TWI334069B - Methods, systems, articles of manufacture, and stabilization modules for stabilizing an amplifier - Google Patents

Methods, systems, articles of manufacture, and stabilization modules for stabilizing an amplifier Download PDF

Info

Publication number
TWI334069B
TWI334069B TW93123712A TW93123712A TWI334069B TW I334069 B TWI334069 B TW I334069B TW 93123712 A TW93123712 A TW 93123712A TW 93123712 A TW93123712 A TW 93123712A TW I334069 B TWI334069 B TW I334069B
Authority
TW
Taiwan
Prior art keywords
loop control
signal
input signal
module
input
Prior art date
Application number
TW93123712A
Other languages
Chinese (zh)
Other versions
TW200606611A (en
Inventor
Jake O Deem
Dan Thuringer
Original Assignee
Mks Instr Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mks Instr Inc filed Critical Mks Instr Inc
Priority to TW93123712A priority Critical patent/TWI334069B/en
Publication of TW200606611A publication Critical patent/TW200606611A/en
Application granted granted Critical
Publication of TWI334069B publication Critical patent/TWI334069B/en

Links

Description

1334069 正替換頁; 九、發明說明: 【發明所屬之技術領域】 本發明大致有關於用於穩定化一放大器之方法與系統。 更明確而言,本發明有關使用供穩定化該放大器的開迴路 與閉迴路控制系統組合之方法與系統。 【先前技術】 典型上,一磁共振影像(嫩1}系統使用一射頻㈣放大器 以驅動位在MRI系統的—主要磁鐵結構中的射頻線圈。射 頻放大器可接受當作輸人的由—外部射頻來源所產生的— 連串脈衝’並產生當作輸出增加電源的一連串脈衝。射頻 放大器的輸出能用來驅動射頻線圈。 當要求改善的景彡像品質時’ f要較高的泰斯拉(Tesia)磁 鐵’迫使較大射頻放大器輸出電力。然而,提供一較大輪 出電力會在系統内導致射頻放大器增益非線性與相位非線 性;結果,會在MRI影像造成失真。 【發明内容】 本發明提供用於穩定化一放大器之方法與系統。典型 上’二法與系統能穩定化使用在—聰系統的—脈衝射頻 放大器。然而,本發明的古,土豳么μ & 的方法與糸統亦能用來穩定使用在 其他系統的放大哭。你丨& ., /ΗΗ °。例如’他們可用來穩定-脈衝射頻雷 達放大器。 在本發明的—具體實施例’本發明的-料化模組結合 用於穩定化—放大器的硬體與軟體m模組包括-開 迴路控制系統與一閉迴路控制系統。 95151-990811.doc 19¾. %.% 在一脈衝開始使用一閉迴路控制系統易造成不穩定(例 如,閉迴路控制系統的增益與相位參數可能驅動到他們最 大或最小值)。因此,本發明的具體實施例是在一脈衝的開 始上使用開迴路控制系統以使放大器敎。開迴路控制系 統能透過例如使用由穩定化模組接收的—輸人信號的輸入 電源而使放大器敎。只I解決放Aii,閉迴路控制系統 便可用來進一步穩定放大器。 在一些具體實施例中,本發明的系統與方法使用改善開 迴路控制系統效率的-校準常式H具體實施例中, 校準常式能根據閉迴路控制系統先前產生的輸出而產生由 開迴路控制系統使用的輸出。校準常式藉此允許開迴路控 制系統學習閉迴路控❹統。結果,開迴路控制系統的效 率可隨時間改善。 在一觀點中,本發明通常包括用於穩定化一放大器之方 法。該方法包括四個步驟。-步驟是提供能與放大器電溝 通的-穩定化模組,並包括一開迴路控制系統與一閉迴路 控制系統。另一步驟是使用該開迴路控制系統以修改由稃 定化模組接收輸入信號的至少一特性,並將控制傳遞給閉 迴路控制系H步驟是使用閉迴路控⑽統以修改該 輸入信號的至少一特性。最後步驟是將修改的輸入信號提 供給放大器。 在本發明的此觀點的 ^ 1^4 1 ,千別 /乂 * 的至少一特性是輸入信號的一振鴨、或輸入信號的 位。在-具體實施例中’當輸入信號的一輸入電源超 95151-99081 l.doi °位準時’便可使用開迴路控制系統。在另一具體實施 中在輸入k號的一輸入電源超過一臨界位準期間的一 預定時段使用開迴路控制系統後,便使用閉迴路控制系 統。在一具體實施例的閉迴路控制系統中的濾波器是根據 開迴路控制系統的輸出而經由開迴路控制系統初始化。 在些具體貫施例中’輸入信號的一輸入電源可測量。 在些此具體實施例中,開迴路控制系統可用來根據輸入 電源而修改輸入信號的至少一特性。在一此具體實施例 中’開迴路控制系統能根據在對應輸入電源的一查閱表中 的值而修改輸入信號的至少一特性。查閱表可根據閉迴路 控制系統的輸出而更新。在一些此具體實施例中,在輸入 4。號與代表放大器的一輸出信號的回授信號之間的一第一 誤差、與在輸入信號與回授信號之間的一第二誤差亦可測 量。在一此具體實施例中的閉迴路控制系統可用來根據輸 入電源、第一誤差、與第二誤差而修改輸入信號的至少一 特性。在另一此具體實施例中,閉迴路控制系統可調整第 一誤差與第二誤差。 在一些具體實施例中,閉迴路控制系統說明由穩定化模 組所導致至少一非線性。在其他具體實施例中,開迴路控 制系統說明由穩定化模組所導致的至少一非線性。在—此 具體實施例中,放大器是一磁共振影像系統的一脈衝射頻 放大器。 在另一觀點中’本發明通常包括使用在一穩定化模組以 使一放大器穩定之系統。該系統包括一第一控制模組與一 95151-990811.doc 1334069 第二控制模組。第-控龍組能料執行三個功能7^ 收一第一信ε,其代表由穩定化模組接收的 入信號; ⑻產生-第二信號,其透過使用—開迴路控制常式而修改 輸入信號的-第-特性;與⑷傳送一第三信號,其可用來 將控制傳遞給第二控制模組。第二控制模組是用以產生一 第四信號’其透過使用-閉迴路控制常式而修改輸入信號 的第一特性。1334069 Positive replacement page; IX. Description of the invention: TECHNICAL FIELD OF THE INVENTION The present invention generally relates to a method and system for stabilizing an amplifier. More specifically, the present invention relates to methods and systems for using an open loop and closed loop control system for stabilizing the amplifier. [Prior Art] Typically, a magnetic resonance image (nen 1) system uses a radio frequency (four) amplifier to drive a radio frequency coil in the main magnet structure of the MRI system. The radio frequency amplifier can be accepted as an input - external radio frequency The source produces a series of pulses' and produces a series of pulses that are used as an output to increase the power supply. The output of the RF amplifier can be used to drive the RF coil. When it is required to improve the image quality, 'f is higher Tesla ( Tesia) magnets 'force large RF amplifiers to output power. However, providing a large round of power can cause RF amplifier gain nonlinearity and phase nonlinearity within the system; as a result, distortion can be caused in the MRI image. A method and system for stabilizing an amplifier is provided. Typically, the 'two methods and systems can be stabilized using a pulsed RF amplifier in the Cong system. However, the method and the method of the present invention for the ancient and earthy μ & The system can also be used to stabilize the use of amplification in other systems to cry. You 丨 & ., /ΗΗ °. For example 'they can be used to stabilize - pulse RF In the embodiment of the present invention, the materialization module of the present invention incorporates a hardware and software module for a stabilization-amplifier, including an open loop control system and a closed loop control system. 990811.doc 193⁄4. %.% The use of a closed loop control system at the beginning of a pulse is prone to instability (eg, the gain and phase parameters of a closed loop control system may be driven to their maximum or minimum values). Therefore, the specifics of the present invention An embodiment uses an open loop control system at the beginning of a pulse to cause the amplifier to be turned on. The open loop control system can cause the amplifier to be turned on, for example, by using an input power source that receives the input signal from the stabilization module. Aii, a closed loop control system can be used to further stabilize the amplifier. In some embodiments, the system and method of the present invention uses a calibration routine H that improves the efficiency of the open loop control system. In a specific embodiment, the calibration routine can be closed. The previously generated output of the loop control system produces the output used by the open loop control system. The calibration routine allows for open loop control. The system learns closed loop control systems. As a result, the efficiency of the open loop control system can improve over time. In one aspect, the invention generally includes a method for stabilizing an amplifier. The method includes four steps. a stabilizing module capable of electrically communicating with the amplifier, and including an open loop control system and a closed loop control system. Another step is to use the open loop control system to modify at least one of the input signals received by the calibration module The characteristic, and the control is passed to the closed loop control system H. The closed loop control (10) system is used to modify at least one characteristic of the input signal. The final step is to provide the modified input signal to the amplifier. 1^4 1 , at least one characteristic of the thousand/乂* is the one of the input signal, or the input signal. In the specific embodiment, the open loop control system can be used when an input power source of the input signal exceeds 95151-99081 l.doi °. In another embodiment, the closed loop control system is used after the open loop control system is used for a predetermined period of time during which an input power source of k is over a critical level. The filter in a closed loop control system of an embodiment is initialized via an open loop control system based on the output of the open loop control system. In some embodiments, an input power source of the input signal is measurable. In some such embodiments, the open loop control system can be used to modify at least one characteristic of the input signal based on the input power source. In an embodiment of the present invention, the open loop control system can modify at least one characteristic of the input signal based on a value in a lookup table corresponding to the input power source. The lookup table can be updated based on the output of the closed loop control system. In some such embodiments, input 4 is entered. A first error between the number and the feedback signal representing an output signal of the amplifier, and a second error between the input signal and the feedback signal can also be measured. The closed loop control system in one embodiment can be used to modify at least one characteristic of the input signal based on the input power source, the first error, and the second error. In another such embodiment, the closed loop control system can adjust the first error and the second error. In some embodiments, the closed loop control system illustrates at least one non-linearity caused by the stabilized module. In other embodiments, the open loop control system illustrates at least one non-linearity caused by the stabilization module. In this particular embodiment, the amplifier is a pulsed RF amplifier of a magnetic resonance imaging system. In another aspect, the invention generally includes a system that uses a stabilizing module to stabilize an amplifier. The system includes a first control module and a second control module of 95151-990811.doc 1334069. The first-control dragon group can perform three functions 7^ to receive a first letter ε, which represents an incoming signal received by the stabilization module; (8) generate a second signal, which is modified by using an open-loop control routine The -first characteristic of the input signal; and (4) a third signal that can be used to pass control to the second control module. The second control module is for generating a fourth signal 'which modifies the first characteristic of the input signal by using a closed loop control routine.

在本發明的此觀點的一些具體實施例中, 組可判斷輸入信號的一輸入電源是否超過_ 該第一控制模 臨界位準,並 產生第二信號,以當輸入電源超過臨界位準時,其透過使 用開迴路控制常式而修改輸入信號的第一特性。在一些具 體實施例中 該第一控制模組可判斷第 一控制模組是否於 輸入信號的一輸入電源超過一臨界位準期間的一預定時段 使用開迴路控制常式。在一些此具體實施例中,當符合前 述標準時,第一控制模組便能傳送第三信號。在第二控制In some embodiments of this aspect of the present invention, the group can determine whether an input power of the input signal exceeds the first control mode threshold level and generate a second signal to when the input power source exceeds a critical level. The first characteristic of the input signal is modified by using an open loop control routine. In some embodiments, the first control module can determine whether the first control module uses the open loop control routine for a predetermined period of time during which an input power of the input signal exceeds a critical level. In some such embodiments, the first control module can transmit a third signal when the foregoing criteria are met. In the second control

模、、且包括;慮波器的具體實施例,系統可進一步包括一校準 模組’用以產生將濾波器初始化的登錄。在—此具體實施 例中,第一控制模組能使用該等登錄將在第二控制模組的 據波益初始化。 在一些具體實施例中,第一控制模組能產生一第五信 號’其透過使用開迴路控制常式而修改輸入信號的一第二 特性,且第二控制模組能產生一第六信號,其透過使用閉 迴路控制常式而修改輸入信號的第二特性。在—些相關具 體實施例中,系統包括用於產生下列值的一校準模組:一 95151-99081 l.doc 1334069 W變頁1 • * 第值,其代表修改輸入信號的第一特性量;與一第二值, 其代表修改輸入信號的第二特性量。第一值與第二值是由 第一控制模組使用。在一具體實施例中,第一控制模組可 使用該第一值以產生第二信號,並使用第二值以產生第五 信號。在一相關具體實施例中,校準模組可根據第二控制 模組的輸出而更新第一值與第二值。在仍然另一具體實施 例中,該校準模組能產生第一值與第二值,以說明由穩定 化模組所導致的至少一非線性。 在一些具體實施例中,輸入信號的第一特性是輸入信號 的一振幅,且輸入信號的第二特性是輸入信號的一相位。 在仍然進一步具體實施例中,第二控制模組能產生第四信 號,以說明由穩定化模組所導致的一非線性,且第二控制 模組可接收一第一誤差信號與一第二誤差信號,並調整該 第一誤差信號與該第二誤差信號,以補償在該第一誤差信 號與該第二誤差信號呈現的一非線性。在仍然是其他具體 實施例中,第一控制模組說明於產生第二信號中由穩定化 模組所導致的一非線性。 在仍然另一觀點中,本發明通常的特徵為一製造物件能 與一穩定化模組一起使用以供穩定化一放大器。該物件包 括接收、產生與傳送裝置,用以接收一第一信號,其代表 由穩定化模組接收的一輸入信號;用以產生一第二信號, 其透過使用一開迴路控制常式而修改輸入信號的特性;與 用以傳送一第三信號,其可用來將控制傳遞給一第二控制 模組。該物件亦包括產生裝置,用以產生一第四信號其 95151-9908ll.doc -9- 1334069 透過使用一閉迴路控制常式而修改輸入信號的特性。 • 在仍然另一觀點中,本發明有關用於穩定化一放大器之 方法。該方法包括二個步驟。一步驟能使用一穩定化模組 . 接收一輸入信號,其中該穩定化模組包括一開迴路控制系 : ,统與-閉迴路控制系統。另—步驟能使開迴路控制系統以 修改輸入信號的一相位,及減少放大器的一相位非線性, 並將控制傳遞給閉迴路控制系統。另—步驟是從使用開迴 φ 路控制系統轉變成使用閉迴路控制系統,以修改輸入信號 的相位’並減少放大器的相位非線性。 在本發明此觀點的一具體實施例中,該方法包括在輸入 信號的一輸入電源超過一臨界位準期間的一預定時段使用 開迴路控制系統後轉變。在另一具體實施例中,該方法進 ,一步包括使用開迴路控制系統,以根據開迴路控制系統的 一輸出而將在閉迴路控制系統的一濾波器初始化。 在一進一步觀點中,本發明通常包括用以穩定化一放大 • 器之穩定化模組。該穩定化模組包括—第一控制模組與一 第二控制模組。第-控制模組是用以執行三個功能:⑷接 收一第一信號,其代表由穩定化模組接收的一輸入信號; (b)產生一第二信號,其透過使用一開迴路控制常式將輸入 ,信號的一相位修改而減少放大器的一相位非線性;與(c)傳 送一第三信號,其可用來將控制傳遞給—第二控制模組。 第二控制模組能用於產生一第四信號,其透過使用一閉迴 路控制常式修改輸入信號的相位以減少放大器的一相位# 線性。 95151-990811.doc 【實施方式】 圖^根據本發明說明具體實施㈣述用於穩卜放大器 的方法。方法H)0可透過一穩定化模組實施其中該穩定化 輪組能與放大n電溝通’並包括—開迴路控㈣統與一閉 迴路控㈣統。在圖!的描述方法中,—輸人信號屬性可測 置(步驟UM)’開迴路控制系統可絲修改由穩定化模組接 收—輸人信號的至少-特性(步驟1G8),只要能滿足一個或 夕個控制參數(步驟112),閉迴路控制系統便能將控制傳遞 •、。(步驟116),且閉迴路控制系統可用來修改輸人信號的至 少—特性(步驟120^在使用開迴路控制系統(步驟1〇8)期間 =使闕迴路控㈣統(步驟120)期間,修改的輸入信號 能提供給放大器。方法100可透過穩定化模組而開始接收一 脈衝輸入k唬,並在一脈衝的每個分開階段上重複。方法 可例如實施將一 MRI▲統的放大器穩定。 步驟104是一輸入信號的屬性測量。在一具體實施例中, 屬性疋輸入信號的輸入電源。在另一具體實施例中,屬性 疋輸入k號的電壓位準。在仍然另一具體實施例中,屬性 疋輸入仏號的電流。在一具體實施例中,屬性可透過在穩 定化模組中的一元件而測量。 在步驟108_ ’開迴路控制系統可用來修改輸入信號的至 )一特性。例如,在圖i方法的一具體實施例中,開迴路控 制系統是在步驟108修改輸入信號的振幅。在另一具體實施 例中’開迴路控制系統是在步驟1 〇8修改輸入信號的相位。 在仍然另一具體實施例中,開迴路控制系統是在步驟108 95151-990811.doc |fe^4日,乎替換頁 修改輪入信號的振幅與相位。, · 丄開迴路控制系統可根據輸入信號的測量屬性而修改輸入 处°)υ的至夕一特性。在—具體實施例中,開迴路控制系統 使用由測1屬性編索引的—查閱表,以修改至少一特 眭例如,在一具體實施例中,測量的屬性是輸入信號的 輸入電源,至少一特性是振幅,且查閱表可確認改變每一 輸入電源位準的振幅量。如下面詳述,修改的輸入信號然 後由開迴路控制系統提供給放大器以將放大器穩定。 在步驟112中,一個或多個控制參數可被檢查以判斷是否 j合於開迴路控制系統將控制傳遞給到閉迴路控制系統。 田滿足一個或多個控制參數時,開迴路控制系統可將控制 傳遞給在步驟116的閉迴路控制系統。另一方面,當未滿足 控制參數時,能使用開迴路控制系統(步驟丨〇8)。在一具體 只轭例中,一控制參數是一計數器值。在另一具體實施例 中,一控制參數是一過去的時間週期。在仍然是另一具體 實轭例中,一控制參數是輸入信號的振幅。在一特殊具體 實施例中,開迴路控制系統能檢查控制參數。或者,閉迴 路控制系統或另一元件能檢查控制參數。 在步驟116中,開迴路控制系統可將控制傳遞給閉迴路控 制系統。在一具體實施例中,下面將詳細描述開迴路控制 系統將閉迴路控制系統初始化以供使用。 在閉迴路控制系統傳遞控制之後,閉迴路控制系統便可 用來修改輸入信號的至少一特性(步驟12〇) ^閉迴路控制系 統可接收代表放大器輸出信號的一回授信號。在各種不同 95151-990811.doc 1334069 具體貫施例中 修改的至少一特性是輸入信號的振幅及/或 相位。在一些具體實施例中,閉迴路控制系統可測量在輸 入信號與回授信號之間的一第一誤差。在_些此具體實施 例中,閉迴路控制系統亦可測量在輪入信號與回授信號之 間的第二誤差。在這些具體實施例中,閉迴路控制系統可 根據輸入電源、第一誤差、與第二誤差而修改輸入信號的 至少一特性。然後在步驟120,閉迴路控制系統將修改的輸 入信號提供給放大器以將放大器穩定。 在各種不同具體實施例中,閉迴路控制系統包括一個或 多個濾波器,以用來判斷如何修改輸入信號的至少一特 性。在一具體實施例中,一濾波器可用來判斷用來修改輸 入信號振幅的一適當輸出。在另一具體實施例中,一濾波 益可用來判斷用來修改輸入信號相位的一適當輸出。在— 具體實施例中,如A.j. Viterbi文獻中的描述,第二階濾波 器能使用在閉迴路控制系統。在其他具體實施例中,閉迴 路控制系統能使用任何其他類型的濾波器,包括(但是未侷 限於)一比例積分濾波器 '與一比例積分導出濾波器。在一 具體實施例中,一濾波器包括一個或多個積分器。請即重 新參考步驟116 ’閉迴路控制系統能透過根據開迴路控制系 統的輸出將濾波器(或更明確而言,積分器)初始化而在一些 具體實施例中透過開迴路控制系統而初始化。 圖2是根據本發明用於穩定一放大器的方法2〇〇流程圖。 相較於在圖1描述的方法100,圖2描述的方法200包括三個 額外步驟。特別是,圖2描述的方法可判斷是否滿足使用開 95151-990811.doc 13 ί334〇69 ^ I Ι·| L41曰/严替換頁 迴路控制系統的標準(步驟106)、判斷是否滿足持續使用閉 迴路控制系統的標準(步驟1 24)、與更新開迴路控制參數(步 ' 驟 128)。一般而言,圖 2的步驟 104、108、112、116、與 120 是類似圖1使用相同編號的步驟,且能以一類似方式實施。 : 當一穩定化模組接收一輸入信號時,圖2的方法便開始。 輪入彳§號可例如來自一外部脈衝射頻源。在步驟丨〇4中,測 量輸入信號的一屬性。 φ 在步驟106中,判斷是否能滿足使用開迴路控制系統的一 個或多個標準。在一具體實施例中,步驟i 〇6是由開迴路控 制系統本身執行。在其他具體實施例中,在穩定化模組中 的另一元件可執行步驟1〇6。在一些具體實施例中,一標準 • 疋對應輸入信號的測量屬性。例如’在一此具體實施例中, 當輸入信號的輸入電源超過一臨界位準時,開迴路控制系 統能在步驟108使用。另一方面,如果輪入信號的輸入電源 低於在具體實施例中的臨界位準,開迴路控制系統便不能 ^ 使用’且輸入信號的輸入電源為在步驟104重新測量。在輸 入k號的輸入電源升高超過臨界位準前,步驟1〇4會重複。 在具體實施例中,用來判斷是否使用開迴路控制系統的一 標準為放大器是否主動。超過一標準可考慮以判斷是否使 用開迴路控制系統。 « 在步驟108中,開迴路控制系統可用來修改輸入信號的特 性,並將與特性有關的一放大器非線性減少。因此,在一 特殊具體貫施例中,開迴路控制系統能在步驟i 〇8初始化使 用,以修改輸入信號的相位,並將放大器的一相位非線性 95151-990811.doc -14 - 丄The modulo, and including; a particular embodiment of the filter, the system can further include a calibration module </ RTI> for generating a login to initialize the filter. In this embodiment, the first control module can use the logins to initialize the data benefits of the second control module. In some embodiments, the first control module can generate a fifth signal that modifies a second characteristic of the input signal by using an open loop control routine, and the second control module can generate a sixth signal. It modifies the second characteristic of the input signal by using a closed loop control routine. In some related embodiments, the system includes a calibration module for generating the following values: a 95151-99081 l.doc 1334069 W variable page 1 • a first value representing a first characteristic amount of the modified input signal; And a second value representing a second characteristic amount of the modified input signal. The first value and the second value are used by the first control module. In a specific embodiment, the first control module can use the first value to generate a second signal and the second value to generate a fifth signal. In a related embodiment, the calibration module can update the first value and the second value according to the output of the second control module. In still another embodiment, the calibration module can generate a first value and a second value to account for at least one non-linearity caused by the stabilization module. In some embodiments, the first characteristic of the input signal is an amplitude of the input signal and the second characteristic of the input signal is a phase of the input signal. In still further embodiments, the second control module can generate a fourth signal to illustrate a nonlinearity caused by the stabilization module, and the second control module can receive a first error signal and a second And erroring the first error signal and the second error signal to compensate for a nonlinearity exhibited by the first error signal and the second error signal. In still other embodiments, the first control module illustrates a non-linearity caused by the stabilization module in generating the second signal. In still another aspect, the present invention is generally characterized in that a manufactured article can be used with a stabilizing module for stabilizing an amplifier. The object includes receiving, generating and transmitting means for receiving a first signal representative of an input signal received by the stabilization module; for generating a second signal, which is modified by using an open loop control routine The characteristics of the input signal are used to transmit a third signal that can be used to pass control to a second control module. The object also includes generating means for generating a fourth signal. 95151-9908ll.doc -9- 1334069 modifies the characteristics of the input signal by using a closed loop control routine. • In still another aspect, the invention relates to a method for stabilizing an amplifier. The method comprises two steps. In one step, a stabilization module can be used. An input signal is received, wherein the stabilization module includes an open loop control system: a system and a closed loop control system. Alternatively, the open loop control system can modify a phase of the input signal and reduce one phase non-linearity of the amplifier and pass control to the closed loop control system. The other step is to change from using the open-back φ-path control system to using a closed-loop control system to modify the phase of the input signal and reduce the phase nonlinearity of the amplifier. In a specific embodiment of this aspect of the invention, the method includes transitioning using an open loop control system for a predetermined period of time during which an input power source of the input signal exceeds a critical level. In another embodiment, the method further comprises using an open loop control system to initialize a filter in the closed loop control system in accordance with an output of the open loop control system. In a further aspect, the invention generally includes a stabilization module for stabilizing an amplifier. The stabilization module includes a first control module and a second control module. The first control module is configured to perform three functions: (4) receiving a first signal representative of an input signal received by the stabilization module; (b) generating a second signal that is controlled by using an open loop The input is modified, one phase of the signal is modified to reduce one phase non-linearity of the amplifier; and (c) a third signal is transmitted, which can be used to pass control to the second control module. The second control module can be used to generate a fourth signal that modifies the phase of the input signal by using a closed loop control routine to reduce one phase # linearity of the amplifier. 95151-990811.doc [Embodiment] FIG. 2 illustrates a method for stabilizing an amplifier according to the present invention. The method H)0 can be implemented by a stabilization module in which the stabilization wheel set can communicate with the amplification n and includes an open loop control (four) system and a closed loop control (four) system. In the picture! In the description method, the input signal attribute can be measured (step UM) 'the open loop control system can modify the at least-characteristic of the input-input signal by the stabilization module (step 1G8), as long as one or With a control parameter (step 112), the closed loop control system can pass control to . (Step 116), and the closed loop control system can be used to modify at least the characteristics of the input signal (step 120^ during the use of the open loop control system (step 1 〇 8) = during the loop control (four) system (step 120), The modified input signal can be provided to the amplifier. The method 100 can begin receiving a pulse input k唬 through the stabilization module and repeating at each separate stage of the pulse. The method can, for example, be implemented to stabilize an amplifier of an MRI system. Step 104 is an attribute measurement of an input signal. In one embodiment, the attribute is an input power source of the input signal. In another embodiment, the attribute 疋 is input to the voltage level of k. In still another implementation In the example, the attribute 疋 enters the current of the apostrophe. In a specific embodiment, the attribute can be measured by a component in the stabilization module. In step 108_ 'the open loop control system can be used to modify the input signal to a characteristic. For example, in one embodiment of the method of Figure i, the open loop control system modifies the amplitude of the input signal at step 108. In another embodiment, the 'open loop control system' modifies the phase of the input signal at step 1 〇8. In still another embodiment, the open loop control system is modified in step 108 95151-990811.doc |fe^4, the replacement page modifies the amplitude and phase of the wheeled signal. , · The open loop control system can modify the characteristics of the input ° ° 根据 according to the measured properties of the input signal. In a particular embodiment, the open loop control system uses a lookup table indexed by the metric 1 attribute to modify at least one feature. For example, in one embodiment, the measured attribute is an input power to the input signal, at least one The characteristic is the amplitude, and the look-up table confirms the amount of amplitude that changes each input power level. As detailed below, the modified input signal is then provided to the amplifier by an open loop control system to stabilize the amplifier. In step 112, one or more control parameters may be checked to determine if j is coupled to the open loop control system to communicate control to the closed loop control system. When the field meets one or more of the control parameters, the open loop control system can pass control to the closed loop control system at step 116. On the other hand, when the control parameters are not satisfied, the open loop control system can be used (step 丨〇 8). In a specific yoke example, a control parameter is a counter value. In another embodiment, a control parameter is a past time period. In still another specific embodiment, a control parameter is the amplitude of the input signal. In a particular embodiment, the open loop control system can check control parameters. Alternatively, the closed loop control system or another component can check the control parameters. In step 116, the open loop control system can pass control to the closed loop control system. In a specific embodiment, the open loop control system will be described in detail below for initializing the closed loop control system for use. After the closed loop control system passes control, the closed loop control system can be used to modify at least one characteristic of the input signal (step 12). The closed loop control system can receive a feedback signal representative of the amplifier output signal. At least one characteristic modified in the various embodiments of the various embodiments is the amplitude and/or phase of the input signal. In some embodiments, the closed loop control system can measure a first error between the input signal and the feedback signal. In some such embodiments, the closed loop control system may also measure a second error between the wheeled signal and the feedback signal. In these embodiments, the closed loop control system can modify at least one characteristic of the input signal based on the input power source, the first error, and the second error. Then at step 120, the closed loop control system provides the modified input signal to the amplifier to stabilize the amplifier. In various embodiments, the closed loop control system includes one or more filters for determining how to modify at least one characteristic of the input signal. In one embodiment, a filter can be used to determine an appropriate output for modifying the amplitude of the input signal. In another embodiment, a filter can be used to determine an appropriate output for modifying the phase of the input signal. In a specific embodiment, the second order filter can be used in a closed loop control system as described in the A.j. Viterbi literature. In other embodiments, the closed loop control system can use any other type of filter, including (but not limited to) a proportional integral filter 'and a proportional integral derived filter. In a specific embodiment, a filter includes one or more integrators. Please refer to step 116. The closed loop control system can be initialized by the open loop control system in some embodiments by initializing the filter (or more specifically, the integrator) according to the output of the open loop control system. 2 is a flow chart of a method 2 for stabilizing an amplifier in accordance with the present invention. The method 200 depicted in FIG. 2 includes three additional steps as compared to the method 100 depicted in FIG. In particular, the method described in FIG. 2 can determine whether the standard of the page loop control system is replaced (step 106) using the open 95151-990811.doc 13 ί334〇69 ^ I Ι·| L41曰/ strict replacement, and whether the continuous use is closed is determined. The standard of the loop control system (step 1 24), and update the open loop control parameters (step 'b). In general, steps 104, 108, 112, 116, and 120 of Figure 2 are steps similar to those of Figure 1 and can be implemented in a similar manner. : When a stabilization module receives an input signal, the method of Figure 2 begins. The wheel 彳 § can be derived, for example, from an external pulsed RF source. In step 丨〇4, an attribute of the input signal is measured. φ In step 106, it is determined whether one or more criteria for using the open loop control system can be met. In a specific embodiment, step i 〇 6 is performed by the open loop control system itself. In other embodiments, another component in the stabilization module can perform steps 1〇6. In some embodiments, a standard • 疋 corresponds to the measured properties of the input signal. For example, in one embodiment, the open loop control system can be used at step 108 when the input power to the input signal exceeds a critical level. On the other hand, if the input power to the turn-in signal is lower than the critical level in the specific embodiment, the open-loop control system cannot use 'and the input power to the input signal is re-measured at step 104. Step 1〇4 will be repeated before the input power supply of k is raised above the critical level. In a particular embodiment, one criterion for determining whether to use an open loop control system is whether the amplifier is active. More than one criterion can be considered to determine whether to use an open loop control system. « In step 108, the open loop control system can be used to modify the characteristics of the input signal and to reduce the nonlinearity of an amplifier associated with the characteristic. Therefore, in a specific embodiment, the open loop control system can be initialized in step i 〇 8 to modify the phase of the input signal and to nonlinearize one phase of the amplifier 95151-990811.doc -14 - 丄

^ κ « '^。此步驟能以類似圖i的步驟108描述的方式實施。 在步驟112中,判斷是否從使用開迴路控制系統轉變成使 用閉迴路控制系統的。在一具體實施例中,例如,在開迴 路控制系統用於一輸入信號的輸入電源超過一臨界位準期 吞的預疋時段之後,轉變便發生。如果在步驟丨12能滿足 “準,閉迴路控制系統便在步驟u 6傳遞控制。在一具體實 施例中’開迴路控㈣統將閉迴路控制系統初純以供使 用°初始化認為是部份從使關迴路控㈣統轉變成使用 閉迴路控制系統。 在步驟120中,閉迴路控制系統可用來修改輸入信號的特 並將與特性有關的一放大器的非線性減少。在一具體 實施例中,例如,閉迴路控制系統能修改輸入信號的一相 位,並將放大器的一相位非線性減少。 在y驟124中,判斷疋否滿足連續使用閉迴路控制系統的 標準。在—些具體實施例中,判斷可透過考慮輸入信號的 測量屬性而達成。例如,在—具體實施例中,當輸入信號 的輸入電源超過—臨界位準時,閉迴路控制系統便12〇持續 使用。另-方面’在此具體實施例令,如果輸入信號的輸 入電源低於臨界值,便残用閉迴路控㈣統,並執行步 驟1〇6。在其他具體實施例中,其他標準可擇擇性或額外由 穩定化模組制,以騎是㈣·關迴路控制系統。 例如,^特殊具體實施财,如下面進—步討論,除了 輸^㈣輸入電源之外’玫大器是否主動可考慮判斷是 否使用閉迴路控制系統。 9515I-990811.doc -15- 1334069 日”替換頁i 在步驟128中,在圖2描述的本發明具體實施例,開.迴路 控制參數會被更新。在下面圖6詳細描述的具體實施例中, 一板準常式可執行更新由開迴路控制系統使用的一查閱 表。在一此具體實施例中’校準常式能根據閉迴路控制系 統的輸出而更新查閱表。 圖3疋根據本發明的說明具體實施例而描述使用於穩定 化一放大器的一穩定化模組系統3〇(^系統3〇〇包括一第一 控制模組304與一第二控制模組3〇8。在一具體實施例中, 第一控制模組304與第二控制模組3〇8的每一者能以一軟體 程式實施。或者,在另一具體實施例中,第一控制模組儿4 及/或第二控制模組3〇8能以—個或多個硬體裝置實施。在 一具體貫施例中,第—控制模組3〇4使用一開迴路控制常 式,且第二控制模組使用一閉迴路控制常式。在一具體實 施例中,硬體裝置是一應用特殊積體電路(asic)。在另一 具體實施例中’硬體裝置是一場可程式規劃閘陣列 (FPGA)。在其他具體實施例中,可使用另一類型的硬體裝 置。 ’ 系統300的第一控制模組3〇4能用於執行三個功能:接 收第一彳§唬3 12 ’該第一信號表示透過穩定化模組接收的 一輸入信號;(b)產生一第二信號316,透過使用開迴路控制 常式能使該第二信號用來修改輸入信號的一第—特性;與 (c)傳送一第三信號32〇,該第三信號可用來將控制傳遞給第 二控制模組308。系統則的第二控制模組则能用於產生一 第四信號324’透過使用閉迴路控制常式以使該第四信號用 95151-990811.doc I334069___ *••5^—— *· &gt;«__丨 - 來修改輸入信號的第一特性。 在一些具體實施例中,第一控制模組能產生如下面進一 步描述的第二信號3 1 6,以說明穩定化模組所引用的一非線 性。在一些具體貫施例中,第二控制模組3〇8能產生下面進 一步描述的第四信號324,以說明由穩定化模組硬體所引用 的一非線性。 在一些具體實施例中,第一控制模組3〇4能產生第五信號 336’透過使用開迴路控制常式使該第五信號用來修改輸入 #號的一第二特性。在一相關具體實施例中,第二控制模 組308此產生一第六#號340,透過使用閉迴路控制常式而 使該第六信號用來修改輸入信號的第二特性。 在一具體實施例中,一第一控制器376能用來修改輸入信 號的第一特性。在另一具體實施例中,一第二控制器38〇 能用來修改輸入信號的第二特性。 在一些具體實施例中,輸入信號的第一特性是輸入信號 的一振幅,且輸入信號的第二特性是輸入信號的一相位。 在另-具體實施例中,輸入信號的第一特性是輸入信號的 一相位,且輸入信號的第二特性是輸入信號的一振幅。 在些具體貫施例中,第一控制模組3 04包括一轉變邏輯 模,、且3 3 2在—些此具體實施例中,轉變邏輯模組3 3 2可檢 查一個或多個標準,並判斷是否使用開迴路控制常式。在 一此具體實施例中,轉變邏輯模組332可判斷放大器是否主 動。在另一此具體實施例中,轉變邏輯模組332可判斷輸入 信號的輸入電源328是否超過一臨界位準。如果超過,第一 95151-990811.doc -17· 1334069 ίϊι 日产正替換頁♦丨 =制模組綱便能使關迴路控財式產生,第二信號316 -用來修改輸入信號的第一特性。在一些此具體實施例 中,轉變邏輯模組332可檢查—個或多個標準,並判斷控制 是否傳遞給第二控制模組3〇8。在—此具體實施例中,㈣ 邏輯模組刺判斷第一控制模組3〇4是否在輸入信號的輸 入電源328超過一臨界位準期間的一預定週期時間使用開 迴路控制常式。如果如此,第—控制模組州將第三信號咖 傳送給第二控制模組308。 在-進-步具體實施例中,第二控制模組3〇8能接收代表 由穩定化模組所接收一輪入信號的信號346、與一個或多個 誤差信號344與348。在-此具體實施例中的—誤差信號代 表在穩定化模組接收的輸入信號與表示一放大器輸出信號 的-回授信號之間的-振幅誤差。在另—此具體實施例 中’ 一誤差信號表示在輸入信號與回授信號之間的一相位 誤差。在一具體實施例中,第二控制模組3〇8可調整一個或 多個誤差信號344與348,以補償下面進一步描述在一第一 誤差信號及/或在一第二誤差信號中呈現的一非線性。 在一些具體實施例中,第二控制模組3〇8包括一轉變邏輯 模組356。在一些此具體實施例中,轉變邏輯模組356能檢 查—個或多個標準’並判斷是否使用閉迴路控制常式,或 是否經由一連接352而將控制傳遞給第一控制模組3〇4。在 一此具體實靶例中,轉變邏輯模組356可判斷放大器是否主 動。在另一此具體實施例中,轉變邏輯模組可判斷輸入 信號的輸入電源328是否超過一臨界位準。如果否定,第二 95151-990811.doc -18- 1334069^ κ « '^. This step can be implemented in a manner similar to that described in step 108 of Figure i. In step 112, it is determined whether or not to switch from using the open loop control system to using the closed loop control system. In one embodiment, for example, a transition occurs after the open loop control system is used for an input power supply of an input signal that exceeds a critical level of the expected period of time. If the step 丨12 can satisfy the "quasi-closed loop control system, the control is transferred at step u 6. In a specific embodiment, the open loop control (four) system will be closed to the initial control system for use. The transition loop control (four) system is converted to use a closed loop control system. In step 120, the closed loop control system can be used to modify the characteristics of the input signal and to reduce the nonlinearity of an amplifier associated with the characteristic. In a particular embodiment For example, a closed loop control system can modify one phase of the input signal and reduce one phase of the amplifier non-linearly. In step 124, it is determined whether the criteria for continuous use of the closed loop control system are met. The determination can be made by considering the measurement properties of the input signal. For example, in a specific embodiment, when the input power of the input signal exceeds the critical level, the closed loop control system continues to be used. In this embodiment, if the input power of the input signal is below the threshold, the closed loop control (4) is disabled, and step 1〇6 is performed. In other specific embodiments, other standards may be optional or additionally implemented by a stabilizing module to ride (4) a closed loop control system. For example, ^ special implementation, as discussed below, except for the input (4) In addition to the input power source, whether the laser device is actively or not can be considered to determine whether to use the closed loop control system. 9515I-990811.doc -15- 1334069 DAY "Replacement page i" In step 128, the specific embodiment of the present invention described in FIG. The loop control parameters will be updated. In the specific embodiment described in detail below in Figure 6, a plate quasi-executable can perform an update of a look-up table used by the open loop control system. In a particular embodiment, the 'calibration routine' can update the lookup table based on the output of the closed loop control system. 3A illustrates a stabilization module system for stabilizing an amplifier according to an illustrative embodiment of the present invention. The system 3 includes a first control module 304 and a second control module 3. In a specific embodiment, each of the first control module 304 and the second control module 3〇8 can be implemented in a software program. Or, in another embodiment, the first control mode The group 4 and/or the second control module 3〇8 can be implemented by one or more hardware devices. In a specific embodiment, the first control module 3〇4 uses an open loop control routine. And the second control module uses a closed loop control routine. In one embodiment, the hardware device is an application specific integrated circuit (asic). In another embodiment, the hardware device is a programmable device. A gate array (FPGA) is planned. In other embodiments, another type of hardware device can be used. The first control module 3〇4 of system 300 can be used to perform three functions: receiving the first 彳§唬3 12 'The first signal represents an input signal received through the stabilization module; (b) Generating a second signal 316, the second signal can be used to modify a first characteristic of the input signal by using an open loop control routine; and (c) transmitting a third signal 32 〇, the third signal can be used to Control is passed to the second control module 308. The second control module of the system can be used to generate a fourth signal 324' by using a closed loop control routine to make the fourth signal 95151-990811.doc I334069___ * ••5^——*·&gt;«__丨- to modify the first characteristic of the input signal. In some embodiments, the first control module can generate a second signal 3 1 6 as described further below. To illustrate a non-linearity referenced by the stabilizing module. In some embodiments, the second control module 3〇8 can generate a fourth signal 324 as described further below to illustrate the hardware of the stabilizing module. A non-linearity is referenced. In some embodiments, the first control module 〇4 can generate a fifth signal 336' by using an open loop control routine to cause the fifth signal to be used to modify a second of the input ## Characteristic. In a related embodiment, the second control The module 308 generates a sixth # 340, which is used to modify the second characteristic of the input signal by using a closed loop control routine. In a specific embodiment, a first controller 376 can be used. To modify the first characteristic of the input signal. In another embodiment, a second controller 38 can be used to modify the second characteristic of the input signal. In some embodiments, the first characteristic of the input signal is an input. An amplitude of the signal, and the second characteristic of the input signal is a phase of the input signal. In another embodiment, the first characteristic of the input signal is a phase of the input signal and the second characteristic of the input signal is an input signal In a specific embodiment, the first control module 408 includes a transition logic mode, and the 332 is in some embodiments, the transition logic module 323 can check one or Multiple criteria and determine whether to use the open loop control routine. In one embodiment, transition logic module 332 can determine if the amplifier is active. In another such embodiment, the transition logic module 332 can determine if the input power source 328 of the input signal exceeds a critical level. If it exceeds, the first 95151-990811.doc -17· 1334069 ίϊι Nissan is replacing the page ♦ 丨 = system module can make the loop control, the second signal 316 - used to modify the first characteristic of the input signal . In some such embodiments, the transition logic module 332 can check one or more criteria and determine if control is passed to the second control module 3〇8. In this embodiment, the (iv) logic module determines whether the first control module 3〇4 uses the open loop control routine for a predetermined period of time during which the input power supply 328 of the input signal exceeds a critical level. If so, the first control module state transmits the third signal coffee to the second control module 308. In a further embodiment, the second control module 3A can receive a signal 346 representative of a round-in signal received by the stabilization module, and one or more error signals 344 and 348. The error signal in this embodiment represents the amplitude error between the input signal received by the stabilization module and the feedback signal representing an amplifier output signal. In another embodiment, an error signal represents a phase error between the input signal and the feedback signal. In a specific embodiment, the second control module 〇8 can adjust one or more error signals 344 and 348 to compensate for further presentation in a first error signal and/or in a second error signal as further described below. A nonlinearity. In some embodiments, the second control module 〇8 includes a transition logic module 356. In some such embodiments, the transition logic module 356 can check one or more criteria 'and determine whether to use the closed loop control routine, or whether to pass control to the first control module 3 via a connection 352. 4. In this specific implementation, the transition logic module 356 can determine if the amplifier is active. In another such embodiment, the transition logic module can determine if the input power source 328 of the input signal exceeds a critical level. If negative, second 95151-990811.doc -18- 1334069

γ— 一1 I 5 麵! • --'---- -·*· ' ----- τ-f _ 控制模組3 0 8將經由連接3 5 2而將控制傳遞給第—控制模組 304 ° 在另一具體實施例中,系統300包括一校準模組36〇。校 準模組3 6 0能以一軟體程式實施,並能使用一校準常式。或 者’在另一具體實施例中’校準模組360能以一硬體裝置實 施。在一具體實施例中,硬體裝置是一 ASIC。在另一具體 實施例中’硬體裝置是一 FPGA。在其他具體實施例中,能 使用另一類型的硬體裝置。 在一具體實施例中,校準模組360能產生登錄,用以將第 二控制模組308使用的一個或多個濾波器初始化。第一控制 模組304然後經由一連接364而從校準模組360取回登錄,並 使用登錄以透過轉變邏輯模組332而將在第二控制模組3〇8 的一個或多個濾波器初始化。 在另一具體實施例中,校準模組360能產生代表修改輸入 信號的第一特性量的一第一值、及產生代表修改輸入信號 的第二特性量的一第二值。第一控制模組3〇4能經由連接 3 64而取回第一值,並從校準模組36〇取回第二值。第一控 制模組304能使用第一值產生第二信號3 16,並使用第二值 產生第五信號336。 在另一具體實施例中,校準模組36〇能根據經由一連接 368而從第二控制模組3〇8接收的輸出而更新第一值與第二 值。在一進一步具體實施例中,校準模組36〇能使用一演算 法而產生第一值與第二值,以如下面進一步描述說明穩定 化模組硬體所引起的至少一非線性。在一進一步具體實施 95151-990811.doc -19· 1334069 例中校準模組3 6〇能經由一連接$ 72而從第— 接收資料。 UX日抒聲— 控制模組304 圖4是根據本發明的說明具體實施例而描述用以穩定化 -放大n4〇4的m模組彻。在顯示的說明具體實施 例中’能與放大器4()4電溝通的穩定化模組4⑽包括硬體與 軟體的組合。軟體是在處理器408上執行。 穩疋化核組400能在一預放大器416上從一外部電源(例γ - one 1 I 5 face! • --'---- -·*· ' ----- τ-f _ control module 3 0 8 will pass control to the first control module 304 via connection 3 5 2 In an embodiment, system 300 includes a calibration module 36A. The calibration module 360 can be implemented in a software program and can use a calibration routine. Alternatively, in another embodiment, the calibration module 360 can be implemented in a hardware device. In a specific embodiment, the hardware device is an ASIC. In another embodiment, the hardware device is an FPGA. In other embodiments, another type of hardware device can be used. In one embodiment, the calibration module 360 can generate a login to initialize one or more filters used by the second control module 308. The first control module 304 then retrieves the login from the calibration module 360 via a connection 364 and uses the login to initialize one or more filters in the second control module 3〇8 through the transition logic module 332. . In another embodiment, the calibration module 360 can generate a first value representative of the first characteristic amount of the modified input signal and a second value representative of the second characteristic amount of the modified input signal. The first control module 3〇4 can retrieve the first value via connection 3 64 and retrieve the second value from calibration module 36. The first control module 304 can generate the second signal 3 16 using the first value and the fifth signal 336 using the second value. In another embodiment, the calibration module 36 can update the first value and the second value based on the output received from the second control module 〇8 via a connection 368. In a further embodiment, the calibration module 36 can generate a first value and a second value using an algorithm to account for at least one non-linearity caused by the stabilization module hardware as further described below. In a further embodiment, 95151-990811.doc -19. 1334069, the calibration module can receive data from the first via a connection of $72. UX 抒 — - Control Module 304 Figure 4 is a diagram showing the m-module used to stabilize-enlarge n4〇4 in accordance with an illustrative embodiment of the present invention. The stabilizing module 4 (10), which is in electrical communication with the amplifier 4() 4, in the illustrated embodiment, includes a combination of hardware and software. The software is executed on processor 408. The stabilized core group 400 can be from an external power supply on a preamplifier 416 (eg,

如’一電源供應器)接收輪入信號412。在—具體實施射, 輸入信號412是一脈衝射頻輸入信號。-方向耦合器418然 後將預先擴大輸入信號412取樣。一第一取樣42〇是輸入一 誤差放大器424,而-第二取樣428是輸入一第一控制器心 與-第二控制器436。在一具體實施例中,第一控制器⑽ 是一增益控制器,其可用來修改輸入信號412的一振幅。在 另一具體實施例中,第二控制器436是一相位移器,其可用 來修改輸入信號412的-相位。如下述,一修改的輸又信號 44〇能透過第一控制器432與第二控制器436輸出,並輸入放 大器404。 在一具體實施例中,放大器4〇4是一脈衝射頻放大器。在 另一具體實施例中,放大器4〇4是使用在一 MRI系統。代表 放大器404輸出信號448的一回授信號444亦是輸入誤差放 大窃424。在一具體實施例中,誤差放大器包括對數中頻 (LOG IF)放大器426,用以放大第一取樣42〇與回授信號 444。誤差放大器424能產生_第一誤差信號452與一第二誤 差仏號45 6。在一具體貫施例中,第一誤差信號452/第二誤 95151-990811.doc -20- 1334069 差“號456是代表在輸入信號412與回授信號444之間的一 振幅誤差。在另一具體實施例中,第一誤差信號452/第二 誤差信號456是代表在輸入信號412與回授信號444之間的 一相位誤差。 在一具體實施例中,穩定化模組4〇〇包括三個類比/數位 (A/D)轉換器460。類比/數位轉換器能將代表輸入信號412 .的一第一信號464、第一誤差信號452、與第二誤差信號456 的數位表示輸入處理器4〇8。處理器權可執行信號處理以 產生控制信號以輸出給數位/類比(D/A)轉換器468。在一具 體實施例中,處理器彻包括第一控制模組3〇4、第二控制 杈組308、與校準模組36〇。在一具體實施例中,處理器可 執仃第一控制模組304以實施一開迴路控制常式。在又一具 體實施例中’處理器可執行第二控制模組則以實施一閉迴 路控制。在仍然、另—具體實施例中’包括轉換器 彻、處理器彻、與D/A轉換器彻的數位控制系統能整個 透過一類比控制系統取代。或者,數位控制系統只部份由 一類比控制系統取代。 在八體實施例中,當處理器4〇8實施開迴路控制常式 時’第-控制模組304便產生可用來修改輸入信號412的一 第-特性之第一信號472、與用來修改輸入信號412的一第 特性之第_ k號476。在另一具體實施例中,當處理器實 =閉、路控制以時,第二控制模組则便產生可用來修改 輸入信號412的第一特性篦产%”。 h 之第叫吕谠472、與用來修改輸入 ^412的第二特性之第二信號㈣。在-具體實施例中, 95151-99081I.doc -21 - 1334069 怒奸替換頁j 輸入信號412的第一特性是輸入信.號412的振幅,且輪入信 號412的第二特性是輸入信號412的相位。 在一具體實施例中,D/A轉換器468能將信號472與476的 類比表示分別輸入控制器432與436。在一具體實施例中, 弟一控制器432使用第一信號472的類比表示來修改輸入信 號的振幅’藉此減少放大器404的一振幅非線性。在另一具 體實施例中’第二控制器436使用第二信號476的類比表示 來修改輸入信號的相位,藉此將放大器4〇4的相位非線性減 少。如前述’修改的輸入信號440然後提供給放大器4〇4。 圖5描述包括一開迴路控制常式6〇〇與一閉迴路控制常式 700的一軟體常式500具體實施例。在—具體實施例中,開 迴路控制常式600是透過第一控制模組3〇4執行。在另一具 體實施例中,閉迴路控制常式7〇〇是透過第二控制模組3〇8 執灯。在一具體實施例中,當輸入信號先透過穩定化模組 (例如,當例如電源供應器的外部電源先啟動)接收時,軟體 常式500預設使用開迴路控制常式6〇〇。 在步驟604 ’開迴路控制常式儀能擁取穩定化模組接收 輪入七號的輸入電源。在步驟6〇8,開迴路常式6〇〇然後判 斷使用此開3S路控制常式6〇〇的標準是否能滿足判斷放大 器使是為主動(即致朴且輸人信號的輸人電源是否超過一 第£»界值如果放大器致能,且輸入信號的輸入電源超 過該第δ»界值’開迴路控制常式_便在步驟⑴上增量 開迴路計數器。 在步驟616,開迴路控制常式_可輪出至少一信號,以 95151-990811.doc •22· 1334069 1Λ 曰替換頁 用來修改輸入信號的至少一特性。在一具體實施例中,開 迴路控制常式_可輸出兩個信號,—信號可用來修改輸入 信號的-振幅’且另一信號可用來修改輸入信號的一相 位二在^-具體實施例中,開迴路控制常式繼只能輸出兩 個刖述45#υ之-。在-具體實施例中開迴路控制常式6⑼ 可使用透過例如下面圖6討論的—校準常式建立的一查閱 表’以產生待輸出的至少—作缺 . j A j王^ ^ ^。在此一具體實施例申的 查閱表可透過輸人信號的輸人電源編索引。根據在步驟_ 所擷取輸人信號的輸人電源,開迴路控制常式_可查閱一 對應的表值。該值可例如指示在步驟-透過開迴路控制常 式600輸出的信號電流或電壓。開迴路控制常式_是在步 驟6i6輸出此一信號。在另一具體實施例中開迴路控制常 式副❹如下面圖6討論的—校準常式建立的—查閱陣列 以產生待輸出的至少-信號。在此一具體實施例的查閱陣 列是:過輸入信號的輸入電源編索引。根據在步驟6〇4擷取 輸入信號的輸入電源,開迴路控制常式6〇〇可查閱一對應的 表登錄。登錄可例如指示修改輸入信號的振幅與相位量。 在此一具體實施例中,開迴路控制常式6〇〇可執行在步驟 720由下述閉迴路控制常式7〇〇執行的相同演算法,以調整 穩定化模組的硬體所招致的一非線性量登錄。開迴路控= 常式600然後使用調整的登錄以產生在步驟616輪出的:少 一信號。 在根據圖5的具體實施例中,開迴路控制常式6〇〇能在+ 膝620透過將資料寫人-校準陣列而將資料輪出給^準^ 95151-990811.doc •23· 1334069The turn-in signal 412 is received as a 'power supply'. In the specific implementation, the input signal 412 is a pulsed RF input signal. The directional coupler 418 then samples the pre-amplified input signal 412. A first sample 42A is input to an error amplifier 424, and a second sample 428 is input to a first controller core and a second controller 436. In one embodiment, the first controller (10) is a gain controller that can be used to modify an amplitude of the input signal 412. In another embodiment, the second controller 436 is a phase shifter that can be used to modify the -phase of the input signal 412. As described below, a modified input signal 44 can be output through the first controller 432 and the second controller 436 and input to the amplifier 404. In a specific embodiment, amplifier 4〇4 is a pulsed RF amplifier. In another embodiment, the amplifier 4〇4 is used in an MRI system. A feedback signal 444 representing the output signal 448 of the amplifier 404 is also an input error thief 424. In one embodiment, the error amplifier includes a logarithmic intermediate frequency (LOG IF) amplifier 426 for amplifying the first sample 42 〇 and the feedback signal 444. Error amplifier 424 is capable of generating a first error signal 452 and a second error signal 456. In a specific embodiment, the first error signal 452 / second error 95151 - 990811. doc -20 - 1334069 difference "number 456 represents an amplitude error between the input signal 412 and the feedback signal 444. In one embodiment, the first error signal 452 / the second error signal 456 represent a phase error between the input signal 412 and the feedback signal 444. In a specific embodiment, the stabilization module 4 includes Three analog/digital (A/D) converters 460. The analog/digital converter can input a digital representation of a first signal 464, a first error signal 452, and a second error signal 456 representing the input signal 412. The processor 4 can perform signal processing to generate a control signal for output to a digital/analog ratio (D/A) converter 468. In a specific embodiment, the processor includes the first control module 3〇4 The second control group 308 is coupled to the calibration module 36. In one embodiment, the processor can execute the first control module 304 to implement an open loop control routine. In yet another embodiment The processor can execute the second control module to implement a closed loop control In still, another embodiment, the digital control system including the converter, the processor, and the D/A converter can be completely replaced by a analog control system. Alternatively, the digital control system is only partially The analog control system is substituted. In the eight-body embodiment, when the processor 4〇8 implements the open loop control routine, the first control module 304 generates a first signal 472 that can be used to modify a first characteristic of the input signal 412. And a _k number 476 for modifying a first characteristic of the input signal 412. In another embodiment, when the processor is real = closed, the second control module is generated to be modified The first characteristic of the input signal 412 is %. The first signal of h is called Lu Wei 472, and the second signal (4) for modifying the second characteristic of the input ^412. In a particular embodiment, 95151-99081I.doc -21 - 1334069 anger replacement page j The first characteristic of input signal 412 is the amplitude of input signal 412, and the second characteristic of round signal 412 is input signal 412. The phase. In one embodiment, D/A converter 468 can input analogy representations of signals 472 and 476 to controllers 432 and 436, respectively. In one embodiment, the first controller 432 uses the analogy of the first signal 472 to modify the amplitude of the input signal' thereby reducing an amplitude nonlinearity of the amplifier 404. In another embodiment, the second controller 436 uses the analogy representation of the second signal 476 to modify the phase of the input signal, thereby reducing the phase non-linearity of the amplifier 4〇4. The modified input signal 440 as previously described is then provided to amplifier 4〇4. FIG. 5 depicts a software embodiment 500 that includes an open loop control routine 6 〇〇 and a closed loop control routine 700. In a particular embodiment, the open loop control routine 600 is executed by the first control module 3〇4. In another embodiment, the closed loop control routine 7 is operated by the second control module 3〇8. In one embodiment, when the input signal is first received through the stabilization module (e.g., when an external power source such as a power supply is first activated), the software routine 500 is preset to use the open loop control routine. In step 604', the open loop control routine can support the stabilization module to receive the input power of the seventh. In step 6〇8, open circuit routine 6〇〇 and then judge whether the standard of using this open 3S way control routine 6〇〇 can satisfy the judgment that the amplifier is active (ie, whether the input power of the signal and the input signal is If the amplifier is enabled and the input power of the input signal exceeds the δ»limit value' open loop control routine, the loop counter is incremented in step (1). In step 616, the open loop control The routine_ can rotate at least one signal to 95151-990811.doc • 22· 1334069 1Λ 曰 the replacement page is used to modify at least one characteristic of the input signal. In a specific embodiment, the open loop control routine _ can output two Signals, the signal can be used to modify the -amplitude of the input signal and the other signal can be used to modify one phase of the input signal. In the specific embodiment, the open loop control routine can only output two statements 45#. In the specific embodiment, the open loop control routine 6(9) may use a lookup table created by a calibration routine such as discussed in Figure 6 below to generate at least one to be outputted. j A j王^ ^ ^. In this specific implementation The reference table of the application can be indexed by the input power source of the input signal. According to the input power source of the input signal obtained in step _, the open circuit control routine _ can refer to a corresponding table value. The value can be indicated, for example. In step - the signal current or voltage output by the open loop control routine 600. The open loop control routine _ is outputting this signal in step 6i6. In another embodiment, the open loop control routine is as shown in Figure 6 below. The discussion - established by the calibration routine - refers to the array to generate at least the signal to be output. The look-up array of this embodiment is: the input power of the over-input signal is indexed. The input signal is retrieved according to step 6〇4 The input power supply, the open loop control routine can refer to a corresponding table login. The login can, for example, indicate the amplitude and phase amount of the modified input signal. In this embodiment, the open loop control routine can be used. Executing the same algorithm executed by the closed loop control routine 7 at step 720 to adjust a non-linear amount of registration caused by the hardware of the stabilization module. Open loop control = routine 600 then The adjusted registration is used to generate the one that is rotated in step 616: a lesser signal. In the particular embodiment according to Fig. 5, the open loop control routine 6 can be written at + knee 620 by writing the data to the calibration array. The information is rounded to ^准^ 95151-990811.doc •23· 1334069

彘〜日ff替換頁I 式。最低限度,在此具體實施例的開迴路控制常式600能將 一開迴路模式旗號輸出給校準常式。在一具體實施例中, 開迴路控制常式600亦將輸入信號的输入電源輸出給校準 常式。在另一具體實施例中,開迴路計數器的值是透過開 迴路控制常式600輸出給校準常式。彘~Day ff replaces page I. At a minimum, the open loop control routine 600 of this embodiment can output an open loop mode flag to the calibration routine. In one embodiment, the open loop control routine 600 also outputs the input power to the input signal to the calibration routine. In another embodiment, the value of the open loop counter is output to the calibration routine via open loop control routine 600.

在步驟624,開迴路控制常式600能判斷開迴路計數器是 否大於一第二臨界值。如果肯定,開迴路控制常式600便執 行步驟628。否則,開迴路控制常式600便執行步驟632,其 中在開迴路控制常式600在步驟604重新擷取輸入信號的輸 入電源前,開迴路常式600的執行會暫時延遲。At step 624, the open loop control routine 600 can determine if the open loop counter is greater than a second threshold. If so, the open loop control routine 600 performs step 628. Otherwise, the open loop control routine 600 performs step 632, in which the execution of the open loop routine 600 is temporarily delayed until the open loop control routine 600 retakes the input power of the input signal at step 604.

步驟624的第二臨界值與在步驟632呈現的延遲可確保在 步驟628將控制傳遞給開迴路控制常式600前,閉迴路控制 常式700可於一最小時間週期執行。結果,在軟體常式500 從開迴路常式600傳送給閉迴路常式700前,提供放大器能 有一段時間穩定。在一具體實施例中,步驟624的第二臨界 值是可調整的。在另一具體實施例中,步驟632呈現的延遲 是可調整。 請即重新參考步驟608,如果放大器是不主動,或輸入信 號的電源位準低於一第一臨界值,開迴路控制常式600便執 行步驟636。在步驟636,開迴路控制常式600可判斷開迴路 計數器是否大於0。如果不是,開迴路控制常式600便前進 到步驟632。如果肯定,開迴路控制常式600便執行步驟 640。在步驟640,開迴路控制常式能輸出至少一信號,以 用來修改輸入信號的至少一特性。在一具體實施例中,此 95151-990811.doc • 24· 1334069 正替換 年月曰 99. ^ 1 能透過使用前面步驟616討論的查閱表達成。 在低輸入電源位準上,多數放大器是線性行為。在一具 體貝施例中,步驟608的第一臨界值位準的選擇是鑑於第一 臨界值位準的選擇,使得放大器在低於選擇第一臨界值位 準的輸入電源位準會是線性行為。在此一方式中,只要輸 入4§號的實際輸入電源低於第一臨界值,它便與在步驟64〇 輸出至少一信號無關。因此,不管它實際值的輸入信號的 輸入電源低於第一臨界值的相同至少一信號能在步驟 輸出。結果,步驟640只需要單一時間執行。為了要確保此 情況’開迴路計數器需在步驟644清除。 請即從新參考步驟628,在開迴路控制常式6〇〇判斷它於 輸入信號的輸入電源超過第一臨界位準期間的一預定時段 執行(即是,因為開迴路控制常式6〇〇始終從步驟6〇8執行到 步驟612,所以步驟604、6〇8、612、616、62〇、624、與 μ] 將持續執行)’開迴路控制常式6〇〇能將控制傳遞給閉迴路 控制常式700。在一具體實施例中,開迴路控制常式6〇〇是 在步驟628將濾波器初始化以在步驟716由使用如下圖6描 述透過校準常式產生登錄的閉迴路控制常式7〇〇使用。登錄 是對應在步驟616由開迴路常式最後輸出的一個或多個信 號。在此-方式’閉迴路控制常式會在開迴路控制常切 止的相同設定值上執行。在一具體實施例中一登錄代表 增加或減少輸入信號振幅量。在另一具體實施例中,登錄 代表改變輸人信號相位量。在一具體實施例中,登錄是由 校準常式儲存在例如一個或多個查閱陣列。這些陣列是透 95151-9908 Jl.doc -25- 1334069 過輸入信號的輸人電源編索引。_,根據在步雜4棟取 的輸入信號的輸人電源,開迴路控制常式6⑽可查閱及使用 由校準常式產生的登錄’以將閉迴路控制常式7〇〇的濾波器 初始化。 : 在開迴路控制常式_將控制傳遞給閉迴路控制常式700 後’在步驟732會有延遲。在—具體實施例中,在步驟m 的延遲週期是可調^在步驟732的延遲之後,閉迴路控制 常式700便在步驟7〇4擷取複數個信號。在一具體實施例 中,這些信號包括輸入信號的輸入電源、在輸入信號與代 表放大器輸出信號的一回授信號之間的第一誤差、與在輸 入信號與回授信號間的第二誤差。在一此具體實施例中, 第一誤差是在輸入信號與回授信號間的一振幅誤差,且第 二誤差是在輸入信號與回授信號間的相位誤差。 在步驟708,閉迴路常式7〇〇可判斷是否滿足使用閉迴路 控制常式700的一個或多個標準。在一具體實施例中,閉迴 • 路控制常式700可判斷放大器是否主動(即是,致能或非無 作用),且可輸入信號的輸入電源是否超過一臨界值。如果 能滿足標準,閉迴路控制常式7〇〇便執行步驟712。如果未 能滿足,軟體常式500便回到開迴路控制常式6〇〇,並在步 .驟604擷取輸入信號的輸入電源。在一具體實施例中,使用 在閉迴路控制常式7〇〇的臨界值小於使用在開迴路控制常 式600的第一臨界值,以允許一磁滞現象位準,及避免軟體 常式500在開迴路控制常式6〇〇與閉迴路控制常式7〇〇間的 切換。使用在閉迴路控制常式700的第一臨界值與第二臨界 95151-9908II.doc •26- 1334069 \ —撕丨 值相等,且輸入信號的輪入電源略改變有關這些臨界值, 軟體常式500便在開迴路控制常式6〇〇與閉迴路控制常式 700間切換。 …、38此技者了解到,穩定化模組使用的硬體以產生代表 第一誤差及/或第二誤差的信號將會是缺點。因此,硬體將 超過或低於第一誤差及/或第二誤差的實際值。事實上,硬 體“ V致來自輪入號的每一輸入電源位準的第一誤差及 /或第二誤差實際值的一可預測變化。因此,在一具體實施 例t,閉迴路控制常式能在步驟712透過穩定化模組硬體調 整在步驟704提供的第一誤差與第二誤差測量。在一具體實 細例中閉迴路控制常式700是在步驟712使用透過輸入信 號的輸入電源位準編索引的_查詢圖。對於每一輸入電源 位準而言,查詢圖列出預期超過或未超過的第一誤差及/或 第二誤差實際值。彡過將預期肖過或未超過量加入硬體提 供的第誤差及/或第二錯誤測量,閉迴路控制常式7〇〇因 此可取得第一誤差及/或第二誤差的實際值。 只要閉迴路控制常式700在步驟712適當調整第一誤差及 /或第一决差,閉迴路控制常式便能在步驟716決定修改輸 入佗號的至少一特性的至少一量。例如,在一具體實施例 中^迴路控制常式則可決定兩個量:修改輸人信號的一 振巾田里#修改輸入信號的一相位量。在另一具體實施例 中’閉迴路控制常式700只能決定兩個冑述量之一者。在一 具體實施例中’如前述,閉迴路控制常式700能使用如A.J. Vherbi在文獻中描述的第二階據波器以決定至少一量。或 95151-990811.doc •27· 1334069 者,例如一比例積分濾波器及/或一比例積分誘導濾波器的 - 任何樣式濾波器能在步驟716由閉迴路控制常式7〇〇用來決 *. 定至少一量。 在步驟724前’ 一些具體實施例的閉迴路控制常式7〇〇是 在步驟720說明由穩定化模組的硬體導致的非線性。在一此 具體實施例中,閉迴路控制常式7〇〇可執行一演算法以調整 在步驟716決定的想要量。調整量然後用來產生在步驟724 φ 輪出的至少一信號。演算法的實施能選擇調整量,所以在 硬體非線性導致任何失真後,於步驟724輪出的至少一信號 是實際代表在步驟7 1 6決定的想要量。在此一方式中,演算 法能補償穩定化模組硬體的非線性。 在步驟724輸出至少一信號後,閉迴路控制常式的執行會 在閉迴路控制常式回到步驟7〇4前重新在步驟732延遲。 在步驟728 ’閉迴路控制常式7〇〇能透過將資料寫入校準 陣列而將資料輸出給校準常式。例如,閉迴路控制常式7 〇 〇 • 可輸出輸入信號的輸入電源、第一誤差、第二誤差、在步 驟716決定的至少一量、與一閉迴路模式旗號輸出給校準 式。 圖6是根據本發明說明具體實施例的一校準常式8〇〇具體 實施例。在-具體實施例中,校準常式8⑼是校準模組36〇 ,&amp;行的-軟體常式。在_具體實施例中,當開迴路控制常 式_與閉迴路控制常式閒置時,校準常式_便執行。 巧如’校準常式_是在步驟632及/或732導致延遲期間執 订士下面詳細描述,校準常式8〇〇允許開迴路控制常式6〇〇 95151-990811.doc -28 - 使得開迴路控制常式600的效 從閉迴路控制常式700學習 率可隨時間改善。 a步驟804令又準系式8〇〇能取回由步驟㈣的開迴路控制 式〇:'在步驟728的卩^迴路控制常式·先前寫入校準 a j的貝肖;k準以800然後在步驟刪半斷閉迴路控制 '式正在執^。例如’在_具體實施例中校準常 式_能檢查是否提供閉迴路模式旗號。如果否定(即是, 提供開迴路模式旗號),校準常式_會在步驟812清除一校 準計數器,並在步驟8〇4從校準陣列取回進—步資料。如果 閉坦路控制常式正在執行,校準常式綱便在步驟 增量校準計數H,並處理資料。如此,校準常式则只處理 由閉迴路控制常式700寫入校準陣列的資料。 在v驟820 ’校準常式8〇〇可判斷校準計數器是否在—較 低臨界直與一較高臨界值之間。如果否定,校準常式議 便回到步驟804以從校準陣列取回進—步資料。如果如此, 校準常式刚會在步驟824從校準陣列操取輸入信號的輸入 電源、與第一誤差及/或第二誤差❶在執行步驟824前,透 過確保校準計數11大於一較低臨界值,校準常式8〇〇能確保 未處理透過閉迴路控制常式7〇〇先寫入校準陣列的資料。而 疋,在閉迴路控制常式7〇〇於一段時間執行(即是,當放大 更穩疋)後,校準常式800可確保處理由閉迴路控制常式 700寫入校準陣列的資料。同樣地,在執行步驟824前,透 、確保準计數器小於一較尚臨界值,校準常式8〇〇可確保 它能處理透過接近閉迴路控制常式800的開始(例如,接近 95151-990811.doc •29· 1334069 一脈衝的開始)的閉迴路控制常式700寫入校準陣列的資 料。 在步驟828,校準常式800可判斷第一誤差及/或第二誤差 是否小於一固定量。如果如此,放大器能穩定,且校準常 式會執行步驟832。否則,校準常式800能在步驟804從校準 陣列取回進一步資料。在步驟832,校準常式800能從校準 陣列擷取透過閉迴路控制常式700寫入校準常式本身的量。The second threshold value of step 624 and the delay presented at step 632 ensures that the closed loop control routine 700 can be executed for a minimum time period before the control is passed to the open loop control routine 600 at step 628. As a result, the amplifier can be stabilized for a period of time before the software routine 500 is transferred from the open circuit routine 600 to the closed loop routine 700. In a specific embodiment, the second threshold of step 624 is adjustable. In another embodiment, the delay presented by step 632 is adjustable. Referring back to step 608, if the amplifier is not active, or the power level of the input signal is below a first threshold, the open loop control routine 600 performs step 636. At step 636, the open loop control routine 600 can determine if the open loop counter is greater than zero. If not, the open loop control routine 600 proceeds to step 632. If so, the open loop control routine 600 performs step 640. In step 640, the open loop control routine can output at least one signal for modifying at least one characteristic of the input signal. In a specific embodiment, this 95151-990811.doc • 24· 1334069 is being replaced by the year 曰 99. ^ 1 can be expressed by using the review discussed in the previous step 616. Most amplifiers are linear in behavior at low input supply levels. In a specific embodiment, the selection of the first threshold level of step 608 is based on the selection of the first threshold level such that the amplifier is at an input power level below the selected first threshold level. Sexual behavior. In this manner, as long as the actual input power input to the 4th is below the first threshold, it is independent of the output of at least one signal in step 64. Therefore, the same at least one signal of the input power of the input signal whose actual value is lower than the first threshold can be outputted in the step. As a result, step 640 only requires a single time to execute. In order to ensure this, the open loop counter needs to be cleared in step 644. Please refer to the new reference step 628, in the open loop control routine 6〇〇, to determine that it is performed during a predetermined period of time during which the input power of the input signal exceeds the first critical level (ie, because the open loop control routine is always From step 6〇8 to step 612, steps 604, 6〇8, 612, 616, 62〇, 624, and μ] will continue to be executed.) 'Open loop control routine 6 〇〇 can pass control to closed loop Control routine 700. In one embodiment, the open loop control routine 6 is to initialize the filter at step 628 to be used in step 716 by the closed loop control routine 7 that uses the calibration routine to generate a registration using the following Figure 6. The login corresponds to one or more signals that were last output by the open loop routine at step 616. In this case, the closed loop control routine is executed at the same set value that the open loop control normally cuts. In one embodiment, a login representation increases or decreases the amount of input signal amplitude. In another embodiment, the login represents changing the input signal phase amount. In a specific embodiment, the login is stored by, for example, a calibration routine in, for example, one or more lookup arrays. These arrays are indexed by the input power of the input signal through 95151-9908 Jl.doc -25-1334069. _, according to the input power of the input signal taken in step 4, the open loop control routine 6 (10) can refer to and use the registration generated by the calibration routine to initialize the closed loop control routine 7 〇〇 filter. : After the open loop control routine _ passing control to the closed loop control routine 700, there is a delay in step 732. In a particular embodiment, the delay period at step m is adjustable. After the delay of step 732, closed loop control routine 700 retrieves a plurality of signals at step 7〇4. In one embodiment, the signals include an input power to the input signal, a first error between the input signal and a feedback signal representing the output signal of the amplifier, and a second error between the input signal and the feedback signal. In one embodiment, the first error is an amplitude error between the input signal and the feedback signal, and the second error is the phase error between the input signal and the feedback signal. At step 708, the closed loop routine 7 determines whether one or more criteria for using the closed loop control routine 700 are met. In one embodiment, the closed loop control routine 700 can determine if the amplifier is active (i.e., enabled or not) and whether the input power to the input signal exceeds a threshold. If the criteria are met, the closed loop control routine 7 executes step 712. If it is not satisfied, the software routine 500 returns to the open loop control routine 6〇〇, and the input power of the input signal is extracted in step 604. In a specific embodiment, the threshold value used in the closed loop control routine 7 is less than the first threshold used in the open loop control routine 600 to allow a hysteresis level, and to avoid the software routine 500. Switching between the open loop control routine 6〇〇 and the closed loop control routine 7〇〇. The first threshold value used in the closed loop control routine 700 is equal to the second critical value 95151-9908II.doc • 26-1334069 _, and the input signal is slightly changed in relation to the threshold power, the software routine 500 is switched between the open loop control routine 6 〇〇 and the closed loop control routine 700. ..., 38 The skilled person has learned that stabilizing the hardware used by the module to produce a signal representative of the first error and/or the second error would be a disadvantage. Therefore, the hardware will exceed or fall below the actual value of the first error and/or the second error. In fact, the hardware "V causes a predictable change in the first error from each input power level of the wheel number and/or the actual value of the second error. Thus, in a specific embodiment t, closed loop control is often The first error and the second error measurement provided in step 704 can be adjusted by the stabilization module hardware in step 712. In a specific example, the closed loop control routine 700 is to use the input of the transmitted input signal at step 712. The power level is indexed by the _ query graph. For each input power level, the query map lists the first error and/or the second error actual value that is expected to be exceeded or not exceeded. The excess error is added to the first error and/or the second error measurement provided by the hardware, and the closed loop control routine 7〇〇 can thus obtain the actual value of the first error and/or the second error. As long as the closed loop control routine 700 is in the step 712 suitably adjusting the first error and/or the first decision, the closed loop control routine can determine at step 716 to modify at least one of the at least one characteristic of the input apostrophe. For example, in a particular embodiment Equation can be decided Two quantities: a vibrating field that modifies the input signal #Modifies a phase amount of the input signal. In another embodiment, the closed loop control routine 700 can only determine one of the two parametric quantities. In a specific embodiment, as described above, the closed loop control routine 700 can use a second order arborer as described by AJ Vherbi in the literature to determine at least one quantity, or 95151-990811.doc • 27· 1334069, for example A proportional-integral filter and/or a proportional-integral-inducing filter - any pattern filter can be used in step 716 by closed-loop control routines to determine at least one quantity. Before step 724' The closed loop control routine of the embodiment is to illustrate the nonlinearity caused by the hardware of the stabilization module in step 720. In this embodiment, the closed loop control routine 7 can perform an algorithm. To adjust the desired amount determined in step 716. The amount of adjustment is then used to generate at least one signal that is rotated in step 724. The implementation of the algorithm can select the amount of adjustment, so after the hardware nonlinearity causes any distortion, the step At least one letter from 724 The number is actually the desired amount determined in step 71. In this manner, the algorithm can compensate for the nonlinearity of the stabilizing module hardware. After outputting at least one signal in step 724, the closed loop control routine Execution will be delayed in step 732 before the closed loop control routine returns to step 7〇 4. In step 728, the closed loop control routine 7 can output data to the calibration routine by writing data to the calibration array. For example, closed loop control routine 7 输入 • an input power source capable of outputting an input signal, a first error, a second error, at least one amount determined in step 716, and a closed loop mode flag are output to the calibration equation. A calibrated routine 8 〇〇 embodiment of a specific embodiment is illustrated in accordance with the present invention. In a particular embodiment, calibration routine 8(9) is a software routine for the calibration module 36〇, &amp; In the specific embodiment, the calibration routine _ is executed when the open loop control routine _ is not idle with the closed loop control routine. As the 'calibration routine _ is in the step 632 and / or 732 leads to the delay period during the implementation of the detailed description, the calibration routine 8 〇〇 allows the open loop control routine 6〇〇95151-990811.doc -28 - makes it open The efficiency of the loop control routine 600 can be improved over time from the closed loop control routine 700 learning rate. a step 804 allows the quasi-system 8 〇〇 to retrieve the open loop control formula of step (4): '卩 回路 loop control routine in step 728 · previously written to calibrate aj, ko; k to 800 and then In the step of deleting half-closed loop control 'type is being executed ^. For example, the calibration routine can be checked in the particular embodiment to check if a closed loop mode flag is provided. If negated (i.e., the open loop mode flag is provided), the calibration routine _ clears a calibration counter at step 812 and retrieves the advance data from the calibration array at step 〇4. If the closed-loop control routine is being executed, the calibration routine will incrementally calibrate the count H and process the data. Thus, the calibration routine only processes the data written to the calibration array by the closed loop control routine 700. At v 820 ' calibration routine 8 〇〇, it can be determined whether the calibration counter is between - a lower critical straight and a higher critical value. If not, the calibration routine returns to step 804 to retrieve the advance data from the calibration array. If so, the calibration routine will operate the input power to the input signal from the calibration array in step 824, with the first error and/or the second error 透过 before performing step 824, by ensuring that the calibration count 11 is greater than a lower threshold. The calibration routine 8〇〇 ensures that the unprocessed data is written to the calibration array through the closed loop control routine. And, after the closed loop control routine is executed for a period of time (i.e., when the amplification is more stable), the calibration routine 800 ensures that the data written to the calibration array by the closed loop control routine 700 is processed. Similarly, prior to performing step 824, ensuring that the quasi-counter is less than a more critical value, the calibration routine 8 ensures that it can handle the beginning of the routine 800 through close closed loop control (eg, close to 95151-). The closed loop control routine 700 of the 990811.doc • 29· 1334069 start of a pulse is written to the calibration array. At step 828, calibration routine 800 can determine if the first error and/or the second error is less than a fixed amount. If so, the amplifier can be stabilized and the calibration routine performs step 832. Otherwise, calibration routine 800 can retrieve further data from the calibration array at step 804. At step 832, calibration routine 800 can retrieve the amount of calibration routine itself written from closed loop control routine 700 from the calibration array.

校準常式800是在步驟836產生能由步驟628的開迴路控 制常式600使用的登錄,以將在閉迴路控制常式700中的濾 波器。登錄是透過輸入信號的輸入電源編索引,並儲存在 查閱陣列。在一具體實施例中,校準常式800使用一加權濾 波器以產生聲錄。校準常式800可例如透過將一擷取量的加 權值加入在查閱陣列中出現的一先前登錄的加權值而以輸 入電源位準產生輸入信號的一特殊輸入電源的目前登錄。Calibration routine 800 is to generate a log in step 836 that can be used by open loop control routine 600 of step 628 to bring the filter in closed loop control routine 700. The login is indexed by the input power of the input signal and stored in the lookup array. In one embodiment, calibration routine 800 uses a weighting filter to produce a sound recording. The calibration routine 800 can generate a current registration of a particular input power source of the input signal by inputting a power source level, for example, by adding a weighted value to a previously registered weighting value appearing in the lookup array.

在步驟840,校準常式800使用在步驟836產生的登錄以決 定在步驟6 1 6由開迴路控制常式600使用的值。如此,校準 常式800能說明穩定化模組的硬體導致的非線性。例如,校 準常式800能執行由在步驟720的閉迴路控制常式700執行 的相同演算法。校準常式800產生的值能儲存在查閱表。 在步驟844,校準常式800能將校準計數器設定超過步驟 820的較高臨界值。如此,可確保校準常式800只每脈衝一 次產生一些登錄與值。 本發明能以在一個或多個製造物件上具體實施的一個或 多個電腦可讀取程式提供。製造物件可為一軟碟、一硬碟、 95151-990811.doc -30- Ι?34069 ..&gt;Ί I年月3修止替 A一—j 飞 一CDR〇M、一快閃記憶體卡、一 PROM' — RAM、一rOM、 或磁帶。大體上,電腦可讀取程式能以任何程式語言實 施。能使用的一些電腦程式語言範例包括C、C++、或JAVA。 軟體秘式能以物件碼儲存在一個或多個製造物件。 本發明的某些具體實施例是在前面描述。然而,注意到 本發明並未侷限於這些具體實施例,而是在此描述的附加 與修改亦包括在本發明的範圍内。而且,了解到在此描述 的各種不同具體實施例特徵不相互排斥,而且可為各種不 同組合與互換,即使此組合或互換未在此描述,而不致脫 離本發明的精神與範圍。事實上’在此描述的變化、修改、 與其他實施可由熟諳此技者達成,而不致脫離本發明的精 神與範圍。同樣地,本發明並未只透過前面描述而定義。 【圖式簡單說明】 本發明的先前及其他目的、觀點、特徵、與優點可從下 列連同附圖的描述而變得更瞭解,其中: 圖1是根據本發明說明具體實施例用於穩定一放大器的 方法流程圖; 圖2亦是根據本發明說明的具體實施例用於穩定一放大 器的方法流程圖; 圖3是根據本發明說明具體實施例使用在供穩定一放大 器的一穩定化模組的系統方塊圖; 圖4疋根據本發明說明具體實施例用於穩定一放大器的 一穩定化模組電路圖; 圖5是根據本發明說明具體實施例用於穩定一放大器的 95151-990811.doc •31· 1334069 丨V:.8日财換頁丨 方法流程圖,包括一開迴路控制.常式與一閉迴路控制常 式;及 圖6是使用在本發明具體實施例的一校準常式流程圖。 【主要元件符號說明】At step 840, calibration routine 800 uses the registration generated at step 836 to determine the value used by open loop control routine 600 in step 61. Thus, the calibration routine 800 can account for the nonlinearity caused by the hardware of the stabilizing module. For example, calibration routine 800 can perform the same algorithm performed by closed loop control routine 700 at step 720. The values generated by calibration routine 800 can be stored in a lookup table. At step 844, calibration routine 800 can set the calibration counter to a higher threshold than step 820. In this way, it is ensured that the calibration routine 800 generates some registrations and values once per pulse. The invention can be provided in one or more computer readable programs embodied on one or more articles of manufacture. The manufactured object can be a floppy disk, a hard disk, 95151-990811.doc -30- Ι? 34069 ..&gt; Ί I year 3 repair for A-j fly a CDR 〇M, a flash memory Card, a PROM' — RAM, a rOM, or tape. In general, computer readable programs can be implemented in any programming language. Some examples of computer programming languages that can be used include C, C++, or JAVA. The soft secret can be stored in one or more manufactured items in an object code. Some specific embodiments of the invention are described above. However, it is to be noted that the invention is not limited to the specific embodiments, but the additional and modifications described herein are also included in the scope of the invention. Furthermore, it is to be understood that the various embodiments of the invention are not to be construed as a In fact, variations, modifications, and other implementations described herein may be made by those skilled in the art without departing from the spirit and scope of the invention. As such, the invention has not been limited by the foregoing description. BRIEF DESCRIPTION OF THE DRAWINGS [0009] The foregoing and other objects, aspects, features, and advantages of the present invention will become more apparent from FIG. 2 is a flow chart of a method for stabilizing an amplifier according to an embodiment of the present invention. FIG. 3 is a stabilizing module for use in stabilizing an amplifier according to an embodiment of the present invention. FIG. 4 is a circuit diagram of a stabilizing module for stabilizing an amplifier in accordance with an embodiment of the present invention; FIG. 5 is a schematic diagram of a 95151-990811.doc for stabilizing an amplifier in accordance with an embodiment of the present invention. 31· 1334069 丨V: .8 daily trading page method flow chart, including an open loop control. The routine and a closed loop control routine; and FIG. 6 is a calibration routine used in the specific embodiment of the present invention . [Main component symbol description]

300 304 308 312 、 464 、 472 316 ' 476 320 324 328 332 、 356 ' 336 340 344 ' 348 346 352 ' 368 ' 372 360 380 400 404 408 412 、 440 系統 第一控制模組 第二控制模組 第一信號 第二信號 第三信號 第四信號 輸入電源 轉變邏輯模組 第五信號 第六信號 誤差信號 信號 連接 校準模組 第二控制器 穩定化模組 放大器 處理器 輸入信號 95151-990811.doc •32· 1334069 年月’曰修正替換 Τι 1 t 」 416 預放大器 418 耦合器 420 第一取樣 424 輸入誤差放大 426 對數中頻(LOG IF)放大 428 弟二取樣 432 第一控制器 436 第二控制器 444 回授信號 448 輸出信號 452 第一誤差信號 456 第二誤差信號 460 類比/數位(A/D)轉換器 468 數位/類比(D/A)轉換器 95151-990811.doc ·33·300 304 308 312 , 464 , 472 316 ' 476 320 324 328 332 , 356 ' 336 340 344 ' 348 346 352 ' 368 ' 372 360 380 400 404 408 412 , 440 system first control module second control module first Signal second signal third signal fourth signal input power conversion logic module fifth signal sixth signal error signal signal connection calibration module second controller stabilization module amplifier processor input signal 95151-990811.doc • 32· 1334069 month '曰correction replacement Τι 1 t ” 416 preamplifier 418 coupler 420 first sample 424 input error amplification 426 logarithmic intermediate frequency (LOG IF) amplification 428 second sampling 432 first controller 436 second controller 444 back Signal 448 Output Signal 452 First Error Signal 456 Second Error Signal 460 Analog/Digital (A/D) Converter 468 Digital/Analog (D/A) Converter 95151-990811.doc ·33·

Claims (1)

1334069 年月 a ^替換頁I 卜、申請專利範圍 ,該方法包含: 一穩定化模組,並包含 l · 一種用以穩定化一放大器之方法 (a)提供能與該放大器電溝通的 一開迴路控制系統與一閉迴路控制系統; (b)使用該開迴路控制系統以修改經由該穩定化模組接 收的一輸入h號的至少一特性,並將控制傳遞給該閉迴 路控制系統; (c)使用該閉迴路控制系統以修改該輸入信號的至少一 特性;及 (d)將該修改的輸入信號提供給該放大器。 2_如请求項1之方法,其中該輸入信號的至少一特性包含該 輸入k號的一振幅。 3. 如凊求項1之方法’其中該輸入信號的至少一特性包含該 輸入戚的一相位。 4. 如凊求項1之方法,其進一步包含當該輸入信號的一輸入 電源超過一臨界值位準時,使用該開迴路控制系統。 5. 如請求項1之方法,其進一步包含在使用該開迴路控制系 統後’於該輸入信號的一輸入電源超過一臨界位準期間 的一預定時段使用該閉迴路控制系統。 6. 如請求項1之方法,其中該步驟(1?)進一步包含使用該開迴 路控制系統以根據該開迴路控制系統的輸出將在該閉迴 路控制系統的濾波器初始化。 7. 如请求項1之方法,其進一步包含測量輸入信號的一輸入 電源。 95151-990811.doc 8. t年99%日修作換,丨 如明求項7之方法,其中該步驟(b)進一步包含使用該開迴 路控制系統以根據輸入電源修改該輸入信號的至少一特 性。 9. 10. 11. 12. 13. 14. 15. 16. 如μ求項8之方法,其中該步驟(13)進一步包含根據在對應 輸入電源的一查閱表中的值以修改該輸入信號的至少一 特性。 如研求項9之方法,其進一步包含根據該閉迴路控制系統 的輪出而更新該查閱表。 月求項1之方法’其進一步包含測量該輸入信號的一輸 入電源’而且其中該步驟(c)進一步包含測量在該輸入信 5虎與代表該放大器輸出信號的一回授信號間的一第一誤 差、與在該輸入信號與該回授信號間的一第二誤差。 如請求項11之方法’其中該步驟(c)進一步包含使用該閉 匕路控制系統以根據該輸入電源、該第一誤差、與該第 二誤差而修改該輸入信號的至少一特性。 如請求項11之方法,其中該步驟(c)進一步包含使用該閉 迴路控制系統以調整該第一誤差及調整該第二誤差。 如請求項1之方法,其中該步驟(c)進一步包含使用該閉迴 路控制系統以說明由該穩定化模組所導致的至少一非線 性。 如請求項1之方法,其中該步驟(b)進一步包含使用該開迴 路控制系統以說明由該穩定化模組所導致的至少一非線 性。 如請求項1之方法,其中該放大器包含一脈衝射頻放大 95151-990811.do, •1· 月日,正替換頁j •一二^1ί „1---1 器 1人如請求項1之方法,其 iB Μ ^ V驟(d)包含將該修改的輸入俨 私供給—磁共振影像系統的放大器。 的輸入[ 化一放大 I 一種使用在一穩定化模組之系統,用以穩 器,該系統包含·· 〜 一第一控制模組,用以 薅S* m &amp; 弟k唬,其代表由該 穩疋化杈組接收的—第— 啼甘、*、 輸入心旎,用以產生一第二信 遽,八透過使用一開迴路押 控制*式而此用來修改該輸入 4唬的一第一特性;及 , 及用以傳送一第三信號,其用來將 控制傳遞給一第二控制模組,·及 該第二控制模組,用於產 用於產生一第四信號,其透過使用 一閉迴路控制常式而修改該輸人信號的第一特性。 上青长項18之系統’其中該第—控制模植可判斷該輸入 =號的一輸入電源是否超過一臨界位準,並產生該第二 信號,其可當該輸入電源超過臨界位準時,透過使用該 開迴路控制常式而修改該輸入信號的第一特性。 2〇.如請求項18之系統,其中該第一控制模組可判斷該第一 控制模組是否於該輸入信號的一輪入電源超過一臨界位 準的預定時段使用s玄開迴路控制常式,及在該第一控 制模組於一預定時段使用該開迴路控制常式後,傳送該 第三信號。 2 1.如。月求項18之系統’其中s亥第—控制模組包含淚波器, 該系統進一步包含一校準模組,以產生用以將該等濾波 器初始化的登錄。 95151-990811.doc 1334069 I ^ /4瞻正替換頁| I 99 R 1 1 I 控制模組可使用該等登 初始化。 22. 23. 如請求項21之系統,其中該第— 錄將在該第二控制模組的濾波器 —控制模組能產生一第五 制常式而修改該輸入信號 如δ月求項18之系統,其中該第 信號,以透過使用該開迴路控 的一第二特性;且該第二控制模缸能產生一第六信號, 其透過使用該閉迴路控制常式而修改該輸入信號的第二 特性。 24·如吻求項23之系統,其進一步包含一校準模組,以產生 代表修改该輸入信號的第一特性量之一第一值、與代表 修改該輸入信號的第二特性量之一第二值,其中該第一 值與該第二值是由該第一控制模組使用。 25. 如明求項24之系統,其中該第一控制模組可使用該第一 值以產生第二信號’並使用該第二值以產生第五信號。 26. 如請求項24之系統,其中該校準模組可根據該第二控制 模組的輸出而更新該第一值與該第二值。 27. 如請求項24之系統’其中該校準模組能產生該第一值與 έ玄第二值’以說明由穩定化模組所導致的至少一非線性。 28 _如請求項23之系統’其中該輸入信號的第一特性包含該 輸入信號的一振幅’且該輸入信號的第二特性包含該輪 入信號的一相位。 29. 如請求項1 8之系統,其中該第二控制模組能產生該第四 信號’以說明由該穩定化模組所導致的一非線性。 30. 如請求項18之系統,其中該第二控制模組可接收一第〜 誤差信號與一第二誤差信號,並調整該第一誤差信號與 95151-990811.doc -4 · 1334069 &quot;· — ί'年月曰修正替換$丨 ^ *:!----------J 該第二誤差信號,以補償在該第一誤差信號與該第二誤 差#號中呈現的一非線性。 3 1.如凊求項18之系統,其中該第一控制模組說明由產生該 第一信號的穩定化模組所導致的一非線性。 32. —種與一穩定化模組使用以將一放大器穩定之製造物 件’該物件包含: 接收、產生與傳送裝置,用以接收一第一信號,該第 彳5號代表由該穩定化模組接收的一輸入信號;用以產 生一第二信號,其透過使用一開迴路控制常式而修改該 輸入信號的特性;用以傳送一第三信號,其可用來將控 制傳遞給一第二控制模組;及 產生裝置,用以一第四信號,其透過使用一閉迴路控 制常式而修改該輸入信號的特性。 33. —種用於穩定化一放大器之方法,該方法包含: 使用一穩定化模組接收一輸入信號包含一開迴路控制 系統與一閉迴路控制系統; 使用該開迴路控制系統以修改該輸入信號的—相位, 並減少該放大器的一相位非線性,並將控制傳遞給該閉 迴路控制系統; 從使用該開迴路控制系統轉變成使用該閉迴路控制系 統,以修改該輪入信號的相位,並減少該放大器的相位 非線性。 34. 如請求項33之方法,其進一步包含在該輸入信號的一輸 入電源超過一臨界位準的一預定時段使用該開迴路控制 95151-9908ll.doc 丄 系統後的轉變。 U項33之方法,其進一步包含使用該開迴路控制系 統以根據該開迴路控制系統的一輸出而將在該閉迴路控 制系統的一濾波器初始化。 36. 一種用於穩定化一放大器之穩定化模組,包含: 一第一控制模組,用以接收一第一信號,其代表由該 穩定化模組接收一輸入信號;用以產生一第二信號,其 透過使用一開迴路控制常式修改該輸入信號的一相位而 減少該放大器的相位非線性;及用以傳送一第三信號, 其可用來將控制傳遞給一第二控制模組;及 該第二控制模組,用以產生一第四信號,其透過使用 一閉迴路控制常式修改該輸入信號的相位而減少該放大 器的一相位非線性。1334069 month a ^ Replacement page I, patent application scope, the method includes: a stabilization module, and includes a method for stabilizing an amplifier (a) providing an electrical communication with the amplifier a loop control system and a closed loop control system; (b) using the open loop control system to modify at least one characteristic of an input h number received via the stabilization module, and transferring control to the closed loop control system; c) using the closed loop control system to modify at least one characteristic of the input signal; and (d) providing the modified input signal to the amplifier. 2) The method of claim 1, wherein the at least one characteristic of the input signal comprises an amplitude of the input k number. 3. The method of claim 1, wherein at least one characteristic of the input signal comprises a phase of the input chirp. 4. The method of claim 1, further comprising using the open loop control system when an input power of the input signal exceeds a threshold level. 5. The method of claim 1, further comprising using the closed loop control system after a predetermined period of time during which an input power source of the input signal exceeds a critical level using the open loop control system. 6. The method of claim 1, wherein the step (1?) further comprises using the open loop control system to initialize a filter in the closed loop control system based on an output of the open loop control system. 7. The method of claim 1, further comprising an input power source that measures the input signal. 95151-990811.doc 8. The year of 99% is modified, such as the method of claim 7, wherein the step (b) further comprises using the open loop control system to modify at least one characteristic of the input signal according to the input power source . 9. 10. 11. 12. 13. 14. 15. 16. The method of claim 8, wherein the step (13) further comprises modifying the input signal according to a value in a look-up table corresponding to the input power source. At least one feature. The method of claim 9, further comprising updating the lookup table in accordance with the rounding of the closed loop control system. The method of claim 1 further comprising: an input power source for measuring the input signal and wherein the step (c) further comprises measuring a first between the input signal 5 and a feedback signal representing the output signal of the amplifier An error, and a second error between the input signal and the feedback signal. The method of claim 11 wherein the step (c) further comprises using the closed loop control system to modify at least one characteristic of the input signal based on the input power source, the first error, and the second error. The method of claim 11, wherein the step (c) further comprises using the closed loop control system to adjust the first error and adjust the second error. The method of claim 1, wherein the step (c) further comprises using the closed loop control system to account for at least one non-linearity caused by the stabilization module. The method of claim 1, wherein the step (b) further comprises using the open loop control system to account for at least one non-linearity caused by the stabilizing module. The method of claim 1, wherein the amplifier comprises a pulsed RF amplification 95151-990811.do, • 1·month, is replacing page j • one two ^ 1 ί „1---1 device 1 person as claim 1 The method, the iB Μ ^ V (d) comprises the input of the modified input to the amplifier of the magnetic resonance imaging system. The input of the amplifier is used in a system of a stabilization module for the stabilizer The system includes a first control module for 薅S* m &amp; 唬 k唬, which is represented by the stable group 第 - 啼 、, *, input 旎, with To generate a second signal, which is used to modify a first characteristic of the input 4 by using an open circuit control method; and, for transmitting a third signal, for transmitting control Providing a second control module, and the second control module, for generating a fourth signal, which modifies the first characteristic of the input signal by using a closed loop control routine. The system of the long item 18, wherein the first-control model can determine an input of the input=number Whether the source exceeds a critical level and generates the second signal, which can modify the first characteristic of the input signal by using the open loop control routine when the input power exceeds a critical level. The system of claim 18, wherein the first control module can determine whether the first control module uses a sinusoidal loop control routine for a predetermined period of time when the input power of the input signal exceeds a critical level, and at the first The control module transmits the third signal after using the open loop control routine for a predetermined period of time. 2 1. For example, the system of the monthly claim 18, wherein the control module includes a tear wave, the system further A calibration module is included to generate a login to initialize the filters. 95151-990811.doc 1334069 I ^ /4 Correction Replacement Page | I 99 R 1 1 The I control module can be initialized using these registers. 22. The system of claim 21, wherein the first recording system is capable of generating a fifth normal equation in the filter control module of the second control module to modify the input signal such as delta month 18 System, of which the letter a second characteristic through the use of the open loop control; and the second control die cylinder is capable of generating a sixth signal that modifies the second characteristic of the input signal by using the closed loop control routine. The system of kiss claim 23, further comprising a calibration module to generate a first value representative of a first characteristic quantity modifying the input signal and a second value representative of a second characteristic quantity modifying the input signal, The first value and the second value are used by the first control module. 25. The system of claim 24, wherein the first control module can use the first value to generate a second signal 'and The second value is used to generate a fifth signal. 26. The system of claim 24, wherein the calibration module is operative to update the first value and the second value based on an output of the second control module. 27. The system of claim 24, wherein the calibration module is capable of generating the first value and the second value to indicate at least one non-linearity caused by the stabilization module. 28_ The system of claim 23, wherein the first characteristic of the input signal comprises an amplitude of the input signal and the second characteristic of the input signal comprises a phase of the wheeled signal. 29. The system of claim 18, wherein the second control module is capable of generating the fourth signal' to account for a non-linearity caused by the stabilizing module. 30. The system of claim 18, wherein the second control module receives a first error signal and a second error signal, and adjusts the first error signal to 95151-990811.doc -4 · 1334069 &quot; — ί '年月曰 替换correction replace $丨^ *:!----------J the second error signal to compensate for the one presented in the first error signal and the second error # Nonlinear. 3. The system of claim 18, wherein the first control module describes a non-linearity caused by the stabilization module that generated the first signal. 32. An article of manufacture for use with a stabilizing module to stabilize an amplifier, the object comprising: a receiving, generating, and transmitting device for receiving a first signal, the fifth signal being represented by the stabilizing mode An input signal received by the group; for generating a second signal, which modifies the characteristics of the input signal by using an open loop control routine; for transmitting a third signal, which can be used to transfer control to a second a control module; and a generating device for a fourth signal that modifies the characteristics of the input signal by using a closed loop control routine. 33. A method for stabilizing an amplifier, the method comprising: receiving an input signal using a stabilization module comprising an open loop control system and a closed loop control system; using the open loop control system to modify the input Signal-phase, and reducing one phase nonlinearity of the amplifier, and passing control to the closed loop control system; transitioning from using the open loop control system to using the closed loop control system to modify the phase of the wheeled signal And reduce the phase nonlinearity of the amplifier. 34. The method of claim 33, further comprising using the open loop control 95151-990811.doc 丄 system transition for a predetermined period of time when an input power source of the input signal exceeds a critical level. The method of U-Item 33, further comprising using the open loop control system to initialize a filter in the closed loop control system based on an output of the open loop control system. 36. A stabilization module for stabilizing an amplifier, comprising: a first control module for receiving a first signal representative of receiving an input signal by the stabilization module; a second signal that reduces phase non-linearity of the amplifier by modifying a phase of the input signal using an open loop control routine; and transmitting a third signal that can be used to pass control to a second control module And the second control module is configured to generate a fourth signal, which reduces a phase nonlinearity of the amplifier by modifying a phase of the input signal by using a closed loop control routine. 95151-9908ll.doc95151-9908ll.doc
TW93123712A 2004-08-06 2004-08-06 Methods, systems, articles of manufacture, and stabilization modules for stabilizing an amplifier TWI334069B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93123712A TWI334069B (en) 2004-08-06 2004-08-06 Methods, systems, articles of manufacture, and stabilization modules for stabilizing an amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93123712A TWI334069B (en) 2004-08-06 2004-08-06 Methods, systems, articles of manufacture, and stabilization modules for stabilizing an amplifier

Publications (2)

Publication Number Publication Date
TW200606611A TW200606611A (en) 2006-02-16
TWI334069B true TWI334069B (en) 2010-12-01

Family

ID=44209756

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93123712A TWI334069B (en) 2004-08-06 2004-08-06 Methods, systems, articles of manufacture, and stabilization modules for stabilizing an amplifier

Country Status (1)

Country Link
TW (1) TWI334069B (en)

Also Published As

Publication number Publication date
TW200606611A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP5149963B2 (en) Amplifier stabilization method and system
US20060214727A1 (en) Methods and systems for stabilizing an amplifier
Bechlioulis et al. Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems
US11171614B2 (en) Multi-band digital compensator for a non-linear system
US20190260401A1 (en) Linearization system
US7756592B2 (en) Enhanced feedback for plant control
WO2016106508A1 (en) Control method and apparatus for digital pre-distortion correction coefficient
WO2016065633A1 (en) Curve fitting circuit, analog predistorter and radio frequency signal transmitter
CN108476356A (en) Dynamic loudspeaker driver is controlled using lower order nonlinear model
CN108155877A (en) Transmitter, communication unit and the method for limiting spectral re-growth
JP2016518800A (en) Transfer function adjustment
KR102036172B1 (en) Acoustic transducer
WO2011139858A2 (en) Nonlinear identification using compressed sensing and minimal system sampling
US20190238994A1 (en) Armature-based acoustic receiver having improved output and method
TWI334069B (en) Methods, systems, articles of manufacture, and stabilization modules for stabilizing an amplifier
JP5086075B2 (en) Method and system for stabilizing an amplifier
US20080228292A1 (en) System and method for pre-distorting a device input
US9231731B1 (en) Common mode calibration
US20150109044A1 (en) Variable amplitude signal generators for generating a sinusoidal signal having limited direct current (dc) offset variation, and related devices, systems, and methods
CN107431495A (en) Digital pre-distortion bearing calibration and device
JP2005218115A (en) Instrument and method of nullifying offset voltage of operational amplifier
CN106411271B (en) A kind of pre-distortion device and its parameter selection method for power amplifier
JP2010179152A (en) Method and system for stabilizing amplifier
JP2002353822A (en) Transmission output correction device
KR20160015075A (en) Multi output power supplying apparatus, and output circuit thereof