中所示,對於頻率槽bk;SKA2每一者,較高複本中 之槽k+K/2上之信號成分很小或為零,且可對該等槽之每— 者使用一空間等化器。對於頻率槽KA<k$KB之每一者,較 低$本中之槽k及較高複本中之槽k+K/2上之信號成分均不 可忽略,且可對該等槽之每一者使用一空間頻率等化器。 對於頻率槽KB<k$K/2i每一者,較低複本中之槽k上之信 號成分很小或為零,且可對該等槽之每一者使用一空間等 化。。如上述之簡化不適用,則可對每一空間頻率等化器 使用一4X4逆矩陣。如該簡化不適用,則可對每一空間等: 110773.doc -22- 1336193 器使用一 2 x 2逆矩陣。使用空間頻率等化器及空間等化器通 常減少複雜性而不會使性能降級。 對於具有Τ個發射天線及R個接收天線之通常情況,用於 每一發射天線t之通道響應向量可如下定義: 、 纪丄(幻=闲·a(*) /f,.2LW…H|ja(響為一 Rxl向量, fc’.u W e 丑,.2,U(*)…^,灿⑻】7' 為一Rxl 向量,及 = ⑻ ώ⑻]7 為一 2Rxl 向量》 用於該等R個接收天線之雜訊向量可如下定義·· K*) —…為 一 Rxl 向量, Πυ(Λ) —ΓΛ^,υ(々)…為一 Rx 1 向量,且 = 為一 2RxI 向量。 雜訊協方差矩陣可如下定義: 3^(*) = £"{取(*).<(幻)為一 RXR矩陣, 屯W=^{SuW.aiia))為一 RxR矩陣, ⑼為 _ 2Rx2R矩陣。 雜訊與干擾協方差矩陣可如下定義: ^r,L (k) = Σ5,· (k) h,· L (k) hfL (k) + R ()t) ^ _ ,,L LW 為一;RxR矩陣,XnFt-Bt(k)-l|2.St(k) + |Ft|2-a^t(k); k = l where <#) = five {RW|2b five f(4) is the variance • 1 Κη Ί ·] F, ss is a scaling factor of the transmitting antenna t and is the wafer SNR of the transmitting antenna t. Equation (17) provides a winter (4) bias MMSE estimate. The scaling factor can be applied to Q(9) or M"') to obtain an unbiased estimate of the hook (4) or 々 ("') respectively. If a data symbol is spread over a single wafer with a spread code, the chip is used. The SNR is multiplied by the length of the spread spectrum code to obtain the symbol SNR of the data symbol. A spatial frequency equalizer structure can be used for a SIMO transmission or a transmission. As described above, a spatial frequency equalizer will be used for all antennas. The combination of redundant signal components of k and k + N/2. For the case of R=2 and 2 times overtaking 110773.doc 1336193, the vector of each equalizer coefficient 冱〃(*) or 〇t can be separately Executing RW or R, (magic 4x4 matrix inversion. See Figure 4A 'M々) = Fi, lW 丄 (4)] 7· is the passband of the lower replica and the non-zero transition band. Similarly, Hu(4)=[i/卬(8) is a non-zero passband and transition band in the higher copy. ilL(9) or ilu(8) are small or zero for the passband and the frequency band outside the transition band. Therefore, due to k or The signal component of k + K/2 is actually zero 'so for some frequency bins, there are only two φ (instead of four) The redundant signal components to be combined. In one aspect, the combination of the spatial frequency equalizer and the spatial equalizer is used for the K/2 frequency bin to reduce the complexity. The slot k in the lower replica can be used. And each frequency bin k with a non-negligible signal component on the slot k+K/2 in the higher replica uses a spatial frequency equalizer, which can be used only in slots k or higher replicas in the lower replica. A spatial equalizer is used for each frequency bin k in which there is a signal component on slot k+K/2. Figure 4B shows a spectral diagram of two signal replicas for a receive antenna. • As shown in Figure 4B, For each of the frequency bins bk; SKA2, the signal component on the slot k+K/2 in the higher replica is small or zero, and a space equalizer can be used for each of the slots. Each of the slots KA<k$KB, the lower k of the slot k and the signal component of the slot k+K/2 in the higher replica are not negligible and can be used for each of the slots a spatial frequency equalizer. For each of the frequency bins KB<k$K/2i, the signal component on slot k in the lower replica is small or zero and can be Each uses a spatial equalization. If the above simplification does not apply, a 4X4 inverse matrix can be used for each spatial frequency equalizer. If the simplification is not applicable, then each space can be used: 110773. The doc -22- 1336193 uses a 2 x 2 inverse matrix. The use of spatial frequency equalizers and spatial equalizers typically reduces complexity without degrading performance. For a typical case with one transmit antenna and R receive antennas The channel response vector for each transmit antenna t can be defined as follows: , 丄 丄 (幻 = idle·a(*) /f,.2LW...H|ja (ranging as an Rxl vector, fc'.u W e Ugly, .2, U(*)...^, Can(8)] 7' is an Rxl vector, and = (8) ώ(8)]7 is a 2Rxl vector. The noise vectors for these R receive antennas can be defined as follows. K*) —... is an Rxl vector, Πυ(Λ) —ΓΛ^,υ(々)... is an Rx 1 vector, and = is a 2RxI vector. The noise covariance matrix can be defined as follows: 3^(*) = £"{take(*).<(the magic) is an RXR matrix, 屯W=^{SuW.aiia)) is an RxR matrix, (9) Is the _ 2Rx2R matrix. The noise and interference covariance matrix can be defined as follows: ^r,L (k) = Σ5,· (k) h,· L (k) hfL (k) + R ()t) ^ _ ,, L LW is one ;RxR matrix,

^,uW= + R W ’=1’M ’ uw 為一RxR矩陣,且 =fef)姻心)+_為一 2Rx2R矩陣。^, uW = + R W '=1'M ' uw is an RxR matrix, and =fef) is a) 2Rx2R matrix.

^Γρ,/W •…Eq(19) 可將頻率槽KA+ 1至尺之每一者 * 土母者之空間頻率等化器表示 L將頻率槽1至K C 一者之空間等化器表示為: 為: n0773.doc^Γρ, /W •...Eq(19) Each of the frequency slots KA+ 1 to the ruler* The space frequency equalizer of the mother of the earth represents L. The space equalizer of the frequency slots 1 to KC is expressed as : for: n0773.doc

Cs) •23- 1336193 丑S,t⑻-Cs) • 23- 1336193 Ugly S, t(8)-

St(k) l + stWh^(k).^;\k).h((k) -* v'y Eq(20) 可將頻率槽KB + 1至K/2之每一者之空間頻率等化器表示 為·· 《,,(々) = —----^1--- hH f]r. ,τ,-l ,,.St(k) l + stWh^(k).^;\k).h((k) -* v'y Eq(20) The spatial frequency of each of the frequency bins KB + 1 to K/2 The equalizer is expressed as ···, (々) = —----^1--- hH f]r. , τ,-l ,,.

Eq(2i) 可用一/Rx2R矩陣求逆獲得等式(2〇)中之空間頻率等化 器係數。可用一RXR矩陣求逆獲得等式(19)或(21)中 之空間等化器係數<(*)。對於R=2,可基於一替代一2χ2矩 陣求逆之一封閉解得到空間等化器係數。Eq(2i) can be obtained by inverting a /Rx2R matrix to obtain the spatial frequency equalizer coefficients in equation (2〇). The space equalizer coefficient <(*) in equation (19) or (21) can be obtained by inverting an RXR matrix. For R = 2, the spatial equalizer coefficients can be obtained based on an alternative one - 2 χ 2 matrix inversion one closed solution.

Eq(22) Eq(23) Eq(24) 為進一步減少複雜性,可藉由應用該矩陣求逆引理對所 有Τ個發射天線使用一共同雜訊與干擾協方差矩陣。則可將 等式(19) ’(20)及(21)中之等化器係數表示為: 〇)=5,(/〇.ι^α).2Γ», 其中 *Λ * , 其中 KA<hKB,及 2^(*)=^,(*).1^(幻_3^(*), 其中 KB<Jfc:S;K/2, 其中土LW =思 + Ψυ = ^Si(k) h,· u (k) h^j (k) + R y (jt) τ。】 ’且 Ψ(Α:)= Z^/W-h^^hfc^ + R^) ,’=1 Ο 在一實施例中,可將頻率槽ka&kb界定為: ΚΑ=(1-α + ε)_Κ/4 及Eq(22) Eq(23) Eq(24) To further reduce complexity, a common noise and interference covariance matrix can be used for all of the transmit antennas by applying the matrix inversion lemma. Then, the equalizer coefficients in equations (19) '(20) and (21) can be expressed as: 〇)=5, (/〇.ι^α).2Γ», where *Λ * , where KA< hKB, and 2^(*)=^,(*).1^(幻_3^(*), where KB<Jfc:S; K/2, where soil LW = think + Ψυ = ^Si(k) h,· u (k) h^j (k) + R y (jt) τ.] 'And Ψ(Α:)= Z^/Wh^^hfc^ + R^) , '=1 Ο In one implementation In the example, the frequency slot ka&kb can be defined as: ΚΑ=(1-α + ε)_Κ/4 and

Eq(25) K g =(1 + ex — ε) * Κ/4 , Eq(26) 其中α為傳輸器之脈衝整形濾波器之滾降因子,且 ε為一等化器選擇臨限。 110773.doc -24. 丄⑽193 可由系統來指定滾降因子,例如對於w_cdma,α = 〇 22。 該限ε判疋疋使用空間頻率等化還是空間等化且可定義 其為〇义^。當£=〇,可對頻率槽α·Κ/2使用空間頻率等化 器’對剩餘之頻率槽(1,.尺/2使用空間等化器,且可達成複 雜性極大地減少而性能不降級。若臨限£增加,則可對更多 之頻率槽使用空間等化器’複雜性進一步減少,但是性能 可能開始降級。可基於複雜性及性能間之一折中選擇臨限卜 圖5展示用於執行空間頻率等化之一程序5〇〇。自多個 接收天線及多次(C)過度取樣獲得用於多個(Μ)信號複本之 頻域輸人符號或自每—接收天線獲得用於c個信號複本之 頻域輸入符號’其中(方塊512)。獲得Μ個信號複本 之輸入符號之方式可為由⑴為每-接收天線以C倍晶片速 率接收時域輪人樣本及⑺為每—接收天線將輸人樣本轉換 成頻域’以獲仵用於該接收天線之c個信號複本的輸入符 號。 例如,基於通道及雜訊估計且根據mmse法則得到用於Μ 個信號複本之等化㈣數(方塊514)。用該料化器係數過 濾用於該等Μ個信號複本之輸入符號(方塊516)。組合用於 該等Μ個信號複本之料經過瀘之符號以獲得輸出符號(方 塊川)。可組合用於該個信號複本之頻率槽k中之難 唬成刀’其中k為用於每一信號複本中之個頻 一指數。 曰 右為— smo傳輸恢復―資料流,則可為每—信號複本和 到一組等化器係數心。例如,若c=2且R=2,則可為四啦 n0773.doc -25- 1336193 仏號複本得到四組等化器係數<L(KU⑷,%1(幻及。 對於上述實施例,每一組包括用於一信號複本中之κ/2個頻 率才曰之Κ/2個等化器係數。可以頻率槽個等化器係數 為每一頻率槽k形成“個等化器係數之一向量,㈨。可基 於對(1)自每一接收天線之該等c個信號複本之光譜非相關 雜Λ ’(2)該等尺個接收天線之空間非相關雜訊,或⑺該等 Μ個彳5號複本之空間及光譜非相關雜訊的假定得到該等等 化器係數。如上所述,可用任何雜訊假定簡化對該等等化 器係數之計算。 若為一ΜΙΜΟ傳輸恢復多個(τ)資料流,則可為每一資料 流之該等Μ個㈣複本得到Μ組等化器係數。對於每一頻率 槽k’ 一雜訊與干擾協方差矩陣义㈧可為每一資料流判定且 使用其得到用於該資料流之等化器係數 <(心或者,對於Eq(25) K g =(1 + ex — ε) * Κ/4 , Eq(26) where α is the roll-off factor of the pulse shaping filter of the transmitter, and ε is the threshold of the equalizer selection. 110773.doc -24. 丄(10)193 The roll-off factor can be specified by the system, for example for w_cdma, α = 〇 22. The limit ε is determined by using spatial frequency equalization or spatial equalization and can be defined as 〇 meaning^. When £=〇, the space frequency equalizer can be used for the frequency slot α·Κ/2' for the remaining frequency slots (1, .2/2 space equalizer, and the complexity can be greatly reduced without performance Downgrade. If the threshold is increased, the space equalizer can be used for more frequency slots. The complexity is further reduced, but the performance may begin to degrade. You can choose the threshold based on the compromise between complexity and performance. A program for performing spatial frequency equalization is shown. Frequency domain input symbols for multiple (Μ) signal replicas or multiple per-receiving antennas are obtained from multiple receive antennas and multiple (C) oversampling Obtaining a frequency domain input symbol for c signal replicas (block 512). The input symbols of the two signal replicas are obtained by (1) receiving a time domain wheel sample at a C-chip rate for each-receiving antenna and (7) Converting the input samples into the frequency domain for each receive antenna to obtain the input symbols for the c signal replicas of the receive antenna. For example, based on channel and noise estimation and obtained for Μ signals according to mmse law Equalized (four) number of copies (block 514) The input symbols for the copies of the plurality of signals are filtered by the quantizer coefficients (block 516), and the symbols for the copies of the signals are combined to obtain the output symbols (squares). It is difficult to form a knife in the frequency slot k of the replica of the signal, where k is the frequency-index for each signal replica. 曰 right is - smo transmission recovery - data stream, then each signal Replica and to a set of equalizer coefficients. For example, if c=2 and R=2, then four sets of equalizer coefficients <L(KU(4), can be obtained for the four-n0773.doc -25- 1336193 nickname copy. %1 (phantom sum. For the above embodiment, each group includes κ/2 equalizer coefficients for κ/2 frequencies in a signal replica. The frequency slot equalizer coefficients can be used for each The frequency bin k forms a vector of one equalizer coefficient, (9). It can be based on (1) spectral uncorrelated hysteresis of the c signal replicas from each receiving antenna '(2) the antennas of the same size Spatially uncorrelated noise, or (7) assumptions about the space and spectral uncorrelated noise of the 彳5 复 copy Equalizer coefficients. As described above, the calculation of the equalizer coefficients can be simplified with any noise assumption. If multiple (τ) data streams are recovered for a single transmission, then this can be the same for each data stream. The (4) replica obtains the 等 group equalizer coefficient. For each frequency bin k' a noise and interference covariance matrix meaning (8) can be determined for each data stream and used to obtain the equalizer coefficient for the data stream < (heart or, for

每-頻率槽k,可判定-共同雜訊與干擾協方差矩陣且 基於該共同雜訊與干擾協方差矩陣之上得到用於所有丁個 資料流之等化器係數。彳用每一資料流之Μ組等化器係數 過渡Μ個信號複本之輸人符號以獲得該資料流之該等卿 信號複本之經過遽之符號。可組合每—資料流之該等難 信號複本之該等經㈣之符號以獲得f料流之輸出符號。 貫際上,即使當C大於2時,因為在大多數情況㈣ 號成分中僅有2R個具有不可,忽略之信號能量,所以該接收 β通常不必組合所有M=C.R個信號成分。通常該等傳輸漁 波器及該等接收器前端濾波器之截止頻帶抑制所有其他: 冗餘成分。因此,即使02時該空間頻率等化器或協^差矩 110773.doc -26· 丄336193 陣之實際维數仍保持為2R。 圖6展不用空間頻率等化器及空間等化器之組合執行等 化之一處理600。為一第一組頻率槽(例如,圖4B中之頻率 槽ΚΑ+1至KB)執行空間頻率等化(方塊6丨2)。該空間頻率等 化在空間及頻率維上組合信號成分。為一第二組頻率槽(例 ,,圖4B中之頻率槽1至1^及頻率槽“七至尺/】)執行空間 等化(方塊614)。空間等化在空間維上組合信號成分。可基 #於發射脈衝整形濾波器之頻率響應、複雜性與性能間之折 中等選擇第一及第二組頻率槽(方塊616)。 圖7展示圖i中系統100中之傳輸器11〇y及接收器15〇之一 方塊圖。對於一下行鏈路/前向鏈結傳輸,傳輸器ii〇y為一 基地台之部分,且接收器15〇為一無線設備之部分。對於一 上行鏈路/反向鏈結傳輸,傳輸器n〇y為一無線設備之部 /刀’且接收器150為-基地台之部分。一基地台通常為一與 該等無線設備通信之固定台,其亦可稱為一節點b,一存取For each frequency bin k, a common noise and interference covariance matrix can be determined and equalizer coefficients for all of the data streams are obtained based on the common noise and interference covariance matrix. Μ Use each group of equalizer coefficients for each data stream to transition the input symbols of the signal copies to obtain the 遽 symbols of the copies of the data signals of the data stream. The symbols of the (4) of the difficult signal replicas of each data stream may be combined to obtain the output symbols of the f stream. Conversely, even when C is greater than 2, since only 2R of the components of the majority (4) have an unavoidable signal energy, the reception β does not usually have to combine all of the M=C.R signal components. Usually the cutoff bands of the transmit fishers and the front end filters of the receivers suppress all other: redundant components. Therefore, even at 02, the actual dimension of the spatial frequency equalizer or the coherent moment 110773.doc -26· 丄336193 remains 2R. Figure 6 shows a process 600 for performing equalization without the combination of a spatial frequency equalizer and a spatial equalizer. Spatial frequency equalization is performed for a first set of frequency bins (e.g., frequency bins +1 to KB in Figure 4B) (block 6丨2). This spatial frequency equalization combines signal components in spatial and frequency dimensions. Space equalization is performed for a second set of frequency bins (eg, frequency bins 1 through 1^ and frequency bins "seven to ft/" in Figure 4B) (block 614). Space equalization combines signal components in spatial dimensions The first and second sets of frequency bins are selected from the frequency response, complexity and performance of the transmit pulse shaping filter (block 616). Figure 7 shows the transmitter 11 in the system 100 of Figure i. y and the receiver 15 〇 one block diagram. For the downlink/forward link transmission, the transmitter ii 〇 y is part of a base station, and the receiver 15 is part of a wireless device. Link/reverse link transmission, the transmitter n〇y is part of a wireless device/knife' and the receiver 150 is part of a base station. A base station is usually a fixed station that communicates with the wireless devices. It can also be called a node b, an access

交錯及符號映射)訊務資料JL提供資料符號 個調變器730a至730t 料調變符號,—前導 信號群之中之一點(例如,用於M-PSK或 730t。如本文所使用,一資料符號為一資 前導符號為一前導調變符號,一調變符號 H0773.doc -27- 1336193 m-qAM)之複合值且前導為傳輸器及接收器 資料。每一調變器730以該系統指定之方式處理其 號及前導符號且提供傳輸晶片々⑻至一相關之傳輸器單元 (TMTR)736。每一傳輸器單元736處理(例如,轉換成類比、 放大、過濾及增頻變換)其之傳輸晶片且產生一調變信號。 自T個傳輸器單元736a至73以之丁個經調變之信號分別自丁 個天線112a至112t傳輸。 • &接收器150處,R個天線152a至152r經由不同信號路徑 接收該等傳輸信號及將R個接收信號分別提供至R個接收 窃早兀(RCVR)754a至7541•。每一接收器單元754調節(例 如,過濾、放大及降頻變換)其之接收信號,以數倍(例如, 兩倍)於該晶片速率之速率數位化該經調節信號且提供時 域輸入樣本至一相關FFT/DFT單元756。每一單元756將輸 入樣本轉換成頻域且提供頻域輸入符號旱⑻。 一通道及雜訊估計器758可基於自FFT/DFT單元756之頻 _域輸入符號(如圖7中所及/或自接收器單元754之時域輸 入樣本(未在圖7中展示)估計該通道響應向量及雜訊。可用 該技術巾已知之不同方式執行通道及雜訊估言十。一頻域等 化器(FDE)76G基於通道響應向量及雜訊估計得到等化器係 數,用該等等化器係數過遽該等輸入符號,在空間及頻率 上或僅在空間上組合該等經過濾之符號,且提供輸出符號 至τ個解調器(Demod)77〇d 77〇t。若傳輸器【ι〇以時域 5周變符號,例如,對CDMA、TDMA及SC-FDMA,則每」 解°周裔77G可對自FDE 76G之輸出符號執行IFFT/IDFT。每— 110773.doc •28- 解調器770接著用補充調變器730處理之方式處理其之(頻 域或時域)輸出符號且提供資料符號估計。一接收(RX)資料 處理器780處理(例如,符號解映射、解交錯及解碼)該等資 料符號估計且提供經解碼之資料。通常,在傳輸器11 〇y處, 解調器770及RX資料處理器780之處理分別為調變器730及 TX資料處理器720之補充。 控制器/處理器740及790分別直接操作傳輸器ll〇y及接 收器150處之不同處理單元。記憶體742及792分別為傳輸器 ll〇y及接收器150儲存資料及程式化編碼。 可對諸如劃碼多向近接(CDMA)系統、劃時多向近接 (TDMA)系統、劃頻多向近接(FDMA)系統、正交劃頻多向 近接(OFDMA)系統、單載波FDMA(SC-FDMA)系統等之不 同通信系統使用本文描述之等化技術。一 CDMA系統可建 構諸如寬帶CDMA(W-CDMA)、cdma2000等之一或多個無線 電技術》cdma2000 覆蓋IS-2000、IS-856 及 IS-95標準。一 TDMA系統可建構諸如全球行動通信系統(GSM)之一無線 電技術。該等不同無線電技術及標準在該技術中已知。在 自一名為"第三代合作夥伴計劃"(3GPP)之協會之文件中描 述W-CDMA及GSM。在自一名為"第三代合作夥伴計劃 2"(3GPP2)之協會之文件中描述cdma2000 〇 3GPP及3GPP2 文件可公開地獲得。一 OFDMA系統在使用正交劃頻多工 (OFDM)之正交頻率子頻帶上之頻域中傳輸調變符號。一 SC-FDMA系統在正交頻率子頻帶上之時域中傳輸調變符 號。 1 10773.doc -29- 1336193 傳輸器llOy處之調變器730及接收器150處之解調器770 執行如該系統指定之處理。例如,調變器73〇可執行用於 CDMA、OFDM、SC-FDMA等或其之組合之處理。 熟習此項技術者將理解可使用多種其他技術及工藝之任 何—者代表資訊及信號。例如,可用電壓、電流、電磁波、 • 磁場或磁粒子、光場或光粒子或其之任何組合代表上文描 述所參考之資料、指令、命令、資訊、信號、位元、符號 φ 及晶片。 熟習此項技術者將進一步理解結合本文所揭示之實施例 描述之多種說明性邏輯塊、模組、電路及運算步驟可建構 為電子硬體、電腦軟體或兩者之組合。為清楚說明硬體與 軟體之可交換性,上文已通常根據其之功能性描述多種說 明性組件、方塊、模組、電路及步驟。是用硬體或還是用 軟體執行該種功能性視加在整個系統上之特定應用及設計 、約束條件而定1練之技工可對每—特定應用使用不同方 W 式建構所述功能性,作异贫望娃 a 一 寻建構決疋不應理解為引起對 本發明之範疇的背離。 口个乂尸拘 7裡δ兄咧性邏輯塊、 :及電路可用一通兩處理器、一數位信號處理器(Dsp)、 2應用積體電路(ASIC)'_場程式閘陣列π·)或其 式化邏輯設備、離散閉或電晶體邏輯、離散硬體組 ^執^健設計執行本文所述之料功能之組合來建 處理用處理^可為—微處理器但是作為替代, 處理。。可為任何習知處理器、控制器、微控制器或狀態機 H0773.doc 1336193 一處理器亦可建構為計算設備之組合,例如,一 DSp與一 微處理器之組合、複數個微處理器、與一 DSP核心結合之 一或多個微處理器及任何其他該種組態。 結合本文所揭示之實施例描述之一方法或演算法之步驟 可直接在用石更體或-處理器執行之軟體模组或兩者之組合 ^中實施。一軟體模、组可駐於RAM記憶體、閃存記憶體、r〇m 圮憶體、EPROM記憶體、EEPR〇M記憶體、暫存器、硬碟、 • 可移動磁碟、一 CD-R〇M或此項技術中已知之儲存媒體之 任何其他形式中。一例示性儲存媒體耗接至處理器使得該 處器可自°玄儲存媒體讀取資訊或寫入資訊至該儲存媒 體。或者,該儲存媒體與該處理器可為整體。該處理器及 該健存媒體可駐於一 ASIC中。該ASK:可駐於-使用者終端 中。或者,該處理器及該儲存媒體可作為離散組件駐於一 :發明提供所揭示之實施例之先前描述以使任何熟習此 ^技術者進行或❹本發明^習此項技術者㈣而易見 =等實施例之多種修改且在不背離本發明 情:下可將本文界定之通用原則應用至其他實施例1 二本發明不意欲限制於本文所示之實施例而是與本文所 揭不之原理及新穎特徵之最廣泛範圍相—致。 【圖式簡單說明】 圖1展示一通信车+ '、、·先中之兩個傳輸器及一個接收器。 圖2展示自單一天線傳輸器至該接收器之傳輸。 圖3展示一用於接收差異之頻域等化器的-信號流程。 110773.doc * 31 . 圖4A展^ » 不具有2次過度取樣之兩個接收天線之光譜圖。 圖4B展开•田倉 、用於一個接收天線之兩個信號複本的光譜圖。 圖5展示執行空間頻率等化之一程序。 之= 展序示執行結合空間頻率等化器及空間等化器的等化 圖7展示~多 個天線傳輕 【主要元件符號說明】 100 系統 11 Ox 傳輸器 110y 傳輸器 112x 天線 112a·.· U2t 天線 150 接收器 152a··· i52r 天線 200 信號流程 210 升取樣器 224a 加法器 224b 加法器 230a 單元 230b 單元 240a 等化器 240b 等化器 242a 等化器 242b 等化器 110773.docInterleaving and symbol mapping) The traffic data JL provides data symbol modulators 730a through 730t modulation symbols, one of the preamble groups (for example, for M-PSK or 730t. As used herein, a data The symbol is a composite preamble symbol for a preamble modulation symbol, a modulation symbol H0773.doc -27- 1336193 m-qAM) and the preamble is the transmitter and receiver data. Each modulator 730 processes its number and preamble symbols in a manner specified by the system and provides a transport chip (8) to an associated transmitter unit (TMTR) 736. Each transmitter unit 736 processes (e.g., converts to analog, amplifies, filters, and upconverts) its transmitted wafer and produces a modulated signal. The modulated signals from the T transmitter units 736a through 73 are transmitted from the individual antennas 112a through 112t, respectively. • At the & receiver 150, the R antennas 152a through 152r receive the transmission signals via different signal paths and provide the R received signals to R reception scalars (RCVR) 754a through 7541, respectively. Each receiver unit 754 conditions (eg, filters, amplifies, and downconverts) its received signal, digitizes the adjusted signal at a rate that is multiple (eg, twice) at the rate of the wafer and provides a time domain input sample To a related FFT/DFT unit 756. Each unit 756 converts the input samples into a frequency domain and provides a frequency domain input symbol drought (8). A channel and noise estimator 758 can be based on frequency domain input symbols from FFT/DFT unit 756 (as in FIG. 7 and/or from time domain input samples of receiver unit 754 (not shown in Figure 7)) The channel response vector and noise. Channel and noise estimation can be performed in different ways known to the technology towel. A frequency domain equalizer (FDE) 76G obtains equalizer coefficients based on channel response vector and noise estimation. The equalizer coefficients are over the input symbols, combining the filtered symbols spatially or in frequency or only spatially, and providing output symbols to τ demodulators (Demod) 77〇d 77〇t If the transmitter [m〇 changes the symbol in the time domain by 5 weeks, for example, for CDMA, TDMA, and SC-FDMA, then each of the 77G can perform IFFT/IDFT on the output symbols from the FDE 76G. Per - 110773 .doc • 28- Demodulator 770 then processes its (frequency domain or time domain) output symbols in a manner that is complemented by the processing of the modulator 730 and provides data symbol estimates. A receive (RX) data processor 780 processes (eg, Symbol de-mapping, de-interlacing, and decoding) the data symbols are estimated and provided Decoded data. Typically, at transmitter 11 〇y, the processing of demodulator 770 and RX data processor 780 is complemented by modulator 730 and TX data processor 720, respectively. Controller/Processor 740 and 790 The different processing units at the transmitter 〇 〇 y and the receiver 150 are directly operated. The memory 742 and 792 respectively store data and program code for the transmitter 〇 〇 y and the receiver 150. Different communication systems such as CDMA) systems, time-sharing multi-directional proximity (TDMA) systems, frequency-multidirectional proximity (FDMA) systems, orthogonal frequency-multi-directional proximity (OFDMA) systems, single-carrier FDMA (SC-FDMA) systems, etc. Using the equalization techniques described herein, a CDMA system can construct one or more radio technologies such as Wideband CDMA (W-CDMA), cdma2000, etc. cdma2000 covers IS-2000, IS-856, and IS-95 standards. A TDMA system One such as the Global System for Mobile Communications (GSM) radio technology can be constructed. These different radio technologies and standards are known in the art. In one of the associations of the "3rd Generation Partnership Project" (3GPP) W-CDMA and GSM are described in the document. The cdma2000 〇3GPP and 3GPP2 documents are publicly available in a document for the association of "3rd Generation Partnership Project 2" (3GPP2). An OFDMA system is using orthogonal frequency division multiplexing (OFDM). The modulation symbols are transmitted in the frequency domain on the frequency subband. An SC-FDMA system transmits the modulation symbols in the time domain on the orthogonal frequency subband. 1 10773.doc -29- 1336193 The modulator 730 at the transmitter 110O and the demodulator 770 at the receiver 150 perform the processing as specified by the system. For example, modulator 73 can perform processing for CDMA, OFDM, SC-FDMA, etc., or a combination thereof. Those skilled in the art will understand that any of a variety of other techniques and processes may be used to represent information and signals. For example, voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or light particles, or any combination thereof, may be used to represent the materials, instructions, commands, information, signals, bits, symbols φ, and wafers referred to above. Those skilled in the art will further appreciate that the various illustrative logic blocks, modules, circuits, and operational steps described in connection with the embodiments disclosed herein may be constructed as electronic hardware, computer software, or a combination of both. To clearly illustrate the interchangeability of the hardware and the software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether the hardware or software is used to perform this kind of functionality, depending on the specific application and design and constraints of the entire system, the technician can construct the functionality for each specific application using different methods. It is not to be construed as causing a departure from the scope of the present invention.口 乂 拘 7 δ δ δ δ δ : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Its modular logic device, discrete closed or transistor logic, discrete hardware set, and the combination of the material functions described herein to implement the processing process can be microprocessors, but instead, processed. . A processor, controller, microcontroller or state machine H0773.doc 1336193 may also be constructed as a combination of computing devices, for example, a combination of a DSp and a microprocessor, a plurality of microprocessors One or more microprocessors and any other such configuration in combination with a DSP core. The method or algorithm steps described in connection with the embodiments disclosed herein may be implemented directly in a software module or a combination of both executed by a stone or processor. A software module, group can be resident in RAM memory, flash memory, r〇m memory, EPROM memory, EEPR〇M memory, scratchpad, hard disk, • removable disk, a CD-R 〇M or any other form of storage medium known in the art. An exemplary storage medium is consuming to the processor such that the device can read information from or write information to the storage medium. Alternatively, the storage medium and the processor may be integral. The processor and the health storage medium can reside in an ASIC. The ASK: can be resident in the -user terminal. Alternatively, the processor and the storage medium may reside as a discrete component: the invention provides a prior description of the disclosed embodiments to enable any person skilled in the art to carry out or to practice the invention. The various general principles defined herein may be applied to other embodiments without departing from the invention. The invention is not intended to be limited to the embodiments shown herein but is not disclosed herein. The broadest range of principles and novel features is the same. [Simple diagram of the diagram] Figure 1 shows a communication vehicle + ', , · the first two transmitters and one receiver. Figure 2 shows the transmission from a single antenna transmitter to the receiver. Figure 3 shows a -signal flow for receiving a difference frequency domain equalizer. 110773.doc * 31 . Figure 4A shows the spectrum of two receiving antennas without 2 oversampling. Figure 4B unfolds • Tian Cang, a spectrum of two signal replicas for a receiving antenna. Figure 5 shows one of the procedures for performing spatial frequency equalization. It is shown that the execution is combined with the equalization of the spatial frequency equalizer and the space equalizer. Figure 7 shows the transmission of multiple antennas [Main component symbol description] 100 System 11 Ox Transmitter 110y Transmitter 112x Antenna 112a·.· U2t Antenna 150 Receiver 152a··· i52r Antenna 200 Signal Flow 210 Up Sampler 224a Adder 224b Adder 230a Unit 230b Unit 240a Equalizer 240b Equalizer 242a Equalizer 242b Equalizer 110773.doc

•32· 1336193•32· 1336193

244a 加法器 244b 加法器 250 αΟ 一 早兀 252 降取樣器/抽取器 300 信號流程 310 FFT/DFT 單元 324a 加法器 324b 加法器 326a 加法器 326b 加法器 328a FFT/DFT 單元 328b FFT/DFT 單元 340a 等化器 340b 等化器 342a 等化器 342b 等化器 344a 加法器 344b 加法器 346 加法器 348 增益元件/單元 350 IFFT/IDFT 單元 720 傳輸(ΤΧ)資料處理器 730a…730t 調變器 736a... 736t 傳輸器單元(TMTR) •33- lJ0773.doc244a adder 244b adder 250 αΟ early 兀252 downsampler/decimator 300 signal flow 310 FFT/DFT unit 324a adder 324b adder 326a adder 326b adder 328a FFT/DFT unit 328b FFT/DFT unit 340a equalization 340b equalizer 342a equalizer 342b equalizer 344a adder 344b adder 346 adder 348 gain element/unit 350 IFFT/IDFT unit 720 transmission (ΤΧ) data processor 730a...730t modulator 736a... 736t Transmitter Unit (TMTR) • 33- lJ0773.doc

A 7401336193A 7401336193

742 754a."754r 756a." 756r 758 760 770a··· 770t 780 790 792 控制器/處理器 記憶體 接收器單元(RCVR) FFT/DFT 單元 通道及雜訊估計器 頻域等化器(FDE) 解調器 接收(RX)資料處理器 控制器/處理器 記憶體 110773.doc • 34·742 754a."754r 756a." 756r 758 760 770a··· 770t 780 790 792 Controller/Processor Memory Receiver Unit (RCVR) FFT/DFT Unit Channel and Noise Estimator Frequency Domain Equalizer ( FDE) Demodulator Receiver (RX) Data Processor Controller / Processor Memory 110773.doc • 34·

Claims (1)

13361931336193 第095115384號專利申請案 中文申請專利範圍替換本(99年6月) 十、申請專利範圍: 一種用於對過度取樣接收信號之空間頻率等化之裝置 其包含: 至少一處理器,其經配置以得到用於經由多個接收天 線及過度取樣獲得之多個信號複本的等化器係數,且用 該等等化器係數為該等多個信號複本過濾輸入符號,及 在空間及頻率維上組合經過濾之該等符號以用於至少一 頻率槽之一第一集合及在空間維上組合經過濾之該等符 號以用於至少一頻率槽之—第二集合;及 一 s己憶體’其耗接至該至少一處理器, 其中至少一頻率槽之該第一集合的數目與至少一頻率 槽之该第二集合的數目係基於一等化器選擇臨限來判 定。 2. 如請求項1之裝置,其中該至少一處理器基於最小均方誤 差(MMSE)法則得到該等等化器係數。 3. 如請求項1之裝置,其中.該至少一處理器用該等等化器係 數在頻域中過濾該等輸入符號。 4. 一種用於對過度取樣接收信號之空間頻率等化之方法, 其包含: 得到用於經由多個接收天線及過度取樣獲得之多個信 號複本的等化器係數; 用該等等化器係數為該等多個信號複本過濾輸入符 號; 在空間及頻率維上組合經過濾之該等符號以用於至少 110773-990628.doc 一頻率槽之一第一集合; 在空間維上組合經過滤之該等符號以用於至少一頻率 槽之一第二集合, 其中至少一頻率槽之該第一集合的數目與至少一頻率 槽之該第二集合的數目係基於一等化器選擇臨限來判 定。 5‘如請求項4之方法,其中該過濾該等輸入符號包含用該等 等化器係數在頻域中過濾該等輸入符號。 6. 種用於對過度取樣接收信號之空間頻率等化之裝置, 其包含: 用於得到用於經由多個接收天線及過度取樣獲得之多 個信號複本的等化器係數的構件; 用於用該等等化器係數為該等多個信號複本過濾輸入 符號的構件;及 在二間及頻率維上組合經過濾之該等符號以用於至少 頻率軺之第一集合及在空間維上組合經過濾之該等 符號以用於至少一頻率槽之一第二集合之構件, 八中至^一頻率槽之該第一集合的數目與至少一頻率 ί曰之„亥第一集合的數目係基於一等化器選擇臨限來判 定。 7·如請求項6之裝置,其中該用於過渡該等輸入符號的構件包含 用於用該料Μ紐麵域巾祕料輸人符號的構件。 8· 一種用於對過度取樣接收信號之空間頻率等化之裝置,其 包含: 110773-990628.doc 1336193 年日修(更)正瞽換頁 至少一處理器’其經配置以自多個(R)接收天線及多次 (C)過度取樣獲得用於多個(M)信號複本之輸入符號,其中 Μ等於R乘以C ’得到用於該等μ個信號複本之等化器係 數’用邊等等化器係數為該等Μ個信號複本過濾該等輸入 符號且在空間及頻率維上組合.經過濾之該等符號以用於 至^頻率槽之一第一集合及在空間維上組合經過濾之 該等符號以用於至少—頻率槽之一第二集合;及 | 一記憶體,其耦接至該至少一處理器, 其中至頻率槽之該第一集合的數目與至少一頻率 槽之该第二集合的數目係基於一等化器選擇臨限來判 定。 9·如清求項8之裝置’其中該至少一處理器為每一接收天線 以C倍晶片速率接收輸入樣本且為每一接收天線將該等 輸入樣本轉換成頻域以自該接收天線獲得用於C個信號 複本之輸入符號。 φ 1 〇·如6月求項8之裝置,其中該至少一處理器為至少—資料流 之每—者得到用於該等Μ個信號複本之μ組等化器係數。 U.如請求項8之裝置,其中尺等於二且c等於二,且其中該至 ^處理器得到用於四個信號複本之四組等化器係數, 每組等化器係數用於一自一接收天線之信號複本。 12.如明求項8之裝置,其中該至少一處理器組合用於該等Μ 七號複本之頻率槽k上之信號成分,其中k為頻率槽之 一指數》 η·如叫求項8之裝置,其中該至少一處理器基於最小均方誤 H0773-990628.doc 月日修(吏)止赘換頁 差(MMSE)法則得到該等等化器係數。 14·如請求項8之裝置,其中該至少一處理器基於對自每一接 收天線之Μ個信號複本之不相關雜訊的一假設得到該等 等化器係數。 15. 如请求項8之裝置,其中該至少一處理器基於對該等r個 接收天線之不相關雜訊的一假設得到該等等化器係數。 16. 如明求項8之裝置,其中該至少一處理器基於對該等μ個 L號複本之空間及光譜不相關雜訊的一假設得到該等等 化器係數。 17. 如咕求項8之裝置,其中對於待恢復之τ個資料流之每一 者D亥至ν 處理器為該資料流得到用於該等Μ個信號複 本之等化益係數,用該等等化器係數過濾用於該等Μ個信 號複本之該等輸入符號以獲得用於該等Μ個信號複本之 經過據之符號,且組合用於該等卿信號複本之該等經過 濾之符號以獲得用於該資料流之輸出符號。 18. 如請求項17之裝置’其巾對於料Τ個資料流之每一者, 該至少一處理器得到雜訊與干擾協方差矩陣且基於該等 雜Λ與干擾協方差矩陣得到用於該資料流之該等等化器 係數。 如了求項17之裝置’其中對於多個頻率槽之每一者,該 至夕4理器得到一共同雜訊與干擾協方差矩陣且基於 料同雜訊與干擾協方差料得到用於該等Τ個資料流 之母—者之該等等化器係數。 20. 一種用於對過度取樣接收信號之Μ頻率等化之方法, 110773-990628.doc 1336193Patent Application No. 095115384 (Chinese Patent Application No. 095115384) (June 1999) X. Patent Application Range: A device for equalizing spatial frequency of oversampled received signals, comprising: at least one processor configured Obtaining equalizer coefficients for a plurality of signal replicas obtained via a plurality of receive antennas and oversampling, and filtering the input symbols for the plurality of signal replicas using the equalizer coefficients, and in spatial and frequency dimensions Combining the filtered symbols for a first set of at least one frequency bin and combining the filtered symbols in a spatial dimension for a second set of at least one frequency bin; and a s-resonance 'It is consuming to the at least one processor, wherein the number of the first set of at least one frequency bin and the number of the second set of at least one frequency bin are determined based on an equalizer selection threshold. 2. The apparatus of claim 1, wherein the at least one processor obtains the equalizer coefficients based on a minimum mean square error (MMSE) rule. 3. The device of claim 1, wherein the at least one processor filters the input symbols in the frequency domain with the equalizer coefficients. 4. A method for equalizing spatial frequency of an oversampled received signal, comprising: obtaining an equalizer coefficient for a plurality of signal replicas obtained via a plurality of receive antennas and oversampling; using the equalizer Coefficients for filtering the input symbols for the plurality of signal replicas; combining the filtered symbols on the spatial and frequency dimensions for at least 110773-990628.doc a first set of frequency bins; combining and filtering on spatial dimensions The symbols are for a second set of at least one frequency slot, wherein the number of the first set of at least one frequency slot and the number of the second set of at least one frequency slot are based on a first equalizer selection threshold To judge. 5' The method of claim 4, wherein the filtering the input symbols comprises filtering the input symbols in the frequency domain with the equalizer coefficients. 6. Apparatus for equalizing spatial frequency of an oversampled received signal, comprising: means for obtaining equalizer coefficients for a plurality of signal replicas obtained via a plurality of receive antennas and oversampling; Using the equalizer coefficients to filter the components of the input symbols for the plurality of signal replicas; and combining the filtered symbols on the two and frequency dimensions for at least a first set of frequencies and in a spatial dimension Combining the filtered symbols for a component of the second set of at least one frequency bin, the number of the first set of eight to one frequency slots and the number of the first set of at least one frequency 7. The device of claim 6, wherein the means for transitioning the input symbols comprises means for inputting a symbol with the material of the material. 8. A device for equalizing the spatial frequency of an oversampled received signal, comprising: 110773-990628.doc 1336193 </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> R) receiving Line and multiple (C) oversampling to obtain input symbols for multiple (M) signal replicas, where Μ is equal to R multiplied by C ' to obtain equalizer coefficients for the μ signal replicas, etc. The quantizer coefficients filter the input symbols for the two signal replicas and combine them in spatial and frequency dimensions. The filtered symbols are used for the first set of one of the frequency bins and are combined in the spatial dimension to be filtered. The symbols are used for at least one second set of frequency slots; and | a memory coupled to the at least one processor, wherein the number of the first set of frequency bins and the at least one frequency slot The number of the second set is determined based on the equalizer selection threshold. 9. The apparatus of claim 8, wherein the at least one processor receives input samples at a C-fold wafer rate for each receive antenna and for each A receiving antenna converts the input samples into a frequency domain to obtain input symbols for the C signal replicas from the receiving antenna. φ 1 〇 · The device of claim 6 wherein the at least one processor is at least - Each of the data streams The μ group equalizer coefficients of the copies of the signals. U. The device of claim 8, wherein the ruler is equal to two and c is equal to two, and wherein the processor is obtained for four groups of four signal replicas. Equalizer coefficients, each set of equalizer coefficients for a signal replica from a receive antenna. 12. The apparatus of claim 8, wherein the at least one processor combination is for a frequency bin of the 七7 replica a signal component on k, where k is one of the frequency bins η·, such as the device of claim 8, wherein the at least one processor is based on a minimum mean square error H0773-990628.doc The difference (MMSE) rule obtains the equalizer coefficient. The apparatus of claim 8, wherein the at least one processor obtains the assumption based on an uncorrelated noise of a plurality of signal replicas from each of the receiving antennas. Equalizer coefficient. 15. The apparatus of claim 8, wherein the at least one processor obtains the equalizer coefficients based on a hypothesis of uncorrelated noise of the r receiving antennas. 16. The apparatus of claim 8, wherein the at least one processor obtains the equalizer coefficients based on a hypothesis of spatial and spectral uncorrelated noise of the plurality of L-number replicas. 17. The apparatus of claim 8, wherein for each of the τ data streams to be recovered, the D Hai to ν processor obtains a benefit coefficient for the data stream for the data stream, The equalizer coefficients filter the input symbols for the duplicate copies of the signals to obtain the symbols for the copies of the plurality of signals, and combine the filtered elements for the copies of the binary signals The symbol gets the output symbol for the data stream. 18. The apparatus of claim 17, wherein the at least one processor obtains a noise and interference covariance matrix and obtains a matrix based on the noise and interference covariance matrix for each of the data streams The equalizer coefficient of the data stream. In the device of claim 17, wherein for each of the plurality of frequency bins, the device obtains a common noise and interference covariance matrix and is obtained based on the same noise and interference covariance. Wait for the mother of a data stream - the equalizer coefficient. 20. A method for equalizing the frequency of an oversampled received signal, 110773-990628.doc 1336193 -賢· 其包含: 自多個(R)接收天線及多次(C)過度取樣獲得用於多個 (M)信號複本之輸入符號,其中Μ等於R乘以c ; 得到用於該等Μ個信號複本之等化器係數; 用該等等化器係數過濾用於該等Μ個信號複本之該等 輸入符號; 在空間及頻率維上將經過濾之符號組合以用於至少一 頻率槽之一第一集合;及 在空間維上將經過滤之該等符號組合以用於至少一頻 率槽之一第二集合, 其中至少一頻率槽之該第一集合的數目與至少一頻率 槽之該第二集合的數目係基於一等化器選擇臨限來判 定0 21·如請求項20之方法,其中該組合該等經過濾之符號包含 組合用於該等Μ個信號複本之頻率槽k上之信號成分,其 中k為頻率槽之一指數。 22. 如請求項20之方法,其中該得到該等等化器係數包含基 於對自每一接收天線之M個信號複本之不相關雜訊的一 假設得到該等等化器係數。 23. 如明求項20之方法,其中該得到該等等化器係數包含基 於對該等Μ個信號複本之空間及光#不相關雜訊的_假 設得到該等等化器係數。 24. 如吻求項20之方法,其中該得到該等等化器係數包含對 至/貝料机之每一者得到用於該等Μ個信號複本之該 110773-990628.doc 等等化器係數,其中該過濾該等輸入符號包含對每一資 料流用該等等化器係數過濾用於該等Μ個信號複本之該 等輸入符號以為該資料流獲得用於該等Μ個信號複本之 經過渡之符號,且其中該組合該等經過濾之符號包含為 每一資料流組合用於該等Μ個信號複本之該等經過濾之 符號以獲得用於該資料流之輸出符號。 25. 一種用於對過度取樣接收信號之空間頻率等化之裝置, 其包含: 用於自多個(R)接收天線及多次(c)過度取樣獲得用於 多個(Μ)信號複本之輸入符號的構件,其中Μ等於R乘以 C ; 用於得到用於該等Μ個信號複本之等化器係數的構件; 用於用s亥等等化器係數過濾用於該等μ個信號複本之 該等輸入符號的構件;及 用於在空間及頻率維上將經過濾之符號組合以用於至 少一頻率槽之一第一集合及在空間維上將經過濾之該等 符號組合以用於至少一頻率槽之一第二集合的構件, 其中至少一頻率槽之該第一集合的數目與至少一頻率 槽之該第二集合的數目係基於一等化器選擇臨限來判 定。 26. 如請求項25之裝置,其中該用於組合該等經過濾之符號 的構件包含用於組合用於該等Μ個信號複本之頻率槽1^上 之信號成分的構件,其中k為頻率槽之一指數。 27. 如請求項25之裝置,其中該用於得到該等等化器係數的 110773-990628.doc •6- 28 構件包3用於基於對自每—接收天線之M個信號複本之 不2關雜訊的—假設得到該等等化器係數的構件。 如&quot;月求項25之裝置,其中該用於得到該等等化器係數的 29. 30. 匕3用於基於對該等M個信號複本之空間及光譜不 相關雜訊的&quot;假設得到該等等化器係數的構件。 »月求項25之裝置,其中該得到該等等化器係數的構件 包含用於對至少—資料流之每—者得到用於該等Μ個信 凡複本之4等等化器係數的構件,其中該用於過遽該等 輸人符號的構件包含用於對每_資料流㈣等等化器係 數^慮用於該等Μ個信號複本之該等輸人符號以為該資 ^流獲得用於該等Μ個信號複本之經過濾之符號的構 、’且其中該用於組合該等經過濾之符號的構件包含用 於為,-資料流組合用於該等咖信號複本之該等經過 濾之付號以獲得用於該資料流之輸出符號的構件。 —種用於對過度取樣接收信號之空間頻率等化之裝置, 其包含: 。。^处理器,其經配置以建構至少一空間頻率等化 2每—空間頻率等化器在空間及頻率維上組合信號成 =,且經配置以建構至少一空間等化器,每—空間等化 $在空間維上組合信號成分;及 。己憶體,其箱接至該至少一處理器, 以 以 其中該至少一處理器建構該至少—空間頻率等化哭 於頰率槽之-第-集合及建構該至少一空間等 用於頻率槽之一第二集合, 。 110773-99〇628.d〇c 貧, 其中至少1率槽之該第_集 槽之咭筮-相▲ 紙a兴王V 頸率 定。 、。的數目係基於-等化器選擇臨限來判 31. 如請求項30之褒置 一 ^ V 羼理态建構一組用於 、、且頻率槽之空間頻率等化器且建構—組用於 二組頻率槽之空間等化器。 弟 32. 如請求項3〇之裝 1 '、中5玄第—組頻率槽及該第二組頻 :;土於發射脈衝整形m之—頻率響應判定。 33·如請求項3〇之褒置,其中該至少一處理器基於最小均方 秩差(職SE)法則得到用於該至少一空間頻率等化器及 該至少一空間等化器之係數。 34· -種用於對過度取樣接收信號之空間頻率等化之方法, 其包含: 為一第-組至少一頻率槽纟空間及頻率維上組合信號 成分;及 為一第二組至少一頻率槽在空間維上組合信號成分, 其中至 &gt;、一頻率槽之該第一集合的數目與至少一頻率 槽之》玄第一集合的數目係基於一等化器選擇臨限來判 定。 35.如味求項34之方法,其中該在該等空間及頻率維上組合 5玄荨彳S戒成分包含: 基於最小均方誤差(MMSE)法則得到等化器係數;及 用该等等化器係數過濾用於多個信號複本之輸入符 號0 110773-990628.doc 1336193 年·(更)正瞥換頁 36.種用於對過度取樣接收信號之空間頻率等化之裝置, 其包含: 用於為-第一组至少一頻率槽纟空間及頻率維上組合 號成分的構件;及 用於為一第二組至少一頻率槽在空間維上組合信號成 分的構件, 其中至〉、一頻率槽之該第一集合的數目與至少一頻率- 贤· It contains: From a plurality of (R) receiving antennas and multiple (C) oversampling to obtain input symbols for a plurality of (M) signal replicas, where Μ is equal to R multiplied by c; is obtained for the Μ Equalizer coefficients for a plurality of signal replicas; filtering the input symbols for the one of the plurality of signal replicas with the equalizer coefficients; combining the filtered symbols for at least one frequency bin in spatial and frequency dimensions a first set; and combining the filtered symbols in a spatial dimension for a second set of at least one frequency bin, wherein the number of the first set of at least one frequency bin and the at least one frequency slot The number of the second set is determined based on a first equalizer selection threshold. The method of claim 20, wherein the combined filtered symbols comprise a frequency bin k for combining the copies of the signals. The signal component above, where k is one of the frequency slots. 22. The method of claim 20, wherein the obtaining the equalizer coefficients comprises the equalizer coefficients based on a hypothesis of uncorrelated noise for the M signal replicas from each of the receive antennas. 23. The method of claim 20, wherein the obtaining the equalizer coefficients comprises a space based on the copies of the one of the plurality of signals and an illusion of the optical #uncorrelated noise to obtain the equalizer coefficients. 24. The method of claim 20, wherein the obtaining the equalizer coefficient comprises obtaining the 110773-990628.doc equalizer for each of the signals to/from the feeder. a coefficient, wherein the filtering the input symbols comprises filtering, for each data stream, the input symbols for the one of the plurality of signal replicas with the equalizer coefficients to obtain a copy for the data streams for the data streams A symbol of the transition, and wherein the combination of the filtered symbols comprises combining the filtered symbols for the one of the plurality of signal replicas for each data stream to obtain an output symbol for the data stream. 25. Apparatus for equalizing spatial frequency of an oversampled received signal, comprising: for obtaining a plurality of (Μ) signal replicas from a plurality of (R) receive antennas and a plurality of (c) oversampling a member of the input symbol, where Μ is equal to R times C; means for obtaining equalizer coefficients for the copies of the respective signals; for filtering with the s-equalizer coefficients for the μ signals a component of the input symbols of the replica; and for combining the filtered symbols in a spatial and frequency dimension for a first set of at least one frequency bin and combining the filtered symbols in a spatial dimension Means for a second set of at least one frequency bin, wherein the number of the first set of at least one frequency bin and the number of the second set of at least one frequency bin are determined based on an equalizer selection threshold. 26. The apparatus of claim 25, wherein the means for combining the filtered symbols comprises means for combining signal components for frequency bins 1^ of the plurality of signal replicas, wherein k is a frequency One of the slots index. 27. The apparatus of claim 25, wherein the 110773-990628.doc • 6-28 component package 3 for obtaining the equalizer coefficient is used based on a copy of the M signals from each of the receiving antennas. Off the noise - assuming the component of the equalizer coefficient. Such as &quot;monthly item 25, wherein the means for obtaining the equalizer coefficient is 29.30. 匕3 is used for the &quot;hypothesis based on spatial and spectral uncorrelated noise of the M signal replicas The component that obtains the equalizer coefficients. The device of claim 25, wherein the means for obtaining the equalizer coefficient comprises means for obtaining, for at least - each of the data streams, a factor of 4 for the equalizer replicas , wherein the means for passing the input symbols includes the input symbols for each of the data stream (four) equalizer coefficients for the one of the plurality of signal replicas to obtain the resource stream Means for filtering the symbols of the copies of the signals, and wherein the means for combining the filtered symbols comprises for combining the data stream for the copies of the coffee signals The filtered payout is used to obtain the components for the output symbols of the data stream. An apparatus for equalizing the spatial frequency of an oversampled received signal, comprising: . a processor configured to construct at least one spatial frequency equalization 2 per-space frequency equalizer to combine signals into spatial and frequency dimensions, and configured to construct at least one spatial equalizer, per space, etc. $ combines signal components in spatial dimensions; and. a memory that is coupled to the at least one processor, wherein the at least one processor constructs the at least one spatial frequency equalizes the -first set of crying buccal slots and constructs the at least one space, etc. for frequency The second set of slots, . 110773-99 〇 628.d〇c is poor, at least 1 of which is the first _ set of the groove 咭筮-phase ▲ paper a Xing Wang V neck rate. ,. The number is determined based on the -equalizer selection threshold. 31. If the request item 30 is set to a V V state, a set of spatial frequency equalizers for the frequency bins is constructed and constructed. Two sets of space equalizers for frequency slots. Brother 32. If the request item 3〇1', the middle 5 Xuandi-group frequency slot and the second group frequency:; the frequency is determined by the frequency pulse response m. 33. The apparatus of claim 3, wherein the at least one processor obtains coefficients for the at least one spatial frequency equalizer and the at least one spatial equalizer based on a Least Mean Square Rank (SE) rule. 34. A method for equalizing spatial frequency of an oversampled received signal, comprising: combining a signal component for a first set of at least one frequency slot space and frequency dimension; and a second set of at least one frequency The slot combines the signal components in a spatial dimension, wherein to &gt;, the number of the first set of frequency bins and the number of the first set of at least one frequency bin are determined based on the equalizer selection threshold. 35. The method of claim 34, wherein combining the 5 Xuan S S components in the spatial and frequency dimensions comprises: obtaining an equalizer coefficient based on a minimum mean square error (MMSE) rule; and using the Transformer coefficient filtering input symbols for multiple signal replicas 0 110773-990628.doc 1336193 · (more) 瞥 瞥 36. A device for equalizing the spatial frequency of oversampled received signals, comprising: a member of the first set of at least one frequency slot space and a frequency dimension; and means for combining the signal components in a spatial dimension for a second set of at least one frequency slot, wherein to a frequency The number of the first set of slots and at least one frequency 槽之°亥第—集合的數目係基於一等化器選擇臨限來判 定。 3 7.如响求項36之裝置’其中該用於在該等空間及頻率維上 組合該等信號成分的構件包含: TT*1 V_* || ;暴於最小均方誤差(MMSE)法則得到等化器係數 的構件;及 用於用該等等化器係數過濾用於多個信號複本之輸入 符號的構件。The number of sets of the grooves is determined based on the threshold of the first equalizer selection. 3 7. The apparatus of claim 36 wherein the means for combining the signal components in the spatial and frequency dimensions comprises: TT*1 V_* ||; the law of minimum mean square error (MMSE) Means for obtaining an equalizer coefficient; and means for filtering the input symbols for the plurality of signal replicas with the equalizer coefficients. H0773-990628.docH0773-990628.doc
TW95115384A 2005-04-28 2006-04-28 Method and apparatus for space-frequency equalization for oversampled received signals TWI336193B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US67658605P 2005-04-28 2005-04-28

Publications (2)

Publication Number Publication Date
TW200707992A TW200707992A (en) 2007-02-16
TWI336193B true TWI336193B (en) 2011-01-11

Family

ID=45075059

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95115384A TWI336193B (en) 2005-04-28 2006-04-28 Method and apparatus for space-frequency equalization for oversampled received signals

Country Status (1)

Country Link
TW (1) TWI336193B (en)

Also Published As

Publication number Publication date
TW200707992A (en) 2007-02-16

Similar Documents

Publication Publication Date Title
JP5166246B2 (en) Spatial frequency equalization of oversampled received signal
EP3320631B1 (en) Orthogonal time frequency space communication system compatible with ofdm
US20190036577A1 (en) Tomlinson-harashima precoding in an otfs communication system
EP3751808B1 (en) Orthogonal time frequency space modulation system
JP5611895B2 (en) Receiver structure for spatial spreading with space-time or space-frequency transmit diversity
US9167579B2 (en) Method and transmitter/receiver for data transmission with flexible exploitation of time and frequency diversity
JP4099191B2 (en) Channel estimation apparatus and channel estimation method
EP4164152A1 (en) Orthogonal time frequency space communication system compatible with ofdm
JP5400857B2 (en) Apparatus, method and receiving terminal for LDPC decoding
JP5513523B2 (en) Method and apparatus for delay spread compensation
EP2228955B1 (en) System and method for OFDM reception in the presense of Doppler effect based on time domain windowing
JP2014239493A (en) Continuous beamforming for mimo-ofdm system
JP2008017143A (en) Wireless receiving apparatus and method
TW200404422A (en) Signal processing with channel eigenmode decomposition and channel inversion for MIMO systems
CN107438984B (en) Efficient channel estimation using Golay sequences
CN107171984A (en) A kind of asynchronous multi-carrier system frequency domain channel estimation method
WO2017044660A1 (en) Multiple access in an orthogonal time frequency space communication system
JP2015534353A5 (en)
CN102195908A (en) Methods and apparatuses for interference cancellation with frequency error compensation for equalizer adaptation
US8995590B2 (en) Hardware engine to demod SIMO, MIMO, and SDMA signals
KR102108044B1 (en) Method for high bit rate wireless communication using a multiple output receiver
TWI298588B (en) A diversity receiver
Strohmer et al. Implementations of Shannon’s sampling theorem, a time-frequency approach
TWI336193B (en) Method and apparatus for space-frequency equalization for oversampled received signals
JP2008505577A (en) Digital signal decimation by subspace projection

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees