TWI334194B - Dielectric barrier layer films - Google Patents

Dielectric barrier layer films Download PDF

Info

Publication number
TWI334194B
TWI334194B TW93114493A TW93114493A TWI334194B TW I334194 B TWI334194 B TW I334194B TW 93114493 A TW93114493 A TW 93114493A TW 93114493 A TW93114493 A TW 93114493A TW I334194 B TWI334194 B TW I334194B
Authority
TW
Taiwan
Prior art keywords
layer
dielectric
film
dielectric layer
substrate
Prior art date
Application number
TW93114493A
Other languages
Chinese (zh)
Other versions
TW200512872A (en
Inventor
Mukundan Narasimhan
Peter Brooks
Richard E Demaray
Original Assignee
Symmorphix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Symmorphix Inc filed Critical Symmorphix Inc
Publication of TW200512872A publication Critical patent/TW200512872A/en
Application granted granted Critical
Publication of TWI334194B publication Critical patent/TWI334194B/en

Links

Description

1334194 Ο) 玖、發明說明 相關申請案 本申請案請求2003年9月25日所申請對於美國 請案60/506,128號銦成核層〃之優先權,此處整 該案納入參考。 【發明所屬之技術領域】 本發明關於介電障壁薄膜,且尤其是關於從高 學材料層所形成,供光學,電氣,摩擦學及生物培 中所使用之介電障壁薄膜。 【先前技術】 介電障壁層正變成逐漸重要,作爲有機發光二 OLED)及其它光學或充電裝置之保護層。向來, 壁層沈積具有適當電氣,物理,及光學特性之薄膜 護和加強其它裝置之操作。在光學,電氣,或摩擦 可利用介電障壁層。例如,觸摸式銀幕顯示器需光 護層抗抵大氣污染物之感染以及抗抵物理性磨損。 可利用加以形成這種介電層之許多薄膜沈積技 某種形式之離子熱壓縮或基底偏壓熱壓縮。熱壓縮 除典型爲真空化學氣相沈積(CVD )或物理氣相 PVD )薄膜之柱狀薄膜結構。熟知的是佈置在沈積 以&衝擊"薄膜之第二離子源可達成這種熱壓縮。 見W. Essingeri a離子束輔助薄膜沈積之離子源〃 臨時申 體上將 密度光 植裝置 極體( 介電障 加以保 裝置中 透明保 術包含 程序消 沈積( 期間加 例如, ,修正 -5 - (2) (2)1334194 版科學儀 ( 63) 11-5217 ( 1992)。亦見 Hrvoje Zorc 寺 人之1998年第41屆年度技術硏討會411之真空鍍膜協會會 刊,243-247頁,其論及針對電子束氣化膜(e_束)波長 位移之水氣曝露作用。尤其是,與25 °C下曝露至30%溫度 後沈積-導引離子束源之e —束膜比較,Zorc等人展現電 子束氣化膜(e -束)在波長位移中因子大約爲15之增進 〇 D. E. Morton等人展現由Si02和Ti02交錯層所組成 之寬頻帶介電帶通濾波器,爲了提供w作爲低指數材料或 二氧化鈦、五氧化二鉅或五氧化二鈮之稠密光學膜之水氣 穩定堆疊〃,其使用、冷陰極離子源"產生氧離子,P.E. Morton等人在1998年4月18 — 23之第41屆年度技術硏討會 之真空鍍膜介刊。如沈積在安裝於一旋轉模板上之基底上 之單介電層之光學效能所測量,Morton等人所說明之結果 表示達成室溫對上達100%溫度之抗抵。Morton等人所測 試/、試樣之光哀減係數從0.1變至1.6 ppt,表不在介電層 中缺陷或吸光中存在顯著濃度。此外,Morton等人對134 和632伏間離子束能量和上達5安培之離子束電流,Morton 等人未報告薄膜厚度或薄膜厚度均勻度資料。因此, Morton等人無法說明會以光學裝置一良好障壁層加以操作 之一薄膜。 如離子塗覆或觸動反應沈積之自我偏壓式物理氣相沈 積爲熟知提供硬磨損抗蝕塗膜之方法。然而,這些塗膜是 以數百伏偏壓加以沈積並形成離子流使表面滲透而與基底 -6 - (3) (3)1334194 材料產生反應之滲透表面處理,或爲了降低薄膜之柱狀結 構’他們輔以離子。已使用一〜過濾陰極真空電弧〃( FCVA —參考一http://www.nanofilm-systems.com/eng/ fcva_technology. htm )從一離子流形成濃密薄膜。在這 情況下,產生離子並由一磁性向量隔開中性氣相流,使得 只有正電荷核素衝擊基底。可預設置偏壓,使得平均轉移 能量範圍從約50至數百伏。由於萃取及導引具有用空間電 荷密度之較低能量離子流之問題而未回報較低離子能量》 雖然由於高離子能下之再濺射法,十分粗糙,可與有關切 割工具及商用拉轉鑽孔機之這程序加以沈積礬土之硬保護 層,及如四面體積之其它材料。由於塗覆核素對離子流之 極限,塗覆率爲低。最佳或最硬碳膜常以最低沈積率加以 沈積,例如該碳膜在直徑上達12〃之基底上爲每秒0.3奈 米。 藉增加沈積溫度至230°C以上,使由FCVA以600 nm波 長所沈積一ZnO膜之傳輸,對單膜而言在室溫下從約50% 增加至80%以上,最佳傳輸爲在沈積溫度43(TC且基底偏 壓不大於約50伏,波長爲60 nm下之約90%。這高溫處理 表示使用熱回火程序對薄膜修補離子感應之傷害。對於偏 壓爲200伏之FCVA沈積而言,大爲降低傳輸率。以這種方 式沈積之FCVA膜已表示爲多結晶質。要形成有之光障壁 層,在FCVA層中所展現之缺陷結構太大。此外,結晶質 膜之離子濺射依晶石方位而定,造成較高之表面粗糙度》 保護層中所形成之缺陷結構可使層膜之光學品質降質並透 (4) (4)1334194 過層膜’亦提供大氣污染物之擴散路徑,損及層膜之保護 特性。針對於於保護如光電壓,半導電及電激膜之電子和 光膜提供令人滿意障壁之目標,離子偏壓膜已表示重大進 展。尤其是利用鈣或摻雜非常有反應性金屬之其它電極及 其它吸水或反應性材料有機發光二極體可藉這種薄膜加以 保護。然而,所回報迄今最常偏壓程序之濾波陰真空電弧 塗覆技術或FCVA程序,產生粒子密度大於約每平方公分1 缺陷之薄膜。這可爲在這程序中所使用之高電壓,高再濺 射率使表面粗糙。當然,粒子之存在代表一種缺陷,透過 該缺陷能進行水蒸氣或氧氣之擴散。而且,由FCVA程序 所形成表面之粗糙影響到應力和型態且亦影響到折射率之 透明度和均勻度。再濺射膜可從製程室展蔽剝成片或由一 離子束程序中所存在之大靜電場拉至薄膜表面。在任何情 況下,對於大於薄膜厚度之粒子之粒子缺陷密度因視線膜 無法在大於薄膜厚度之粒子上加以塗覆,故亦決定針孔密 度或薄膜斷續沈積所造成之其它缺陷,而不管粒子大小於 薄膜厚度許多倍。 在離子偏壓或自我偏壓能量超出數電子伏特之情況下 ,加入這偏壓程序離子之轉移能量可超出薄膜之化學鍵結 合能量。然後,衝擊之離子可向前分散現有薄膜之原子或 向後濺射現有薄膜之原子。同樣地,加入之離子可被吸附 進入生長中的薄膜,或它亦能分散或從薄膜表面加以吸收 。現存膜之濺射及從現存膜之分散兩者偏好離水平之入角 約45°在大半離子塗覆程序中,以一正常入射將離子束導 -8- (5) (5)1334194 向要加以塗覆之表面。然而,如所備註的,以超出化學臨 界點之離子能量,且尤其是以超出大約20伏之能量,對薄 膜或起因於超出化學鍵結合能量之離子能量之基底的損害 是顯著的,且造成表面粗糙,增加吸光特性,並產生缺陷 〇 在FCV A程序之情況中,粗糙度爲薄膜厚度之漸增作 用,對於一 50奈米之薄膜從約0.2奈米之粗糙度漸增至對 於一400奈米銅膜之約3奈米,由於自我偏壓之內銅離子之 差動濺射,該銅膜表示多結晶質銅表面之實質粗糙化。這 種薄膜將使光線分散,尤其是在相異折射率之兩層膜間之 介面處。迄今,尙未發現以FCV A所產製之薄膜之障壁或 介電特性。 沈積膜之充電亦爲沈積離子束之介電質之一特性問題 。迄今,未知有低溫介電質且亦無離子束介電質,其已曾 經表示提供例如’一電晶體閘極層所需之電氣品質。離子 束在薄膜中內植充電離子,造成大負齊平之能帶電壓及在 溫度低於約450 °C時無法鈍化之場。介電層表面電荷造成 抗慢累積’在一電晶體應用中防止急迫開始傳導。結果, 對低溫電晶體應用未曾提出或此時知道之如所沈積般之低 溫介電質,偏壓或未偏壓。 因此’高質,稠密電介層有需要在光學,電氣,磨損 學,及生物統計應用中利用作爲障壁層。 【發明內容】 (6) (6)1334194 根據本發明提出從藉由一脈衝式,偏壓,寬面積物浬 氣相沈積程序所沈積之氧化金屬材料層所形成之一或更多 介電層》從至少一高度熱壓縮金屬氧化層可形成根據本發 明之一介電障壁層。根據本發明之介電障壁層可爲高度熱 壓縮’高度均勻’具超低缺陷濃度之超平順非結晶性層, 提供優越效能,作爲抗抵下層結構以及可加以沈積,形成 一電氣,光學,或醫療裝置之上層結構之物理摩損及大氣 污染之保護層。根據本發明之障壁層亦可爲自我保護光學 層’電氣層’或在光學或電氣裝置中可主動加以利用之摩 擦層。 因此’根據本發明之障壁層包含一藉脈衝式DC,基 低偏壓物理氣相沈積法沈積在一基底上之熱壓縮非結晶質 介電層’其中’熱壓縮非結晶質介電層爲一障壁層。進而 可以一寬面積標的實施沈積》根據本發明形成一障壁層之 方法包含提供一基底並以一脈衝式DC,偏壓,寬標的物 理氣相沈積程序在基底上沈積高度熱壓縮,非結晶質,介 電材料。而且’這程序可包含在基底上實施軟金屬氣相處 理》 根據本發明之介電障壁堆積可包含任何數目之個別層 膜’該層膜含一或更多障壁層。在某些實施例中,個別障 壁層可爲光學層。向來’可佈置低及高折射率金屬氧化物 材料之交錯層,在光學裝置中形成,例如,抗反射或反射 塗膜。照此’根據本發明之介電障壁提供保護功能以及成 爲一光學裝置之功能部件。例如,在本發明之某些實施例 -10- (7) (7)1334194 中,在腔增強式LED應用或電晶體結構之形成與保護中可 利用根據本發明之介電障壁。此外,可利用根據本發明某 些實施例障壁層之有利介電特性作爲電氣層,形成電阻或 電容性介電質》 在某些實施例中,在一障壁層沈積前可利用軟性金屬 (例如,銦)之氣息處理。在這種氣息處理表示顯著增進 根據本發明實施例障壁層之表面粗糙度並增強WVTR特性 〇 參考下列圖式,以下進而討論並說明本發明之這些及 其它實施例。要了解的是,前項一般說明和下列詳細說明 只是作爲範例及解釋用,如請求項目,本發明並不受限於 此。而且,提出有關根據本發明之障壁層之沈積或效能或 軟性金屬氣息處理之特定說明或理論只作說明用而並不被 視爲限制本發表或請求項目之範圍。 【實施方式】 較佳實施例之詳細說明 以針對這種障壁層之某些特例更加說明如下之脈衝式 DC,基底偏壓,寬標的物理氣相沈積程序加以沈積根據 本發明某些實施例之障壁層。根據本發明實施例之某些障 壁實施例之特徵爲高熱壓縮,高均勻性,具特別低缺陷濃 度與高表面平滑度之局非結晶質層。而且,根據本發明實 施例之障壁層可具有利光學和電氣特徵,該特徵允許這種 障壁層爲形成有這些層膜之光學或電氣裝置中之自我保護 -11 - (8) (8)1334194 光學或電氣層》 例如,根據本發明之某些障壁層實施例可具優越之光 透明性特徵。而且,個別障壁層之折射率是依沈積材料而 定,且因此根據本發明之多重障壁層堆疊可形成光學裝置 之高度可控制,且自我保護,反射或抗反射塗膜。此外, 可以光主動雜質摻雜根據本發明某些實施例之障壁層,形 成亦爲自我保護層之光主動層。例如,如餌或鏡稀土離子 之沈積可形成光放大器或頻率轉換器。 此外,根據本發明之障壁層實施例可具高度有利介電 待性且因此被利用成自我保護電氣層。例如,根據本發明 實施例之某些障壁層可被利用成阻抗層。其它實施例可被 利用成電容裝置之高介電常數層。以下進而討論對這種裝 置有用之介電障壁層實施例。 在狄馬雷(Demaray )等人於2〇〇1年7月10日所申請標 題爲"平面光學裝置及其製法〃之申請案號09/903,050中 (/ 050申請案)討論氧化膜之RF濺射法,該案如同本發 明讓渡給相同讓渡者,此處整體上將該案納入參考。而且 ’在2002年3月16日所申請之美國申請案號1〇/1〇1,341中 討論在根據本發明之反應器中可利用之標的,該案如同本 發明讓渡給相同讓渡者’此處整體上將該案納入參考。在 2002年3月16日所申請之美國申請案號ι〇/101863中進而討 論以脈衝式DC,基底偏壓,寬標的物理氣相沈積(PVD) 程序沈積氧化物之方法(此後稱爲、脈衝式,偏壓程序〃 ),該案如同本發明讓渡給相同讓渡者,此處整體上將該 -12- (9) (9)1334194 案納入參考。 第1 A和1 B圖說明根據本發明實施例從一標的物1 2加 以濺射材料之一反應器設備1 0。在某些實施例中,設備1 0 例如可從來自應用小松公司之AKT-1600 PVD ( 400x500 mm基底大小)系統或從來自加州聖塔克拉柱(Santa Clara)應用小松公司之AKT-4300 ( 600x720 mm基底大小 )系統加以調適。例如,AKT- 1 600反應器具有由一真空 傳輸室所連接之三或四沈積室。可修飾這些AKT PVD反應 器使得供應脈衝式DC電力至標的物並在一材料沈積期間 供應RF電力至基底。 設備10包含經由濾波器15,以電氣方式耦合至一脈衝 式DC電源供應器Μ之標的物12。在某些實施例中,標的 物12爲提供要被沈積在基底16上之一寬面積濺射源標的物 β基底16之位置平行於標的物12並與相對。當施加電力至 標的物12時,標的物12作爲陰極用且對等地稱爲陰極。施 加電力至標的物12在標的物12下方產生一電漿53。使磁鐵 20掃瞄橫跨標的物12頂部。透過絕緣體54將基底16么電容 性耦合至一電極17。可將電極17耦合至RF電源供應器18 〇 如設備10所表現者,對於脈衝反應DC磁子濺射,由 電源供應器1 4供應至標的物1 2之電源極性在負和正電位間 振盪。在正電位期間,使標的物12表面上之絕緣層放電並 防止產生電弧。爲得電弧之自由沈積,脈衝式DC電源供 應器!4之脈衝頻率可超出至少部分能依標的材料,陰極電 -13- (10) (10)1334194 流和逆向時間而定之關鍵頻率。在設備1 〇中使用反應脈衝 式DC磁子濺射法可製成高品質氧化膜。 脈衝式DC電源供應器14可能任何脈衝式DC電源供應 器,例如,高級能源公司(Advanced Energy Inc.)之AE 高峰加以10K。以這實施例之供應器,可以〇和3 50 KHz間 之頻率供應上達10 kW之脈衝式DC電源。逆向電壓爲負標 的電壓之10%。其它電源供應器之利用將造成不同電力特 徵,頻率特徵及逆向電壓百分比。有關這電源供應器14 實施例之逆向時間可調整在〇和5 // s之間。 濾波器15防止來自電源供應器18之偏壓電源免於耦合 至脈衝式D C電源供應器1 4。在某些實施例中,電源供應 器1 8爲一 2 MHz RF之電源供應器且例如,可爲由ENI,科 羅拉多春日公司(Colorado Spring Co)所產製之Nora 25 電源供應器。因此,濾波器1 5爲一2 Μ Η z之頻帶排除濾波 器。在某些實施例中,濾波器頻寬可大槪爲1 00 KHz。因 此,濾波器15防止來自偏壓至基底16之2 MHz電力免除損 及電源供應器1 8。 然而,RF和脈衝式DC沈積膜不完全稠密且大半具柱 狀結構。由於結構所造成之分散損耗及針孔’對於光學應 用及障壁層之形成而決定這些柱狀結構。藉由在沈積期間 在晶圓16上施加一 RF偏壓’沈積薄膜可爲活力離子衝擊 所熱壓縮並可實質上消除柱狀結構。 在例如使用以AKT- 1 600爲準之系統之根據本發明某 些實施例障壁層生產中,爲將薄膜沈積在大小約400 X 5 〇〇 -14- (11) (11)1334194 mm之基底上,標的物12之主動尺寸約6 7 5.7 χ 5 8 2.4 8 χ 4 mm。基底16溫度可得保持在約50 °C和500 °C之間。標的物 12和基底16間之距離可在約3和9 cm之間。可以上達約200 seem之速率將處理氣體(例如,但不限於Ar和02混合氣) 插入設置室10內,而設備室10中壓力可保持在約0.7和6毫 托(millitorr)之間。磁鐵20提供一在標的物12平面中所 導引之約400和600高斯(Gauss)間之磁場力量並以小於 約20 - 3 0 sec / scan之速率移動橫過標的物12。在利用 AKT 1600反應之某些實施例中,磁鐵20可爲尺寸約150 mmx600 mm之賽軌开多磁鐵。 第1C圖表示根據本發明沈積在基底120上之介電障壁 層1 1 0。基底1 2 0可爲任何基底,例如,塑膠、坡璃、矽晶 圓或其它材料。基底120可進而包含可爲障壁層110所保護 之裝置或結構,如有機發光二極體(OLED )結構,半導 體結,或其它障壁層結構。障壁層110可爲一金屬氧化物 ,其中,金屬可爲Al、Si、Ti、In、Sn或其它金屬氧化物 、氮化物、鹵化物、或其它介電質。例如,藉由從實例沈 積參數指定爲 7 kW/ 200 W/ 200 KHz/60 Ar/90 〇2/ 950 s(7 kW脈衝式DC標的電力,200 W基底,偏壓電力 ,200 KHz爲脈衝式DC標的電力之脈衝頻率,60 seem Ar 氣流,90 seem 〇2氣流,950秒總沈積時間)之钦標的物 之Ti〇2沈積可形成一高折射率之障壁層。從一在指定爲3 kW/200 W/200 KHz/85 Ar/90 02/ 1〇25(3 kW脈衝 式DC標的電力,200 W基底,偏壓電力,2 00 KHz之爲脈 -15- (12) (12)1334194 衝式DC標的電力之脈衝頻率,85 SCCm Ar氣流,1 025秒總 沈積時間之90 seem 02流)程序中爲92% A1和8% Si ( 即92 - 8或92 / 8層)之標的物可形成另一實例之低折射 率障壁層。如以下所進一步討論者,可利用一寬廣範圍之 程序參數加以沈積根據本發明之障壁層》 從任何氧化物材料可形成根據本發明之障壁層。例如 ’ MgO、Ta2 05、Ti02、Ti407、Al2〇3、Si02、濃矽之 Si02 及Y2〇3。亦能利用Nb、Ba、Sr及Hf之氧化合物,形成根 據本發明之障壁層。而且,可以稀土離子摻雜障壁層加以 產生光主動層。此處所設置供沈積特定層(例如,以上所 討論之Ti02層及92-8層)之參數只是範例而非有意加以 限制。而且,個別程序參數只是近似値》可使用在那些所 欽述附近之寬廣範圍之個別參數(例如,電力位準、頻率 、氣流 '及沈積時間)形成根據本發明之障壁層。 介電障壁層110之特徵爲一高密度,均勻,可亦具高 度光透明性之無缺陷非結晶質介電層。這種薄膜可在從Ar /〇2氣流中一金屬標的物之脈衝式DC,基底偏壓PVD程 序加以沈積。如以下所進一步討論者,某些介電障壁層 11〇之實施例亦具優越之表面粗糙度特徵。向來,如以下 所進一步討論的以及和所提供之實例與資料,在一 MOCON測試設備(MOCON指的是明尼蘇達州,明尼阿波 利斯市之Μ Ο C ON測試服務公司)中測試根據本發明實施 例之介電膜之水蒸氣傳輸率爲小於1 X 1 0 - 2 gm/ m7-/ day 且常小於 5xlO-3 gm / m2 / day。 -16- (13) (13)1334194 藉進一步在障壁層MO上沈積障壁層可形成介電障壁 堆疊。可利用任何數量之堆疊障壁層,使得所形成之結構 作用不只爲障壁層且在形成裝置中亦可有其它用途。而且 ,在沈積根據本發明實施例之障壁層前可應用軟性金屬氣 息處理。如以下之進一步說明,軟性金屬氣息處理指的是 基底對軟性金屬蒸氣之曝光。 第2A圖表示一介電堆疊120之實施例,其可被利用成 一障壁結構並進而提供光學功能。根據本發明實施例,介 電堆疊120包含多重障壁層101、102、103、104及105。各 障壁層101、102、103、104和105可利用如美國申請案號 10/101,863中所更詳細說明之沈積法加以沈積。以上通常 明之沈積是針對設備10。通常,介電堆疊120可包含任何 數量之層膜。尤其是,介電堆疊120可包含只有一單障壁 層。第2A圖中所示一特例之障壁堆疊120包含101、102、 103、1〇4和105五個層膜。在第2A圖所示之介電堆疊120 實例中,介電層1 〇1、1〇3和1 05由一如二氧化鈦(Ti02 ) 之高折射率材料所形成。層膜102和104可由一如矽土( Si 02 );可能摻雜礬土(例如,陽離子比率爲92%矽土和 8 %礬土,92 — 8層膜)之低折射率材料所形成。如第2 A 圖中所示,可直接在基底100上沈積障壁堆疊120或如第 2D圖中所示,沈積在層膜107上。層膜107爲一受保護, 免於大氣污染或物理損害之一層膜且可包含一光學或電氣 裝置或另一層膜。基底100爲一上面形成層膜107或介電堆 疊120之基底。在某些實施例中,基底1〇〇亦能提供對於層 -17- (14) (14)1334194 膜107大氣污染之障壁。在某些裝置中,可在障壁層結構 120之上沈積進一步之結構。 表1說明根據本發明,對於某些實例介電堆疊結構120 之沈積參數。如以上說明,利用一使用如美國專利申請案 號10/101,863中進一步所說明之偏壓脈衝式DC反應掃瞄磁 子PVD程序之AKT 4 3 00 PVD系統形成表1中所說明之各堆 疊120,該案先前已被納入參考。而且,針對第1 A和1B圖 說明如上之設備10在AKT 43 00 PVD系統中可以一承載器 室一除氣室加以集叢起來,且可配有電漿遮護及一遮護加 熱器。如第2A圖中所示,這些實例之介電堆疊120包含5 個層膜一3 Ti02 交錯層和 2 層 92— 8 Si02/Al203 ( 92 %/8 %之陽離子濃度)。 表1中所示各堆疊之介電堆疊120是直接沈積在基底 100上。首先將所形成各堆疊之基底100載入設備10之承載 器中。使設備10之承載器泵激至一小於約5托(Torr) 之基本壓力。然後將可爲玻璃或塑膠之基底100薄片轉移 至設備10之一加熱室且爲除氣基底100已累積之任何水氣 而保持溫度在約300°c達約2〇分。例如,對於聚合物爲準 之基底,依所使用之塑膠基底而定,可消除預熱步驟或以 較溫實施預熱步驟。在某些情況下,可禁制設備10之基底 及遮護加熱器。表1之基底欄表示在沈積程序中所使用之 基底1 0 0之組成。 在表1中所說明之各堆疊1至6中,介電堆疊12〇中電介 障壁層組成爲丁丨02/92- 8/丁丨02/92— 8/丁丨02’表示如 -18 - (15) (15)1334194 第2A圖中所示之層膜101、103和105爲Ti02層且如第2A圖 中所示之層膜102和104爲Si02/Al203 ( 92%/8%陽離子 濃度)。Ti02層是以Ti02沈積程序欄中所示之參數加以沈 積。程序細節格式:標的電力/偏壓電力/脈衝頻率/Ar 流/ 〇2流/沈積時間。標的電力指的是供應至設備1 〇之標 的物12之電力。偏壓電力指的是由偏壓產生器18供應至電 極17之電力,其中,基底100取代第1A圖中所示基底16而 安裝在電極17上並以電容性耦合至電極17。然後以標準立 方公分/分(seem)之單位說明Ar和02橫跨基底100之流 率。最後,假設有沈積時間。例如,表1中所說明之堆疊 編號1之Ti02層是沈積約7 kW之標的RF電力,約200 W之 偏壓電力,約2 00 KHz之脈衝頻率,約60 seem之Ar流率, 約90 seem之02流率,及約9 5 0秒之沈積時間。一根據Ti02 沈積程序欄中所說明程序所沈積之典型Ti02層所測量厚度 是表示在表1之測量厚度Ti02欄。 類似地,表1中所示,沈積各介電堆疊120之矽土 /礬 土層之沈積參數是表示在矽土 /礬土(92/8)沈積程序 欄》如所表示的,表1中所示堆疊編號1- 6之各矽土 /礬 土層之離子濃度約92%矽土和約80%礬土》例如,在表1 所說明之堆疊編號1中,以約3 kW電力將矽土 /礬土層沈 積至標的物12,對電極17之偏壓電力約200 W,脈衝式DC 電源供應器14頻率約200 KHz,Ar流率約85 seem,02流 率約90 seem,且沈積時間約1050秒。 通常,在本發表中,稱爲92/8層膜之介電障壁層指 -19 - (16) (16)1334194 的是由連續沈積一來自92%矽土 / 8%礬土標的物之介電 障壁層所形成之一障壁層。稱爲92 - 8層膜之介電障壁層 指的是在來自92%矽土 / 8%礬土標的物之步驟中所形成 之一障壁層。例如,可在塑膠基底上形成-92— 8層膜, 但是可在對熱不那麼敏感之Si晶圓或玻璃基板上形成92/ 8層膜》 在表1所說明之各堆疊中,將脈衝式0<:電源供應器14 之逆向時間固定在約2_3微秒。標的物12與基底100間之間 距爲〜60μΐη,而磁鐵20和標的物間之間距爲〜4-5 mm 。基底100溫度約200 °C並設定設備之遮護加熱器爲約 250 °C。設定磁鐵20之原位偏置爲約20 mm且掃瞄長度980 mm。Ti02層沈積期間設備室內在電漿53中之總壓力約 5— 6 mT。矽土 /礬土層沈積期間室內在電漿53中之總壓 力約8 - 9 m T。 根據本發明之某些障壁堆疊中’以反應式所濺射之薄 膜層所沈積,或由先前在脈衝式’偏壓沈積程序之美國專 利申請案號1 〇 /1 0 1,8 6 3中所說明之程序加以形成之障壁層 。脈衝式,偏壓沈積之程序組合具有唯一稠密形態,無柱 狀缺陷之光學品質真空膜,該柱狀缺陷一向爲每百萬均勻 度即具部件之非偏壓式真空薄膜及光折射與雙折射之控制 。非常高解析度之橢圓率測量術亦展現可以衰減係數加以 沈積之寬度範圍之薄膜折射率,該衰減係數在跨可見及接 近IR區爲零,且在每百萬部件之大小爲均勻,提供實質上 完美之透明度。由於高位準之熱壓縮與低缺陷濃度之結果 -20- (17) (17)1334194 ,展現的是,這些非常透明之薄膜4 0相較蒸氣滲透,亦提 供優越擴散障壁保護供水氣進入。最後,在高電壓應力, 相同薄膜展現更高之介電崩潰,且結果爲低位準之缺陷。 第8圖表示曝光至高濕度,高溫環境達一延長時期後 之一樣.品。第8圖所示實例中,在已被沈積在一4 〃矽晶圓 上之一反應鋁層上沈積約200 mm之Ti02 。將這樣晶保持 在一約85 °,相對濕度約100%之室中達約5 00小時。如在 第8圖中所能看到的,在表示反應鋁層下方高階保護之晶 圓上看不到缺陷。 第9圖表示曝光至高濕度,高溫環境達一延長時期後 是一根據本發明矽土 /礬土層之樣品。在第9圖所示樣品 中,將約10 nm之鋁沈積在-4"矽晶圓上。鋁上沈積有約 100 nm之矽土 /礬土。然後,將這樣晶安置在約250°C, 飽和蒸氣約3.5 atm之壓力烤爐中達約160小時。再來,在 表示反應鋁層下方高階保護之晶圓上看不到缺陷。在另一 實例中,在沒有障壁層之相同條件下測試一 S i晶圓上之薄 反應A1並在測試數分鐘內變成透明。 以先前所發表程序所選取之從數十奈米至大於15微米 之金屬氧化膜,作爲一薄膜不只不透水氣和化學滲透,而 且能提供對一底層或裝置之保護,防止氣體作用或水氣進 入,而作爲一光學,電氣及/或摩擦層或裝置用,對各別 層膜和裝置使出實質製造與環境之侷限。在玻璃和金屬之 寬面積基底上以及如塑膠之低溫材料上已展現這主題程序 -21 · (18) (18)1334194 表4表示藉測試一Al2〇3障壁層且在- Si晶圓上測試一 摻Er之礬土 /矽酸鹽(4〇%矽土 / 60%矽土)膜所得到之 維氏硬度(MPa)値。在一 3 kW/100 W/200 KHz/301334194 Ο) 发明, Invention Description Related Applications This application claims the priority of the application for the US inviting 60/506,128 indium nucleation layer on September 25, 2003. BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to dielectric barrier films, and more particularly to dielectric barrier films for use in optical, electrical, tribological, and biological applications formed from layers of advanced materials. [Prior Art] The dielectric barrier layer is becoming increasingly important as a protective layer for organic light-emitting OLEDs and other optical or charging devices. In the past, wall layers have been deposited with suitable electrical, physical, and optical properties to enhance and enhance the operation of other devices. The dielectric barrier layer can be utilized in optical, electrical, or frictional applications. For example, touch screen displays require the protective layer to resist infection by atmospheric pollutants and resist physical wear. A number of thin film deposition techniques for forming such dielectric layers can be utilized for some form of ionic thermal compression or substrate bias thermal compression. Thermal Compression A columnar film structure other than a vacuum chemical vapor deposition (CVD) or physical vapor phase (PVD) film. It is well known that this thermal compression can be achieved by depositing a second ion source that is <impact" See W. Essingeri a ion beam assisted film deposition ion source 临时 Temporary body on the density of the photo-device device pole body (dielectric barrier to protect the device in the transparent protection program contains the program de-deposition (during plus, for example, correction -5 - (2) (2) 1334194 version of the scientific instrument (63) 11-5217 (1992). See also the Hrvoje Zorc Temple's 1998 41st Annual Technical Conference 411 Vacuum Coating Association Journal, pp. 243-247. It deals with the exposure of water vapor to the wavelength shift of the electron beam gasification membrane (e_beam), in particular, compared with the e-beam film of the deposition-guided ion beam source after exposure to 30% temperature at 25 °C. Zorc et al. show that the electron beam gasification film (e-beam) has a factor of about 15 in wavelength shift. DE Morton et al. exhibit a broadband bandpass filter consisting of a SiO2 and TiO2 interleaved layer, in order to provide w. As a low-index material or a dense gas film of titanium dioxide, bismuth pentoxide or bismuth pentoxide, the water vapor stabilized stack 〃, its use, cold cathode ion source "produces oxygen ions, PE Morton et al. in April 1998 18th - 23rd Annual Technical Begging Vacuum coatings, as measured by the optical performance of a single dielectric layer deposited on a substrate mounted on a rotating stencil, the results of Morton et al. indicate that room temperature is resistant to 100% temperature. Morton The light fading coefficient of the sample tested by et al. changed from 0.1 to 1.6 ppt, and there was no significant concentration in the dielectric layer in the defect or light absorption. In addition, Morton et al. applied the energy of the ion beam between 134 and 632 volts. At 5 amps of ion beam current, Morton et al. did not report film thickness or film thickness uniformity data. Therefore, Morton et al. could not describe a film that would operate with a good barrier layer of optical devices. Such as ion coating or tactile reaction deposition. Self-biased physical vapor deposition is a well-known method of providing a hard wear resist film. However, these films are deposited at a bias voltage of several hundred volts and form an ion current to penetrate the surface with the substrate -6 - (3 (3) 1334194 The material produces a osmotic surface treatment of the reaction, or in order to reduce the columnar structure of the film 'they are supplemented with ions. A filter cathode vacuum arc 已 has been used (FCVA - reference one h Ttp://www.nanofilm-systems.com/eng/fcva_technology.htm] forms a dense film from a stream of ions. In this case, ions are generated and separated by a magnetic vector, so that only positive charges The nuclide strikes the substrate. The bias can be pre-set so that the average transfer energy ranges from about 50 to hundreds of volts. The lower ion energy is not reported due to the problem of extracting and guiding the lower energy ion current with space charge density. Although it is very rough due to the re-sputtering method under high ion energy, it can be deposited with a hard protective layer of alumina and other materials such as four-sided volume with this cutting tool and a commercial rotary drilling machine. The coating rate is low due to the limitation of the coated species on the ion current. The best or hardest carbon film is often deposited at the lowest deposition rate, for example, the carbon film is 0.3 nm per second on a substrate having a diameter of 12 Å. By increasing the deposition temperature to above 230 °C, the transport of a ZnO film deposited by FCVA at a wavelength of 600 nm increases from about 50% to over 80% at room temperature for a single film, and the optimum transport is in deposition. Temperature 43 (TC and substrate bias is no greater than about 50 volts and wavelength is about 90% at 60 nm. This high temperature treatment indicates damage to the film repair ion sensing using a thermal tempering procedure. For FCVA deposition with a bias voltage of 200 volts In general, the transmission rate is greatly reduced. The FCVA film deposited in this manner has been expressed as a polycrystalline material. To form a photo barrier layer, the defect structure exhibited in the FCVA layer is too large. In addition, the crystalline film is Ion sputtering depends on the orientation of the spar, resulting in a high surface roughness. The defect structure formed in the protective layer can degrade the optical quality of the film. (4) (4) 1334194 Via film is also provided The diffusion path of atmospheric pollutants impairs the protective properties of the film. The ion-biased film has shown significant progress in protecting electrons and films such as photovoltage, semiconducting and electro-acoustic films from providing satisfactory barriers. Especially using calcium or doping is very counter- Other electrodes of metallic metals and other water-absorbing or reactive materials of organic light-emitting diodes can be protected by such films. However, the most frequently biased filtered vacuum vacuum arc coating technique or FCVA program has been reported to produce particle density. A film that is larger than about 1 defect per square centimeter. This can be a high voltage used in this procedure, and the high re-sputter rate makes the surface rough. Of course, the presence of particles represents a defect through which water vapor or oxygen can be carried out. The diffusion of the surface formed by the FCVA program affects the stress and pattern and also affects the transparency and uniformity of the refractive index. The re-sputtered film can be stripped from the process chamber into a sheet or by an ion beam program. The large electrostatic field present in the film is pulled to the surface of the film. In any case, the particle defect density of particles larger than the film thickness is determined by the fact that the line film cannot be coated on particles larger than the film thickness, so the pinhole density or film is also determined. Other defects caused by intermittent deposition, regardless of the particle size many times the thickness of the film. The ion bias or self-bias energy exceeds In the case of electron volts, the transfer energy of the ions added to the biasing program can exceed the chemical bonding energy of the film. Then, the impacted ions can disperse the atoms of the existing film forward or the atoms of the existing film backwards. Similarly, The ions can be adsorbed into the growing film, or it can be dispersed or absorbed from the surface of the film. Sputtering of existing films and dispersion from existing films prefers an angle of entry of about 45° from the horizontal in the large half-ion coating procedure. The ion beam is guided by a normal incidence of -8 (5) (5) 1334194 to the surface to be coated. However, as noted, the ion energy is exceeded beyond the chemical critical point, and especially beyond The energy of 20 volts is significant for the damage of the film or the substrate caused by the ion energy exceeding the chemical bonding energy, and causes surface roughness, increased light absorption characteristics, and defects. In the case of the FCV A program, the roughness is a film. The increasing thickness increases the roughness of a 50 nm film from about 0.2 nm to about 3 nm for a 400 nm copper film due to self-bias Differential sputtering of the copper ions, the copper film polycrystalline substance indicates the substance of a copper surface roughening. This film will disperse the light, especially at the interface between the two films of different refractive indices. To date, no barrier or dielectric properties of films produced by FCV A have been found. The charging of the deposited film is also a problem of the characteristics of the dielectric of the deposited ion beam. To date, low temperature dielectrics have not been known and there is no ion beam dielectric, which has been shown to provide the electrical qualities required for, for example, a transistor gate layer. The ion beam implants a charge ion in the film, causing a large negative flush band voltage and a field that cannot be passivated at temperatures below about 450 °C. The surface charge of the dielectric layer causes anti-slow accumulation' to prevent the urgency of starting conduction in a transistor application. As a result, low temperature dielectrics, biased or unbiased, have not been proposed or are known to be known for low temperature transistor applications. Therefore, high-quality, dense dielectric layers need to be utilized as barrier layers in optical, electrical, abrasive, and biometric applications. SUMMARY OF THE INVENTION (6) (6) 1334194 According to the present invention, one or more dielectric layers are formed from a layer of oxidized metal material deposited by a pulsed, biased, wide-area material vapor deposition process. A dielectric barrier layer in accordance with the present invention can be formed from at least one highly thermally compressive metal oxide layer. The dielectric barrier layer according to the present invention can be a highly thermally compressed 'highly uniform' ultra-low defect amorphous layer having an ultra-low defect concentration, providing superior performance as an anti-underlying structure and can be deposited to form an electrical, optical, Or a protective layer of physical wear and atmospheric pollution of the upper structure of the medical device. The barrier layer according to the present invention may also be a self-protecting optical layer 'electrical layer' or a friction layer that can be actively utilized in optical or electrical devices. Therefore, the barrier layer according to the present invention comprises a thermally compressed amorphous dielectric layer deposited on a substrate by a pulsed DC, a low-bias physical vapor deposition method, wherein the 'thermally-compressed amorphous dielectric layer is a barrier layer. Further, deposition can be performed on a wide area standard. The method of forming a barrier layer according to the present invention comprises providing a substrate and depositing a highly thermally compressed, amorphous material on the substrate by a pulsed DC, bias, wide standard physical vapor deposition process. , dielectric materials. Moreover, the procedure can include performing a soft metal vapor phase treatment on the substrate. The dielectric barrier stack according to the present invention can comprise any number of individual layers of film. The film comprises one or more barrier layers. In some embodiments, the individual barrier layers can be optical layers. The interleaved layer of low and high refractive index metal oxide materials can be arranged to form, for example, an antireflective or reflective coating film in an optical device. As such, the dielectric barrier according to the present invention provides a protective function and is a functional component of an optical device. For example, in certain embodiments of the present invention -10-(7)(7)1334194, dielectric barriers in accordance with the present invention may be utilized in cavity-enhanced LED applications or in the formation and protection of transistor structures. In addition, the advantageous dielectric properties of the barrier layer in accordance with certain embodiments of the present invention may be utilized as an electrical layer to form a resistive or capacitive dielectric. In certain embodiments, a soft metal may be utilized prior to deposition of a barrier layer (eg, , indium) breath treatment. This venting treatment represents a significant enhancement of the surface roughness of the barrier layer in accordance with embodiments of the present invention and enhances the WVTR characteristics. Referring to the following figures, these and other embodiments of the present invention are discussed and illustrated below. It is to be understood that the general description of the foregoing paragraphs and the following detailed description are for purposes of illustration and explanation only, and the invention is not limited thereto. Moreover, specific descriptions or theories relating to the deposition or performance of the barrier layer in accordance with the present invention or the treatment of soft metal breath are provided for illustrative purposes only and are not to be considered as limiting the scope of the published or claimed items. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The detailed description of a preferred embodiment of the barrier layer further illustrates the following pulsed DC, substrate bias, broad standard physical vapor deposition process for deposition in accordance with certain embodiments of the present invention. Barrier layer. Some of the barrier embodiments in accordance with embodiments of the present invention are characterized by high thermal compression, high uniformity, and a non-crystalline layer of particularly low defect concentration and high surface smoothness. Moreover, the barrier layer according to embodiments of the present invention may have advantageous optical and electrical characteristics that allow such barrier layers to be self-protecting in optical or electrical devices in which the layers are formed -11 - (8) (8) 1334194 Optical or Electrical Layers For example, certain barrier layer embodiments in accordance with the present invention may have superior optical transparency characteristics. Moreover, the refractive index of the individual barrier layers is dependent on the deposition material, and thus the multiple barrier layer stacks in accordance with the present invention can form a highly controllable, self-protecting, reflective or anti-reflective coating of the optical device. In addition, the barrier layer according to some embodiments of the present invention may be doped with photoactive impurities to form a photoactive layer that is also a self-protective layer. For example, deposition of bait or mirror rare earth ions can form an optical amplifier or frequency converter. Furthermore, the barrier layer embodiment according to the present invention can be highly advantageous dielectric and thus utilized as a self-protecting electrical layer. For example, certain barrier layers in accordance with embodiments of the present invention can be utilized as a resistive layer. Other embodiments can be utilized as the high dielectric constant layer of the capacitive device. Embodiments of dielectric barrier layers useful for such devices are discussed further below. The oxide film is discussed in the application No. 09/903,050 (the application filed on Dec. 10, 2011) by the name of the "Planar Optics and Method of Making It," by Demaray et al. The RF sputtering method, which is transferred to the same assignor as the present invention, is hereby incorporated by reference in its entirety. And the subject matter that can be utilized in the reactor according to the invention is discussed in the U.S. Application Serial No. 1/1,1,341, filed on March 16, 2002, which is assigned to the same assignee as the present invention. 'The whole case is incorporated into the reference. The method of depositing oxides by pulsed DC, substrate bias, broad-scale physical vapor deposition (PVD) procedures is discussed further in U.S. Application Serial No. PCT/101,863, filed on March 16, 2002. Pulsed, biased procedure ,), the case is transferred to the same assignor as the present invention, and the -12-(9) (9) 1334194 case is incorporated herein by reference in its entirety. 1A and 1B illustrate a reactor apparatus 10 in which a sputtering material is added from a target 1 2 in accordance with an embodiment of the present invention. In certain embodiments, device 10 may be, for example, from an AKT-1600 PVD (400 x 500 mm substrate size) system from Komatsu or from AKT-4300 (600x720) from Komatsu, Inc., Santa Clara, California. The mm substrate size is adapted to the system. For example, an AKT-1600 reactor has three or four deposition chambers connected by a vacuum transfer chamber. These AKT PVD reactors can be modified to supply pulsed DC power to the target and supply RF power to the substrate during deposition of a material. Apparatus 10 includes an object 12 that is electrically coupled to a pulsed DC power supply unit via filter 15. In some embodiments, the target 12 is parallel to the target 12 and is positioned opposite the target substrate 16 to provide a wide area sputtering source to be deposited on the substrate 16. When power is applied to the target 12, the target 12 acts as a cathode and is equivalently referred to as a cathode. Applying power to the target 12 produces a plasma 53 below the target 12. The magnet 20 is scanned across the top of the target 12. The substrate 16 is capacitively coupled to an electrode 17 through an insulator 54. The electrode 17 can be coupled to an RF power supply 18, such as that represented by device 10, for pulsed DC magneto-sputtering, the polarity of the supply supplied by the power supply 14 to the target 12 is oscillating between a negative and a positive potential. During the positive potential, the insulating layer on the surface of the target 12 is discharged and arcing is prevented. For the free deposition of the arc, pulsed DC power supply! The pulse frequency of 4 can exceed the critical frequency of at least part of the material that can be used according to the standard, cathode current -13- (10) (10) 1334194 flow and reverse time. A high-quality oxide film can be produced by using a reactive pulsed DC magnetron sputtering method in the device 1 . The pulsed DC power supply 14 may be any pulsed DC power supply, for example, Advanced Energy Inc.'s AE peak is 10K. With the supply of this embodiment, a pulsed DC power supply of up to 10 kW can be supplied at a frequency between 〇 and 3 50 KHz. The reverse voltage is 10% of the negative voltage. The use of other power supplies will result in different power characteristics, frequency characteristics, and percentage of reverse voltage. The inverse time for this power supply 14 embodiment can be adjusted between 〇 and 5 // s. The filter 15 prevents the bias supply from the power supply 18 from being coupled to the pulsed DC power supply 14. In some embodiments, power supply 18 is a 2 MHz RF power supply and, for example, may be a Nora 25 power supply manufactured by ENI, Colorado Spring Co. Therefore, the filter 15 is a band exclusion filter of 2 Μ Η z. In some embodiments, the filter bandwidth can be as large as 100 KHz. Therefore, the filter 15 prevents the 2 MHz power from being biased to the substrate 16 from damaging the power supply 18. However, RF and pulsed DC deposited films are not completely dense and have a mostly cylindrical structure. These columnar structures are determined by the dispersion loss caused by the structure and the pinholes for the formation of optical applications and barrier layers. The deposited film can be thermally compressed by a viable ion impact by applying an RF bias on the wafer 16 during deposition and can substantially eliminate the columnar structure. In the production of barrier layers according to some embodiments of the invention, for example using a system based on AKT-1 600, a film is deposited on a substrate having a size of about 400 X 5 〇〇-14-(11) (11) 1334194 mm. Above, the active size of the target 12 is about 6 7 5.7 χ 5 8 2.4 8 χ 4 mm. The temperature of the substrate 16 can be maintained between about 50 ° C and 500 ° C. The distance between the target 12 and the substrate 16 can be between about 3 and 9 cm. The process gas (e.g., but not limited to the Ar and 02 mixture) can be inserted into the set chamber 10 at a rate of up to about 200 seem, while the pressure in the equipment chamber 10 can be maintained between about 0.7 and 6 millitorr. The magnet 20 provides a magnetic field force between about 400 and 600 Gauss guided in the plane of the target 12 and moves across the target 12 at a rate of less than about 20 - 30 sec / scan. In some embodiments utilizing the AKT 1600 reaction, the magnet 20 can be a multi-magnet with a track size of about 150 mm x 600 mm. Figure 1C shows a dielectric barrier layer 110 implanted on a substrate 120 in accordance with the present invention. Substrate 120 can be any substrate, such as plastic, glass, twins or other materials. Substrate 120 may further comprise a device or structure that may be protected by barrier layer 110, such as an organic light emitting diode (OLED) structure, a semiconductor junction, or other barrier layer structure. The barrier layer 110 can be a metal oxide wherein the metal can be Al, Si, Ti, In, Sn, or other metal oxides, nitrides, halides, or other dielectrics. For example, by specifying the deposition parameters from the example, 7 kW / 200 W / 200 KHz / 60 Ar / 90 〇 2 / 950 s (7 kW pulsed DC standard power, 200 W substrate, bias power, 200 KHz pulsed The pulse frequency of the DC standard power, 60 seem Ar gas flow, 90 seem 〇2 gas flow, 950 seconds total deposition time), the Ti〇2 deposition of the object can form a high refractive index barrier layer. From one specified at 3 kW/200 W/200 KHz/85 Ar/90 02/ 1 〇 25 (3 kW pulsed DC standard power, 200 W substrate, bias power, 200 Hz for pulse -15- ( 12) (12) 1334194 The pulse frequency of the power of the DC standard, 85 SCCm Ar flow, 90 ug 2 of the total deposition time of 1 025 seconds) 92% A1 and 8% Si in the program (ie 92 - 8 or 92 / The object of 8 layers) may form another example of a low refractive index barrier layer. As discussed further below, the barrier layer according to the present invention can be deposited using a wide range of program parameters. The barrier layer according to the present invention can be formed from any oxide material. For example, 'MgO, Ta2 05, TiO 2 , Ti 407 , Al 2 〇 3 , SiO 2 , concentrated SiO 2 and Y 2 〇 3 . It is also possible to form an barrier layer according to the present invention by using oxygen compounds of Nb, Ba, Sr and Hf. Moreover, the rare earth ion doped barrier layer can be used to produce a photoactive layer. The parameters set herein for depositing a particular layer (e.g., the Ti02 layer and the 92-8 layer discussed above) are merely examples and are not intended to be limiting. Moreover, the individual program parameters are only approximate, and the barrier layers in accordance with the present invention may be formed using a wide range of individual parameters (e.g., power level, frequency, airflow 'and deposition time) in the vicinity of those recited. The dielectric barrier layer 110 is characterized by a high density, uniform, defect-free, amorphous dielectric layer that also has high optical transparency. The film can be deposited in a pulsed DC, substrate biased PVD process from a metal target in an Ar/〇2 gas stream. As discussed further below, certain embodiments of the dielectric barrier layer 11 also have superior surface roughness characteristics. Always, in accordance with the present invention, as discussed further below and with the examples and materials provided, in a MOCON test facility (MOCON refers to Minnesota, Minnesota, Ο C ON Test Services) The dielectric film of the embodiment has a water vapor transmission rate of less than 1 X 1 0 - 2 gm / m7 - / day and often less than 5 x 10 -3 gm / m 2 / day. -16- (13) (13) 1334194 A dielectric barrier stack can be formed by further depositing a barrier layer on the barrier layer MO. Any number of stacked barrier layers can be utilized so that the resulting structure acts not only as a barrier layer but also in other applications in the forming apparatus. Moreover, soft metal gas treatment can be applied before depositing the barrier layer in accordance with an embodiment of the present invention. As explained further below, soft metal breath treatment refers to the exposure of the substrate to soft metal vapor. Figure 2A shows an embodiment of a dielectric stack 120 that can be utilized as a barrier structure and thereby provide optical functionality. Dielectric stack 120 includes multiple barrier layers 101, 102, 103, 104, and 105, in accordance with an embodiment of the present invention. The barrier layers 101, 102, 103, 104, and 105 can be deposited using a deposition process as described in more detail in U.S. Application Serial No. 10/101,863. The depositions described above are generally directed to device 10. Generally, dielectric stack 120 can comprise any number of layers of film. In particular, dielectric stack 120 can include only a single barrier layer. The barrier stack 120 of a special example shown in Fig. 2A comprises five layers of films 101, 102, 103, 1〇4 and 105. In the example of dielectric stack 120 shown in FIG. 2A, dielectric layers 1 〇1, 1〇3, and 010 are formed of a high refractive index material such as titanium dioxide (Ti02). The layers of films 102 and 104 may be formed of a low refractive index material such as alumina (Si 02 ); possibly doped with alumina (e.g., a cation ratio of 92% alumina and 8% alumina, 92-8 films). As shown in Fig. 2A, the barrier stack 120 may be deposited directly on the substrate 100 or deposited on the layer film 107 as shown in Fig. 2D. The film 107 is a layer of film that is protected from atmospheric pollution or physical damage and may comprise an optical or electrical device or another film. The substrate 100 is a substrate on which the layer film 107 or the dielectric stack 120 is formed. In some embodiments, the substrate 1 can also provide a barrier to atmospheric contamination of the layer -17-(14)(14)1334194 film 107. In some devices, a further structure can be deposited over the barrier layer structure 120. Table 1 illustrates deposition parameters for certain example dielectric stack structures 120 in accordance with the present invention. As explained above, the AKT 4 3 00 PVD system using the bias pulsed DC response scanning magneto PVD program as further described in U.S. Patent Application Serial No. 10/101,863, is incorporated herein by reference. Stack 120, which has been previously incorporated by reference. Moreover, the apparatus 10 as described above with respect to Figures 1A and 1B can be assembled in a AKT 43 00 PVD system in a carrier chamber and a degassing chamber, and can be equipped with a plasma shield and a shield heater. As shown in Fig. 2A, the dielectric stack 120 of these examples comprises 5 layers of a 3 Ti02 interlaced layer and 2 layers of 92-8 SiO 2 /Al 203 (92% / 8 % cation concentration). The stacked dielectric stacks 120 shown in Table 1 are deposited directly on the substrate 100. The stacked substrates 100 are first loaded into the carrier of the apparatus 10. The carrier of apparatus 10 is pumped to a base pressure of less than about 5 Torr. The glass or plastic substrate 100 sheet is then transferred to a heating chamber of the apparatus 10 and maintained at a temperature of about 300 ° C for about 2 minutes for any moisture that has accumulated in the degassing substrate 100. For example, for a polymer-based substrate, depending on the plastic substrate used, the preheat step can be eliminated or the preheat step can be performed at a warmer temperature. In some cases, the substrate of the device 10 and the visor heater can be disabled. The base column of Table 1 indicates the composition of the substrate 100 used in the deposition process. In each of the stacks 1 to 6 described in Table 1, the dielectric barrier layer in the dielectric stack 12 is composed of Ding 02/92-8/Ding丨02/92-8/Ding丨02', such as -18. - (15) (15) 1334194 The film films 101, 103 and 105 shown in Fig. 2A are TiO 2 layers and the film films 102 and 104 as shown in Fig. 2A are SiO 2 / Al 203 (92% / 8% cation) concentration). The Ti02 layer is deposited by the parameters shown in the Ti02 deposition program column. Program detail format: target power / bias power / pulse frequency / Ar flow / 〇 2 flow / deposition time. The target power refers to the power supplied to the target 12 of the device 1 . The bias power refers to the power supplied from the bias generator 18 to the electrode 17, wherein the substrate 100 is mounted on the electrode 17 in place of the substrate 16 shown in Fig. 1A and is capacitively coupled to the electrode 17. The flow rates of Ar and 02 across the substrate 100 are then illustrated in units of standard cubic centimeters/min. Finally, assume that there is deposition time. For example, the Ti02 layer of stack number 1 illustrated in Table 1 is a nominal RF power of about 7 kW, a bias power of about 200 W, a pulse frequency of about 200 KHz, an Ar flow rate of about 60 seem, about 90 The 02 flow rate of seem, and the deposition time of about 950 seconds. The thickness measured for a typical Ti02 layer deposited according to the procedure described in the Ti02 deposition program column is shown in Table 1 for the measured thickness Ti02 column. Similarly, as shown in Table 1, the deposition parameters of the alumina/alumina layer depositing each dielectric stack 120 are indicated in the alumina/alumina (92/8) deposition program column as indicated in Table 1. The ion concentration of each of the alumina/alumina layers of the stacked numbers 1 to 6 is about 92% alumina and about 80% alumina. For example, in the stack number 1 described in Table 1, the electricity is about 3 kW. The soil/alumina layer is deposited to the target 12, the bias voltage of the counter electrode 17 is about 200 W, the pulsed DC power supply 14 has a frequency of about 200 KHz, the Ar flow rate is about 85 seem, the 02 flow rate is about 90 seem, and the deposition The time is about 1050 seconds. Usually, in this publication, the dielectric barrier layer called 92/8 film refers to -19 - (16) (16) 1334194 which is deposited by continuous deposition of a substance from 92% alumina / 8%. A barrier layer formed by the electrical barrier layer. A dielectric barrier layer, referred to as a 92 - 8 film, refers to a barrier layer formed in the step from 92% alumina / 8% alumina. For example, a -92-8 film can be formed on a plastic substrate, but a 92/8 film can be formed on a Si wafer or a glass substrate that is less sensitive to heat. In each of the stacks illustrated in Table 1, pulses are applied. Equation 0: The reverse time of the power supply 14 is fixed at about 2_3 microseconds. The distance between the object 12 and the substrate 100 is ~60 μΐη, and the distance between the magnet 20 and the object is 〜4-5 mm. The substrate 100 has a temperature of about 200 ° C and the shielding heater of the device is set to about 250 ° C. The home magnet 20 is set to have an in-situ offset of approximately 20 mm and a scan length of 980 mm. The total pressure in the plasma chamber 53 during deposition of the Ti02 layer is about 5-6 mT. The total pressure in the plasma 53 during the bauxite/alumina layer deposition is about 8 - 9 m T . In accordance with certain barrier stacks of the present invention, 'reactively deposited thin film layers are deposited, or by prior art in the pulsed 'bias deposition process, U.S. Patent Application Serial No. 1/1, 1,086 The barrier layer formed by the illustrated procedure. The pulsed, bias deposition process combines an optical quality vacuum film with a uniquely dense morphology and no columnar defects. The columnar defect has always been a non-biased vacuum film with a uniformity of parts per million and a light refraction and double Control of refraction. Very high resolution ellipticity measurements also exhibit a refractive index of the film that can be attenuated by the attenuation coefficient, which is zero across the visible and near IR regions and is uniform in size per million components, providing substantial Perfect transparency. As a result of the high level of thermal compression and low defect concentration -20- (17) (17) 1334194, it is shown that these very transparent films 40 are more vapor-permeable than the vapor barrier, and also provide superior diffusion barrier protection for the supply of water. Finally, at high voltage stresses, the same film exhibits a higher dielectric breakdown and the result is a low level defect. Figure 8 shows the exposure to high humidity and the high temperature environment for an extended period of time. In the example shown in Figure 8, about 200 mm of TiO 2 was deposited on one of the reactive aluminum layers deposited on a 4 〃矽 wafer. The crystals are maintained in a chamber of about 85 ° and a relative humidity of about 100% for about 500 hours. As can be seen in Fig. 8, no defects were observed on the crystal circle indicating the high-order protection under the reaction aluminum layer. Fig. 9 shows a sample of the alumina/alumina layer according to the present invention after exposure to high humidity for a prolonged period of time in a high temperature environment. In the sample shown in Figure 9, about 10 nm of aluminum was deposited on the -4" germanium wafer. About 100 nm of bauxite/alumina is deposited on the aluminum. Then, the crystals were placed in a pressure oven at about 250 ° C and a saturated vapor of about 3.5 atm for about 160 hours. Again, no defects are visible on the wafer indicating high-order protection under the reactive aluminum layer. In another example, the thin reaction A1 on a Si wafer was tested under the same conditions without the barrier layer and became transparent within a few minutes of testing. The metal oxide film from tens of nanometers to more than 15 micrometers selected by the previously published procedure, as a film, is not only impervious to water vapor and chemical permeation, but also provides protection to a bottom layer or device, preventing gas action or moisture. Entry, as an optical, electrical and/or friction layer or device, imposes substantial manufacturing and environmental limitations on the individual layers of film and device. This subject program has been demonstrated on wide-area substrates of glass and metal and on low-temperature materials such as plastics. - 21 (18) (18) 1334194 Table 4 shows the test by testing an Al2〇3 barrier layer and testing on a - Si wafer. The Vickers hardness (MPa) obtained from a film of Er-doped alumina/citrate (4% by weight alumina/60% alumina). At a 3 kW/100 W/200 KHz/30

Ar/44 02/t之程序中以2.2 "s逆向時間沈積A1203障壁 層。以具 1.2 //s 逆向時間之 6 kW/100 W/120 KHz/60The Ar/44 02/t procedure deposits the A1203 barrier layer at 2.2 "s reverse time. 6 kW/100 W/120 KHz/60 with a reversed time of 1.2 //s

Ar/28 02/t程序加以沈積摻Er、Yb之Ah〇3。如在表4中 所能見到的,與習知所沈積之鋁膜比較’通常以維氏數表 示之硬度爲大。 # 回到第2A圖,一介電堆疊120是沈積在基底1〇〇上。 各障壁層101、102、103、104和105可爲光學層(即光學 上可用之層膜)。基底100可爲任何玻璃、塑膠、金屬或 半導體基底。介電堆疊120之層膜101、102、103、104和 105厚度可變化加以形成抗反射塗膜或反射塗膜。第2B圖 ^ 表示沈積在介電堆疊120上之一透明導電層106。透明導電 層106可例如,爲一氧化錫銦層。第2C圖說明一在基底100 頂表面和底表面上沈積有介電堆疊120之基底100»第2C圖 鲁 中所示特別含在基底1〇〇頂表面上沈積有層膜101、102' 103、104和105之一介電堆疊120 實施例,及在基底100 底表面上沈積有層膜108、109、110、111和112之介電堆 ‘ 疊另一實施例。再來,層膜108、100和112可爲根據本發 . 明之高折射率層(例如,T i 0 2層)而層膜1 0 9和1 1 1可爲 如矽土 /礬土層之低折射率層。在表1中可找到介電堆疊 120沈積參數之實例。作爲根據提供良好傳輸特性之本發 明之另一實例之障壁層堆疊爲形成厚度分別12.43 nm、 -22 - (19) (19)1334194 3 6.3 5 nm' 116.87 nm 和 90.87 nm 之四層堆疊 Ti02/Si02/ Ti02/Si02,沈積在玻璃上者在波長範圍約450 nm和650 rim之間提供高度透明性。 在第2D圖中表示保護層膜107之介電堆疊120。層膜 1 07爲應由一透明障壁層所保護之任何材料層。例如,層 膜107可爲如鋁、鈣或鋇之反應金屬,層膜107可爲如導電 透明氧化物之易碎層,或層膜107可含一主動光學或電氣 裝置。如以上討論,介電堆疊1 2 0之個別層膜可提供保護 ,防止大氣污染入侵並保護防止層膜107之物理損害。在 某些實施例中,佈置介電堆疊120之介電層(例如,第2D 圖中所示之層膜101、102、103、104和105)厚度,形成 特定波長之透明或反射膜。一嫻熟技術者可決定介電堆疊 120中個別薄膜厚度,形成介電堆疊120之反射或抗反射膜 。在層膜107爲如鋁、鋇、或鈣金屬之某些實施例中,第 2D圖中所示裝置形成一高度穩定鏡片。第2E圖表示一保 護層膜107之介電堆疊120,其中,層膜107已被沈積在基 底100上。而且,透明導電層106已進一步被沈積在介電堆 疊120上。第2F圖表示一第二障壁堆疊120已被沈積在基底 100底表面上之結構。 第10圖表示根據本發明一實例介電堆疊之橫切面SEM 圖。再來,表示Ti02層厚度550 nm而92—8矽土 /礬土 厚度970 nm之五層Ti02 /92— 8堆疊。第10圖中所示實 例爲一如用以形成微腔LED之介電鏡片堆疊。 雖然第2A至2F圖表示一五層障壁堆疊120之架構和利 -23- (20) (20)1334194 用,通常,根據本發明之障壁堆疊120可由任何數量之障 壁層所形成。而且,第2A至2F圖中所說明之障壁層101、 102、103、104和105實例說明根據本發明之光學層實例, 其中,那些光學層之作用亦爲當中他們保護本身之自我保 護障壁層,以及上面或下面有沈積他們之特定表面或裝置 。此外,爲提供更多光主動性之功能,一或更多障壁層 101、 102、103、104和105可包含如稀土離子之光主動性 摻雜劑離子。而且,根據本發明,一或更多障壁層101、 102、 103、104和105可爲根據本發明障壁層以外之層膜。 利用在美國申請案號10/101,863中已說明之脈衝式、偏壓 沈積程序可沈積有關第2A至2F圖所說明之各障壁層,形 成具非常低缺陷濃度材料之高熱壓縮層。 第3圖表示利用根據本發明障壁層介電堆疊之另一結 構321。如第3圖中所示,結構321包含一沈積在基底316上 之介電堆疊3 1 5。基底3 1 6可由,例如,玻璃或塑膠材料所 形成。如銦錫氧物之透明導電層314是沈積在介電堆疊315 上》層膜3 1 3可例如爲如摻磷氧化物或氯化物材料,摻稀 土之濃矽氧化物之發光裝置,或有機發光聚合物,0 LED (有機發光二極體)或聚合物堆疊之電激層&lt;*可爲鋁且可 被摻雜或鋇之金屬層3 1 2是沈積在接近層膜3 1 3側邊。第二 介電堆疊317可形成在基底316底部。 第3圖中所說明之結構321爲一微腔增強式LED之實例 ,其保護防止可以介電堆疊315和31 7透過基底31 6加以擴 散之水和反應氣體。當層膜312爲一金屬層時,一微腔即 -24- (21) (21)1334194 形成在層膜312和介電堆疊315之間。介電堆疊315可向外 耦合從電激層313所發出之光線》當以電氣方式對層膜313 施予偏壓,作爲施加在作用爲陽極之透明導電層3 1 4和作 用爲陰極導電層312間之電壓結果時,層膜313即發光。可 將介電堆疊315和介電堆疊317層佈置成包含層膜317和金 屬層312間層膜313所發出之光線,形成一光標準具佈置, 沿基底3 1 6加以導引光線。此外,可佈置介電層3 1 7加以傳 輸層膜313所產生之光線,因此,以實質上正常發出至基 底3 1 6之光線形成監視器佈置。 第11圖說明從根據本發明之介電堆疊實例所收集之傳 輸資料。在收取第11圖中資料結果所使用之度量衡設備爲 Perkin Elmer Lambda — 6之光譜儀。如上述,測量四個樣 品且各爲5層堆疊之Ti02 /92-8。兩樣品具相同厚度層 (55 nm Τί〇2和1〇〇 nm 92— 8)。如第11圖中之說明, 兩不同運作幾乎具有展現沈積程序反覆性之相同傳輸光譜 。第三實例有佈置不同厚度,俾能使傳輸光線移向藍色。 在維持第三實例於8 5 / 8 5 ( 8 5 °C 8 5 °C濕度)測試條件達 1 2 0小時後’產生第四實例。可觀察到濕度和熱量對鏡像 堆疊之傳輸特性不具明顯衝擊,再次展現作爲保護層以及 光學層(即無可測量之濕氣移動)之這種介電堆疊功能性 。在以8 5 / 8 5條件’無可測量濕氣移動下測試5 〇 〇小時後 得到類似結果。 第ό圖表示有如第3圖所述一微腔增強式LED結321之 另一結構633實例,其被那些如第2A至2F圖中所示之結構 -25- (22) (22)1334194 622所覆蓋及保護。如第6圖中所示,在結構321中,已將 層膜314,313及312圖案化。可個別形成沈積在一基底619 相對邊上,具介電堆疊61 8和620之結構622。如以第2A至 2F圖介電堆疊120之說明形成介電堆疊618和620。爲了密 封和保護結構3 2 1,然後將結構6 2 2在結構3 2 1上形成環氧 基樹脂。例如,環氧基樹脂層621可爲一 EVA環氧基樹脂 〇 第7圖表示有如第3圖所示一微腔增強式LED結構321 實例之另一結構700,其被那些如第2A至2F圖中所示之結 構623所覆蓋及保護。覆蓋結構623包含基底619,在基底 619上沈積有介電堆疊620,對裝置321形成環氧基樹脂。 第4圖說明根據作爲電氣層用(即,具如提供阻抗電 氣功能或作爲電容結構中介電質用之層膜)之本發明障壁 層之另一實例。第4圖中所示結構說明根據本發明一底部 閘極電晶體結構4 2 2之一實例。電晶體結構4 2 2是形成在可 爲塑膠或玻璃材料之基底416上。在第4圖所說明之實施例 中’根據本發明之介電堆疊415是沈積在基底416之頂表面 上而根據本發明之一第二介電堆疊417是沈積在基底116之 底表面上。如上述,介電堆疊417和415各能包含高和低折 射率之介電材料層。如上述,例如爲Ti〇2和矽土 /礬土 層之高和低折射率介電材料各具低電壓平直能帶及低表面 缺fe,且因此適用爲薄膜電晶體結構。—半導體層423是 沈積在障壁堆疊415上並形成圖案。半導體層423可爲—如 砍、鍺之半導體’或可爲化鋅或聚合物材料。層膜424和 -26- (23) (23)1334194 425形成源極和汲極層,與半導體層423接觸。層膜426可 由具一筒介電常數之材料所形成,如形成介電堆疊415和 4 1 7之任何介電層,例如,由此處所述程序所沈積之高介 電強度Τι〇2材料。層膜427爲一內層膜而層膜428爲閘極 金屬。 第5圖表示頂部閘極電晶體裝置5 2 9之一實例。電晶體 裝置592形成在一基底516上,該基底受保護,防止大氣污 染(例如’水或氣體)及介電堆疊515和517之物理磨損和 磨耗。介電堆疊515和517如以上討論之介電堆疊120,由 _或更多層光學材料所形成。閘極層530是沈積在介電堆 疊515上。層膜530可爲如鋁或鉻之金屬層。閘極氧化層 531是沈積在層膜530之上。一半導體層532是沈積在層膜 530上之閘極氧化層531上。半導體層532可類似於第4圖之 層膜423。層膜5 3 3和5 3 4分別爲源極和汲極層,且類似於 第4圖中裝置422之層膜424和42 8且例如,可從一導電金屬 ,導電氧化物,或導電聚合物加以形成。 根據本發明具障壁層之介電堆疊可具原子平順薄膜表 面,與薄膜厚度無關。此外,根據本發明具障壁層之介電 堆疊具不可測量之異於零之薄膜透明度。這些介電堆疊代 表偏壓障壁膜缺陷位準及障壁保護之新能力。甚少需要介 電障壁保護,防止水及氧氣之產品,如0 LED顯示器,能 容許每平方公分有一缺陷。障壁層如2.5奈米且厚度如15 微米之某些實施例已被沈積展現出約0.2 nm之平均表面粗 糙度,並表示無損傷之程序》這種層膜對所沈積之所有薄 -27- (24) 1334194 膜厚度展現光學品表面,代表以產生根據本發 施例之這些程序可達成之高非結晶質薄膜均勻 根據本發明之介電障壁層已表示保護超薄 膜在純蒸氣之3.5 ATM壓力下從125至250°C免 化達數百小時,在100 nm矽晶圓上看不見缺陷 此處之說明,氧化鈦和礬土 /矽酸鹽障壁層淸 反應膜之長期保護,其中之反應膜爲游離到一 之針孔。面積大槪爲75平方公分之一100 nm晶 介電障壁中一針孔會轉移入密度爲每平方公分 針孔。如第8和9圖中所示,有兩晶圓,一具有 具有二氧化鈦免於故障之障壁介電塗膜。兩晶 爲1 5 0平方公分。如這兩晶圓上有1缺陷,則缺 每平方公分0.00666。然而,因晶圓無缺陷, 結果能無法測量實際缺陷密度。然後,如所表 陷密度小於每平方公分0.0 1 3 3且大半小於夺 0.007 〇 在本發明某些實施例中,在沈積如以上討 或更多障壁層前可實施如銦或銦-錫軟性金屬 。多半可利用軟性金屬氣息處理加以釋放介電 底間之應力。而且,軟性金屬氣息處理可進而 針孔之生長或無缺陷之障壁膜發生作用,形成 第12A和12B圖表示根據本發明,在一基 積有及無軟性金屬氣息處理之單障壁層結構 12A圖中,如上述之一障壁層1 203是直接沈積 明障壁層實 度。 反應鋁金屬 於蒸氣熱氧 。結果,如 楚地可提供 或兩晶圓區 圓上之保護 •約 0.0133 之 砂酸銘且一 圓間總面積 陷密度將爲 只從兩晶圓 示,實際缺 g平方公分 論之那些一 之氣息處理 障壁層和基 爲基底上無 核子。 底1201上沈 1200 。在第 在基底1201 -28- (25) (25)1334194 上。基底1201可爲任何適當基底材料,例如含玻璃、塑膠 、或Si晶圓。基底1201可例如包含一QLED結構或需高度 光總處理量之其它光主動性結構或可利用障壁層作爲電氣 層之一電氣結構。障壁層1203可爲上述之一或更多障壁層 。如第12A圖中之說明’障壁層1 203在沈積和使用期間可 發展出有關應力之表面粗糙度。 第1 2 B圖說明根據本發明某些實施例在軟性金屬氣息 處理後之沈積障壁層1203結果。如第12B圖中所示,應力 明顯減輕,形成更佳表面平順度之障壁層。 根據本發明某些實施例之軟性金屬氣息處理包含使基 底曝光至軟性金屬蒸氣達短期時間,接著作熱處理。例如 ,一銦-錫氣息處理包含以脈衝式DC程序及後續熱處理 將基底從一銦-錫標的物曝光至銦-錫。直接曝光至氧化 銦、錫蒸氣不會產生以下說明之特別有利結果。未以在本 發表中可能提出之一特殊理論加以鍵鍵結,In/ Sn氣息處 理可減輕所沈積障壁層中之應力,增進表面平順度和 MOCON WVTR效能。 在形成障壁層結構1 200之特例中,在一塑膠基底1201 上實施一軟性金屬氣息處理實施例。從一銦錫(90 % / 1 0 % )標的物可實施例如,銦/錫之氣息處理。實施銦/錫 氣息處理之程序可指定爲7 5 0 W/〇 W/ 200 KHz/20 Ar /〇 〇2/1〇秒。另言之,以90%銦/10%錫標的,使用 Pinnacle Plus PDC電源供應器之AKT 1 600 PVD系統之在 脈衝式PVD系統10中以950 W固定電力運作(第1A圖)( -29- (26) (26)1334194 脈衝頻率200 KHz,逆向時間2.2// sec)達10秒之20 seem Ar流加以運作脈衝式DC,偏壓,寬標的物之PVD程序》 然後,繼續氣息處理並將基底1201轉移至AKT 4 3 00工具 之一承載器內且泵激這工具至一小於約托之基本 壓力。然後在13(TC熱處理達約25分之lxl〇_8托下將基底 轉移至130 °C之熱室。 然後將基底1 2 0 1 (以上述之銦/錫氣息處理)移至沈 積障壁層1203處之第二室。如以上表示,從在室溫下實施 沈積之一 92 — 8鋁矽酸鹽(92% Si/ 8% A1)標的可形 成障壁層1 2 03。 沈積92— 8障壁層1 20 3實施例之程序參數可爲3 kW /200 W/200 KHz/85 Ar/90 02/x。因此,以矽約 3 kW PDV電力,約200 KHz脈衝頻率,及約2.2微秒之逆向 時間實施這程序。偏壓電力可保持在約200 W。利用約85 seem Ar約90 seem 02之氣體流。在沈積這特別實施例中 ,沈積程序爲電力循環式,其中,ON循環約180秒長而 OFF循環約6 00秒長,達9次循環。所形成障壁層1 203厚度 約1600A。在一特別試驗中,利用上述程序加以沈積一障 壁結構1200,其基底1201爲大小6吋x6吋之三塑膠片(杜 邦(DUPONT)帝人(Feijih) PEN 膜 200/zm 厚,稱爲 PEN基底)。通常,在軟性金屬氣息處理後可沈積任何障 壁層(例如’以上討論之9 2 — 8或T i 0 2層)。如以前之討 論,此處提出根據本發明障壁層實施例之程序實例,但寬 廣範圍之程序參數可造成根據本發明之障壁層。 -30- (27) (27)1334194 然後,使用各種技術可測試基底1 2 Ο 1上之障壁層結構 1 2 00 ’以下說明某些這種技術。尤其是,層膜1 203中之應 力可使用Flexus應力測量技術加以測量。表面粗糙度可利 用原子力顯微鏡(AFM )加以測量,而水蒸氣傳輸率( WVTR)可以一高壓,高濕度壓力爐裝置加以測量。 第13圖說明可被用來測障壁層結構1 200之Flexus掃瞄 組件1300。在Flexus掃瞄組件1300中,以一鏡片1312將一 雷射光束1310導向障壁層1203上之表面上《藉檢測器1314 離瞄,關 束掃16有 光可13徑 量角部半 測角學率 14偏光曲 13及之之 器011401 ί 2 3 2 1Λ Ti 1* 檢底器底 。 基測基 束跨檢與 光橫及 0 射。’角 反向12向 之偏13偏 03之片, 12束鏡示 層光,所 壁射10係 障反13關 自12射之 來13雷18 測片含13 檢鏡包如。 障壁1 203中之薄膜應力可利用當掃瞄光學部13 16時以 Flexus設備1 3 00所測量之基底變形變化加以計算。如關係 1 3 1 8中所示,在掃瞄期間可監視反射光束角並以掃瞄中位 置之函數,從角度之導函數可計算基底1201曲度半徑R之 倒數》 在某些情況中,Flexus設備1 3 00可利用一雙波長技術 增加可以工具加以測量之薄膜型式之範圍。然後,因不同 薄膜型式將反映不同光線波長’故名Flexus設備1 3 00可具 多於一可掃瞄晶圓之雷射1 3 1 0。而且’所反射之雷射強度 表示良好之測量品質。通常’檢測器1314之低光線強度表 示不良測量條件。 -31 - (28) (28)1334194 在Flexus設備1300中,可使用史多尼(STONE Y)方 程式決定應力。尤其是,藉測量沈積層膜1 2 03前之曲度_ 徑及沈積層膜1203後之曲度半徑可決定層膜1203中之應$ 。尤其是,根據史多尼方程式,可得應力爲 其中,ES/ (1-VS)爲基底1201之雙軸模數, 基底1201之應力,ts爲基底厚度,tf爲薄膜厚度,RS爲曲 度之預沈積半徑,而Rf爲曲度之後沈積半徑。爲得此測@ 結果,應根據相同工具實施兩曲度半徑之測量,使所測| 半徑中之系統誤差降至最小。此外,因晶圓形狀爲唯〜且 因應力是依據基底變形之變化加以計算,故各晶圓應具〜· 基準線半徑測量。正半徑表示張應力而負半徑表示壓應为 。如第I4圖中所示,藉由從連接Flexus設備1300掃瞄端點 之弦線測量最大偏向點可計算晶圓弓。 表2將針對數實施例之障壁層1 2 0 3所測量之應力製成 列表,其中,障壁層1203爲如以上討論之92 — 8膜,且不 具由軟金屬氣息處理所形成之成核層[202。如表2中所示 ,樣品1爲沈積在一 Si晶圓基底上,實際厚度爲1 76 0 A之 1.5KA 92 - 8 薄膜。在約室溫下所形成之應力爲- 446.2 MPa。樣品2爲在A1氣息沈積之上形成應力約- 460.2 MPa,實際厚度1670A之1.5 KA 92 — 8薄膜。在樣 品3中,隨銦氣息沈積並形成—3 3 0.2 MPa應力,幾乎爲低 於所敘述之其它任何沈積之一之1〇〇 MPa之後沈積一厚度 爲 1 860 A 之 1.5 KA 92- 8薄膜。 -32- (29) (29)1334194 第15圖表示在一溫度循環之上,如表1中所示,沈積 數個樣品1 ’樣品2,樣品3之編譯資料。溫度循環包含從 室溫加熱至1 60 °C並冷卻回室溫。在矽晶圓基底中,假設 晶圓半徑不隨溫度變化。在所示溫度取用各情況中之應力 資料。如從第1 5圖可看到的,沈積在銦-氣息處理之上之 92- 8薄膜比沈積鋁一氣息處理之上之92- 8薄膜或比沈積 在基底之上’不具軟性金屬氣息處理之92_8薄膜展現甚 小之應力。 可利用原子力顯微鏡(AFM )測量一薄膜之表面粗糙 度。在AFM中,在一薄膜表面上以迷你探針實際上加以掃 瞄,使得探針接觸,並沿著薄膜表面。探針具小尖端且因 此能正確監視特性大小爲數奈米之表面粗糙度。 第16A圖表示沈積根據本發明一障壁層前,一PEN基 底(杜邦帝人PEN薄膜200// m厚度)之表面粗糙度。如 第16A圖中所示,PEN基底一向具平均2.2 nm之表面粗糙 度,3.6 nm之均方根平均RMS,及約41.0 nm典型最大粗糙 度。如第16B圖中所示,在一PEN基底上之銦-錫氣息處 理後沈積1 .5 K A之92 — 8造成平均表面粗糙度爲1 ·〇 nm, RMS粗糙度爲1.7 nm且最大粗糙度爲23.6 nm。如第16C圖 中所示,在1.5 KA 92- 8介電障壁層膜沈積前實施銦錫 氧化物(ITO )氣息處理,造成平均粗糙度2.1 nm,RMS 粗糙度3.4 nm且最大粗糙度55.4 nm。以125/zm之PEN基 底而非200以m之PEN基底實施第16C圖中所示之沈積。因 此,直接之I TO處理不實施以及處理銦-錫氣息》如第 (30) (30)1334194 16D圖中所示,直接在125# m之PEN基底上沈積1.5 KA 之一障壁層造成障壁層之平均表面粗糙度約5.2 nm,RMS 粗糙度8.5 nm且最大粗糙度76.0 nm。因此,對於表面粗 糙度,雖然ITO氣息處理比一點也無軟性金屬處理佳,但 銦-錫氣息處理造成平均表面粗糙度約l.O nm之最佳表面 粗糙度。 第1 7圖說明根據本發明實施例可被用來表現障壁層膜 特徵之水蒸氣傳輸(WVTR )測試設備1 700。以從障壁層 1 203表面(第12圖)隔離基底1201表面(第12圖)之這種 方式將樣品1701裝設在設備1 700內。將沒有水氣之氣體輸 入至璋1702,接觸樣品1701之一表面,並將其導入監視來 自樣品1701之水蒸氣之感測器1 703。經由埠1 705將濕氣體 導至樣品1701之相對邊。可利用一RH探針1 704監視輸入 至埠1 7 0 5之氣體之水容量。然後,感測器1 7 0 3監視透過樣 品1 70 1加以傳輸之水蒸氣。 這種測試是以明尼蘇達州MN 5 5428,明尼阿波利斯 ,北文恩大道(Boone Avenue North) 7500 號之 Mocon 測 試是根據ASTM F1M9標準加以實施。向來’ Mocon用來 作WVTR測試之儀器可檢測傳輸之範圍爲0.00006 gm/ 100 in2/ 日至 4 gm / 100 in2/ 日。例如,Mocon 3/31 儀器之 較低檢測極限約0.0003 gm/ 100 in2 /日》 形成一Α1氣息處理,接著在一 2〇〇;zm PEN基底上沈 積-1_5 KA 92 — 8障壁層之障壁層沈積造成Mocon測試 WVTR爲0.0031 gm/ 100 in2 /日。形成一銦—氣息處理, -34- (31) (31)1334194 後隨一200// m PEN基底上1_5 KA 92— 8之障壁層沈積 形成一在Mocon 3 / 31儀器中不可測量之WVTR (即,傳 輸率小於 0.003 gm/ 100 in2/ 日)。 如以上進一步所討論的,第1 6 A至D圖說明一軟性金 屬氣息處理(尤其是一種銦氣息處理)在決定根據本發曰月 所沈積障壁層之表面粗糙度時能擔任之角色。一障壁層之 表面粗糙度亦能影響一障壁層之WVTR特徵。較平順之障 壁層造成較佳之WVTR效能。照此,第16A圖表示無障壁 之無遮蔽200y m PEN基底。第16B表示根據本發明在一 銦/錫氣息處理後所沈積,具一厚度爲1 5 00 A之92— 8障 壁層之200// m PEN基底。第16C圖說明以ITO氣息處理 後所沈積,具-1500A 92-8障壁層之20〇em PEN基底 。第16D圖爲一具有直接沈積在基底上一1500A 92— 8障 壁層之20〇v m PEN基底。如可看得到者,第16B圖之結 構表示最佳表面平順度特徵。 表3說明數實例之障壁層,其具表面平順度特徵及 Mocon WVTR測試結果。在表3中,1 — 4列中所說明之樣 品爲厚度約2000A ’沈積在-700//m厚聚碳酸鹽(通用 電氣公司(General Electric Corp)所產製之LEXAN)之 —或兩邊上之92 - 8層(如上述)。這資料表示兩邊所塗 覆之障壁層結構(列1和2 )在Mocon WVTR測試中之大小 比一邊結構(列3和4)表現爲佳。 列5至列8說明一 P EN基底上之各種沈積(列5 _ 6說明 在一200/z m PEN基底上之沈積而列7和8說明在—125 -35- (32) (32)1334194 β m PEN基底一之沈積)。銦氣息處理參數指的是如以 上討論之銦/錫氣息處理。如稍早之說明,第1 6 B至1 6 D 圖表示AFM參數。如以前之討論,在列6中表示最佳表面 平順度及最佳WVTR特徵,其在銦氣息處理後接著沈積一 9 2—8薄膜。列9中資料表示銦氣息處理(銦/錫)在較 薄(125// m ) PEN基底上具較高電力。假定上,在125 /zm PEN基底上之熱應力表現比200/zm PEN基底者差 。這種作用之進一步表示與第19A和19B圖一起,表示在 列30至33之資料中。列30和31中之資料包含一200y m PEN基底上之銦/錫氣息處理(以WO W),隨後接著約 1·5 KA 92 - 8薄膜沈積,如第19A圖中所示,其產生一 非常平順之表面(例如,平均約1.1 nm)及在Mocon 3/ 3 1測試設備上無法檢測之Mocon WVTR特徵。具銦/錫氣 息處理,隨後接著在125y m .PEN基底上沈積一 1.5KA 9 2 - 8層膜之列3 2和3 3中資料表示更差之平順度(平均 粗糙度約2.0 nm)且Mocon設備之WVTR測試約爲1.7xl(T 2 gm/m2 /日。列30至33中所說明之92 — 8沈積是在單一 操作中所同時實施的。 表3之列1 2和1 3中資料表示銦氣息處理加上丨25以m PEN基底上之1.5 KA Ti02沈積《列ι〇和η中之資料表 示銦/錫氣息處理加上125&quot; m PEN基底上之1 .5 K A 92 —8沈積。如表3中可看到者,92 — 8層之WVTR特徵不只 是數量級優於Ti〇2層之WVTR特徵。第22A圖中舉出列12 和1 3之代表性平順度而第2 2 B圖中舉出列1 〇和1 1之代表性 -36 - (33) (33)1334194 平順度。如表3中所示,92 - 8層之平均平順度大槪數量級 優於Ti02之平均平順度。 表3之列14和15中資料說明在一125/zm PEN基底上 之銦/錫氣息處理,隨後接著沈積一92 — 8層膜。列14和 1 5中資料可和列3 2和3 3中資料比較,其爲在一 1 2 5 // m PEN基底上之銦/錫氣息處理,隨後接著沈積一 1.5 K A之 92 — 8層膜。LEXAN和PEN基底之間之平順度是可比較的 ,即使如比較第2 1 A和2 1 B圖可見,非結晶質不同,即沈 積在LEX AN基底上之根據本發明之障壁層表示比沈積在 PEN基底上之障壁層有更多粒狀。 表3之列1 6至1 8中資料說明銦/錫氣息處理之不同程 序參數,隨後接著在一 200&quot;111 PEN基底上之1 .5 K A 92 -8沈積。列1 6中資料說明一設定,當中設定電流而非電 力。列1 6中資料取用6 · 1 4安培電·流。在列1 7所說·明之障壁 層中,以1 · 5 K A之操作電力實施銦/錫氣息處理。在列 1 8所說明之障壁層中,以75 0 W之操作電力實施銦/錫氣 息處理。在各情況中,所形成障壁層之Mocon WVTR特徵 低於對Mo con 3/ 3 1儀器之可檢測度。 表3列1 9 - 29中之資料說明不同銦/錫氣息處理及其 對所形成障壁層之表面平順度及對Mocon WVTR特徵之作 用。列1 9 — 22中資料爲當中以隨後作1 3〇°C預熱處理之一 蒸氣銦層加以替代銦/錫氣息處理之所有實例。表面粗糙 度特徵是在第18A中加以說明並表示平均粗糙度約1.1 nm 。然而’如第1 8 A圖中所示,形態很具粒狀,假定有很多 -37- (34) (34)1334194 孔,形成MoconWVTR測試大小爲〇.8gm/m2/日。表3之 列2.3中所示資料說明未利用銦/錫氣息處理且在沈積1 .5 K A 92- 8前使200// m PEN基底預熱之情況,其中,如 第18C圖中所示之1.5 KA 92-8之平均表面粗糙度約5.2 nm 且 Mocon WVTR 約 0_8 gm/m2/ 曰,或與列 19—22 中所 示以銦蒸發氣相資料所示者相同。因此,相同特徵造成是 否應用銦蒸發氣息處理。 表3之列24 - 29說明之資料是在28 0°C而非室溫下作銦 /錫之氣息處理。如第18B圖中之說明,平均表面粗糙度 爲 1.1 nme 然而 Mocon WVTR資料約 3x10 — 2 gm/m2/ 日 。這値甚大於列3 0和3 1類似沈積中所表示之値,該値低於 Mocon 3/31儀之5x10 — 3 gm/m2/日可檢測度極限。 列34和35中資料說明銦/錫沈積在一200// m PEN基 底上後一1 · 5 K A 3 6 - 6 5層之沈積(即,具3 5 % Si和6 5 % A1標的之沈積)。如所說明,Mocon WVTR爲1.4x 10_1 gm/m2 /日,其表示產生根據本發明障壁層之偏壓 程序之可能必要性》 第20圖說明亦可作爲沈積在基底2001上之薄膜閘極氧 化物用之障壁層2002。可將薄膜閘極氧化物2002加以沈積 作爲根據本發明之一障壁層。作爲有利於保護水氣和對氧 氣敏感之電晶體層之這種層膜混合例如,鍺,氧化錫,氧 化鋅,或五苯,而作爲薄氧化電氣層用。基底2 00 1能包含 可被形成在,例如,矽晶圓,塑膠片,玻璃板,或其它材 料任何電氣裝置。障壁層20 02可爲一例如從25至5 00 A之 -38 - (35) (35)1334194 一薄層。 由於缺乏對氧化鈦之免除回應,早知以氧化鈦爲生物 培植之較佳材料。此外,最好是在免疫學上沒有不同之障 壁層之Ti02薄膜可同時保護如電壓或電荷感測器之裝置 或如一波導之光學裝置,而由於其高介電常數或它光學指 數而表現以電容性或光學性加以耦合裝置之角色。 由於如Ti〇2之一非常薄之高K介電質所提供之感測 器近處,以高電容性密度可耦合一電容陣列。實際上,可 使用一微米或次微米陣列加以監視電氣活動,振幅,及如 那些伴隨單神經節之單軸子中電氣訊號傳播之非常低電氣 訊號之方向。相反地,亦可使用它,以電氣方式加以耦合 刺激物至鄰接之胞或組織。以這種電容性障壁層使高解析 度,耦合至光神經,聽覺神經,或大小爲5至50&amp;11^〇-f a r a d s / m 2之神經組織爲唯一可能而無免疫反應。 對那些嫻熟技術者,考量自此所發表之本發明之專利 說明書及實務,本發明之其它實施例將是顯而易見的。本 發表並不限於任何理論或用以說明所舉出之任何結果之操 作假定。專利說明書和實例意在被視爲只是範例,本發明 之真正範圍和精神是以下列請求項目表示。照此,本申請 案只限於以下請求項目。 【圖式簡單說明】 第1A和1B圖說明一用以沈積根據本發明障壁層薄膜 之沈積設備。 -39- (36) (36)1334194 第1 C圖說明一根據本發明實施例沈積在—基底上之障 壁層。 第2A、2B、2C、2D、2E和2F圖說明根據本發明實施 例,具有障壁層介電堆疊裝置之實例》 第3圖表示根據本發明實施例,利用障壁層介電堆疊 之微腔增強式LED結構。 第4圖表示根據本發明實施例,具一障壁層介電堆疊 之底部閘極電晶體裝置》 第5圖表示根據本發明實施例,具一障壁層介電堆積 之頂部閘極電晶體裝置。 第6圖表示進一步由根據本發明實施例障壁層之介電 堆疊所保護’類似於第3圖中所示一微腔增強式LED結構 之實例。 第7圖峩示進一步由根據本發明實施例障壁層之介電 堆積所保護’類似於第3圖中所示一微腔增強式LED結構 之另一實例。 第8圖表示根據本發明實施例之一 τ i 〇 2障壁層實例, 其曝光在高濕度’高溫環境下達延長時間期後,沈積在一 反應銘層上。 第9圖表示根據本發明實施例之一矽土 /礬土障壁層 實例’其曝光在高濕度’高溫環境下達延長時間期後,沈 積在一反應鋁層上。 第10圖表示根據本發明實施例—障壁層介電堆疊實施 例之SEM橫切面圖。 (37) (37)1334194 第1 1圖表示根據本發明實施例之各種障壁層介電堆疊 之傳輸率對波長圖。 第12A和12B圖說明根據本發明實施例,具和不具軟 性金屬氣息處理所沈積之一單障壁層結構》 第1 3圖表示可用以測試障壁層之Flexus應力測量設備 〇 第14圖說明使用第13圖中所說明Flexus應力測量設備 所測量之晶圓方形圖。 β 第1 5圖說明根據本發明實施例在各種沈積障壁層之應 力,其經由沈積後之一單溫度循環作爲溫度之函數。 第16Α、16Β、16C和16D圖表示根據本發明實施例, 對於某些障壁層膜之表面粗糙度之原子力顯微測量。 第1 7圖說明可以用以說明障壁層特徵之水蒸氣傳輸測 試,該障壁層是根據本發明實施例加以沈積。 第18Α至18D圖說明對於根據本發明所沈積障壁層之 表面粗糙度之不同In/Sn氣息處理參數之作用。 · 第19A和19B圖說明於表面粗糙度之基底作用。 第20圖說明根據本發明之一障壁層,其更以一薄膜閘 極氧化物加以操作。 第21A和21B圖說明對於根據本發明所沈積障壁層之 表面粗糙度之基底組成之作用。 第22A和22B圖說明根據本發明有效表面粗糙度之實 施例之障壁層沈積特性。 功 似 類 或 同 相 有 件 元 之 示 指 同 相 有 具 中 圖 些 這 在 -41 - (38) 1334194 【主要元件符號說明】 10 反應器設備 12 標的物 14 脈衝DC式電源供應器 16 基底The Ar/28 02/t procedure was used to deposit Ah 〇 3 doped with Er and Yb. As can be seen in Table 4, the hardness generally expressed in terms of Vickers is larger than that of the conventionally deposited aluminum film. # Return to Figure 2A, a dielectric stack 120 is deposited on the substrate 1〇〇. Each of the barrier layers 101, 102, 103, 104, and 105 may be an optical layer (i.e., an optically usable layer film). Substrate 100 can be any glass, plastic, metal or semiconductor substrate. The thickness of the layers 101, 102, 103, 104 and 105 of the dielectric stack 120 can be varied to form an anti-reflective coating or a reflective coating. FIG. 2B FIG. 2 shows one of the transparent conductive layers 106 deposited on the dielectric stack 120. The transparent conductive layer 106 can be, for example, a layer of indium tin oxide. 2C illustrates a substrate 100 having a dielectric stack 120 deposited on the top and bottom surfaces of the substrate 100. The second embodiment shown in FIG. 2C includes a layer film 101, 102' deposited on the top surface of the substrate 1. One of the dielectric stacks 120, 104 and 105, and another embodiment of a dielectric stack of layer films 108, 109, 110, 111 and 112 deposited on the bottom surface of the substrate 100. Further, the layer films 108, 100, and 112 may be high refractive index layers (e.g., Ti 2 layer) according to the present invention, and the layer films 1 0 9 and 1 1 1 may be, for example, alumina/alumina layers. Low refractive index layer. An example of dielectric stack 120 deposition parameters can be found in Table 1. As a barrier layer stack according to another example of the present invention which provides good transmission characteristics, a four-layer stacked Ti02/ having a thickness of 12.43 nm, -22 - (19) (19) 1334194 3 6.3 5 nm ' 116.87 nm and 90.87 nm, respectively, is formed. Si02/Ti02/SiO2, deposited on glass, provides high transparency in the wavelength range between approximately 450 nm and 650 rim. The dielectric stack 120 of the protective layer film 107 is shown in FIG. 2D. Layer film 107 is any layer of material that should be protected by a transparent barrier layer. For example, layer film 107 can be a reactive metal such as aluminum, calcium or barium, layer film 107 can be a frangible layer such as a conductive transparent oxide, or layer film 107 can comprise an active optical or electrical device. As discussed above, the individual layers of the dielectric stack 120 provide protection against atmospheric contamination and protect against physical damage to the film 107. In some embodiments, the dielectric layers of dielectric stack 120 (e.g., layers 101, 102, 103, 104, and 105 shown in Figure 2D) are disposed to a thickness to form a transparent or reflective film of a particular wavelength. A skilled artisan can determine the individual film thicknesses in the dielectric stack 120 to form a reflective or anti-reflective film of the dielectric stack 120. In some embodiments in which the film 107 is, for example, aluminum, tantalum, or calcium metal, the device shown in Figure 2D forms a highly stable lens. Figure 2E shows a dielectric stack 120 of a protective layer film 107 in which a layer film 107 has been deposited on the substrate 100. Moreover, the transparent conductive layer 106 has been further deposited on the dielectric stack 120. Fig. 2F shows a structure in which a second barrier stack 120 has been deposited on the bottom surface of the substrate 100. Figure 10 is a cross-sectional SEM image of a dielectric stack in accordance with an embodiment of the present invention. Next, a five-layer Ti02/92-8 stack with a thickness of 550 nm and a thickness of 92-8 bauxite/alumina of 970 nm is shown. The example shown in Figure 10 is a stack of dielectric lenses as used to form microcavity LEDs. Although Figures 2A through 2F illustrate the construction of a five-layer barrier stack 120 and the use of the barrier stack 120 in accordance with the present invention, generally, the barrier stack 120 can be formed from any number of barrier layers. Moreover, the examples of the barrier layers 101, 102, 103, 104 and 105 illustrated in Figures 2A to 2F illustrate examples of optical layers in accordance with the present invention, wherein those optical layers also function as self-protecting barrier layers for which they protect themselves. And above or below there are specific surfaces or devices that deposit them. Moreover, to provide more light active functionality, one or more of the barrier layers 101, 102, 103, 104, and 105 can comprise photoactive dopant ions such as rare earth ions. Moreover, in accordance with the present invention, one or more of the barrier layers 101, 102, 103, 104, and 105 can be a film other than the barrier layer in accordance with the present invention. The barrier layers described in Figures 2A through 2F can be deposited using a pulsed, bias deposition procedure as described in U.S. Application Serial No. 10/101,863 to form a high thermal compression layer having a very low defect concentration material. Figure 3 shows another structure 321 utilizing a dielectric stack of barrier layers in accordance with the present invention. As shown in FIG. 3, structure 321 includes a dielectric stack 3 15 deposited on substrate 316. The substrate 3 16 can be formed, for example, of a glass or plastic material. A transparent conductive layer 314 such as indium tin oxide is deposited on the dielectric stack 315. The layer film 3 1 3 can be, for example, a phosphorous-doped oxide or chloride material, a rare earth-doped concentrated cerium oxide light-emitting device, or organic Luminescent polymer, 0 LED (organic light-emitting diode) or polymer stack &lt;* A metal layer 3 1 2 which may be aluminum and which may be doped or tantalum is deposited on the side adjacent to the layer film 3 1 3 . A second dielectric stack 317 can be formed at the bottom of the substrate 316. The structure 321 illustrated in Fig. 3 is an example of a microcavity-enhanced LED that protects against water and reactive gases that can be diffused by the dielectric stacks 315 and 317 through the substrate 31. When the film 312 is a metal layer, a microcavity, -24-(21) (21) 1334194, is formed between the layer film 312 and the dielectric stack 315. The dielectric stack 315 can externally couple the light emitted from the electro-acoustic layer 313" when the layer film 313 is electrically biased as a transparent conductive layer 3 1 4 acting as an anode and acting as a cathode conductive layer. When the voltage is between 312, the film 313 emits light. The dielectric stack 315 and the dielectric stack 317 layer may be arranged to include light emitted by the interlayer film 317 and the metal layer 312 interlayer film 313 to form an optical etalon arrangement for directing light along the substrate 31. In addition, the dielectric layer 3 17 can be arranged to transmit the light generated by the layer film 313, and thus the monitor arrangement is formed with light that is substantially normally emitted to the substrate 3 16 . Figure 11 illustrates the transmission of data collected from an example of a dielectric stack in accordance with the present invention. The metrology equipment used to collect the results of the data in Figure 11 is a Perkin Elmer Lambda-6 spectrometer. As described above, four samples were measured and each was a 5-layer stacked Ti02 / 92-8. Both samples have the same thickness layer (55 nm Τί〇2 and 1 〇〇 nm 92-8). As illustrated in Figure 11, the two different operations have almost the same transmission spectrum that exhibits the reproducibility of the deposition procedure. The third example has different thicknesses arranged to allow the transmitted light to move toward blue. A fourth example was produced after maintaining the third example at a test condition of 8 5 / 8 5 (85 ° C 8 5 ° C humidity) for 120 hours. It can be observed that humidity and heat do not have a significant impact on the transmission characteristics of the mirror stack, again exhibiting this dielectric stack functionality as a protective layer and an optical layer (ie, no measurable moisture movement). Similar results were obtained after 5 〇 〇 hours of testing under 8 5 / 8 5 conditions without measurable moisture movement. The second diagram shows an example of another structure 633 of a microcavity-enhanced LED junction 321 as described in FIG. 3, which is constructed as shown in Figures 2A through 2F - 25 - (22) (22) 1334194 622 Covered and protected. As shown in Fig. 6, in the structure 321, the film films 314, 313 and 312 have been patterned. Structures 622 can be formed separately on opposite sides of a substrate 619 with dielectric stacks 61 8 and 620. Dielectric stacks 618 and 620 are formed as described in the dielectric stack 120 of Figures 2A through 2F. In order to seal and protect the structure 3 2 1, the structure 6 2 2 is then formed on the structure 3 2 1 to form an epoxy-based resin. For example, the epoxy-based resin layer 621 can be an EVA epoxy resin. FIG. 7 shows another structure 700 having an example of a microcavity-enhanced LED structure 321 as shown in FIG. 3, which is like those of FIGS. 2A to 2F. The structure 623 shown in the figure is covered and protected. The cover structure 623 includes a substrate 619 on which a dielectric stack 620 is deposited, and an epoxy resin is formed on the device 321. Fig. 4 illustrates another example of the barrier layer of the present invention which is used as an electrical layer (i.e., a layer film having an electrical impedance function or a dielectric for a capacitor structure). The structure shown in Fig. 4 illustrates an example of a bottom gate transistor structure 42 in accordance with the present invention. The transistor structure 42 is formed on a substrate 416 which may be a plastic or glass material. In the embodiment illustrated in Figure 4, a dielectric stack 415 in accordance with the present invention is deposited on the top surface of substrate 416 and a second dielectric stack 417 is deposited on the bottom surface of substrate 116 in accordance with the present invention. As noted above, each of dielectric stacks 417 and 415 can comprise a layer of dielectric material having a high and low refractive index. As described above, the high and low refractive index dielectric materials such as Ti 2 and alumina/alumina layers each have a low voltage flat band and a low surface defect, and thus are suitable for a thin film transistor structure. - The semiconductor layer 423 is deposited on the barrier stack 415 and patterned. The semiconductor layer 423 may be, for example, a semiconductor such as chopped or ruthenium or may be a zinc or polymer material. The layer films 424 and -26-(23) (23) 1334194 425 form source and drain layers in contact with the semiconductor layer 423. Layer film 426 may be formed of a material having a dielectric constant, such as any dielectric layer forming dielectric stacks 415 and 41, for example, a high dielectric strength Τι 2 material deposited by the procedures described herein. . The layer film 427 is an inner layer film and the layer film 428 is a gate metal. Figure 5 shows an example of a top gate transistor device 509. The transistor device 592 is formed on a substrate 516 that is protected from physical wear and abrasion of atmospheric contaminants (e.g., &apos;water or gases) and dielectric stacks 515 and 517. Dielectric stacks 515 and 517, such as dielectric stack 120 discussed above, are formed from _ or more layers of optical material. Gate layer 530 is deposited on dielectric stack 515. Layer film 530 can be a metal layer such as aluminum or chromium. A gate oxide layer 531 is deposited over the layer film 530. A semiconductor layer 532 is deposited on the gate oxide layer 531 on the layer film 530. The semiconductor layer 532 can be similar to the layer film 423 of Fig. 4. The layers 5 3 3 and 5 3 4 are source and drain layers, respectively, and are similar to the layers 424 and 42 8 of the device 422 in FIG. 4 and may, for example, be derived from a conductive metal, a conductive oxide, or a conductive polymer. The matter is formed. The dielectric stack with barrier layers in accordance with the present invention can have an atomically smooth film surface regardless of film thickness. Moreover, the dielectric stack with barrier layers in accordance with the present invention has an unmeasurable film transparency that is different from zero. These dielectric stacks represent a new capability for bias barrier film defect levels and barrier protection. Products that require dielectric barrier protection to prevent water and oxygen, such as 0 LED displays, can tolerate a defect per square centimeter. Some examples of barrier layers such as 2.5 nm and thicknesses such as 15 microns have been deposited to exhibit an average surface roughness of about 0.2 nm and represent a non-destructive procedure for the deposition of all thin layers -27- (24) 1334194 The film thickness exhibits the surface of the optical article, representing a high amorphous film which can be achieved by the procedures of the present embodiment. The dielectric barrier layer according to the present invention has been shown to protect the ultra-thin film in pure vapor of 3.5 ATM. Under pressure from 125 to 250 ° C for hundreds of hours, no defects on the 100 nm 矽 wafer, here, the long-term protection of titanium oxide and alumina / silicate barrier layer reaction film, among them The reaction membrane is a pinhole that is free to one. A pinhole with a large area of 75 square centimeters and a 100 nm crystal dielectric barrier will be transferred into a pinhole with a density of one square centimeter. As shown in Figures 8 and 9, there are two wafers, one having a barrier dielectric film having titanium dioxide free of failure. The two crystals are 150 square centimeters. If there are 1 defect on the two wafers, the defect is 0.00666 per square centimeter. However, because the wafer is free of defects, the actual defect density cannot be measured. Then, as shown, the trap density is less than 0.01 3 3 per square centimeter and the majority is less than 0.007. In some embodiments of the present invention, softening such as indium or indium-tin can be performed before depositing the barrier layer as discussed above or more. metal. Most of the soft metal treatment can be used to release the stress between the dielectric substrates. Moreover, the soft metal breath treatment can further effect the growth of the pinhole or the defect-free barrier film, and the formation of the 12A and 12B drawings shows a single barrier layer structure 12A in accordance with the present invention with or without a soft metal atmosphere treatment. One of the barrier layers 1 203 as described above is a direct deposition barrier layer. Reactive aluminum metal in steam hot oxygen. As a result, it can be provided or protected on the circle of two wafers. • The sand acid of about 0.0133 and the total area between the circles will be shown only from the two wafers, and the actual lack of g square centimeter The barrier layer and the substrate are treated as a nucleus free on the substrate. The bottom 1201 sinks 1200. On the base 1201 -28- (25) (25) 1334194. Substrate 1201 can be any suitable substrate material, such as a glass, plastic, or Si wafer. Substrate 1201 may, for example, comprise a QLED structure or other light active structure that requires a high total amount of light processing or may utilize a barrier layer as one of the electrical layers. The barrier layer 1203 can be one or more of the barrier layers described above. As explained in Fig. 12A, the barrier layer 1 203 can develop a surface roughness related to stress during deposition and use. Figure 12B illustrates the results of depositing barrier layer 1203 after soft metal breath treatment in accordance with certain embodiments of the present invention. As shown in Fig. 12B, the stress is significantly reduced, forming a barrier layer with better surface smoothness. The soft metal breath treatment according to some embodiments of the present invention involves exposing the substrate to a soft metal vapor for a short period of time, followed by heat treatment. For example, an indium-tin breath treatment involves exposing the substrate from an indium-tin standard to indium-tin in a pulsed DC process followed by a heat treatment. Direct exposure to indium oxide and tin vapor does not produce the particularly advantageous results described below. The bond is not bonded by a special theory that may be proposed in this publication. In/ Sn breath treatment reduces the stress in the deposited barrier layer and improves surface smoothness and MOCON WVTR performance. In a special example of forming the barrier layer structure 1 200, a soft metal breath treatment embodiment is implemented on a plastic substrate 1201. From the indium tin (90% / 10%) target, for example, an indium/tin breath treatment can be performed. The procedure for performing indium/tin breath treatment can be specified as 7 5 0 W/〇 W/ 200 KHz/20 Ar /〇 〇2/1 leap seconds. In addition, 90% indium/10% tin, using the Pinnacle Plus PDC power supply AKT 1 600 PVD system in the pulsed PVD system 10 with 950 W fixed power operation (Figure 1A) ( -29- (26) (26) 1334194 pulse frequency 200 KHz, reverse time 2.2 / / sec) up to 10 seconds 20 seem Ar flow to operate pulsed DC, bias, wide-scale PVD program" Then, continue to breathe and will Substrate 1201 is transferred into one of the carriers of the AKT 4 3 00 tool and pumps the tool to a base pressure less than about Torr. The substrate was then transferred to a 130 ° C hot chamber at 13 x TC heat treatment for about 25 minutes. Then the substrate 1 2 0 1 (treated with the above indium/tin breath) was transferred to the deposition barrier layer. The second chamber at 1203. As indicated above, the barrier layer 1 2 03 can be formed by depositing one of 92-8 aluminosilicate (92% Si/8% A1) at room temperature. Deposition 92-8 barrier The program parameters of the layer 1 20 3 embodiment can be 3 kW / 200 W / 200 KHz / 85 Ar / 90 02 / x. Therefore, with about 3 kW PDV power, about 200 KHz pulse frequency, and about 2.2 microseconds This procedure is carried out in reverse time. The bias power can be maintained at about 200 W. A gas flow of about 85 seem Ar is used with about 90 seem 02. In the particular embodiment of deposition, the deposition procedure is a power cycle, wherein the ON cycle is about 180 The second is OFF and the OFF cycle is about 00 seconds long, up to 9 cycles. The barrier layer 1 203 is formed to a thickness of about 1600 A. In a special test, a barrier structure 1200 is deposited by the above procedure, and the substrate 1201 has a size of 6 吋 x 6吋三三 plastic film (Dupont (Feijih) PEN film 200 / zm thick, called PEN substrate). Usually, in Any barrier layer may be deposited after the soft metal breath treatment (eg, '92 or 8 or T0 0 2 layers discussed above). As discussed previously, a program example of a barrier layer embodiment in accordance with the present invention is presented herein, but broadly The program parameters can result in a barrier layer in accordance with the present invention. -30- (27) (27) 1334194 Then, the barrier layer structure on the substrate 1 2 Ο 1 can be tested using various techniques. In particular, the stress in the film 1 203 can be measured using Flexus stress measurement technology. The surface roughness can be measured by atomic force microscopy (AFM), and the water vapor transmission rate (WVTR) can be a high pressure, high humidity pressure furnace device. Measured. Figure 13 illustrates a Flexus scanning assembly 1300 that can be used to measure the barrier layer structure 1 200. In the Flexus scanning assembly 1300, a laser beam 1310 is directed to the surface of the barrier layer 1203 by a lens 1312. "By detector 1314 off-target, off-beam sweep 16 light can be 13-diameter angle half-measurement rate 14 polarizer 13 and its 011401 ί 2 3 2 1Λ Ti 1* bottom of the detector. Beam cross check and light And 0 shot. 'Angle reverse 12-way bias 13 partial 03 piece, 12 beam mirror layer light, wall shot 10 system barrier anti-13 off from 12 shots 13 thunder 18 test piece with 13 Mirror package . The film stress in the barrier 1 203 can be calculated using the change in the substrate deformation measured by the Flexus device 1 300 when the optical portion 13 16 is scanned. As shown in the relationship 1 3 1 8 , the reflected beam angle can be monitored during the scan and the inverse of the curvature radius R of the substrate 1201 can be calculated from the angle derivative function as a function of the position in the scan. In some cases, The Flexus device 1 3 00 can utilize a dual wavelength technology to increase the range of film types that can be measured by the tool. Then, because different film types will reflect different wavelengths of light, the Flexus device 1 300 can have more than one laser capable of scanning the wafer 1 3 1 0. Moreover, the reflected laser intensity indicates a good measurement quality. Generally, the low light intensity of the detector 1314 indicates a poor measurement condition. -31 - (28) (28)1334194 In the Flexus device 1300, the stress can be determined using the STONE Y equation. In particular, the measurement of the curvature of the film 123 can be determined by measuring the curvature of the deposited film before the film and the radius of curvature of the deposited film 1203. In particular, according to the Stowey equation, the available stress is where ES/(1-VS) is the biaxial modulus of the substrate 1201, the stress of the substrate 1201, ts is the thickness of the substrate, tf is the thickness of the film, and RS is the curvature. The pre-deposition radius, and Rf is the radius after the curvature. In order to obtain this result, the measurement of the two curvature radii should be performed according to the same tool to minimize the systematic error in the measured | radius. In addition, since the shape of the wafer is unique and the stress is calculated based on the change in the deformation of the substrate, each wafer should have a measurement of the reference line radius. A positive radius indicates tensile stress and a negative radius indicates pressure should be . As shown in Figure I4, the wafer bow can be calculated by measuring the maximum deflection point from the string connecting the end points of the Flexus device 1300. Table 2 lists the stresses measured for the barrier layer 1 2 0 of the several embodiments, wherein the barrier layer 1203 is a 92-8 film as discussed above, and does not have a nucleation layer formed by soft metal breath treatment. [202. As shown in Table 2, Sample 1 was a 1.5 KA 92 - 8 film deposited on a Si wafer substrate with an actual thickness of 1760 0 A. The stress formed at about room temperature is - 446.2 MPa. Sample 2 is a 1.5 KA 92-8 film having a stress of about -460.2 MPa and an actual thickness of 1670 A on the A1 gas deposition. In sample 3, a stress of -3 3 0.2 MPa was deposited with indium gas, and a thickness of 1 860 Å was added to a 1.5 KA 92-8 film having a thickness of 1 860 A, which was almost one MPa lower than any of the other depositions described. . -32- (29) (29) 1334194 Figure 15 shows the compilation of several samples 1 'sample 2, sample 3, as shown in Table 1, above a temperature cycle. The temperature cycle consists of heating from room temperature to 1 60 °C and cooling back to room temperature. In the germanium wafer substrate, it is assumed that the wafer radius does not change with temperature. The stress data in each case is taken at the temperature shown. As can be seen from Figure 15, the 92-8 film deposited on the indium-gas treatment is 92-8 film deposited on top of the deposited aluminum-aerate treatment or deposited on the substrate without 'soft metal odor treatment. The 92_8 film exhibits very little stress. The surface roughness of a film can be measured using an atomic force microscope (AFM). In the AFM, a mini probe is actually scanned on a film surface to bring the probe into contact and along the surface of the film. The probe has a small tip and therefore correctly monitors the surface roughness of a characteristic nanometer. Fig. 16A shows the surface roughness of a PEN substrate (DuPont Teijin PEN film 200 / / m thickness) before depositing a barrier layer according to the present invention. As shown in Figure 16A, the PEN substrate has a mean surface roughness of 2.2 nm on average, a mean square root RMS of 3.6 nm, and a typical maximum roughness of about 41.0 nm. As shown in Fig. 16B, deposition of 1.5 k of 92-8 after indium-tin breath treatment on a PEN substrate resulted in an average surface roughness of 1 · 〇 nm, an RMS roughness of 1.7 nm and a maximum roughness. It is 23.6 nm. As shown in Figure 16C, an indium tin oxide (ITO) atmosphere treatment was performed prior to the deposition of the 1.5 KA 92-8 dielectric barrier film, resulting in an average roughness of 2.1 nm, an RMS roughness of 3.4 nm, and a maximum roughness of 55.4 nm. . The deposition shown in Figure 16C was carried out with a PEN substrate of 125/zm instead of a PEN substrate of 200 m. Therefore, the direct I TO treatment is not implemented and the indium-tin atmosphere is treated as shown in the figure (30) (30) 1334194 16D, and a barrier layer of 1.5 KA is deposited directly on the 125# m PEN substrate to form a barrier layer. The average surface roughness is about 5.2 nm, the RMS roughness is 8.5 nm, and the maximum roughness is 76.0 nm. Therefore, for the surface roughness, although the ITO breath treatment is better than the soft metal treatment at one point, the indium-tin breath treatment results in an optimum surface roughness of an average surface roughness of about 1.0 nm. Figure 17 illustrates a water vapor transmission (WVTR) test apparatus 1 700 that can be used to characterize a barrier film in accordance with an embodiment of the present invention. The sample 1701 is mounted in the apparatus 1 700 in such a manner as to isolate the surface of the substrate 1201 (Fig. 12) from the surface of the barrier layer 1 203 (Fig. 12). A gas free of moisture is supplied to the crucible 1702, one surface of the sample 1701 is contacted, and introduced into the sensor 1 703 which monitors the water vapor from the sample 1701. The wet gas is conducted via 埠1 705 to the opposite side of the sample 1701. An RH probe 1 704 can be utilized to monitor the water capacity of the gas input to 埠1,075. Then, the sensor 1 7 0 3 monitors the water vapor transmitted through the sample 1 70 1 . This test was conducted in Mocon, 7500 Boone Avenue North, Minneapolis, Minnesota, MN 5 5428, in accordance with ASTM F1M9. Instruments that Mocon used for WVTR testing have a detectable transmission range of 0.00006 gm / 100 in2 / day to 4 gm / 100 in2 / day. For example, the lower detection limit of the Mocon 3/31 instrument is about 0.0003 gm / 100 in2 / day. The formation of a 气 1 atmosphere treatment, followed by the deposition of a barrier layer of -1_5 KA 92 - 8 barrier layer on a 2 〇〇; zm PEN substrate The deposition caused the Mocon test WVTR to be 0.0031 gm / 100 in2 / day. Forming an indium-gas treatment, -34- (31) (31) 1334194 followed by a barrier layer of 1_5 KA 92-8 on a 200//m PEN substrate to form a WVTR that is not measurable in the Mocon 3 / 31 instrument ( That is, the transmission rate is less than 0.003 gm / 100 in2 / day). As discussed further above, Figures 16A through D illustrate a soft metal breath treatment (especially an indium breath treatment) that can play a role in determining the surface roughness of the barrier layer deposited in accordance with the present invention. The surface roughness of a barrier layer can also affect the WVTR characteristics of a barrier layer. A smoother barrier layer results in better WVTR performance. As such, Figure 16A shows an unshielded 200y m PEN substrate without barriers. Fig. 16B shows a 200//m PEN substrate having a barrier layer of 92-8 having a thickness of 1 500 A deposited in accordance with the present invention after an indium/tin treatment. Figure 16C illustrates a 20 〇em PEN substrate with a -1500A 92-8 barrier layer deposited after ITO breath treatment. Figure 16D is a 20 〇v m PEN substrate having a 1500A 92-8 barrier layer deposited directly on the substrate. As can be seen, the structure of Figure 16B represents the optimum surface smoothness characteristics. Table 3 illustrates the barrier layer of several examples with surface smoothness characteristics and Mocon WVTR test results. In Table 3, the samples described in columns 1 - 4 are about 2000 A thick - deposited on -700 / / m thick polycarbonate (General Electric Corp. LEXAN) - or on both sides 92 - 8 layers (as mentioned above). This data indicates that the barrier layer structure (columns 1 and 2) coated on both sides is better than the one side structure (columns 3 and 4) in the Mocon WVTR test. Columns 5 through 8 illustrate various depositions on a P EN substrate (columns 5-6 illustrate deposition on a 200/zm PEN substrate and columns 7 and 8 illustrate -125-35-(32) (32)1334194 β m PEN substrate deposition). The indium breath treatment parameters refer to the indium/tin breath treatment as discussed above. As explained earlier, the 1 6 B to 1 6 D graph represents the AFM parameters. As discussed previously, the optimum surface smoothness and optimum WVTR characteristics are indicated in column 6, which is followed by deposition of a 9-2-8 film after indium breath treatment. The data in column 9 indicates that indium breath treatment (indium/tin) has higher power on the thinner (125//m) PEN substrate. Assume that the thermal stress on the 125 /zm PEN substrate is worse than the 200/zm PEN substrate. Further representation of this effect, together with Figures 19A and 19B, is shown in the data of columns 30 through 33. The data in columns 30 and 31 contains an indium/tin treatment on a 200 ym PEN substrate (in WO W) followed by a deposition of about 7.5 KA 92-8 film, as shown in Figure 19A, which produces a Very smooth surface (for example, on average about 1.1 nm) and Mocon WVTR features that are not detectable on Mocon 3/ 3 1 test equipment. Indium/tin treatment, followed by deposition of a 1.5KA 9 2 - 8 film on the 125y m.PEN substrate. The data in 3 2 and 3 3 indicate poorer smoothness (average roughness of about 2.0 nm) and The WVTR test of the Mocon device is approximately 1.7 x 1 (T 2 gm/m 2 /day. The 92-8 deposition described in columns 30 to 33 is performed simultaneously in a single operation. Tables 1 and 2 in Table 3 The data indicates that the indium breath treatment plus 丨25 is deposited on the 1.5 P Ti02 on the m PEN substrate. The data in the columns ι〇 and η represent the indium/tin sinter treatment plus 125&quot; m PEN on the substrate 1. 5 KA 92-8 Deposition. As can be seen in Table 3, the WVTR characteristics of the 92-8 layers are not only the WVTR characteristics of the order of magnitude better than the Ti〇2 layer. The representative smoothness of the columns 12 and 13 is given in the 22A. 2 B shows the representativeness of the columns 1 〇 and 1 -36 - (33) (33) 1334194. As shown in Table 3, the average smoothness of the 92 - 8 layers is much better than that of Ti02. Average smoothness. The data in Tables 14 and 15 illustrate the treatment of indium/tin on a 125/zm PEN substrate followed by a 92-8 film. Columns 14 and 15 can be combined with column 3. 2 Comparing the data in 3 3, it is treated with indium/tin on a 1 2 5 // m PEN substrate, followed by deposition of a 1.5 - 8 film of 1.8 KA. The smoothness between the LEXAN and PEN substrates is In comparison, even if it can be seen by comparing the 2 1 A and 2 1 B diagrams, the amorphous material is different, that is, the barrier layer according to the present invention deposited on the LEX AN substrate means more particles than the barrier layer deposited on the PEN substrate. The data in Tables 1 to 6 show the different program parameters for the indium/tin gas treatment, followed by the deposition of 1. 5 KA 92 -8 on a 200&quot;111 PEN substrate. In one setting, the current is set instead of the power. The data in column 16 is taken as 6 · 1 4 amps of electricity. In the barrier layer of the column of the description of column 1.7, the indium/tin is implemented with an operating power of 1.7 KA. Breath treatment. In the barrier layer described in column 18, the indium/tin gas treatment is performed with an operating power of 75 0 W. In each case, the Mocon WVTR characteristics of the barrier layer formed are lower than for Mo con 3/ 3 1 The detectability of the instrument. The information in Table 1 in columns 1 9 - 29 illustrates the different indium/tin gas treatments and their formation The surface smoothness of the wall layer and its effect on the Mocon WVTR characteristics. The data in columns 1 9-22 are all examples in which the vapor indium layer is replaced by a vapor indium layer instead of the indium/tin gas treatment. The surface roughness feature is illustrated in Figure 18A and represents an average roughness of about 1.1 nm. However, as shown in Fig. 18A, the morphology is very granular, assuming that there are many -37-(34) (34) 1334194 holes, and the MoconWVTR test size is 〇.8gm/m2/day. The data shown in column 2.3 of Table 3 illustrates the case where the 200//m PEN substrate is not preheated by indium/tin gas treatment and before the deposition of 1.5 KA 92-8, as shown in Figure 18C. 1.5 KA 92-8 has an average surface roughness of approximately 5.2 nm and a Mocon WVTR of approximately 0_8 gm/m2/曰, or the same as shown in columns 19-22, as shown by the indium vapor phase data. Therefore, the same characteristics result in the application of indium vaporization treatment. The information described in Tables 24 - 29 is treated as indium/tin at 28 ° C instead of room temperature. As illustrated in Figure 18B, the average surface roughness is 1.1 nme. However, the Mocon WVTR data is approximately 3x10 - 2 gm/m2/day. This is much larger than the enthalpy shown in the similar deposits of columns 30 and 31, which is below the 5x10 - 3 gm/m2/day detectability limit of the Mocon 3/31 instrument. The data in columns 34 and 35 illustrate the deposition of a layer of 1 · 5 KA 3 6 - 6 5 after deposition of indium/tin on a 200//m PEN substrate (ie, deposition with 35 % Si and 65 % A1). ). As illustrated, the Mocon WVTR is 1.4 x 10_1 gm/m2/day, which represents the possible necessity of creating a biasing procedure for the barrier layer according to the present invention. Figure 20 illustrates the film gate oxidation which can also be deposited on the substrate 2001. The barrier layer 2002 for use. The thin film gate oxide 2002 can be deposited as a barrier layer according to the present invention. Such a layer film which is advantageous for protecting moisture and oxygen-sensitive crystal layers is mixed, for example, ruthenium, tin oxide, zinc oxide, or pentabenzene, and is used as a thin oxide electric layer. Substrate 2 00 1 can comprise any electrical device that can be formed, for example, on a wafer, plastic sheet, glass sheet, or other material. The barrier layer 20 02 can be a thin layer of, for example, from -25 to (35) (35) 1334194 from 25 to 500 A. Due to the lack of response to the elimination of titanium oxide, titanium oxide has been known as a preferred material for biological cultivation. In addition, it is preferred that the TiO2 film which is immunologically free of different barrier layers can simultaneously protect a device such as a voltage or charge sensor or an optical device such as a waveguide, and exhibits due to its high dielectric constant or its optical index. Capacitive or optical to the role of the coupling device. Due to the proximity of the sensor provided by a very thin, high-k dielectric such as Ti〇2, a capacitor array can be coupled with a high capacitive density. In fact, a one- or sub-micron array can be used to monitor electrical activity, amplitude, and the direction of very low electrical signals such as those associated with electrical signals in a single axis of a single ganglion. Conversely, it can also be used to electrically couple stimuli to adjacent cells or tissues. With this capacitive barrier layer, high resolution is coupled to the photoreceptor, auditory nerve, or nerve tissue of size 5 to 50 &amp; 11^〇-f a r a d s / m 2 as the only possible and no immune response. Other embodiments of the invention will be apparent to those skilled in the <RTIgt; This publication is not limited to any theory or operational assumptions used to describe any of the results presented. The patent specification and examples are to be regarded as illustrative only, and the true scope and spirit of the invention is represented by the following claims. As such, this application is limited to the following request items. BRIEF DESCRIPTION OF THE DRAWINGS Figs. 1A and 1B illustrate a deposition apparatus for depositing a barrier layer film according to the present invention. -39- (36) (36) 1334194 Figure 1C illustrates a barrier layer deposited on a substrate in accordance with an embodiment of the present invention. 2A, 2B, 2C, 2D, 2E, and 2F illustrate an example of a dielectric stacking device having a barrier layer according to an embodiment of the present invention. FIG. 3 is a view showing microcavity enhancement using a dielectric layer of a barrier layer according to an embodiment of the present invention. LED structure. Fig. 4 is a view showing a bottom gate transistor device having a barrier layer dielectric stack according to an embodiment of the present invention. Fig. 5 is a view showing a top gate transistor device having a barrier layer dielectric deposition according to an embodiment of the present invention. Figure 6 shows an example of a microcavity-enhanced LED structure similar to that shown in Figure 3, further protected by a dielectric stack of barrier layers in accordance with an embodiment of the present invention. Figure 7 illustrates another example of a microcavity-enhanced LED structure similar to that shown in Figure 3, further protected by dielectric packing of a barrier layer in accordance with an embodiment of the present invention. Fig. 8 shows an example of a barrier layer of τ i 〇 2 according to an embodiment of the present invention, which is exposed to a reaction layer after exposure for a prolonged period of time in a high humidity 'high temperature environment. Fig. 9 is a view showing an example of an alumina/alumina barrier layer in accordance with an embodiment of the present invention, which is exposed to a high-humidity high temperature environment for an extended period of time and deposited on a reaction aluminum layer. Figure 10 is a SEM cross-sectional view showing an embodiment of a barrier layer dielectric stack in accordance with an embodiment of the present invention. (37) (37) 1334194 Figure 11 shows a transmission rate versus wavelength diagram of various barrier layer dielectric stacks in accordance with an embodiment of the present invention. 12A and 12B illustrate a single barrier layer structure deposited with and without a soft metal smear treatment according to an embodiment of the present invention. Figure 13 shows a Flexus stress measurement device that can be used to test a barrier layer. Figure 13 shows the wafer square diagram measured by the Flexus stress measurement equipment. β Figure 15 illustrates the stress at various deposition barrier layers in accordance with an embodiment of the present invention as a function of temperature via one single temperature cycle after deposition. The 16th, 16th, 16th and 16th views represent atomic force microscopy of the surface roughness of certain barrier film films in accordance with an embodiment of the present invention. Figure 17 illustrates a water vapor transmission test that can be used to characterize the barrier layer, which is deposited in accordance with an embodiment of the present invention. Figures 18 to 18D illustrate the effect of different In/Sn breath processing parameters on the surface roughness of the barrier layer deposited in accordance with the present invention. • Figures 19A and 19B illustrate the basal action of surface roughness. Figure 20 illustrates a barrier layer in accordance with the present invention which is further operated with a thin film gate oxide. 21A and 21B illustrate the effect of the substrate composition on the surface roughness of the barrier layer deposited in accordance with the present invention. 22A and 22B illustrate the barrier layer deposition characteristics of the embodiment of the effective surface roughness according to the present invention. The analogy or the same phase has the indications of the same phase. It is in the middle of the figure. This is in -41 - (38) 1334194 [Main component symbol description] 10 Reactor device 12 Target 14 Pulse DC power supply 16 Substrate

17 電極 18 介電障壁層 20 磁鐵 25 濾波器 53 電漿 54 絕緣體 100 基底 101 障壁層17 Electrode 18 Dielectric barrier layer 20 Magnet 25 Filter 53 Plasma 54 Insulator 100 Substrate 101 Barrier layer

102 障壁層 103 障壁層 10 4 障壁層 10 5 障壁層 106 導電層 107 層膜 10 8 層膜 109 層膜 110 層膜 -42 - 1334194 (39) 110 介電障壁層 111 層膜 112 層膜 120 基底 120 介電堆疊 3 12 金屬層 3 13 層膜 3 14 導電層 3 15 介電堆疊 3 16 基底 3 17 介電堆疊 3 2 1 結構 4 15 介電堆疊 4 16 基底 422 電晶體結構 423 半導體層 424 層膜 425 層膜 426 層膜 427 層膜 428 層膜 5 15 介電堆疊 5 16 基底 5 17 介電堆疊102 barrier layer 103 barrier layer 10 4 barrier layer 10 5 barrier layer 106 conductive layer 107 film 10 8 film 109 film 110 film -42 - 1334194 (39) 110 dielectric barrier layer 111 film 112 film 120 substrate 120 dielectric stack 3 12 metal layer 3 13 film 3 14 conductive layer 3 15 dielectric stack 3 16 substrate 3 17 dielectric stack 3 2 1 structure 4 15 dielectric stack 4 16 substrate 422 transistor structure 423 semiconductor layer 424 layer Film 425 film 426 film 427 film 428 film 5 15 dielectric stack 5 16 substrate 5 17 dielectric stack

-43 - (40)1334194 529 電晶體裝置 5 3 0 閘極層 53 1 閘極氧化層 5 3 2 半導體層 5 3 3 層膜 5 34 層膜 618 介電堆疊-43 - (40)1334194 529 Transistor device 5 3 0 Gate layer 53 1 Gate oxide layer 5 3 2 Semiconductor layer 5 3 3 Film 5 34 Film 618 Dielectric stack

6 2 0 介電堆疊 621 環氧基樹脂層 622 結構 623 結構 6 3 3 結構 700 結構 1200 結構 1201 基底6 2 0 Dielectric stack 621 Epoxy resin layer 622 Structure 623 Structure 6 3 3 Structure 700 Structure 1200 Structure 1201 Substrate

1 202 成核層 1 2 03 障壁層 1 3 00 FLEXUS掃瞄組件 13 10 雷射光束 1312 鏡片 13 14 檢測器 1316 光學部 1 7 0 0 水蒸氣傳輸測試設備 1701 樣品 -44 - (41)1334194 1702 埠 1703 感測器 1704 探針 1705 埠 200 1 基底 2002 障壁層 (42) 所測量厚度矽土 / 礬土 (92-8)(人) 980 910 1000 1000 1000 1000 矽土 / 礬土 (92-8) 沈積程序 3KW/200W/200KHZ /85Ar/90O2/1005 3KW/200W/200KHz /85Ar/9002/1006 3KW/200W/200KHZ /85Ar/90O2/1025 3KW/200W/200KHZ /85Ar/90O2/1025 3KW/200W/200KHZ /85Ar/90O2/1025 3KW/-200W/200KHZ /85Ar/90O2/1025 所測量厚度 Ti02(A) 580 510 550 550 550 550 Ti〇2沈積程序 7KW/200W/200KHZ /60Ar/9002/950s 7KW/200W/200KHz /60Ar/90〇2/835s 7KW/200W/200KHz /60Ar/9002/901s 7KW/200W/200KHz /60Ar/9002/901s 7KW/200W/200KHz /60Ar/9002/901s 7KW/200W/200KHz /60Ar/9002/901s 堆疊層組成 Ti02/92-8/ Ti02/92-8/ Ti〇2 Ti02/92-8/ Ti02/92-8/ Ti〇2 Ti02/92-8/ TiOz/92-8/ Ti02 TiOz/92-8/ TiOz/92-8/ Ti〇2 Ti02/92-8/ Ti02/92-8 TiOz/92-8/ Ti02/92-8/ Ti02 S底 6顯微戦玻片 +1 6吋晶圓 i 6顯微載玻片 +16吋晶圓 2鈉玻璃+4 顯微戦玻片 2鈉玻璃+4 顯微戦玻片 4顯微載玻片 3鈉玻璃+4 顯微載玻片 — &lt;N m 寸 (43)1334194 方形(M m) oo 11.74 1 1_ 1.38 10.18 4.36 10.25 薄膜厚度(人) N/A 1760 N/A 1760 N/A 1860 MPa應力 N/A -446.2 N/A I -460.2 N/A -330.2 半徑(m) -4.76E+03 -145.978 i_ -4.10E+03 -169.482 -230.249 -67.169 溫度。C ON (N (N (Ν &lt;= Uns ife 預先沈積 1.5K Λ 92-8 膜沈積/無銦氣息處理 預先沈積 鋁氣息沈積,然後1.5K人 92-8膜處理 預先沈積 銦氣息沈積,然後1.5Κ人 92-8膜處理 &gt; 樣品丨 樣品2 樣品31 202 nucleation layer 1 2 03 barrier layer 1 3 00 FLEXUS scanning assembly 13 10 laser beam 1312 lens 13 14 detector 1316 optics 1 7 0 0 water vapor transmission test equipment 1701 sample -44 - (41) 1334194 1702埠1703 Sensor 1704 Probe 1705 埠200 1 Base 2002 Barrier Layer (42) Measured Thickness Bauxite / Bauxite (92-8) (Human) 980 910 1000 1000 1000 1000 Bauxite / Bauxite (92-8 ) Deposition procedure 3KW/200W/200KHZ /85Ar/90O2/1005 3KW/200W/200KHz /85Ar/9002/1006 3KW/200W/200KHZ /85Ar/90O2/1025 3KW/200W/200KHZ /85Ar/90O2/1025 3KW/200W /200KHZ /85Ar/90O2/1025 3KW/-200W/200KHZ /85Ar/90O2/1025 Measured thickness Ti02(A) 580 510 550 550 550 550 Ti〇2 deposition procedure 7KW/200W/200KHZ /60Ar/9002/950s 7KW /200W/200KHz /60Ar/90〇2/835s 7KW/200W/200KHz /60Ar/9002/901s 7KW/200W/200KHz /60Ar/9002/901s 7KW/200W/200KHz /60Ar/9002/901s 7KW/200W/200KHz /60Ar/9002/901s Stacked layer composition Ti02/92-8/ Ti02/92-8/ Ti〇2 Ti02/92-8/ Ti02/92-8/ Ti〇2 Ti02/92-8/ TiOz/92-8 / Ti02 TiOz/92-8/ TiOz/92-8/ Ti〇2 Ti02/92-8/ Ti02/92-8 TiOz/92-8/ T I02/92-8/ Ti02 S bottom 6 microscopic 戦 slide +1 6 吋 wafer i 6 microscope slide + 16 吋 wafer 2 soda glass + 4 micro 戦 slide 2 sodium glass + 4 micro戦 slide 4 microscope slide 3 soda glass + 4 microscope slide - &lt;N m inch (43) 1334194 square (M m) oo 11.74 1 1_ 1.38 10.18 4.36 10.25 film thickness (human) N / A 1760 N/A 1760 N/A 1860 MPa stress N/A -446.2 N/AI -460.2 N/A -330.2 Radius (m) -4.76E+03 -145.978 i_ -4.10E+03 -169.482 -230.249 -67.169 Temperature . C ON (N (N (Ν &lt;= Uns ife pre-deposited 1.5K Λ 92-8 film deposition / indium-free atmosphere treatment pre-deposited aluminum gas deposition, then 1.5K human 92-8 film treatment pre-deposited indium deposition, then 1.5Κ人92-8膜处理&gt; Sample丨 Sample 2 Sample 3

-47 - (44)1334194 AFM結果 £ 1 cS ® E pQ q — II c —II i — II 濺 ^ Pi m s = 5囫 ~ α卜 Q ^ T i -i 1 g a ^ pi pi c m MOCON WVTR (g/100 吋 2/日) 1.1160E-02 8.9900Ε-03 1.2865E-0I 2.6660E-01 9.7805Ε-01 4.6500E-03 6.2310E-01 MOCON WVTR (g/100 吋 2/曰) 7.2000E-4 5.8000Ε-4 8.3000E-4 !_ 1.7200E-2 _I 6.3100Ε-2 3.0000E-04 4.0200E-02 厚度 β m 700 700 1_ 700 700 200 200 (N «1 越底材料 LEXAN LEXAN LEXAN _. LEXAN ! 1 PEN Q65 PEN Q65 PEN Q65 樣品說明 沈積在雙面-A上之聚碳 酸鹽之2K Λ 92-8 ϋ m ® &lt; 1 ^ 铝w ^ m ^ i 聚碳酸鹽之2K人92-8 聚碳酸鹽之2K人92-8 鋁氣息(500W 10秒+ 1300°C熱處理)+PEN上 之 1.5K 人 92-8 銦氣息(760W+5秒+ 130 °C熱處理)+PEN上之 1.5K Λ 92-8 無銦氣息+丨30°C預熱+ PEN 上之 1.5K A 92-8 樣品 1(薄膜(塗覆在 雙面上)-Α) 2(薄膜(塗覆在 雙而上)-B) 3(褪膜(塗覆在 一面上)-A) 4(薄膜(塗覆在 一而上)-Α) 5(Al+1.5k.928) 6(InB + 1.5K928) 7(I02-MOCON ID:1619-0003)-47 - (44)1334194 AFM result £ 1 cS ® E pQ q — II c —II i — II Splash ^ Pi ms = 5囫~ α卜 Q ^ T i -i 1 ga ^ pi pi cm MOCON WVTR (g /100 吋2/day) 1.1160E-02 8.9900Ε-03 1.2865E-0I 2.6660E-01 9.7805Ε-01 4.6500E-03 6.2310E-01 MOCON WVTR (g/100 吋2/曰) 7.2000E-4 5.8000Ε-4 8.3000E-4 !_ 1.7200E-2 _I 6.3100Ε-2 3.0000E-04 4.0200E-02 Thickness β m 700 700 1_ 700 700 200 200 (N «1 越底材料LEXAN LEXAN LEXAN _. LEXAN 1 PEN Q65 PEN Q65 PEN Q65 Sample Description 2K of Polycarbonate Deposited on Double Sided-A 92-8 ϋ m ® &lt; 1 ^ Aluminium w ^ m ^ i 2K of Polycarbonate 92-8 Poly Carbonate 2K 92-8 aluminum breath (500W 10 seconds + 1300 °C heat treatment) + 1.5K on PEN 92-8 indium breath (760W + 5 seconds + 130 °C heat treatment) + 1.5K on PEN Λ 92-8 Indium-free atmosphere + 丨30°C preheating + 1.5KA on PEN 92-8 Sample 1 (film (coated on both sides)-Α) 2 (film (coated on double)-B 3 (fade film (coated on one side) - A) 4 (film (coated on one side) - Α) 5 (Al + 1.5k.928) 6 (InB + 1.5K928) 7 (I02-MOCON ID: 1619-0003)

-48 - 1334194-48 - 1334194

Ra= 2.1 nm RMS=3.4 nm Rmax= 55.5 nm :見第丨6C圖 Ra= 3.4 nm RMS=4.2 nm Rmax = 2.9 nm 見第22B圖 B c Z _ r- ON &quot;csj &lt;n CQ 寸·寸· II ^ II g g广璐 TO CZ t— η U aL U a ^ S C ^ 囫 c Pi &lt; ^ ON II ^ t- II ^ ^ 丨丨g目c搬 pi pd. ΰ c 3.8595E-01 4.0145E-01 L———…… 2.8400E-02 3.7000E-02 1.56 2.4900E-02 2.5900E-02 1.8323E-03 2.3871E-03 1.0065E-01 125 125 &lt;N 125 (N PEN Q65 1 1_ PEN Q65 PEN Q65 _ PEN Q65 PEN Q65 ITO氣息+丨30°C預熱+ PEN 上之 1.5K 入 92-8 銦氣息(1.5KW+130C預 熱)+PEN 上之 1.5K Λ 92-8 銦氣息+PEN上之92-8 銦氣息+PEN上之92-8 銦氣息+PEN上之Ti02 8(I03-MOCON ID:l619-0002) 9(104-MOCON 1D:1619-0001) ΙΟ(ΡΕΝ-Α) 1 I(PEN-B) j I2(PEN2-A) -49- 1334194 1 1二画 c r- r- &lt; ί T ^ -!l 2 1 ^ c m B £ i 二 _ C —' ON &lt; ON ·&quot;— d ? II r, ii m Λ ^ C cd C2i CSi Ra= 0.9 nm RMS=1.1 nm Rmax = 9.5 nm 見第21A圖 1.38 2.2000E-01 4.4000E-02 低於檢測 低於檢測 低於檢測 8.9032E-02 1.1494E-02 2.8387E-03 ! 低於檢測 低於檢測 低於檢測 125 125 i_ 125 200 200 200 PEN Q65 LEXAN LEXAN 1 PEN Q65 批號 PEN Q65 批號#1 PEN Q65 批號#1 銦氣息+PEN上之Ti02 銦氣息+LEXAN上之 92-8 iiES+LEXAN 92-8 銦氣息(6.15人+5秒 + 130°C 熱)+PEN 上之 I.5K 人 92-8 銦氣息(1.5KW+5秒 + 130°C 熱)+PEN 上之 1.5 K 入 92-8 銦氣息(750KW+5秒 + 130°C 熱)+PEN 上之 1.5 Κ Λ 92-8 I3(PEN2-B) M(LEXAN-A) I5(LEXAN-B) 1 6(6.1 5 A) 17(1.5KW) 1 8(750W)Ra = 2.1 nm RMS = 3.4 nm Rmax = 55.5 nm: see Figure 6C Ra = 3.4 nm RMS = 4.2 nm Rmax = 2.9 nm See Figure 22B B c Z _ r- ON &quot;csj &lt;n CQ inch·寸·II ^ II gg 广璐TO CZ t— η U aL U a ^ SC ^ 囫c Pi &lt; ^ ON II ^ t- II ^ ^ 丨丨g目c moving pi pd. ΰ c 3.8595E-01 4.0145 E-01 L———...... 2.8400E-02 3.7000E-02 1.56 2.4900E-02 2.5900E-02 1.8323E-03 2.3871E-03 1.0065E-01 125 125 &lt;N 125 (N PEN Q65 1 1_ PEN Q65 PEN Q65 _ PEN Q65 PEN Q65 ITO breath + 丨 30 ° C preheating + 1.5K on PEN into 92-8 indium breath (1.5KW + 130C preheating) + 1.5K on PEN Λ 92-8 indium breath 92-8 on PEN Indium breath + 92-8 on PEN Indium breath + Ti02 on PEN 8 (I03-MOCON ID: l619-0002) 9(104-MOCON 1D: 1619-0001) ΙΟ(ΡΕΝ-Α ) 1 I(PEN-B) j I2(PEN2-A) -49- 1334194 1 1 draw c r- r- &lt; ί T ^ -!l 2 1 ^ cm B £ i 二_ C —' ON &lt ; ON ·&quot;- d ? II r, ii m Λ ^ C cd C2i CSi Ra= 0.9 nm RMS=1.1 nm Rmax = 9.5 nm See Figure 21A Figure 1.38 2.2000E-01 4.4000E-02 Below detection below detection Below detection 8.9032E-02 1.1494E-02 2.83 87E-03 ! Below detection below detection is below detection 125 125 i_ 125 200 200 200 PEN Q65 LEXAN LEXAN 1 PEN Q65 Batch number PEN Q65 Lot number #1 PEN Q65 Lot number #1 Indium breath + Ti02 on PEN + LEXAN on LEXAN 92-8 iiES+LEXAN 92-8 Indium breath (6.15 person + 5 seconds + 130 °C heat) + I.5K on PEN 92-8 Indium breath (1.5KW + 5 seconds + 130 °C heat) + 1.5 K on PEN into 92-8 indium breath (750 KW + 5 sec + 130 ° C heat) + 1.5 on PEN Λ 92-8 I3 (PEN2-B) M (LEXAN-A) I5 (LEXAN-B) 1 6 (6.1 5 A) 17 (1.5KW) 1 8 (750W)

-50- 1334194-50- 1334194

E B c ^ Μ c &lt; 二一II 00 —II 〆— ιι i m p i _ s Ξ寸·固 Ξ 寸 &lt; —二 || 竺 丨丨会讓搬 Λ ^ C _τ Ρί m Ra == 1.1 nm RMS=1.4 nm Rmax = 9.4 nm 見第1 8 A圖 Ra = 1 · 1 nm RMS=1.4 nm Rmax = 9.4 nm 見第1 8A圖 E = 5 _ C to 卜 U ^ i ιι ^ ^ II κ — II .5 口 ^滅 p^. ai c 7.9200E-001 6.1900Ε-01 I 8.7300E-01 6.3700E-01 7.7200Ε-01 5.1097E-02 3.9935E-02 5.6323E-002 4.1097E-02 4.9806Ε-02 200 200 200 200 200 PEN Q65 批號#l PEN Q65 批號#1 PEN Q65 批號#1 PEN Q65 批號#1 PEN Q65 批號#1 自蒸發0.037之銦氣息 + H0°C預熱+PEN上之 1.5K 人 92-8 自蒸發0.037之銦氣息 + 130°C預熱+PEN上之 1.5K Λ 92-8 自蒸發0.H3之銦氣息 + 130°C預熱+PEN上之 1.5K Λ 92-8 自蒸發0.Π3之銦氣息 + I30°C預熱+PEN上之 1.5K 人 92-8 無銦氣息+ 130°C預熱 +PEN 上之 1.5K A 92-8 I9(.037-A) 20(.037-13) 21(.1 13-A) 22(.1 13-B) 23(MON-A) -51 - 1334194EB c ^ Μ c &lt; 21 II 00 — II 〆 — ιι impi _ s Ξ · Ξ Ξ & 寸 寸 寸 寸 Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Rmax = 9.4 nm See Fig. 1 8 A Ra = 1 · 1 nm RMS = 1.4 nm Rmax = 9.4 nm See Fig. 1 8A E = 5 _ C to 卜 U ^ i ιι ^ ^ II κ — II . 5 mouth ^ Off p^. ai c 7.9200E-001 6.1900Ε-01 I 8.7300E-01 6.3700E-01 7.7200Ε-01 5.1097E-02 3.9935E-02 5.6323E-002 4.1097E-02 4.9806Ε-02 200 200 200 200 200 PEN Q65 Lot #l PEN Q65 Lot #1 PEN Q65 Lot #1 PEN Q65 Lot #1 PEN Q65 Lot #1 Self-evaporating 0.037 indium breath + H0 °C preheat + 1.5K on PEN 92-8 Evaporation of 0.037 indium breath + 130 ° C preheating + 1.5K on PEN Λ 92-8 Self-evaporation 0.H3 indium breath + 130 ° C preheating + 1.5K on PEN Λ 92-8 Self-evaporation 0. Π 3 Indium breath + I30 ° C preheating + 1.5K on PEN 92-8 without indium breath + 130 ° C preheating + 1.5KA on PEN 92-8 I9 (.037-A) 20 (.037-13 21(.1 13-A) 22(.1 13-B) 23(MON-A) -51 - 1334194

ε c ;· _ S 寸 CQ ——II 00 — 丨丨 x — II §完減 〇d 〇d_ Pi ^ E 1 ^ n c ^ cr\ 〇q ——II 00 — 丨丨 x — II妥2銶 pd β 蛇 p £ 1 f囫 = 寸 CQ —-II 00 —11 X — 1丨妥2減 ζ-ί ρί m Ra = 1.1 nm RMS = 1.4 nm Rmax = 9.4 nm 見第18B圖 Ra= 1. lnm RMS = 1.4 nm Rmax = 9.4 nm 見第〗8B圖 1.2200E-02 1.7800Ε-02 3.0300Ε-02 1.8500E-02 3.4200E-02 7.8710E-04 1.1484Ε-03 1_ 1.98548Ε-03 1.1935E-03 2.2065E-03 200 200 200 200 200 PEN Q65 批號#1 PEN Q65 批號#1 PEN Q65 批號#1 PEN Q65 批號#1 PEN Q65 批號#1 銦氣息@280c+130°C熱 +PEN 上之 j .5K 人 92-8 銦氣息@280c+130°c熱 + PEN 上之 1.5K A 92-8 銦氣息®280c+130°C熱 +PEN 上之 1.5K 人 92-8 銦氣悤@280c+130°C熱 +PEN 上之 1.5K A 92-8 銦氣息@280c+130°c熱 +PEN 上之 1.5K 人 92-8 24 (12-17-03-01-A) 25 (12-17-03-0I-B) ! 26 (I2-17-03-03-A) 27 (12-17-03-03-B) 28 (I2-I7-03-02-A) -52 - 1334194 ρ 1 ^ Β C ^ OS PQ 二 τ 1 Ξ II ^ 1 iRR β β β啤 ;Ra= 1.1 nm RMS=1.4 nm Rmax = 9.4 nm 見第9A和 18D圖 ε = ε c寸·层 c 寸 σ·\ , ―一· π &lt; —II ^ ^ Μ II § 2 锻 Q ^ 5 軾 Ξ Ra= 2.0nm RMS=2.6 nm Rmax = 1 8.0 nm 見第19B和 21B圖 4.2900Ε-02 低於檢测 低於檢測 1.4000E-02 2.7677Ε-03 低於檢測 低於檢測 9.0323E-04 200 200 200 200 PEN Q65 批號#1 . . PEN Q65 批號#1 _1 PEN Q65 批號#2 PEN Q65 批號#2 銦氣悤@280c+13(TC熱 +PEN 上之 1.5K 人 92-8 銦氣悤750W 5秒+ 130 °C預熱+PEN上之1.5K 人 92-8 姻氣息(750W 5秒+丨30 ΤΤ^Ο+ΡΕΝ 上之 1.5K Λ 92-8 銦氣息(750W 5秒+ 130 °C^〇+PEN 上之 1.5K 人 92-8 29 (12-17-032-02- B) 30(165-A) 31(165-13) 32(I67-A) -53- (50)1334194ε c ;· _ S inch CQ ——II 00 — 丨丨x — II § reduction 〇d 〇d_ Pi ^ E 1 ^ nc ^ cr\ 〇q ——II 00 — 丨丨x — II 銶 2銶pd Snake p £ 1 f囫= inch CQ —-II 00 —11 X — 1 丨 2 2 minus ζ — ί ρί m Ra = 1.1 nm RMS = 1.4 nm Rmax = 9.4 nm See Figure 18B Ra = 1. lnm RMS = 1.4 nm Rmax = 9.4 nm See Figure 8B Figure 1.2200E-02 1.7800Ε-02 3.0300Ε-02 1.8500E-02 3.4200E-02 7.8710E-04 1.1484Ε-03 1_ 1.98548Ε-03 1.1935E-03 2.2065 E-03 200 200 200 200 200 PEN Q65 Lot #1 PEN Q65 Lot #1 PEN Q65 Lot #1 PEN Q65 Lot #1 PEN Q65 Lot #1 Indium breath @280c+130°C heat + PEN on j .5K 92-8 Indium breath @280c+130°c heat + 1.5KA on PEN 92-8 Indium breath® 280c+130°C heat + 1.5K on PEN 92-8 Indium gas 280 @280c+130°C heat 1.5KA 92-8 on PEN Indium breath @280c+130°c heat + 1.5K on PEN 92-8 24 (12-17-03-01-A) 25 (12-17-03-0I- B) ! 26 (I2-17-03-03-A) 27 (12-17-03-03-B) 28 (I2-I7-03-02-A) -52 - 1334194 ρ 1 ^ Β C ^ OS PQ 2τ 1 Ξ II ^ 1 iRR β β β beer; Ra = 1.1 nm RMS = 1.4 nm Rmax = 9.4 nm See Fig. 9A and 18D Fig. ε = ε c inch · layer c σ·\ , ―一· π &lt; —II ^ ^ Μ II § 2 Forging Q ^ 5 轼Ξ Ra= 2.0nm RMS=2.6 nm Rmax = 1 8.0 nm See section 19B and 21B Figure 4.2900Ε-02 Below detection below 1.4000E-02 2.7677Ε-03 Below detection below 9.0323E-04 200 200 200 200 PEN Q65 Lot #1 . PEN Q65 Lot #1 _1 PEN Q65 Lot #2 PEN Q65 Lot #2 Indium gas 悤 @280c+13 (1.5K on TC heat + PEN 92-8 Indium gas 悤 750W 5 seconds + 130 °C preheat + PEN On the 1.5K people 92-8 marriage atmosphere (750W 5 seconds + 丨 30 ΤΤ ^ Ο + ΡΕΝ on the 1.5K Λ 92-8 indium breath (750W 5 seconds + 130 °C ^ 〇 + PEN 1.5K people 92 -8 29 (12-17-032-02- B) 30(165-A) 31(165-13) 32(I67-A) -53- (50)1334194

Ra= 2.0nm RMS=2.6 nm Rmax = 1 8.0 nm 見第19B和 21B圖 (N Ο * O 〇 ώ ώ ώ ο O O &lt;Ν m o oi 寸 m Ο ώ m 〇 ώ C^l o 1 tu OS m 寸 卜 〇〇 Ό cs (Ν r &lt; CN ΙΟ (N Ό (Ν (y ^ in VO (N ex V〇 CN c/ ^ ^ 2 z = ω每 Qh Cu Ο 丄 ^ o , m o 二 2 4, a 念一 念' - 念—:一 π ό Sij vo -N ir! 彡丄丨 彡月頓 〇 «7 臣 沄z层 Ρ ω w t IS w S 15 + &quot; 磁 + · 一' ·_九2 戚蟊&amp; m ρ &lt; m p &lt; m p &lt; /-s CO /·—N &lt; /—N CQ 卜 o 卜 O 卜 N—✓ m m V—✓ r〇 '---· ΓΟRa = 2.0 nm RMS = 2.6 nm Rmax = 1 8.0 nm See Figures 19B and 21B (N Ο * O 〇ώ ώ ώ ο OO &lt; Ν mo oi m m Ο ώ m 〇ώ C^lo 1 tu OS m inch 〇〇Ό & cs (Ν r &lt; CN ΙΟ (N Ό (Ν (y ^ in VO (N ex V〇CN c/ ^ ^ 2 z = ω per Qh Cu Ο 丄 ^ o , mo 2 24, a Read a thought' - read -: π ό Sij vo -N ir! 彡丄丨彡月顿〇«7 臣沄z层Ρ ω wt IS w S 15 + &quot; Magnetic + · One' · _9 2 戚蟊& m ρ &lt; mp &lt; mp &lt; /-s CO /·-N &lt; /-N CQ 卜o Bu O Bu N-✓ mm V-✓ r〇'---· ΓΟ

-54 - (51)1334194-54 - (51)1334194

^ Ε □ □ 0.129 0.084 0.194 0.130 π Ο 211.49 230.51 104.03 104.29 19814 22520 I 8123 8996 I-IV [維氏} 1836 2087 753 834 mn-ai2o3 5mN MN-AI2〇3 5mN 10822-1 5mN 808-0YI0822-I 2.5mN^ Ε □ □ 0.129 0.084 0.194 0.130 π Ο 211.49 230.51 104.03 104.29 19814 22520 I 8123 8996 I-IV [Vickers] 1836 2087 753 834 mn-ai2o3 5mN MN-AI2〇3 5mN 10822-1 5mN 808-0YI0822-I 2.5 mN

-55 --55 -

Claims (1)

1334194 拾、申請專利範圍 第9 3 1 1 4493號專利申請案 中文申請專利範圍替換本 民國99年8月30日修正 1 . 一種介電層,包含: 一熱壓縮之非結晶質介電層,以具軟性金屬氣息處理 之脈衝式DC、基底偏壓之物理氣沈積將該介電層沈積在 一基底上, 其中,熱壓縮之非結晶質介電層爲一障壁層。 2. 如申請專利範圍第1項之介電層,其中之沈積是以 一寬廣面積之標的物加以實施的。 3. 如申請專利範圍第1項之介電層,其中之障壁層亦 爲一光學層。 4 .如申請專利範圍第3項之介電層,其中之障壁層包 含一 T i Ο 2 層。 5.如申請專利範圍第3項之介電層,其中之障壁層包 含一礬土 /砂土層。 6 .如申請專利範圍第1項之介電層,其中之軟性金屬 氣息處理爲一銦-錫氣息處理。 7 .如申請專利範圍第1項之介電層,其中之障壁層亦 爲一電氣層。 8.如申請專利範圍第7項之介電層,其中之障壁層包 含一電容性層。 9.如申請專利範圍第8項之介電層,其中之電容性層 1334194 爲一 Ti02層。 10. 如申請專利範圍第8項之介電層,其中之電容性 層爲一礬土 /矽土層。 11. 如申請專利範圍第7項之介電層,其中之障壁層 包含一電性層。 12. 如申請專利範圍第1 1項之介電層,其中之電阻層 爲銦-錫金屬或氧化物。 13. 如申請專利範圍第1項之介電層,其中之障壁層 含一摩擦層。 14. 如申請專利範圍第13項之介電層,其中之摩擦層 爲一 T i Ο 2層。 15. 如申請專利範圍第13項之介電層,其中之摩擦層 爲礬土 /矽土。 1 6.如申請專利範圍第1項之介電層,其中之障壁層 爲一生物學上爲免疫之相容層。 1 7 .如申請專利範圍第1項之介電層,其中,在生物 學上爲免疫之相容層爲Ti02 。 1 8 .如申請專利範圍第1項之介電層,其中介電膜爲 Ti〇2 。 1 9 .如申請專利範圍第1項之介電層,其中,用以形 成介電膜之標的物濃度爲92% A1和8% Si。 20.如申請專利範圍第1項之介電層,其中,用以形 成介電膜標的物是形成自金屬鎂。 2 1.如申請專利範圍第1項之介電層,其中之標的物 -2- 1334194 材料包含選自由 Mg、Ta、Ti、Α1、γ、Zr、Si、Hf、Ba、 S r、N b及其組合所成一族之材料。 22. 如申請專利範圍第21項之介電層,其中之標的物 材料含稀土金屬濃度。 23. 如申請專利範圍第1項之介電層,其中之標的物 材料包含由 Mg、Ta ' Ti、Al' Y、Zr、Si、Hf、Ba、Sr、 Nb及其組合所組成之次氧化物。 24. 如申請專利範圍第1項之介電層,其中之介電膜 可滲透缺陷濃度小於每平方公分約爲1。 25 .如申請專利範圍第1項之介電層,其中之水蒸氣 傳輸率小於約1x10 - 2 gm/ m2/曰。 26. 如申請專利範圍第1項之介電層,其中之光衰減 在一連續薄膜中小於dB / cm。 27. 如申請專利範圍第1項之介電層,其中之障壁層 厚度小於約5 0 0 n m。 28. 如申請專利範圍第27項之介電層,其中之水蒸氣 傳輸率小於約1χ10_ 2 gm / m2/日。 29. 如申請專利範圍第1項之介電層,其中之障壁層 厚度小於約1微米且水蒸氣傳輸率小於約1 X 1 〇 _ 2 gm / m2 /日。 30. 如申請專利範圍第1項之介電層,其中之障壁層 作用爲一薄膜電晶體之閘極氧化物。 31. —種形成一障壁層之方法,包含: 提供一基底; -3- 1334194 在基底上實施一軟性金屬氣息處理;以及 以一脈衝式DC、偏壓、寬廣標的物物理氣相外 序,在基底上沈積一高度熱壓縮、非結晶質、介電# _。 3 2 ·如申請專利範圍第3 1項之方法,其中介電树_胃 形成自一含92% A1和8% Si之標的物。 33.如申請專利範圍第31項之方法,其中介電材料是 形成自一含鈦之標的物。 3 4 ·如申請專利範圍第3 1項之方法,其中介電材料是 形成一標的物材料,該標的物材料含選自由Mg、Ta、Ti 、A1、Y、Zr、Si、Hg、Ba、Sr、Nb及組合所組成一族之 材料。 3 5 ·如申請專利範圍第3 1項之方法,其中之軟性金屬 氣息處理爲一銦/錫氣息處理。1334194 Picking up, applying for patent coverage No. 9 3 1 1 4493 Patent application Chinese patent application scope is replaced by the amendment of the Republic of China on August 30, 1999. 1. A dielectric layer comprising: a thermally compressed amorphous dielectric layer, The dielectric layer is deposited on a substrate by a pulsed DC, substrate biased physical gas deposition with a soft metal atmosphere, wherein the thermally compressed amorphous dielectric layer is a barrier layer. 2. The dielectric layer of claim 1 of the patent application wherein the deposition is carried out with a broad area of the subject matter. 3. The dielectric layer of claim 1 wherein the barrier layer is also an optical layer. 4. The dielectric layer of claim 3, wherein the barrier layer comprises a layer of T i Ο 2 . 5. The dielectric layer of claim 3, wherein the barrier layer comprises a bauxite/sand layer. 6. The dielectric layer of claim 1 wherein the soft metal breath treatment is an indium-tin breath treatment. 7. The dielectric layer of claim 1, wherein the barrier layer is also an electrical layer. 8. The dielectric layer of claim 7, wherein the barrier layer comprises a capacitive layer. 9. The dielectric layer of claim 8 wherein the capacitive layer 1334194 is a Ti02 layer. 10. The dielectric layer of claim 8 wherein the capacitive layer is a bauxite/alumina layer. 11. The dielectric layer of claim 7, wherein the barrier layer comprises an electrical layer. 12. The dielectric layer of claim 11, wherein the resistive layer is an indium-tin metal or oxide. 13. The dielectric layer of claim 1, wherein the barrier layer comprises a friction layer. 14. The dielectric layer of claim 13 wherein the friction layer is a T i Ο 2 layer. 15. For the dielectric layer of claim 13, wherein the friction layer is bauxite/alumina. 1 6. The dielectric layer of claim 1, wherein the barrier layer is a biologically immunocompatible layer. 17. The dielectric layer of claim 1, wherein the biologically immunized compatible layer is Ti02. 18. The dielectric layer of claim 1, wherein the dielectric film is Ti〇2. The dielectric layer of claim 1, wherein the concentration of the target material for forming the dielectric film is 92% A1 and 8% Si. 20. The dielectric layer of claim 1, wherein the material used to form the dielectric film is formed from magnesium metal. 2 1. The dielectric layer of claim 1, wherein the target material - 2334404 material comprises selected from the group consisting of Mg, Ta, Ti, Α1, γ, Zr, Si, Hf, Ba, S r, N b And the combination of materials into a family. 22. The dielectric layer of claim 21, wherein the target material contains a rare earth metal concentration. 23. The dielectric layer of claim 1 wherein the target material comprises a secondary oxidation consisting of Mg, Ta ' Ti, Al' Y, Zr, Si, Hf, Ba, Sr, Nb, and combinations thereof. Things. 24. The dielectric layer of claim 1 wherein the dielectric film has a permeable defect concentration of less than about 1 per square centimeter. 25. The dielectric layer of claim 1, wherein the water vapor transmission rate is less than about 1 x 10 - 2 gm / m2 / Torr. 26. The dielectric layer of claim 1 wherein the light attenuation is less than dB/cm in a continuous film. 27. The dielectric layer of claim 1, wherein the barrier layer has a thickness of less than about 50,000 nm. 28. The dielectric layer of claim 27, wherein the water vapor transmission rate is less than about 1 χ 10 _ 2 gm / m 2 /day. 29. The dielectric layer of claim 1, wherein the barrier layer has a thickness of less than about 1 micron and a water vapor transmission rate of less than about 1 X 1 〇 _ 2 gm / m 2 /day. 30. The dielectric layer of claim 1, wherein the barrier layer functions as a gate oxide of a thin film transistor. 31. A method of forming a barrier layer comprising: providing a substrate; -3- 1334194 performing a soft metal tempering treatment on the substrate; and using a pulsed DC, bias, broad-scale physical vapor sequence, A highly thermally compressed, amorphous, dielectric # _ is deposited on the substrate. 3 2 The method of claim 31, wherein the dielectric tree _ stomach is formed from a target containing 92% of A1 and 8% of Si. 33. The method of claim 31, wherein the dielectric material is formed from a titanium-containing target. 3. The method of claim 31, wherein the dielectric material is a target material selected from the group consisting of Mg, Ta, Ti, A1, Y, Zr, Si, Hg, Ba, Sr, Nb, and a combination of materials. 3 5 · The method of claim 31, wherein the soft metal breath treatment is an indium/tin breath treatment.
TW93114493A 2003-09-25 2004-05-21 Dielectric barrier layer films TWI334194B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US50612803P 2003-09-25 2003-09-25

Publications (2)

Publication Number Publication Date
TW200512872A TW200512872A (en) 2005-04-01
TWI334194B true TWI334194B (en) 2010-12-01

Family

ID=44209816

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93114493A TWI334194B (en) 2003-09-25 2004-05-21 Dielectric barrier layer films

Country Status (1)

Country Link
TW (1) TWI334194B (en)

Also Published As

Publication number Publication date
TW200512872A (en) 2005-04-01

Similar Documents

Publication Publication Date Title
US7262131B2 (en) Dielectric barrier layer films
US8137594B2 (en) Zinc oxide thin film, transparent conductive film and display device using the same
US7238628B2 (en) Energy conversion and storage films and devices by physical vapor deposition of titanium and titanium oxides and sub-oxides
JP3090979B2 (en) Thin film laminated device with substrate and method of manufacturing the same
US20060285213A1 (en) Light transmitting substrate with transparent conductive film
JP2011241481A (en) Dielectric-layer-coated substrate, and process and installation for producing the same
US20100092747A1 (en) Infrared-reflecting films and method for making the same
JPWO2003045115A1 (en) EL element
Subramanyam et al. Optimization of sputtered AZO thin films for device application
JP3918721B2 (en) Transparent conductive thin film, its production method and sintered compact target for production, organic electroluminescence element and its production method
TWI334194B (en) Dielectric barrier layer films
Boltz Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides
US6316055B1 (en) Near-room temperature thermal chemical vapor deposition of oxide films
US20120107491A1 (en) High Permittivity Transparent Films
JP4114398B2 (en) Manufacturing method of substrate with ITO film
TW200428491A (en) A dielectric barrier film
WO2001022499A1 (en) Zirconia-containing transparent and conducting oxides
US11891687B2 (en) Transparent conductor materials with enhanced near infrared properties and methods of forming thereof
JP2005302469A (en) Conductive substrate
Sivaramakrishnan Zinc Oxide Transparent Thin Films For Optoelectronics
Kim et al. Optical and Structural Properties of Tantalum-Oxide Thin Films Prepared by Using Reactive DC Magnetron Sputtering with Ar and O2 Mixed-Gas Ion-Beam Assistance
JP2024051198A (en) Crystallized coating thin film and its manufacturing method, as well as optical laminate and display, lens, and article including the same
KR20190004642A (en) Method for manufacturing Optical device
YQ Optical and electrical properties of Y2O3 thin films prepared by ion beam assisted deposition
JP2004325952A (en) Translucent thin film and manufacturing method therefor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees