TWI335904B - A carbon nanotube and methods for making the same - Google Patents

A carbon nanotube and methods for making the same Download PDF

Info

Publication number
TWI335904B
TWI335904B TW93115298A TW93115298A TWI335904B TW I335904 B TWI335904 B TW I335904B TW 93115298 A TW93115298 A TW 93115298A TW 93115298 A TW93115298 A TW 93115298A TW I335904 B TWI335904 B TW I335904B
Authority
TW
Taiwan
Prior art keywords
carbon
carbon source
carbon nanotube
source
preparing
Prior art date
Application number
TW93115298A
Other languages
Chinese (zh)
Other versions
TW200538389A (en
Inventor
Shou-Shan Fan
Liang Liu
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW93115298A priority Critical patent/TWI335904B/en
Publication of TW200538389A publication Critical patent/TW200538389A/en
Application granted granted Critical
Publication of TWI335904B publication Critical patent/TWI335904B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

九、發明說明: 【發明所屬之技術領域】 本發,涉及-種奈米材财其製備方法 ,特別涉及一 種奈米碳管及其製備方法。 【先前技術】 奈米破管係九十年代初才發現之一種新型一維奈米材 料。奈米碳管之特殊結構決定了其具有特殊之性質 ,如1¾ 抗張強度衫鋪定性;_奈米碳管職方式之變化, 奈米碳管可呈現出金屬性鱗金屬性等。由於夺米碳管獨 特之機械及電學性質,使其在㈣科學、化學、物理學等 交叉學科領域具有廣闊之細前景,可料場發射器件、 白光源、鐘二次電池、儲氫電池、陰極射線管或電晶體之 電子發射源等。 現有奈米碳管之製備方法主要有1991年& Iijima在 Nature, 354, 56, Helical microtubules of graphitic carbon上公開之電弧放電法’ 1992年T w. Ebbesen等人 在 Nature, 358, 220, Large-scale Synthesis of Carbon Nanotubes上公開之雷射燒蝕法及1996年w. z Li等人 在 Science, 274, 1701, Large-Scale Synthesis ofIX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a method for preparing a nano-material, and particularly to a carbon nanotube and a preparation method thereof. [Prior Art] Nano-tubes are a new type of one-dimensional nanomaterial discovered only in the early 1990s. The special structure of the carbon nanotubes determines its special properties, such as the 13⁄4 tensile strength of the shirt; the change of the carbon nanotubes, the carbon nanotubes can exhibit metallic scale metal. Due to the unique mechanical and electrical properties of the carbon nanotubes, it has a broad prospect in the interdisciplinary fields of science, chemistry and physics. It can feed field emission devices, white light sources, clock secondary batteries, hydrogen storage batteries, A cathode ray tube or an electron emission source of a transistor or the like. The preparation methods of existing carbon nanotubes are mainly the arc discharge method disclosed in 1991 & Iijima in Nature, 354, 56, Helical microtubules of graphitic carbon ' 1992 T W. Ebbesen et al. in Nature, 358, 220, Large Laser ablation method disclosed on -scale Synthesis of Carbon Nanotubes and 1996 by W. z Li et al. in Science, 274, 1701, Large-Scale Synthesis of

Aligned Carbon Nanotubes上公開之化學氣相沈積法等。 同位素標示方法係研究奈米材料生長機理及奈米尺寸 同位素結之有力工具’其係利两在奈米材料之合成過程 中,將含有某一特定元素(一般係輕元素,如碳、哪、氮咬 氧)之同位素之反應物按照預定之濃度(以純物質或遇人物 之形式)及順序使其參與反應,從而製備出原位生長之同位 素標示之奈米材料。 _ j而上述二種製備奈米礙管之方法中均沒有涉犮到 摻有同位素之奈米碳管之合成。 【發明内容】 、,山,上所述,為克服現有技術中不存在摻有同位素之奈 米奴官’本伽所要解決之技觸題储供-種摻有同位 素之奈米碳管。 為克服現有技術中不存在掺有同位素之奈米碳管之製 備方法,本發騎要解決之技侧_提供—種摻有同位 素奈米碳管之製備方法。 本發明解決上述技術問題之技術方案係:提供一種推 有同位素之奈米碳管,其係由兩種以上之單一同位素混合 組成’其中,該混合成份之同位素混合比例沿管長方向周 期性或非周期性變化。 為製備上述摻有同位素之奈米碳管,本發明提供之第 種製備方法包括如下步驟:提供含有單一同位素之第一 碳源氣、第二碳源氣及第三石发源氣;提供其上沈積有催化 劑之基底;利用化學氣相沈積法,使第一碳源氣提供之碳 之同位素發生反應並使反應生成之第一奈米碳管片段沈積 於該基底上;反應預定時間後,將碳源切換至第二碳源氣 上’同樣利用化學氣相沈積法’使第二碳源氣提供之碳之 同位素發生反應,生成之第二奈米碳管片段生長於第一奈 米石反官片段之上’反應預定時間後,將碳源切換至第三碳 1335904 原氣上同樣利用化學氣相沈積法,使第三碳源氣提供之 碳之同位素發生反應,生成之第三奈求碳管片段生長於第 二奈米碳管片段之上,從而得到摻有複數同位素之奈米·碳 官。化學氣相沈積法工作溫度為5〇〇〜11〇(rc。 為製備上述掺有同位素之奈米碳管,本發明提供之第 =種製備方法包括如下步驟:提供含有單—同位素之第一 石反,、第二碳源及第三碳源’分別作為陽極,·提供一與第 石厌源、第二碳源及苐三碳源相對應設置之陰極;使第一 碳源與該陰極發生電弧放電,使第一碳源提供之碳之陳 , ,發生反應並使反舰生成第—奈米碳料段;反應敎 . 時間後’將碳源切換至第二碳源,使第二碳源與該陰極發 生電弧放電’使第二碳源提供之碳之同位素發生反應,生 成之第二奈米碳管片段生長於第-奈米碳管片段之L反 應預定時間後,將碳源切換至第三碳源,使第三碳源與該 陰極發生電弧放電,使第三碳源提供之碳之同位素發生反 應生成之第二奈米碳管片段生長於第二奈米碳管片段之 上’從而制摻有同位素之奈米碳f,沈積於該陰極上。鲁 為製備上述摻有同位素之奈米碳管,本發明提供之第 三種製備方法包括如下步驟:提供含有單一同位素之第一 峡源、第—碳源及第三碳源;提供奈米碳管收集裝置;將 第一碳源、第二韻、及第三碳源熊奈米碳管收集裝置放 入反應室巾,並使奈米碳管收紐置置於第—碳源、第二 碳源及第三碳源之-側;用置於第-碳源、第二碳源衫 三碳源另一側之脈衝雷射照射第-碳源,使第-碳源提供 9 之碳之同位素發生反應並使反應生成之第—奈米碳管片 段;反應預定時間後,用脈衝雷射照射第二碳源,使系二Chemical vapor deposition methods disclosed on Aligned Carbon Nanotubes. The isotope labeling method is a powerful tool for studying the growth mechanism of nanomaterials and the isotope of nanometer isotope. 'The two methods in the synthesis of nanomaterials will contain a specific element (generally light elements such as carbon, which, The isotope reactant of the nitrogen bite oxygen is allowed to participate in the reaction at a predetermined concentration (in the form of a pure substance or a person), thereby preparing an in situ-grown isotopically labeled nanomaterial. _ j and the above two methods for preparing nano-bars are not involved in the synthesis of carbon nanotubes doped with isotopes. SUMMARY OF THE INVENTION In the present invention, in order to overcome the problem of the prior art, it is necessary to solve the problem of the problem of storing and supplying the isotope-incorporated carbon nanotubes. In order to overcome the prior art method for preparing a carbon nanotube doped with an isotope, the method of the invention is to provide a method for preparing an isotope-nanocarbon tube. The technical solution of the present invention is to provide a carbon nanotube with an isotope, which is composed of a mixture of two or more single isotopes, wherein the isotope mixing ratio of the mixed component is periodic or non-long along the length of the tube. Periodic changes. In order to prepare the above-described isotope-doped carbon nanotubes, the first preparation method provided by the present invention comprises the steps of: providing a first carbon source gas containing a single isotope, a second carbon source gas, and a third stone source gas; Depositing a substrate of a catalyst; using a chemical vapor deposition method to react a carbon isotope provided by the first carbon source gas and depositing a first carbon nanotube segment formed by the reaction on the substrate; after a predetermined time of reaction, The carbon source is switched to the second carbon source gas, and the carbon isotope provided by the second carbon source gas is reacted by the chemical vapor deposition method, and the generated second carbon nanotube segment is grown on the first nanometer stone. On the official segment, after the reaction for a predetermined period of time, the carbon source is switched to the third carbon 1335904. The raw gas is also chemically vapor deposited to react the carbon isotope provided by the third carbon source gas to generate a third A carbon tube fragment is grown on the second carbon nanotube fragment to obtain a nano carbon director doped with a complex isotope. The chemical vapor deposition method has an operating temperature of 5 〇〇 11 11 〇 (rc. In order to prepare the above-described isotope-doped carbon nanotubes, the preparation method provided by the present invention comprises the following steps: providing the first one containing the mono-isotopes The stone counter, the second carbon source and the third carbon source respectively act as anodes, provide a cathode corresponding to the first stone source, the second carbon source and the third carbon source; the first carbon source and the cathode An arc discharge occurs, causing the carbon provided by the first carbon source to react and cause the anti-ship to generate the first-nano carbon fraction; the reaction 敎. After the time, the carbon source is switched to the second carbon source, so that the second The carbon source and the cathode are arc-discharged to react with the carbon isotope provided by the second carbon source, and the generated second carbon nanotube segment is grown in the L-phase of the first carbon nanotube segment for a predetermined time, and the carbon source is Switching to a third carbon source, causing a third carbon source to arc-discharge with the cathode, and causing a second carbon nanotube segment formed by reacting a carbon isotope provided by the third carbon source to grow on the second carbon nanotube segment On the 'by making a nanocarbon doped with isotopes, sinking The third preparation method provided by the present invention comprises the steps of: providing a first gorge source, a first carbon source and a third carbon source containing a single isotope. Providing a carbon nanotube collecting device; placing the first carbon source, the second rhyme, and the third carbon source bear carbon nanotube collecting device into the reaction chamber towel, and placing the carbon nanotubes on the first carbon a side of the source, the second carbon source, and the third carbon source; irradiating the first carbon source with a pulsed laser placed on the other side of the first carbon source and the second carbon source, to provide the first carbon source The carbon isotope is reacted and the first carbon nanotube fragment is formed by the reaction; after the reaction for a predetermined time, the second carbon source is irradiated with a pulsed laser to make the second carbon source

破源提供之碳之同位素發生反應,生成之第二夺米碳管I 段生長於第—奈米碳管片段之上;反應預定時·,用脈 衝雷射照射第三碳源,使第三碳源提供之後之同位素發生 反應’生成之第三奈米碳管片段生長於第二奈米碳管片段 之上’從而得到摻有複數同位素之奈米碳管,沈積於該奈 米碳管收集裝置上。 與現有技術相比較,本發明提供之方法可製備由不同 後同位素交魅長之奈米碳管,從何脉曼光譜或二次 離子質譜等方法記錄碳同位素原位生長之_,進而研究 奈来碳管之生長機理,同時也可用本發明提供之方法合成 含有同位素異質結之一維奈米材料。 【實施方式】 下面將結合附圖對本發明作進一步之詳細說明。 U請參閱第一圖,本發明之摻有同位素之奈米碳管40係 由C組成之奈米碳管片段4〇2、由%組成之奈米碳管片 •k 403及由c組成之奈米碳管片段404混合組成,奈米碳 官片段402、403及404混合比例沿管長方向周期性或非周 期性變化。在本發明之優選實施例中製備之該摻有同位素 之’丁'米石反笞4〇之長度為1〇〜i〇〇〇mm,管之直徑為〇 5〜50nm。 本發明提供之第一種製備摻有同位素奈米碳管之方法 係化學氣相沈積法,請參閱第二圖,其具體步驟如下: (1)提供分別由l2c、13C及14C組成之乙烯氣體; (2) 提供基底132,該基底132上表面沈積有一層厚為 « « 5nm作為催化劑使用之鐵膜134,並將該沈積有催化劑鐵膜 134之基底132放入反應室11〇中; (3) 通過排氣通道116將反應室no抽真空後’再通過 氣體輸入通道118通入壓強為1個大氣壓之氬氣,同時通 過反應爐106加熱反應室π〇至其溫度達700X ; (4) 打開閥門ι12,由氣體輸入通道1〇2通入流量為 120sccm ’流速為1. 2cm/s之由弋組成之乙烯氣體,反應 生成之由12C組成之奈米碳管片段(圖未示)沈積於該催化 劑鐵膜134上; (5) 反應預定時間後,關閉閥門112,打開閥門113, 由氣體輸入通道103通入流量為i2〇sccm,流速為i.2cm/s 之由13C組成之乙烯氣體,由弋組成之奈米碳管片段(圖未 示)繼續生長於步驟(4)生成之由12c組成之奈米碳管片段 上; (6) 反應預定時間後,關閉閥門113,打開閥門ι14, 由氣體輸入通道104通入流量為12〇sccm,流速為丨.2cm/s 之由14C組成之乙烯氣體,由吨組成之奈米碳管片段(圖 未示)繼續生長於步驟(5)生成之由%組成之奈米碳管片 段上; (7) 繼續反應預定時間後,將反應室丨1〇冷卻至室溫, 在催化劑鐵膜134上得到摻有複數同位素之奈米碳管。 可以理解之是’本方法中可在步驟⑹後重復步驟 (4)、(5)及(6)得到周期性排列之摻有同位素之奈米碳管, 11 金, i之不未奴管,也可用鈷、鎳及其合 碳源氣使用,也可輯_代#乙烯作為 氣作為保魏使μ。減、驗或雜域等代替氬 /本發明提供之第二種製備摻有同位素奈米碳管之方法 係電弧放電法,閱第三圖,其具體步驟如下:/ 、曲⑴用Νι(質量百分比濃度〇〜13%)及/或γ2〇3(質量百分 比辰度0〜48%)之催化劑粉末與直徑為5刪之由12〇组成之 高純碳粉雛在3_個錢壓下㈣ 之碳 她:用同樣之方法製成-個由,3C組成之碳棒2Q3^ 由ΐ組成之碳棒204,將碳棒202、203及204用兩絕緣 膠206粘到一起,分別與電弧放電源之正極214相連作為 陽極使用,另外,也可將碳棒2〇2、2〇3及2〇4近距絕緣放 置,分別與電弧放電源之正極214相連作為陽極使用; (2)用普通純碳棒與電弧放電源之負極215相連作為 陰極208使用; (3) 把步驟(1)及(2)所製得之陽極及陰極208相對而 置’相距1.5〜2mm,放進電弧放電反應室210中,並通過 排氣通道216將電弧放電反應室210抽真空後,再通過氣 體輸入通道218通進壓強為100〜500Torr之氦氣; (4) 將電開關212接通碳棒202,以100A之電流進行 電弧放電,放電電壓為20〜40V,反應生成之由12c紕成之 12 1335904 奈米碳管片段(圖未示); (5)反應預定時間後’將電開關212接通碳棒203,以 100A之電流進行電弧放電,放電電壓為2〇〜4〇v,由%組 成之奈米碳管片段(圖未示)繼續生長於步驟(4)生成之由 12C組成之奈米碳管片段上; (6)反應預定時間後,將電開關212接通碳棒2〇4,以 100A之電流進行電弧放電,放電電壓為2〇~4〇v,由叱組 成之奈米碳管片段(圖未示)繼續生長於步驟(5)生成之由 13C組成之奈米碳管片段上,反應生成之摻有同位素之 碳管沈積於該陰極208上; ' 八 ⑺繼續反應預定時間後,不斷消耗之陽極在陰極2〇8 上沈積下來持續形成摻有同位素之奈米碳管。 可以理解之是,本方法中可在步驟(6)後重復步驟 ⑷、(5)及(6)得到周期性排列之摻有同位素之奈米碳管, 或者在步贿機錢倾⑷、⑸ 期性敝摻嫌㈣姆;也爛之財= 用 源 =錦,或者其他合叙催化·碳粉複合縣成碳棒;也 扣以採用錢、氮氣或者錢氣等代#氦氣作為保護氣使 可將s有不同同位素之陽極以旋轉之方式接通電 生弧反應室上安有冷水管以免由於電弧放電產 係雷備摻有陳素奈米碳管之方法 田射燒财’赫,其具齡驟如下: ⑴用摻峨質量百分比濃度2顧赠量百分比 13 濃度2. 8%)粉與由%組成之高純碳粉壓製成複合碳塊作為 雷射燒蝕法之雷射照射靶302,用同樣之方法分別製成一 個由13C組成之靶3〇3及一個由咤組成之靶3〇4 ;. (2) 提供奈米碳管收集裝置308 ; (3) 把步驟(1)所製得之靶302、303、304及步驟(2) 之奈米碳管收集裝置3〇8放入雷射燒蝕反應室31〇中,並 使奈米碳管收集裝置3〇8置於靶302、303、304之一側; (4) 並通過排氣通道316把雷射燒蝕反應室31〇抽真空 後’再通過氣體輪入通道318通進壓強為5〇〜76〇T〇rr之氬 氣; (5) 用加熱器306將雷射燒蝕反應室31〇中靶302、 303、304所在之區域加熱到1〇〇〇〜ΐ2〇〇〇ς ; 1335904 米碳管收集裝置308上; (9)繼續反應預定時間後,在與雷射光束314相對一 ,放置之收集裝置308上持續沈積有摻有同位素之奈杀碳 管。 可以理解之是,本方法中可在步驟⑻後重復步驟 ⑹、(7)及⑻得到周期性排列之摻有同位素之奈米碳管, 或者在步驟⑻後隨機重復步驟⑹、⑺及⑻可得到非周 期性排狀射_素之奈米碳f ;也可用純之絲或純 之鎳粉或者其他合叙催化賴碳粉複合粉壓絲作為带 射燒錄之雷舰絲;也可採贱氣、A氣或者係氫^ 等代替虱Ιι作為保護氣使用;也可利用雜雷射源或交換 兩個乾位置之方式將雷射源照射到另—塊乾上。 本發明提供之方法可製備料㈤之朝位素交替生長 之奈米碳管,從柯雜曼光譜或二讀子賴等方約 錄碳同位素原位生長之圖案’進而研究奈米碳管之生長機 理’同時也可財發明提供之方法合成含有同位素異質結 之一維奈米材料。 、σ 儘管結合優選實施方案具體展示及介紹了本發明,但 所屬領域之技術人員應明白,在形式上及細節上可對本發 明做出各種變化,而不會脫離所附權利要求書所限定之丄 發明之精神及範圍。 綜上所述’本發明確已符合發明專利之要件,遂依法 2出專射μ g’U_L所述者僅為本發明之触實施 自不能以此關本案0請糊朗。舉凡熟悉本案技藝 15 之等效修飾或變化,涵 【圖式簡單說明】 圖係本發明摻有同位素之奈米碳管之示意圖。 ΐ係利用本發明第-種方法製備掺有同位素奈米 石反官所用裴置示意圖。 第三圖係利用本發明第二種方法製備摻有同位 石反管所用裝置示意圖。 、 第四圖係利用本發明第三種方法製備摻有同位素太 碳管所用裝置示意圖。 …、 【主要元件符號說明】 氣體輪入通道 102,103,104, 118 反應爐 106 反應室 閥門 排氣通道 110,210,310 112,113,114 116,216,316 基底 鐵獏 碳棒 132 134 202,203,204 絕緣膠 206 陰極 電開關 208 212 正極 負極 214 215 16 1335904 靶 302,303, 304 加熱器 306 收集裝置 308 聚焦透鏡 312 雷射光束 314 奈米碳管 40 奈米碳管片段 402,403,404 17The carbon isotope provided by the source is reacted, and the second segment of the carbon nanotube produced is grown on the first carbon nanotube segment; when the reaction is scheduled, the third carbon source is irradiated with a pulsed laser to make the third The carbon source provides a subsequent isotope reaction, and the generated third carbon nanotube segment is grown on the second carbon nanotube segment to obtain a carbon nanotube doped with a plurality of isotopes, and is deposited on the carbon nanotube. On the device. Compared with the prior art, the method provided by the invention can prepare a carbon nanotube with different post-isotopes, and record the carbon isotope in-situ growth from Hohman or secondary ion mass spectrometry. The growth mechanism of the carbon tube is also obtained, and the Venn material containing one isotope heterojunction can also be synthesized by the method provided by the present invention. [Embodiment] Hereinafter, the present invention will be further described in detail with reference to the accompanying drawings. U. Referring to the first figure, the isotope-doped carbon nanotube 40 of the present invention is composed of a carbon nanotube segment C2 composed of C2, a carbon nanotube sheet composed of %, k 403, and composed of c. The carbon nanotube segments 404 are mixed, and the mixing ratio of the carbon carbon segments 402, 403, and 404 periodically or non-periodically varies along the length of the tube. The isotope-doped Ding's stellite ruthenium 4 制备 prepared in a preferred embodiment of the present invention has a length of 1 〇 to i 〇〇〇 mm and a tube diameter of 〇 5 to 50 nm. The first method for preparing the doped isotopic carbon nanotubes is a chemical vapor deposition method, please refer to the second figure, and the specific steps are as follows: (1) Providing ethylene gas composed of l2c, 13C and 14C respectively (2) providing a substrate 132, a surface of the substrate 132 is deposited with a layer of iron film 134 having a thickness of ««5 nm as a catalyst, and the substrate 132 on which the catalyst iron film 134 is deposited is placed in the reaction chamber 11; 3) After the reaction chamber no is evacuated through the exhaust passage 116, 'the argon gas having a pressure of 1 atm is introduced through the gas input passage 118, and the reaction chamber is heated by the reaction furnace 106 to a temperature of 700X; Open the valve ι12, and pass the gas input channel 1〇2 into the flow rate of 120sccm. The flow rate is 1. 2cm/s of ethylene gas composed of 弋, and the reaction produces a carbon nanotube segment composed of 12C (not shown). Deposited on the catalyst iron film 134; (5) After a predetermined reaction time, the valve 112 is closed, the valve 113 is opened, and the flow rate is i2 〇sccm from the gas input passage 103, and the flow rate is i.2 cm/s. Ethylene gas, a carbon nanotube composed of ruthenium The fragment (not shown) continues to grow on the carbon nanotube segment consisting of 12c generated in step (4); (6) after a predetermined reaction time, the valve 113 is closed, the valve ι14 is opened, and the flow is introduced from the gas input channel 104. It is 12 〇sccm, the flow rate is 2.2cm/s of ethylene gas composed of 14C, and the carbon nanotube segment consisting of tons (not shown) continues to grow in the nano carbon composed of % produced in step (5). On the tube segment; (7) After the reaction is continued for a predetermined period of time, the reaction chamber is cooled to room temperature, and a carbon nanotube doped with a plurality of isotopes is obtained on the catalyst iron film 134. It can be understood that in the method, steps (4), (5) and (6) can be repeated after step (6) to obtain periodically arranged isotope-doped carbon nanotubes, 11 gold, i is not unsuccessful, It can also be used with cobalt, nickel and its carbon source gas, or it can be used as a gas to protect Wei. Reduction, inspection or miscellaneous domain, etc. instead of argon / the second method for preparing an isotope-containing carbon nanotube provided by the present invention is an arc discharge method, and the third step is as follows: /, 曲(1) with Νι (quality) Catalyst powder with a percentage concentration of 〇~13%) and/or γ2〇3 (mass percentage 0~48%) and a high-purity carbon powder consisting of 12 直径 in a diameter of 5 在 under 3 个 (4) Carbon: It is made in the same way - a carbon rod consisting of 3C, 2Q3^, a carbon rod 204 composed of tantalum, and the carbon rods 202, 203 and 204 are bonded together by two insulating glues 206, respectively The positive electrode 214 of the power source is connected as an anode. In addition, the carbon rods 2〇2, 2〇3, and 2〇4 may be closely insulated and respectively connected to the positive electrode 214 of the arc discharge power source for use as an anode; (2) The pure carbon rod is connected to the negative electrode 215 of the arc discharge power source as the cathode 208; (3) the anode and the cathode 208 prepared in the steps (1) and (2) are opposed to each other and placed at an interval of 1.5 to 2 mm, and placed in an arc discharge reaction. In the chamber 210, the arc discharge reaction chamber 210 is evacuated through the exhaust passage 216, and then passed through the gas input passage 21 8: The inlet pressure is 100~500 Torr; (4) The electric switch 212 is turned on to the carbon rod 202, and the arc discharge is performed at a current of 100 A, and the discharge voltage is 20 to 40 V, and the reaction is generated by 12c into 12 1335904 The carbon nanotube segment (not shown); (5) After the reaction for a predetermined time, the electric switch 212 is turned on to the carbon rod 203, and the arc discharge is performed at a current of 100 A, and the discharge voltage is 2 〇 to 4 〇 v, which is composed of %. The carbon nanotube segment (not shown) continues to grow on the carbon nanotube segment composed of 12C generated in step (4); (6) after the reaction for a predetermined time, the electrical switch 212 is turned on to the carbon rod 2〇4 The arc discharge is performed at a current of 100 A, and the discharge voltage is 2 〇 to 4 〇 v. The carbon nanotube segment composed of ruthenium (not shown) continues to grow in the carbon nanotube composed of 13C generated in the step (5). On the fragment, a carbon tube doped with an isotope is deposited on the cathode 208; '8 (7) after the reaction continues for a predetermined period of time, the continuously consumed anode is deposited on the cathode 2〇8 to form a carbon nanotube doped with an isotope. . It can be understood that in the method, steps (4), (5) and (6) can be repeated after step (6) to obtain periodically arranged isotope-doped carbon nanotubes, or in the bribe machine (4), (5) The period of 敝 敝 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( So that the anode with different isotopes can be connected to the electro-arc reaction chamber with a cold water pipe in a rotating manner to avoid the method of arranging the carbon nanotubes by the arc discharge system. The age is as follows: (1) Percentage of erbium-doped mass concentration 2% of the weight of the product 13 Concentration 2. 8%) Powder and high-purity carbon powder composed of % are pressed into a composite carbon block as a laser irradiation target of the laser ablation method 302 In the same way, a target 3〇3 composed of 13C and a target 3〇4 composed of 咤 are separately prepared. (2) A carbon nanotube collecting device 308 is provided; (3) Step (1) The prepared targets 302, 303, 304 and the carbon nanotube collecting device 3〇8 of the step (2) are placed in the laser ablation reaction chamber 31〇, The carbon nanotube collecting device 3〇8 is placed on one side of the target 302, 303, 304; (4) and the laser ablation reaction chamber 31 is evacuated through the exhaust passage 316, and then passes through the gas wheel passage 318 is argon gas with a pressure of 5〇~76〇T〇rr; (5) heating the area where the targets 302, 303, and 304 are located in the laser ablation reaction chamber 31〇 with the heater 306~ 3352〇〇〇ς; 1335904 m carbon tube collecting device 308; (9) after the reaction for a predetermined time, on the opposite side of the laser beam 314, the collecting device 308 is continuously deposited with an isotope-doped carbon nanotube . It can be understood that in the method, steps (6), (7) and (8) may be repeated after step (8) to obtain periodically arranged isotope-doped carbon nanotubes, or steps (6), (7) and (8) may be randomly repeated after step (8). Obtaining a non-periodic row of radionuclide nano carbon f; also can use pure silk or pure nickel powder or other synthetic catalyzed Lai carbon powder composite powder pressed wire as a mine shot with a shot burning; also can be used Helium, A gas or hydrogen is used instead of 虱Ιι as a shielding gas; the laser source can also be irradiated onto the other block by means of a hybrid laser source or by exchanging two dry positions. The method provided by the invention can prepare the carbon nanotubes alternately growing in the positional material of the material (5), and extract the pattern of in situ growth of the carbon isotope from the Kemanman spectrum or the second reading sub-isan, and then study the carbon nanotubes. Growth mechanism 'At the same time, the method provided by the invention can also synthesize a Venom material containing an isotope heterojunction. The present invention has been particularly shown and described with reference to the preferred embodiments thereof, and those skilled in the art in The spirit and scope of the invention. In summary, the present invention has indeed met the requirements of the invention patent, and the only one that has been produced according to the law is that the invention is only the implementation of the invention. Equivalent to the equivalent modification or variation of the skill of the present invention, the following is a schematic diagram of the carbon nanotubes doped with isotopes of the present invention. The lanthanide system is prepared by the first method of the present invention for preparing a ruthenium containing an isotope nanostrip. The third figure is a schematic diagram of a device for preparing a doped stone tube using the second method of the present invention. The fourth figure is a schematic diagram of a device for preparing an isotope-doped carbon tube by the third method of the present invention. ..., [Main component symbol description] Gas wheel inlet passage 102, 103, 104, 118 Reaction furnace 106 Reaction chamber valve exhaust passage 110, 210, 310 112, 113, 114 116, 216, 316 Base iron shovel carbon rod 132 134 202, 203, 204 Insulating rubber 206 Cathode electric switch 208 212 Positive electrode negative electrode 214 215 16 1335904 Target 302, 303, 304 heater 306 collection device 308 focusing lens 312 laser beam 314 carbon nanotube 40 carbon nanotube segment 402, 403, 404 17

Claims (1)

Λ . 物修正 t、申請專利範圍 _ •種奈米奴官,其特徵在於該奈米碳管係由三種單二碳 同位素12C、13C及^混合組成,其中,該混合成份之同 位素混合_沿管長方向呈周期性或非周期性變化。 ’如申租專利$ϋϋ第1項所述之奈米碳管,其中所述之該 奈米碳管之長度為10〜lOOOmin。 3. 如申4專她’丨項所述之奈米碳管,其巾所述之該 奈来碳管之直徑為〇.5〜50nm。 4. -種^碳管之製備方法’其特徵在於包括如下步驟: 提供含有不同單-同位素之第一碳源氣、第二碳源氣 及第三碳源氣; 提供其上沈積有催化劑之基底; 利用化學氣相沈積法’使第—碳源氣提供之碳之同位 素發生反應並使反應生狀第—奈米碳f片段沈積於該 基底上; 反應預定時間後’將碳源切換至第二碳源氣上,同樣 利用化學氣相沈積法,使第二碳源氣提供之碳之同位素 發生反應’生成之第二奈米碳管片段生長於第—奈米碳 管片段之上; 反應預定時間後,將碳源切換至第三碳源氣上,同樣 利用化學氣相沈積法,使第三碳職提供之碳之同位素 發生反應’生成之第三奈米碳管片段生長於第二奈米碳 官>1段之上,從而得到摻有複數同位素之奈米碳管。 5.如_請專利範圍第4項所述之奈米碳管之製備方法,其 18 1335904 中所述之該催化劑包括鈷·、鎳或鐵及其合金。 · 6. 如申請專利範圍第4項所述之奈米碳管之製備方法/其 中所述之化學氣相沈積法工作溫度為5〇〇〜11〇(rc。. 7. 如申請專利範圍第4項所述之奈米碳管之製備方法,其 中所述之該第一碳源氣、第二碳源氣及第三碳源氣為碳 氫氣體。 8. 如申請專利範圍第7項所述之奈米碳管之製備方法,其 中所述之碳氫氣體包括曱烷、乙烯、乙炔或丙二烯。 9. 如申請專利範圍第4項所述之奈米碳管之製備方法,其 · 中所述之反應過程中通入保護氣體。 10. 如申請專利範圍第9項所述之奈米碳管之製備方法,其 中所述之該保護性氣體包括氦氣、氬氣、氮氣或氫氣。 11. 一種奈米碳管之製備方法,其特徵在於包括如下步驟: 提供含有不同單一同位素之第一碳源、第二碳源及第 三碳源,分別作為陽極; 提供一與第一碳源、第二碳源及第三碳源相對應設置 β 之陰極; 使第一碳源與該陰極發生電弧放電,使第一碳源提供 . 之碳之同位素發生反應並使反應並生成第一奈米碳管片 . 段; 反應預疋時間後,將碳源切換至第二碳源,使第二碳 源與該陰極發生電弧放電,使第二碳源提供之碳之同位 素發生反應,生成之第二奈米碳管片段生長於第一奈米 碳管片段之上; 19 1335904 反應預定時間後,將碳源切換至第三碳源,使第三碳 - 源與該陰極發生電弧放電,使第三碳源提供之之同&素 發生反應,生成之第三奈米碳管片段生長於第二奈米碳 b片#又之上,從而得到推有同位素之奈米碳管,沈積於 該陰極上。 · 12. 如申請專利範圍第η項所述之奈米碳管之製備方法, 其中所述之苐一;6反源、第二碳源及第三碳源係由催化劑 粉末分別與由單一同位素組成之高純碳粉壓製而成之第 一碳棒、第二碳棒及第三碳棒。 鲁 13. 如申請專利範圍第η項所述之奈米碳管之製備方法, 其中所述之於電弧放電之放電電流為100Α。 14. 如申請專利範圍第12項所述之奈米碳管之製備方法, 其中所述之該催化劑粉末包括鎳及/或三氧化二釔粉末。 15. 如申請專利範圍第12項所述之奈米碳管之製備方法, 其中所述之該第一碳棒、第二碳棒及第三碳棒係在35〇〇 大氣壓下壓製而成之直徑為l〇mm之碳棒。 16. 如申請專利範圍第12項所述之奈米碳管之製備方法,· 其中所述之該第一碳棒、第二碳棒及第三碳源用絕緣膠 粘到一起或近距絕緣放置。 Π·如申請專利範圍第11項所述之奈米碳管之製備方法, 其中所述之反應過程中通入保護性氣體。 18. 如申請專利範圍第π項所述之奈米碳管之製備方法, 其中所述之該保護性氣體係氦氣、氬氣、氮氣或氫氣。 19. 一種奈米碳管之製備方法,其特徵在於包括如下步驟: 20 提供含有不同單-同位素之第-碳源、第二碳源及第 三石炭源; r 提供奈米碳管收集裝置; . 將第一碳源、第二碳源及第三碳源與該奈米碳管收集 裝置放入反應室中,並使奈米碳管收集裝置置於第一碳 源、苐一碳源及第三碳源之一侧; 用置於第一碳源、第二碳源及第三碳源另一侧之脈衝 雷射照射第一碳源,使第一碳源提供之碳之同位素發生 反應並使反應生成之第一奈米碳管片段; 反應預定時間後,用脈衝雷射照射第二碳源,使第二 碳源提供之碳之同位素發生反應,生成之第二奈米碳管 片段生長於第一奈米碳管片段之上; 反應預定時間後,用脈衝雷射照射第三碳源,使第三 碳源提供之碳之同位素發生反應,生成之第三奈米碳管 片丰又生長於第二奈米碳管片段之上,從而得到摻有複數 同位素之奈米碳管,沈積於該奈米碳管收集裝置上。 20. 如申請專利範圍第19項所述之奈米碳管之製備方法, 其中所述之第-碳源、第二碳源及第三碳源所在區域之 溫度為1000〜120(TC。 21. 如申請專利範圍第19項所述之奈米碳管之製備方法, 其t所述之第-碳源、第二碳源及第三碳源係、由催化劑 粉末分別與由單一同位素組成之高純碳粉壓製而成之第 一靶塊、第二靶塊及第三靶塊。 22. 如申請專利範圍第21項所述之奈米碳管之製備方法, 21 其中所述之該催化鎌末.包括錄及/或 •如申請專利範圍第19項所述之奈 其中所述之使用之係波長為532nm、=st法’ 量為250mJ之脈衝雷射。 衝之能 24.如申請專利範圍第19項所述之奈米碳管之製僙方法 其中所述之反應過程中通入保護性氣體。 25·如申請專利範圍第24項所述之奈米碳管之製備方法, 其中所述之該保護性氣體包括氣氣、氬氣、氮氣或氣氣。 22Λ . Object correction t, the scope of patent application _ • species of nano slave officer, characterized in that the carbon nanotube system is composed of three single carbon isotope 12C, 13C and ^ mixture, wherein the mixture of isotope mixed _ The direction of the tube length changes periodically or non-periodically. The carbon nanotube according to claim 1, wherein the carbon nanotube has a length of 10 to 1000 min. 3. The diameter of the carbon nanotubes described in the towel is 〇5~50nm. 4. A method for preparing a carbon tube, characterized by comprising the steps of: providing a first carbon source gas, a second carbon source gas, and a third carbon source gas containing different mono-isotopes; providing a catalyst deposited thereon a substrate; using a chemical vapor deposition method to react a carbon isotope provided by the first carbon source gas and depositing a reaction-like nano-carbon f fragment on the substrate; after the predetermined time, the carbon source is switched to On the second carbon source gas, the carbon isotope provided by the second carbon source gas is also reacted by chemical vapor deposition to generate a second carbon nanotube segment grown on the first carbon nanotube segment; After the reaction for a predetermined period of time, the carbon source is switched to the third carbon source gas, and the carbon isotope of the third carbon service is reacted by the chemical vapor deposition method to generate a third carbon nanotube segment. On the second nanocarbon officer>1 segment, a carbon nanotube doped with a complex isotope is obtained. 5. The method for preparing a carbon nanotube according to the fourth aspect of the patent, wherein the catalyst described in 18 1335904 comprises cobalt, nickel or iron and an alloy thereof. · 6. The method for preparing a carbon nanotube according to claim 4 of the patent application/the chemical vapor deposition method described therein has an operating temperature of 5 〇〇 to 11 〇 (rc.. 7. as claimed in the patent scope) The method for preparing a carbon nanotube according to any of the preceding claims, wherein the first carbon source gas, the second carbon source gas, and the third carbon source gas are hydrocarbon gases. The method for preparing a carbon nanotube, wherein the hydrocarbon gas comprises decane, ethylene, acetylene or propadiene. 9. The method for preparing a carbon nanotube according to claim 4, The method of preparing a carbon nanotube according to the invention of claim 9, wherein the protective gas comprises helium, argon, nitrogen or Hydrogen 11. A method for preparing a carbon nanotube, comprising the steps of: providing a first carbon source, a second carbon source, and a third carbon source containing different single isotopes as anodes; a carbon source, a second carbon source, and a third carbon source are correspondingly provided with a cathode of β Arcing the first carbon source with the cathode, causing the first carbon source to provide a carbon isotope reaction and reacting to form a first carbon nanotube sheet. After the reaction time, the carbon source is switched And a second carbon source, causing the second carbon source to arc-discharge with the cathode, reacting the carbon isotope provided by the second carbon source, and generating the second carbon nanotube segment grown on the first carbon nanotube segment 19 1335904 After a predetermined reaction time, the carbon source is switched to the third carbon source, causing the third carbon source to arc-discharge with the cathode, and the third carbon source is provided with the same & The three-nano carbon nanotube segment is grown on the second nanocarbon b slice #, thereby obtaining a carbon nanotube with an isotope, deposited on the cathode. · 12. As described in claim n The method for preparing a carbon nanotube, wherein the anti-source, the second carbon source and the third carbon source are the first carbon obtained by compressing the catalyst powder with a high-purity carbon powder composed of a single isotope, respectively. Rod, second carbon rod and third carbon rod. Lu 1 3. The method for preparing a carbon nanotube according to claim n, wherein the discharge current for the arc discharge is 100 Α. 14. The carbon nanotube according to claim 12 The preparation method, wherein the catalyst powder comprises nickel and/or antimony trioxide powder. 15. The method for preparing a carbon nanotube according to claim 12, wherein the first carbon rod is The second carbon rod and the third carbon rod are carbon rods of a diameter of 10 mm which are pressed at a pressure of 35 Torr. 16. The preparation method of the carbon nanotubes according to claim 12, The first carbon rod, the second carbon rod and the third carbon source described therein are adhered together by an insulating glue or placed in close proximity insulation. The method for preparing a carbon nanotube according to claim 11, wherein a protective gas is introduced during the reaction. 18. The method for preparing a carbon nanotube according to claim π, wherein the protective gas system is helium, argon, nitrogen or hydrogen. 19. A method of preparing a carbon nanotube, comprising the steps of: 20 providing a first carbon source, a second carbon source, and a third carbon source comprising different mono-isotopes; r providing a carbon nanotube collection device; Putting the first carbon source, the second carbon source and the third carbon source and the carbon nanotube collecting device into the reaction chamber, and placing the carbon nanotube collecting device on the first carbon source, the first carbon source and One side of the third carbon source; irradiating the first carbon source with a pulsed laser placed on the other side of the first carbon source, the second carbon source, and the third carbon source to react the carbon isotope provided by the first carbon source And reacting the first carbon nanotube segment generated by the reaction; after the reaction for a predetermined time, irradiating the second carbon source with a pulsed laser to react the carbon isotope provided by the second carbon source to generate the second carbon nanotube segment Growing on the first carbon nanotube segment; after a predetermined time of reaction, irradiating the third carbon source with a pulsed laser to react the carbon isotope provided by the third carbon source to form a third carbon nanotube Grown on the second carbon nanotube fragment to obtain the blend The number of isotope carbon nanotube, carbon nanotube deposited on the collecting device. 20. The method for preparing a carbon nanotube according to claim 19, wherein the temperature of the region in which the first carbon source, the second carbon source, and the third carbon source are located is 1000 to 120 (TC. 21 The method for preparing a carbon nanotube according to claim 19, wherein the first carbon source, the second carbon source, and the third carbon source are composed of a catalyst powder and a single isotope, respectively. The first target block, the second target block and the third target block which are pressed by the high-purity carbon powder. 22. The method for preparing a carbon nanotube according to claim 21, 21 wherein the catalysis is镰 . . . . . . . . 如 如 如 如 如 如 如 如 如 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 The method for preparing a carbon nanotube according to the invention of claim 19, wherein a protective gas is introduced into the reaction process, wherein the method for preparing a carbon nanotube according to claim 24, wherein The protective gas includes gas, argon, nitrogen or gas.
TW93115298A 2004-05-28 2004-05-28 A carbon nanotube and methods for making the same TWI335904B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93115298A TWI335904B (en) 2004-05-28 2004-05-28 A carbon nanotube and methods for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93115298A TWI335904B (en) 2004-05-28 2004-05-28 A carbon nanotube and methods for making the same

Publications (2)

Publication Number Publication Date
TW200538389A TW200538389A (en) 2005-12-01
TWI335904B true TWI335904B (en) 2011-01-11

Family

ID=45075046

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93115298A TWI335904B (en) 2004-05-28 2004-05-28 A carbon nanotube and methods for making the same

Country Status (1)

Country Link
TW (1) TWI335904B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI491555B (en) * 2010-04-01 2015-07-11 Hon Hai Prec Ind Co Ltd One dimensional nano structure, method for making the same and using the same as label

Also Published As

Publication number Publication date
TW200538389A (en) 2005-12-01

Similar Documents

Publication Publication Date Title
JP4391780B2 (en) Carbon nanotube manufacturing method and manufacturing apparatus
US7713583B2 (en) Method for forming isotope-doped light element nanotube
EP1948562B1 (en) Carbon nanotubes functionalized with fullerenes
US8142568B2 (en) Apparatus for synthesizing a single-wall carbon nanotube array
CN106414323A (en) Method of producing graphene
CN103359718B (en) Preparation method of narrow graphene nanoribbons
US20050276742A1 (en) Method for manufacturing isotope-doped carbon nanotubes
CN101570329B (en) Method for preparing carbon nanofiber
US7625530B2 (en) Method for manufacturing isotope-doped carbon nanotubes
Li et al. Low-temperature synthesis of carbon nanotubes using corona discharge plasma at atmospheric pressure
CN1328161C (en) Nano carbon tube and preparation method thereof
TWI335904B (en) A carbon nanotube and methods for making the same
TWI313670B (en) Apparatus and method for fabrication of carbon nanotube array
JP4665113B2 (en) Fine particle production method and fine particle production apparatus
JP2000109310A (en) Production of functional carbon material
Corbella et al. Energy considerations regarding pulsed arc production of nanomaterials
Agboola Development and model formulation of scalable carbon nanotube processes: HiPCO and CoMoCAT process models
TWI247046B (en) A method for forming nanocarbon materials by chemical vapor deposition
Dagdag et al. Preparation of Carbon Allotropes Using Different Methods
JP3570095B2 (en) Method and apparatus for producing spherical carbons
Huczko et al. Plasma synthesis of nanocarbons
TW200409728A (en) Carbon nanotubes, methods and apparatus for making the same
TWI298058B (en) Method for forming carbon nanotube
CN106517149A (en) Electronic device for manufacturing nano carbon tubes at low temperature and preparation method of electronic device
CN103910351B (en) A kind of take fullerene soot as the method that carbon nanotube prepared by raw material

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent