TWI333349B - Evaluation of transmitter performance - Google Patents
Evaluation of transmitter performance Download PDFInfo
- Publication number
- TWI333349B TWI333349B TW095133919A TW95133919A TWI333349B TW I333349 B TWI333349 B TW I333349B TW 095133919 A TW095133919 A TW 095133919A TW 95133919 A TW95133919 A TW 95133919A TW I333349 B TWI333349 B TW I333349B
- Authority
- TW
- Taiwan
- Prior art keywords
- subcarriers
- subcarrier
- modulation symbol
- modulation
- symbol
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/20—Arrangements for detecting or preventing errors in the information received using signal quality detector
- H04L1/206—Arrangements for detecting or preventing errors in the information received using signal quality detector for modulated signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/20—Arrangements for detecting or preventing errors in the information received using signal quality detector
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/24—Testing correct operation
- H04L1/242—Testing correct operation by comparing a transmitted test signal with a locally generated replica
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/022—Channel estimation of frequency response
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0204—Channel estimation of multiple channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/024—Channel estimation channel estimation algorithms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Power Engineering (AREA)
- Mobile Radio Communication Systems (AREA)
- Monitoring And Testing Of Transmission In General (AREA)
- Transmitters (AREA)
Description
1333349 九、發明說明: 【發明所屬之技術領域】 本發明廣泛係關於通信,並且尤其係關於評估發射器效 能。 【先前技術】 無線網路系統已變成全世界大多數人進行聯繫的流行工 具。無線通信裝置已變成愈小且功能愈強大,以滿足消費 者需求且改良可攜性及便利性。消費者已變成依賴無線通 信裝置(諸如行動電話、個人數位助理(PDA)及類似項)、 高要求的可靠服務及擴展的涵蓋區域。 典型的無線通信網路(例如,採用分頻技術、分時技術 及分碼技術)包括一或多個基地台(其提供涵蓋區域)及一或 多個行動(例如,無線)使用者裝置(其可在涵蓋區域内傳輸 及接收資料)。典型的基地台可同時傳輸多個資料流,以 用於廣播、多點廣播及/或單點廣播,其中資料流係感興 趣的使用者裝置可獨立接收的資料流。在基地台涵蓋區域 内的使用者裝置可能有興趣接收複合流所載送的一個、一 、上或所有資料流。同樣地,使用者裝置可傳輸資料至 基地台或另—使用者裝置。 無線通信服務提供者業者群組已開發"僅有前向鏈路” (orward Link Only ; FLO)技術,以利用系統設計中的最 新進展來達成最南品質效能。FLO技術旨在運用於行動多 媒=環境且適合搭配行動使用者裝置-起使用。FLO技術 t日在達成即時内容串流及其他資料服務之高品質接 114499.doc 1333349 收。FLO技術可提供強固的行動效能及高容量,而不放棄 功率消耗。此外,FLO技術亦藉由減小需要佈置的基地么 發射器數量而降低傳遞多媒體内容的網路成本。另外 、 ‘ FLO技術為基礎的多媒體多點廣播係無線業者蜂巢式網路 • 資料與語音服務(傳遞内容給相同的行動裝置)的完美方 案。 ' 基地台發射器效能是無線系統整體效能的重要關鍵。具 Φ 體而言,在利用?1^〇技術的無線系統(其可利用較少的發射 器)中,每一發射器的效能皆具關鍵性。因此,在安穿寸 後皆應謹慎監視發射器效能。 【發明内容】 下文提供一或多項具體實施例之簡化摘要内容,以提供 對彼等具體實施例之基本瞭解》【發明内容】不是所有^ 量之具體實施例的廣泛概觀,並且非意欲識別所有具體實 施例的主要或關鍵元件,亦非意欲描述任何或所有具體實 • 施例的範圍。而是僅旨在以簡化形式來提出一或多項具體 實施例之觀念,以作為下文提出之【實施方式】之序文。 根據一或多項具體實施例及相對應於揭示内容,结合在 無線通信環境中監視發射器效能來描述各項態樣用 -訊號分析Is來取樣—發射器的輸出,並且將該取樣之訊 號傳遞至-處理器。該處理器可產生副載波的頻域頻道估 計。如果經傳輸之調變符元係未知,則該處理器可判定調 變符元且使用所判定之調變符元來計算頻道估計。可計算 每一副載波的頻道估計之平均值, ° m 亚且將之用於產生各種 114499.doc 1333349 度量,以評估發射器效能。 根據一相關態樣,一種用於一無線通信系統的評估發射 器效能之方法,其可包括:對於一發射器訊號之一資料單 几中的所有正交分頻多工(0FDM)符元,產生每一副載波 的一頻域頻道估計;判定該等副載波之每一副載波的一平 句頻域頻道估什,及基於該等副載波之每一副載波的該平 均頻域頻道估計,產生指示出發射器效能的至少一度量。1333349 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates generally to communications, and more particularly to evaluating transmitter performance. [Prior Art] Wireless network systems have become a popular tool for most people around the world to connect. Wireless communication devices have become smaller and more powerful to meet consumer demand and improve portability and convenience. Consumers have become areas of coverage that rely on wireless communication devices such as mobile phones, personal digital assistants (PDAs) and the like, demanding reliable services, and extensions. A typical wireless communication network (eg, employing frequency division techniques, time sharing techniques, and code division techniques) includes one or more base stations (which provide coverage areas) and one or more mobile (eg, wireless) user devices ( It can transmit and receive data in the coverage area). A typical base station can simultaneously transmit multiple data streams for broadcast, multicast, and/or unicast, where the data stream is a stream of data that can be independently received by user devices of interest. User devices within the coverage area of the base station may be interested in receiving one, one, one, or all of the data streams carried by the composite stream. Similarly, the user device can transmit data to the base station or another user device. The Wireless Communications Service Providers Group has developed " forward link only; FLO technology to take advantage of the latest advances in system design to achieve the most south quality performance. FLO technology is designed to be used in action Multi-media=Environment and suitable for use with mobile user devices. FLO technology delivers high-quality instant streaming and other data services at 114499.doc 1333349. FLO technology delivers robust performance and high capacity In addition, FLO technology also reduces the network cost of delivering multimedia content by reducing the number of transmitters that need to be placed. In addition, 'FLO technology-based multimedia multicast system wireless industry hive Network • Data and voice services (the perfect solution for delivering content to the same mobile device). 'Base station transmitter performance is an important key to the overall performance of wireless systems. In the case of Φ bodies, in the use of technology In wireless systems (which can use fewer transmitters), the performance of each transmitter is critical. Therefore, it should be </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; And not intending to identify any or all of the specific embodiments of the present invention, and are not intended to describe the scope of the specific embodiments. As a preface to the [embodiment] set forth below, in accordance with one or more specific embodiments and corresponding disclosures, in conjunction with monitoring transmitter performance in a wireless communication environment, various aspects are described using a signal-signal analysis Is-sampling-transmitting. The output of the device, and the signal of the sampling is passed to the processor. The processor can generate a frequency domain channel estimate of the subcarrier. If the transmitted modulation symbol is unknown, the processor can determine the modulation symbol And using the determined modulation symbols to calculate a channel estimate. The average of the channel estimates for each subcarrier can be calculated, It is used to generate various 114499.doc 1333349 metrics to evaluate transmitter performance. According to a related aspect, a method for evaluating transmitter performance for a wireless communication system, which may include: for one of a transmitter signal All orthogonal frequency division multiplexing (OFDM) symbols in a single number, generating a frequency domain channel estimate for each subcarrier; determining a flat frequency domain channel estimate for each subcarrier of the subcarriers, and based on The average frequency domain channel estimate for each subcarrier of the subcarriers produces at least one metric indicative of transmitter performance.
β亥方法可進一步包括:判定該等副載波之每一副載波的一 調變符元,其中該調變符元係在產生該等頻域頻道估計及 «亥至少一度量時予以利用。此外,該方法可包括:將一複 數平面劃分成複數個區域,每一區域相對應於一可能調變 符疋,及選擇表示該發射器訊號的一點所在的區域,該副 載波的該調’憂符元係相對應於該所選擇之區域的該可能調 變符元。另外’該方法可包括:纟用多數決法判定該等 載波中之具有一致調變型態之副載波子組的一調變型The β-hai method may further comprise: determining a modulation symbol for each subcarrier of the subcarriers, wherein the modulation symbol is utilized in generating the frequency domain channel estimates and the at least one metric. In addition, the method may include: dividing a complex plane into a plurality of regions, each region corresponding to a possible modulator 疋, and selecting an area where a point representing the transmitter signal is located, the tone of the subcarrier The sorrow symbol corresponds to the possible modulating symbol of the selected region. Additionally, the method can include: determining, by a majority decision, a modulation variant of the subset of subcarriers having a uniform modulation pattern among the carriers
〜、及如果該曰彳載波子組的每一副载波之該調變符元與該 夕數調變型態不—致,則重新評估該副載波的該調變符 70該方法可包括:產生複數個副載波之每一副載波的一 粗略頻域頻道估計。該方法亦可包括:將該發射器訊號分 J成、’且片·^又,每一片段包括至少一符元;及對於每一片 段實行相位校正。 根據另態樣’—種在一無線通信系統中用於評估發射 器效能之設備’其可包括:_訊號分析器、一處理器及一 記憶體。該訊號分析器取樣來自—發射器的_rf訊號;該 114499.doc 1333349 處理器對於I#器訊號之一超訊框中的所有冑元,計算 每一釗載波的一頻域頻道估計;計算該等副載波之每一副 載波的該等頻域頻道估計之平均值;及至少部分基於該等 平均頻域頻道估計,產生至少—發射器度量。該記憶體輕 接至該處理器且儲存關於該等符元之資訊。此外,該處理 器可判定該等副載波之每一副載波的一調變符元,其中在 產生該等頻域頻道估計及該至少一度量時可利用該調變符 元。該處理器亦可依據一種多數決法,判定一具有一致調 變型態之副載波子組的一調變型態;及如果該副載波子組 中的每一副載波之該調變符元與該副載波子組之該調變型 態不一致,則重新評估該副載波的該調變符元。此外,該 記憶體可儲存一星座圖之複數個區域,每一區域相對應於 一可能調變符元;並且該處理器可選擇相對應於該發射器 訊號的每-副載波之-星座點所在的—區域,其中該副載 =的該調變符元係相對應於該所選擇之區域的該可能調變 符凡。該處理器亦可產生每一前導副載波的一粗略頻道估 什,實行線性内插法,以產生位於前導副載波之間的每一 副載波的粗略頻道估計;及實行線性外插法,以產生非位 於則導副載波之間的副載波的粗略頻道估計。另外,該處 理器可將該發射器訊號分割成若干片段,每一片段包括至 少一符元;及對於每一片段實行相位校正。 根據另一態樣,一種用於一無線通信系統之評估發射器 效能之設備,其可包括:用於對於一發射器訊號之一資料 單元中的所有0FDM符元產生每一副載波的一頻域頻道估 114499.doc 1333349 計之構件;用於判定該等副載波之每—副載波的—平均頻 域㈣估狀構件;及用於至少料基於㈣副載波之每 一副載波的該平玲4¾ 0 …域頻道估計來產生指示出發射器效能 的至少一度量之構件。此外,該設備可包括:用於判定該 專副載波之每—副载波的一調變符元之構件,該調變符元 係在產生該等頻域瓶.¾ ^ μ & , 頊域頻道估計及該至少一度量時予以利用。 該設備可進一步包括:用於依據一種多數決法來判定該等 副載波中之一具有—絲烟_ Λ丨& ^ 致調茇型態之副載波子組的一調變型 態之構件;及用於如果該等副載波中之該副載波子組中的 每一副載波之該調變符元與該調變型態不-致則重新坪估 該副載波的該調變符元之構件。另外,用於判定一調變符 凡之構件可包括.用於判定介於在—複數平面中相對應於 該發射器訊號的該等副載波中之—副載波的—點與在該複 數平面中相對應於至少一可能調變符元中之一可能調變符 it的-點之間的-距離之構件;及用於選擇相對應於最接 近該訊號點的該調變符元之該可能調變符元之構件,其中 用於該副載波的該調變符元係該所選擇之調變符元。該設 備可進一步包括:用於產生每一前導副載波的一粗略頻道 估計之構件;及用於實行線性内插法與線性外插法之構 件,其實行線性内插法,以產生位於前導副載波之間的該 等副載波之每一副載波的該粗略頻道估計,以及實行線性 外插法,以產生非位於前導副載波之間的每一副載波的該 粗略頻道估計。該設備亦可包括:用於將該發射器訊號分 割成一組片段之構件,每一片段包括至少一符元;及用於 114499.doc •10« c S ) 1333349 對於母—片段實行相位校正之構件。 〇 —態樣係關於一種已儲存電腦可讀指令之電腦可讀媒 體,該等電腦可讀指令係用於:對於一發射器訊號之一資 料單元中的所有符元,產生複數個副載波之每一副載波的 一頻域頻道估計;判定該複數個副載波之每一副載波的一 平句頻域頻道估計;及至少部分基於該複數個副載波之每 田j載波的該平均頻域頻道估計,產生指示出發射器效能 的至V 度量。該等指令可進一步包括下列用途之指令: 判定該複數個副載波之每一副載波的一調變符元,其中該 調變符元係在產生該等頻域頻道估計及該至少一度量時予 以利用。该電腦可讀媒體進一步包括下列用途之指令:依 據一種多數決法,判定該等副載波中之一具有一致調變型 •,之副載波子組的一調變型,態;及b果該副載波子組中的 每一副載波之該調變符元與該調變型態不一致,則重新評 估該副載波的該調變符元。另外,該電腦可讀媒體可包括 下列用途之指令:將一複數平面劃分成複數個區域,每一 區域相對應於一可能調變符元;及選擇相對應於該發射器 訊號之刻載波的一點所在的區域,該副載波的該調變符 元係相對應於該所選擇之區域的該可能調變符元。此外, 該電腦可讀媒體可包括下列用途之指令:產生每一前導副 載波的一粗略頻域頻道估計;内插位於前導副載波之間的 該等副載波之每一副載波的一粗略頻域頻道估計;及外插 非位於引導田〗載波之間的該等副載波的一粗略頻域頻道估 計。該電腦可讀媒體可包括下制途之指令:將該發射器 -11 - 114499.doc 1333349 訊號分割成一組片段,每—片 每一片段實行相位校正。 段包括至少一符元;及對於 另一態樣係關於一種埶耔田 裡執仃用於—無線通信系統之評估發 射器效能之指令之處理器,該等 „ 寺才日令可包括:對於一發射 态訊號之一資料單亓 . 早疋中的所有符元,產生複數個副載波之 母一副載波的一頻域頻道估种. 冲’判疋該複數個副載波之每And, if the modulation symbol of each subcarrier of the subcarrier of the subcarrier is not aligned with the modulation pattern, re-evaluating the intermodulation 70 of the subcarrier, the method may include: A coarse frequency domain channel estimate is generated for each subcarrier of the plurality of subcarriers. The method can also include: dividing the transmitter signal into ', and singing, each segment including at least one symbol; and performing phase correction for each segment. According to another aspect, a device for evaluating transmitter performance in a wireless communication system can include: a signal analyzer, a processor, and a memory. The signal analyzer samples the _rf signal from the transmitter; the 114499.doc 1333349 processor calculates a frequency domain channel estimate for each 钊 carrier for all units in the superframe of the I# device signal; An average of the frequency domain channel estimates for each subcarrier of the subcarriers; and generating at least a transmitter metric based at least in part on the average frequency domain channel estimates. The memory is lighted to the processor and stores information about the symbols. Moreover, the processor can determine a modulation symbol for each subcarrier of the subcarriers, wherein the modulation symbols can be utilized in generating the frequency domain channel estimates and the at least one metric. The processor may also determine a modulation type of a subcarrier subgroup having a uniform modulation type according to a majority decision; and if the modulation symbol of each subcarrier in the subcarrier subgroup If the modulation pattern of the subcarrier subgroup is inconsistent, the modulation symbol of the subcarrier is re-evaluated. In addition, the memory can store a plurality of regions of a constellation, each region corresponding to a possible modulation symbol; and the processor can select a constellation point corresponding to each subcarrier of the transmitter signal. The region in which the subtag = the corresponding modifier is corresponding to the possible modifier of the selected region. The processor may also generate a coarse channel estimate for each preamble subcarrier, perform linear interpolation to generate a coarse channel estimate for each subcarrier between the preamble subcarriers; and perform a linear extrapolation method to A coarse channel estimate is generated for subcarriers that are not located between the pilot subcarriers. Additionally, the processor can split the transmitter signal into segments, each segment including at least one symbol; and performing phase correction for each segment. According to another aspect, an apparatus for evaluating transmitter performance for a wireless communication system can include: generating a frequency for each subcarrier for all OFDM symbols in a data unit of a transmitter signal Domain channel estimate 114499.doc 1333349 component; average frequency domain (four) estimate component for determining each subcarrier of the subcarriers; and flat for each subcarrier based on at least (four) subcarriers The domain channel estimate is used to generate a component that indicates at least one metric of the performance of the transmitter. In addition, the apparatus may include: means for determining a modulation symbol of each subcarrier of the dedicated subcarrier, the modulation symbol is generated in the frequency domain bottle. 3⁄4 ^ μ & The channel estimate and the at least one metric are utilized. The apparatus may further comprise: means for determining, according to a majority decision, that one of the subcarriers has a modulation subgroup of the "smoke" 致 amp amp 致 致 致 致 致And re-estimating the modulation symbol of the subcarrier if the modulation symbol of each subcarrier in the subcarrier subgroup of the subcarriers is not related to the modulation type The components. In addition, the means for determining a modulation may include: determining a point in the sub-complex plane corresponding to the transmitter signal - subcarriers - in the complex plane a member corresponding to the -distance between the - point of one of the at least one possible modulation symbol it; and for selecting the modulation symbol corresponding to the signal point closest to the signal point It is possible to modify the components of the symbol, wherein the modulation symbol for the subcarrier is the selected modulation symbol. The apparatus can further include: means for generating a coarse channel estimate for each of the leading subcarriers; and means for performing linear interpolation and linear extrapolation, performing linear interpolation to generate the preamble pair The coarse channel estimate for each subcarrier of the subcarriers between carriers, and linear extrapolation is performed to generate the coarse channel estimate for each subcarrier that is not located between the preamble subcarriers. The apparatus can also include: means for segmenting the transmitter signal into a set of segments, each segment comprising at least one symbol; and for 114499.doc • 10« c S ) 1333349 phase correction for the parent-segment member. The invention relates to a computer readable medium having stored computer readable instructions for generating a plurality of subcarriers for all symbols in a data unit of a transmitter signal. a frequency domain channel estimate for each subcarrier; a flat frequency domain channel estimate for each subcarrier of the plurality of subcarriers; and the average frequency domain channel based at least in part on each of the plurality of subcarriers It is estimated that a V-metric is generated that indicates the performance of the transmitter. The instructions may further include instructions for: determining a modulation symbol for each subcarrier of the plurality of subcarriers, wherein the modulation symbol is when generating the frequency domain channel estimate and the at least one metric Use it. The computer readable medium further includes instructions for: determining, according to a majority decision, that one of the subcarriers has a uniform modulation type, a modulation of the subcarrier subset, and a subcarrier of the subcarrier The modulation symbol of each subcarrier in the subgroup is inconsistent with the modulation pattern, and the modulation symbol of the subcarrier is re-evaluated. Additionally, the computer readable medium can include instructions for dividing a complex plane into a plurality of regions, each region corresponding to a possible modulation symbol; and selecting a carrier corresponding to the carrier of the transmitter signal The region in which the point is located, the modulation symbol of the subcarrier corresponds to the possible modulation symbol of the selected region. Moreover, the computer readable medium can include instructions for generating a coarse frequency domain channel estimate for each preamble subcarrier; interpolating a coarse frequency of each subcarrier of the subcarriers between the preamble subcarriers Domain channel estimation; and extrapolating a coarse frequency domain channel estimate for the subcarriers that are not located between the pilot fields. The computer readable medium can include instructions for the next process: segmenting the transmitter -11 - 114499.doc 1333349 into a set of segments, each phase performing phase correction for each segment. The segment includes at least one symbol; and for another aspect, a processor for the command to evaluate the effectiveness of the transmitter for use in a wireless communication system, such as: A data sheet of one of the emission states. A symbol of the first subcarrier of the plurality of subcarriers is generated by a frequency domain channel of the plurality of subcarriers.
-副載波的一平均頻域頻道估計;及至少部分基於該複數 個副載波之每一副載波的該平均頻域頻道估計,產生指示 出發射器效能的至少一度量。該等指令亦可包括:判定該 複數個副載波之每-副載波的—調變符元,該調變符元係 在產生該等頻域頻道估計及該至少—度量時予以利用。此 外’該等指令可包括:依據一種多數決法,判定該等副載 波中之I彳&調變型態之副载波子組的一調變型態;- an average frequency domain channel estimate of the subcarriers; and generating the at least one metric indicative of the transmitter performance based at least in part on the average frequency domain channel estimate for each of the plurality of subcarriers. The instructions may also include determining a permutation symbol for each of the plurality of subcarriers, the modulation symbol being utilized in generating the frequency domain channel estimates and the at least one metric. Further, the instructions may include determining, according to a majority decision, a modulation pattern of the subcarrier subgroup of the I彳& modulation type in the subcarriers;
及如果該副载波子組中的每—副載波之該調變符元與該調 變型態不-致,則重新評估該副載波的該調變符元。該等 指令可進-步包括:判定介於在一複數平面中相對應於該 發射器訊號的該複數個副載波中之一副載波的一點與在該 複數平面中相對應於至少一可能調變符元中之一可能調變 符元的一點之間的一距離;及選擇相對應於最接近該訊號 點的該調變符元點之該可能調變符元,其中用於該副載波 的該調變符元係該所選擇之調變符元。該等指令亦可包 括:產生該複數個副載波之每一前導副載波的一粗略頻域 頻道估計;内插位於該等前導副載波之間的該複數個副載 波之每一副載波的一粗略頻域頻道估計;及外插非位於該 114499.doc •12- 等前導副載波之間的該複數個副載波之每一副載波的—粗 略頻域頻道估計❶此外,該等指令可包括:將該發射器訊 號分割成一組片段,每一片段包括至少一符元;及對於每 —片段實行相位校正。 為了達成前述及相關目的,一或多項具體實施例包括 【實施方式】中徹底說明並於申請專利範圍中具體指出的 特徵。【實施方式】及附圖詳細提出一或多項具體實施的 圖解態樣。彼等態樣是象徵性,但是,有一些各種方式可 採用各項具體實施原理,並且所描述之具體實施例意欲包 含所有此等態樣及其同等項。 【實施方式】 現在將參考附圖來描述各項具體實施例,其中整份圖式 中使用相似的參照數字來表示相似的元件。基於解說的 目的,在下面的詳細說明中提出許多的特定細節,以提供 充分瞭解-或多項具體實施例。但是,顯而易見,在不運 用思些特定細節的情況下,仍然可實施此(等)具體實施 例。於其他情況下’為了促進描述一或多項具體實施例, 以方塊圖开> 式來繪示熟知的結構及裝置。 立在本份申請案中,用詞"組件"、"系統••及類似用詞旨在 §>'心電腦相關實體’其為硬體、軟硬體組合軟體或執行中 之軟硬體。舉例而言’一組件可能係(但不限於)正在處理 器上執行之處理程序、處理器、物件、可執行檔、執行 緒程式及/或電腦。一或多個組件可駐存在處理程序及/ 或執行緒内’並且—組件可被局域化在個電腦上及/或And if the modulation symbol of each subcarrier in the subcarrier subgroup is not related to the modulation type, the modulation symbol of the subcarrier is re-evaluated. The instructions may further include: determining a point of one of the plurality of subcarriers corresponding to the transmitter signal in a complex plane corresponding to at least one possible tone in the complex plane One of the variable elements may be a distance between one point of the modulation symbol; and selecting the possible modulation symbol corresponding to the modulation symbol point closest to the signal point, wherein the sub-carrier is used for the sub-carrier The modifier symbol is the selected modulation symbol. The instructions may further include: generating a coarse frequency domain channel estimate for each of the plurality of subcarriers of the plurality of subcarriers; and interpolating one of each of the plurality of subcarriers between the preamble subcarriers a coarse frequency domain channel estimate; and extrapolating a coarse frequency domain channel estimate for each subcarrier of the plurality of subcarriers not between the leading subcarriers of the 114499.doc • 12-, etc. Additionally, the instructions may include : splitting the transmitter signal into a set of segments, each segment comprising at least one symbol; and performing phase correction for each segment. In order to achieve the foregoing and related ends, one or more specific embodiments include the features that are fully described in the <RTIgt; DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The drawings and detailed drawings set forth one or more embodiments. They are intended to be in a variety of ways, and the specific embodiments are intended to cover all such aspects and their equivalents. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Various embodiments will be described with reference to the drawings, in which like reference numerals In the following detailed description, numerous specific details are set forth However, it will be apparent that this embodiment can be practiced without the specific details. In other instances, well-known structures and devices are shown in the form of a block diagram in order to facilitate a description of one or more embodiments. In this application, the words "component", "system•• and similar terms are intended to be §> 'heart computer related entities' which are hardware, software and hardware combinations or implementations. Soft and hard. For example, a component may be, but is not limited to being, a processor, processor, object, executable, executable, and/or computer being executed on a processor. One or more components can reside within the processor and/or thread' and the component can be localized on a computer and/or
< S 114499.doc 1333349 分散於兩個或兩個以上電腦之間。再者,可從已儲存各種 資料結構的電腦可讀媒體來執行彼等組件。彼等組件可藉 由本端及/或遠端處理程序進行通信,諸如根據具有一或 多個資料封包的訊號(例如,來自藉由訊號而與本端系 統、分散式系統及/或跨網路(諸如網際網路)與其他系統中 的另一組件互動的組件)。< S 114499.doc 1333349 Disperse between two or more computers. Furthermore, their components can be executed from a computer readable medium that has stored various data structures. The components can communicate via the local and/or remote processing program, such as based on signals having one or more data packets (eg, from a local system, a decentralized system, and/or a cross-network by means of signals) A component (such as the Internet) that interacts with another component in another system).
另外’本文中配合使用者裝置來描述各項具體實施例。 使用者裝置亦可稱為系統、用戶單元、用戶台、行動台、 行動裝置、遠端站台、接取點、基地台、遠端終端機、使 用者終端機、終端機、使用者代理器或使用者設備(uE)〇 使用者裝置可能係行動電話、無接線式電話、會期起始通 信協定(Session Initiati〇n Pr〇t〇c〇丨;SIp)手機無線本地 迴路(WLL)站台、PDA、具有無線連接能力之手持式裝置 或連接至無線數據機之其他處理裝置。Further, various embodiments are described herein in conjunction with user devices. User devices may also be referred to as systems, subscriber units, subscriber stations, mobile stations, mobile devices, remote stations, access points, base stations, remote terminals, user terminals, terminals, user agents, or The user equipment (uE)/user device may be a mobile phone, a wireless telephone, a session initiation communication protocol (Session Initiati〇n Pr〇t〇c〇丨; SIp) mobile wireless local loop (WLL) platform, PDA, handheld device with wireless connectivity or other processing device connected to the wireless data processor.
另外,可使用標準程式化及/或工程設計技術,將本文 中所描述之各項態樣或特徵可實施為方法、設備或製造 ^本文中使用利詞"製造品·.旨在囊括可從任何電腦可 讀裝置、載體或媒體存取之電腦程式。舉例而言,電腦可 讀媒體可包括(但*限於)磁性儲存媒體(例如,硬碟、軟 碟、磁條)、光學碟片(例如,光碟片(CD)、數位多功能碟 片(DVD)_..)、智慧卡及快閃記憶體裝置(例如,記憶卡 ^^^(key drive)...) 〇 114499.doc 1333349 器’以確保在一既定地理區中的廣涵蓋區域。在市場中普 遍部署多個發射器,以確保FLO訊號傳到一既定市場中的 大多數人口。 典型地,FLO技術利用0FdM。以分頻為基礎的技術(諸 如OFDM)典型係藉由將頻率頻譜分割成若干均等的頻寬區 塊,來將頻率頻譜分成相異的頻道。舉例而言,經配置用 於無線行動電話通信的頻率頻譜或頻段可被分割成3〇個頻 道母頻道可運載一語音交談或用於數位服務、數位資 料每頻道可一次指派給僅一個使用者裝置或終端機。 OFDM有效率地劃分整個系統頻寬成為多個正交頻率頻 道。一OFDM系統可使用分時多工及/或分頻多工以達成 用於多個終端機之多個資料傳輸的正交性(〇rth〇g〇namy)。 舉例而言,不同終端機可被配置不同的頻道,並且用於每 一終端機的資料傳輸可在配置給彼終端機的頻道上予以發 送。藉由對於不同終端機使用分開或非重疊之頻道,可以 避免或減小多個終端機之間的干擾,且可達成改良之效 ,人基地台發&器效能是無線系統(尤其是利用助技術的無In addition, the various aspects or features described herein can be implemented as a method, apparatus, or manufacture using standard stylized and/or engineering techniques. The word "manufacturing article" is used herein. A computer program accessed from any computer readable device, carrier or media. By way of example, computer readable media may include, but are limited to, magnetic storage media (eg, hard drives, floppy disks, magnetic strips), optical discs (eg, compact discs (CD), digital versatile discs (DVD) )_..), smart card and flash memory device (eg, memory card ^^^(key drive)...) 〇114499.doc 1333349 ' to ensure a wide coverage area in a given geographic area. Multiple transmitters are deployed throughout the market to ensure that FLO signals reach the majority of the population in a given market. Typically, FLO technology utilizes OFDM. A frequency division based technique, such as OFDM, typically divides the frequency spectrum into distinct channels by dividing the frequency spectrum into a number of equal bandwidth blocks. For example, a frequency spectrum or frequency band configured for wireless mobile phone communication can be divided into 3 channel channel channels to carry a voice conversation or for digital services, digital data can be assigned to only one user at a time. Device or terminal. OFDM efficiently divides the overall system bandwidth into multiple orthogonal frequency channels. An OFDM system can use time division multiplexing and/or frequency division multiplexing to achieve orthogonality (多个rth〇g〇namy) for multiple data transmissions of multiple terminals. For example, different terminals can be configured with different channels, and data transmission for each terminal can be sent on the channel configured for the terminal. By using separate or non-overlapping channels for different terminals, interference between multiple terminals can be avoided or reduced, and improved results can be achieved. The performance of the human base station & the wireless system is especially utilized. Help technology
H4499.doc a〜’用於測試及評估發 0•具成本效率。可在製造廠 發射器具安裝資格。此外, 以確保持續的發射器效能。 用在無線 環境中評估發射 FLO的無線環境、數位多媒 -15· 1333349 體廣播(DMB)、數位視訊廣播(DVB)、DVB-H、DVB-T、 DVB-S 或 DVB-S2 訊號。 現在請參考圖1 ’圖中繪示根據本文提出之各項態樣之 發射器評估系統1 00。系統100可包括一訊號分析器i04, 其可用於取樣一發射器102所產生的訊號。藉由使用訊號 分析器104 (而非使用接收器)來接收訊號,系統1 〇〇可排除 接收器成為額外雜訊或失真的可能來源。系統1 〇 〇亦可包 括一處理器106,其能夠處理訊號分析器1〇4所捕獲的訊 號,並且產生用以評估發射器1〇2之效能的度量。處理器 106可包括一頻道估計器108 ’其可用於產生每一副載波的 頻域頻道估計。處理器106亦可包括一度量產生器11〇,其 產生用以評估發射器102之效能的度量(諸如調變錯誤率 (MER))。度罝產生器11〇所產生的度量可基於頻道估計器 108所產生的頻域頻道估計。系統1〇〇亦可包括一連接至處 理器106之記憶體112,其儲存關於發射器效能評估的資 料。此外,系統100可包括一顯示器組件114,以允許使用 者透過處理器所產生的可視回饋來監視發射器效能。 處理器106可提供用於顯示器組件114的各種型態使用者 介面。舉例而言,處理器106可提供一圖形使用者介面 (GUI)、一命令列介面及類似項。舉例而言,可顯現一為 使用者提供用於檢視發射器資訊之區域的GUI。彼等區域 可包括已知的文字及/或圖形區域,包括對話方塊、靜態 控制項、下拉式功能表、清單方塊、快顯功能表、編輯控 制項、組合方塊、選擇鈕、核取方塊、按鈕或圖形方塊。 114499.docH4499.doc a~' is used for testing and evaluation. Eligibility for installation of the launcher at the manufacturer. In addition, to ensure continuous transmitter performance. Used in wireless environments to evaluate wireless environments that transmit FLO, digital multimedia -15· 1333349 bulk broadcast (DMB), digital video broadcast (DVB), DVB-H, DVB-T, DVB-S or DVB-S2 signals. Referring now to Figure 1 ', a transmitter evaluation system 100 in accordance with the various aspects set forth herein is illustrated. System 100 can include a signal analyzer i04 that can be used to sample a signal generated by a transmitter 102. By using signal analyzer 104 (rather than using a receiver) to receive signals, System 1 can eliminate the receiver as a possible source of additional noise or distortion. System 1 〇 〇 may also include a processor 106 that is capable of processing the signals captured by signal analyzers 〇4 and generating metrics for evaluating the performance of transmitters 〇2. Processor 106 can include a channel estimator 108' that can be used to generate a frequency domain channel estimate for each subcarrier. The processor 106 can also include a metric generator 11 that produces a metric (e.g., modulation error rate (MER)) to evaluate the performance of the transmitter 102. The metric generated by the rate generator 11 可 may be based on a frequency domain channel estimate generated by the channel estimator 108. System 1A can also include a memory 112 coupled to processor 106 that stores information regarding transmitter performance evaluation. In addition, system 100 can include a display component 114 to allow a user to monitor transmitter performance through visual feedback generated by the processor. Processor 106 can provide various types of user interfaces for display component 114. For example, processor 106 can provide a graphical user interface (GUI), a command line interface, and the like. For example, a GUI can be presented that provides the user with an area for viewing transmitter information. These areas may include known text and/or graphics areas, including dialog boxes, static controls, drop-down menus, list boxes, pop-up menus, edit controls, combo blocks, selection buttons, checkboxes, Button or graphic block. 114499.doc
-16- 1333349 此外,還可採用公用程式(,),以促進諸如用於㈣ 之垂直及/或水平捲動軸及工具列按紐的版面展示 (presentation),以判定一區域是否將係可檢視區。 在一實例中’可採用命令列介面。舉例而言,命令列介 面可藉由提供文字訊息來將資訊提示(例如,藉由顯示器 上的文字訊息及音訊音調)給使用者’或警示使用者發射 器效能超出預先判定界限。應明白,可結合Gm及/或應用-16- 1333349 In addition, a utility (,) can be used to facilitate presentations such as vertical and/or horizontal scrolling axes and toolbar buttons for (4) to determine if an area will be available View area. In an example, a command line interface can be employed. For example, the command line interface can provide informational prompts (e.g., by text messages and audio tones on the display) to the user by providing a text message or alerting the user that the transmitter performance exceeds a predetermined threshold. It should be understood that Gm and / or application can be combined
程式介面(API)—起採用命令列介面。此外,還可結合硬 體(例如,視訊卡)、及/或含有限圖形支援的顯示器°(例 如,單色顯示器及EGA)及/或低頻寬通信頻道一起採用命 令列介面。 此外,如果發射器效能超出可接受範圍,則評估系統還 可產生警不以通知使用者。警示可能係可聽見、可視或旨 在引起使用者注意的任何其他形式。評估系統可包括一組 預先判定值’以指示可接受範圍之界限。替代做法為,使The program interface (API) - uses the command line interface. In addition, a command line interface can be used in conjunction with a hardware (e.g., a video card), and/or a display with limited graphics support (e.g., a monochrome display and EGA) and/or a low frequency wide communication channel. In addition, if the transmitter performance is outside the acceptable range, the evaluation system can also generate an alarm to notify the user. Alerts may be audible, visual, or any other form intended to draw the user's attention. The evaluation system can include a set of pre-determined values' to indicate the limits of the acceptable range. Alternative approach
用者可動態判定界限。此外,評估系統可依據發射器效能 之改變來產生警示。 現在請參考圖2,圖中繪示根據本文提出之各項態樣之 無線通信系統200。系統2〇〇可包括位於一或多個扇區中的 一或多個基地台202,其接收、傳輸、中繼傳輸(repeat)等 等無線通信訊號至每一其他基地台及/或一或多個行動裝 置204 ^基地台可能係用於與終端機通信之固定式站台, 並且也可稱為接取點、節點B或使用其他術語。每一基地 02可包括一發射器键及一接收器鏈,而每一發射器鏈The user can dynamically determine the limit. In addition, the evaluation system can generate alerts based on changes in transmitter performance. Referring now to Figure 2, a wireless communication system 200 in accordance with various aspects set forth herein is illustrated. System 2A may include one or more base stations 202 located in one or more sectors that receive, transmit, relay, etc. wireless communication signals to each of the other base stations and/or one or Multiple mobile devices 204 base stations may be used for fixed stations that communicate with terminals, and may also be referred to as access points, Node Bs, or other terms. Each base 02 can include a transmitter key and a receiver chain, and each transmitter chain
114499.doc -17· 1333349 及接收器鏈可包括相關聯於訊號傳輸及接收的複數個組件 (例如,處理器、調變器、多工器、解調變器、解多工 。天線等等),如熟悉此項技術者所知。行動裝置204可 係(例如)行動手機、智慧型手機、手持式通信裝置、手持 式運算裝置、衛星無線電、全球定位系統、pDA及,或用於 透過無線系統200通信之任何其他適合裝置。此外,每一 行動裝置204可包括—或多個發射器鏈及__接收器鏈,諸114499.doc -17· 1333349 and the receiver chain may include a plurality of components associated with signal transmission and reception (eg, processor, modulator, multiplexer, demodulation, demultiplexing, antenna, etc.) ), as known to those skilled in the art. Mobile device 204 can be, for example, a mobile handset, a smart phone, a handheld communication device, a handheld computing device, a satellite radio, a global positioning system, a pDA, or any other suitable device for communicating over wireless system 200. Moreover, each mobile device 204 can include - or multiple transmitter chains and __ receiver chains,
用於多輸入多輸出(MIM〇)系統。每一發射器及接收器鏈 可包括相關聯於訊號傳輸及接收的複數個組件(例如,處 理器、調變器、多工器、解調變器、解多卫器、天線等 專)如熟悉此項技術者所知。For multiple input multiple output (MIM〇) systems. Each transmitter and receiver chain may include a plurality of components (eg, processors, modulators, multiplexers, demodulators, de-multi-processors, antennas, etc.) associated with signal transmission and reception, such as Those skilled in the art are aware of this.
圖3繪示無線通信系統3〇〇。系統3〇〇包括一發射器3〇2 , 其可接收用於自一通信衛星系統3〇4傳輪的資料。來自衛 星系統304之訊號可透過一整合式接收器解碼器3〇6 (其可 包括一術星解調變器3〇8及一簡易網路管理協定(SNMp)控 制單元3U))予以傳播。纟自整合式接收器解碼器的訊 號資料可被輸入至發射器3〇2内的一激發器312。此外,可 透過數據機316將發射器302連接至一網際網路提供者 (IP)網路314 ^可將數據機316連接至發射器3〇2内的一 SNMP控制單凡318。激發器312可包括一剖析器與單頻網 路(SFN)緩衝器320、投手核心(bowier c〇re)322及一數位轉 類比轉換器(DAC)與I/Q調變器324。可在剖析器與sfn缓 衝器320中剖析及儲存來自衛星系統304的資料。投手核心 322產生表示訊號資料的複數(c〇mpiex numbe〇、將訊號資 114499.doc -18- 料作為同相(I)分量與垂直相(Q)分量傳遞至DAC與I/Q調變 器324。DAC與I/Q調變器324可利用一合成器326來處理訊 號資料且產生類比射頻(RF)訊號。將資料轉換成類比之 後’可將所得RF訊號資料傳遞至一功率放大器328且傳遞 至譜波渡波器330。此外,可在藉由天線334傳輸資料之 前’先將資料傳遞至一頻道濾波器332。 為了評估發射器效能,可監視激發器3 12所產生的RF訊 號資料。可能的發射器錯誤或雜訊來源包括增頻取樣(up_ sampling)、數位轉類比轉換及rF轉換。可在激發器之輸 出端與頻道濾波器之輸出端處進行訊號資料取樣,使得可 在功率放大與濾波前後進行rF訊號取樣。如果在放大之後 進行訊號取樣,則應校正訊號之功率放大非線性。 現在請參考圖4 ’圖中繪示連接至發射器系統激發器312 之發射器評估系統400。可使用來自一全球定位系統(Gps) 接收器402之訊號來同步化激發器312與訊號分析器1〇4。 可將一來自GPS接收器4〇2之外部10百萬赫茲時脈饋送至 激發器312及訊號分析器1〇4兩者,以用作為一共同時脈參 考。為了使訊號分析器1〇4之開始取樣同步於激發器312所 輸出之RF訊號資料之超圖框起點,Gps 4〇2可傳輸j脈衝/ 秒(pulse per* second ; ppS)訊號至激發器3 12以用於同步, 並且傳輸至訊號分析器1〇4以觸發開始取樣。訊號分析器 104可按同步於經傳輸之訊號的基頻碼片速率的速率,來 產生激發器類比輪出波形之數位樣本。然後,經取樣之資 料被饋送至處理器1〇6。可使用一般用途處理器或專用於 114499.doc 19 1333349 分析發射器資料的處理器來實施處理器1〇6。使用一般用 途處理器可降低發射器評估系統4〇〇的成本。訊號分析器 104可被組態為在浮點模式中執行,以避免量化雜訊。FIG. 3 illustrates a wireless communication system. System 3A includes a transmitter 3〇2 that receives data for transmission from a communication satellite system 3〇4. The signal from the satellite system 304 can be propagated through an integrated receiver decoder 3〇6 (which can include a Star Demodulation Transmitter 3〇8 and a Simple Network Management Protocol (SNMp) Control Unit 3U). The signal data from the integrated receiver decoder can be input to an exciter 312 in the transmitter 3〇2. In addition, transmitter 302 can be coupled to an Internet provider (IP) network 314 via modem 316. Data machine 316 can be coupled to an SNMP control unit 318 within transmitter 3. The exciter 312 can include a parser and single frequency network (SFN) buffer 320, a pitcher core 322, and a digital to analog converter (DAC) and I/Q modulator 324. Data from the satellite system 304 can be parsed and stored in the parser and sfn buffer 320. The Pitcher Core 322 generates a complex number (c〇mpiex numbe〇, the signal source 114499.doc -18- as the in-phase (I) component and the vertical phase (Q) component is passed to the DAC and I/Q modulator 324. The DAC and I/Q modulator 324 can utilize a synthesizer 326 to process the signal data and generate an analog radio frequency (RF) signal. After converting the data to analog, the resulting RF signal data can be passed to a power amplifier 328 and passed To the spectral wave waver 330. In addition, the data can be first passed to the channel filter 332 before the data is transmitted by the antenna 334. To evaluate the transmitter performance, the RF signal data generated by the trigger 3 12 can be monitored. Sources of transmitter errors or noise include up-sampling, digital-to-analog conversion, and rF conversion. Signal data can be sampled at the output of the exciter and at the output of the channel filter, allowing for power amplification. RF signal sampling before and after filtering. If signal sampling is performed after amplification, the power amplification nonlinearity of the signal should be corrected. Now refer to Figure 4, which shows the connection to the transmitter system. The transmitter evaluation system 400 of the exciter 312. The signal from a global positioning system (Gps) receiver 402 can be used to synchronize the exciter 312 with the signal analyzer 1〇4. A GPS receiver 4〇2 can be used. The external 10 megahertz clock is fed to both the exciter 312 and the signal analyzer 1〇4 for use as a common clock reference. In order to synchronize the sampling of the signal analyzer 1〇4 with the output of the exciter 312 At the beginning of the superframe of the RF signal data, Gps 4〇2 can transmit a j pulse/second (pulse per* second; ppS) signal to the trigger 3 12 for synchronization and transmit to the signal analyzer 1〇4 to trigger the start. The signal analyzer 104 can generate a digital sample of the exciter analog turn-out waveform at a rate synchronized to the baseband chip rate of the transmitted signal. The sampled data is then fed to the processor 1〇6. The processor 1-6 can be implemented using a general purpose processor or a processor dedicated to analyzing the transmitter data at 114499.doc 19 1333349. The use of a general purpose processor can reduce the cost of the transmitter evaluation system. The signal analyzer 104 Can be configured to execute in floating point mode to avoid quantifying noise.
現在請參考圖5 ’圖巾繪㈣於解說介於所測量或接收 訊號與所傳輸訊號之間差異的星座圖。星座圖秘表示複數 的實部與虛部,稱為同相或!抽與垂直相或⑽。介於所测 量訊號星座點與所傳輸訊號星座點之間向量表示錯誤,立 可包括數位轉類比轉換不精確、功率放大非線性、頻帶内 振幅波紋、發射器IFFT量化錯誤等等。 發射器評估系統可產生—或多項度量,以評估發射器效 能。處理器所產生之度量包括(但不限於)調變錯誤率 (MER)、群組延遲或頻道頻率響應。具體而言,mer測量 發射器内缺陷之影響。副載波之]^]511同等於副載波之訊雜 比(SNR)。可使用下列方程式來產生mer : Τ7Σ(/2+β2)Referring now to Figure 5, the figure (4) is a diagram illustrating the constellation between the measured or received signal and the transmitted signal. The constellation diagram represents the real and imaginary parts of the plural, called in-phase or! Draw with the vertical phase or (10). The vector between the measured signal constellation point and the transmitted signal constellation point represents an error, which may include inaccurate digital to analog conversion, nonlinear power amplification, intra-band amplitude ripple, transmitter IFFT quantization error, and the like. The transmitter evaluation system can generate - or multiple metrics to evaluate transmitter performance. The metrics generated by the processor include, but are not limited to, modulation error rate (MER), group delay, or channel frequency response. Specifically, mer measures the effects of defects in the transmitter. The subcarrier]^]511 is equivalent to the subcarrier's signal-to-noise ratio (SNR). The following equation can be used to generate mer: Τ7Σ(/2+β2)
MER{dB) =101〇g-jl---- 士芩(Δ/2+Δρ2) 此處,I係所測量星座點之同相值,Q係所測量星座點之垂 直相值,並且N係副載波數量。ΔΙ係介於所傳輸訊號之同 相值與所測量訊號之同相值之間的差異,並且AQ係介於 所傳輸訊號之正交值與所測量訊號之垂直相值之間的差 異》 請參考圖6至10、12及13,圖中繪示關於在無線通信系 統中評估發射器效能之方法論。雖然為了簡化解說之目 114499.doc •20- 的方法論係繪示且描流% , 之為一連串動作,但是應瞭解’方 凌确未受限於動作順序, 根據一或多項具體實施例,一些 動作可按不同於本文所绔_ +又所、會不及描述之順序發生及/或連同 其他動作同時發生。I彳 舉例而言’熟習此項技術者應瞭解, 方法:論可替代地表示為— 逆甲相互關連狀態或事件,諸如 以狀態圖表示。另外,椒姑· ^ ^ 红 卜根據—或多項具體實施例,可利用 分所繪示之動作來實施方法論。 現在唄參考圖6’圖中繪示用於處理自一發射器接收之 灯訊號資料及評估發射器效能之方法論_。典型地,發 射器以超訊框為單位廣播即時排程之資料流。一超訊框可 包括一訊框群組(例如,16個訊框),其中一訊框係一邏輯 資料單元。 在步驟602,接收或取樣來自發射器的訊號,經接收訊 號可寫為如下:MER{dB) =101〇g-jl---- Gentry (Δ/2+Δρ2) Here, the in-phase value of the constellation points measured by the I system, the vertical phase value of the constellation points measured by the Q system, and the N system The number of subcarriers. ΔΙ is the difference between the in-phase value of the transmitted signal and the in-phase value of the measured signal, and the AQ is the difference between the orthogonal value of the transmitted signal and the vertical phase of the measured signal. 6 to 10, 12 and 13, the figure illustrates the methodology for evaluating transmitter performance in a wireless communication system. Although the methodology for the purpose of simplifying the explanation 114499.doc •20- is drawn and the % is drawn as a series of actions, it should be understood that 'Fang Ling is not limited by the sequence of actions, according to one or more specific embodiments, some The actions may occur in an order different from that described herein, and may occur in the order described and/or concurrent with other actions. I 彳 For example, those skilled in the art should understand that the method: alternatively can be expressed as - a reverse correlation state or event, such as a state diagram. In addition, according to the specific embodiment, the method can be implemented by using the actions illustrated by the points. Referring now to Figure 6', a methodology for processing lamp signal data received from a transmitter and evaluating transmitter performance is illustrated. Typically, the transmitter broadcasts an instantaneous scheduled data stream in units of hyperframes. A hyperframe can include a frame group (e.g., 16 frames), wherein a frame is a logical data unit. At step 602, a signal from the transmitter is received or sampled, and the received signal can be written as follows:
Yk= Hk.Pk+Nk 此處’扎係副載波k之頻道。可在副載波k上傳輸已知之調 變符元Pk。具有零平均(zero mean)及σ2變異數(variance)2 複加成性白色高斯雜訊(Complex additive white Gaussian noise ; AWGN)可用Nk予以表示。 用於副載波的可能調變型態可包括(但不限於):垂直相 相移鍵控(QPSK);具有能量比6.25 (ER6.25)之分層式 QPSK ; 16QAM (quadrature amplitude modulation ;垂直相 振幅調變);及具有能量比4.0 (ER4)之分層式QPSK。當依 據星座觀點分析時,具有能量比4.0之分層式QPSK與 114499.doc • 21 - 1333349 16QAM完全相同。在本文中,星座觀點意指利用星座點來 表示複數平面(complex plane)之數位調變方案。調變符元 可表示為星座圖上之星座點。 在步驟604,可判定副載波的起始頻域頻道估計。藉由 將經接收訊號Yk除已知符元Pk,可獲得每一副載波的起始 頻道估計。可傳輸所選取之符元,使得對於效能評估,符 元係已知。超訊框内所有0FDM符元丨之每一副載波k的起 始頻域頻道估計可表示為如下: K\ 此處,zk>1係副載tk&OFDM符元丨的起始頻道估計。 在步驟606’判定平均頻道估計1藉由計算整個超訊 :,i rk,iYk = Hk.Pk + Nk Here, the channel of the subcarrier k is tied. The known modulation symbol Pk can be transmitted on the subcarrier k. With zero mean and σ2 variance 2 Complex additive white Gaussian noise (AWGN) can be represented by Nk. Possible modulation patterns for subcarriers may include, but are not limited to, vertical phase shift keying (QPSK); layered QPSK with energy ratio 6.25 (ER6.25); 16QAM (quadrature amplitude modulation; vertical) Phase amplitude modulation); and a layered QPSK with an energy ratio of 4.0 (ER4). When analyzed according to the constellation point of view, the hierarchical QPSK with energy ratio of 4.0 is identical to 114499.doc • 21 - 1333349 16QAM. In this context, a constellation perspective refers to a digital modulation scheme that uses constellation points to represent a complex plane. The modulating symbol can be represented as a constellation point on the constellation. At step 604, a starting frequency domain channel estimate for the subcarriers can be determined. The start channel estimate for each subcarrier can be obtained by dividing the received symbol Yk by the known symbol Pk. The selected symbols can be transmitted such that the symbol is known for performance evaluation. The initial frequency domain channel estimate for each subcarrier k of all 0FDM symbols in the superframe can be expressed as follows: K\ where zk>1 is the starting channel estimate for the subcarrier tk&OFDM symbol. At step 606', the average channel estimate 1 is determined by calculating the entire supersound: i rk, i
L 框之平均,精細修訂頻道估計Zk i,使The average of the L box, the fine revision channel estimate Zk i,
Hk =R +lv^.i ,pk K,r 此處_;k係0FDM符元索引,並且L係超訊框中的0FD_ 疋數量(例如’ 1188個符^由於平均頻道估計之變異3 ::於起始頻道估計,所以在度量產生期間,可使用平均$ 、估汁之變異豸來大致估計副載波的頻道增益。 +,^驟6G8 ’產生用於評估發射器效能的度量。舉例开 產生副载波㈣臟。假設經傳輸之符元係已知, 〇如下方式來估計雜訊變異數: K\2 k,m II4499.doc -22- 1333349 此處,Xk,m表示副載波k之經傳輸符元 之同相分量與垂直相分量近似: 如果隨機變數Bk係經估計之雜訊變異數,使得 ^ 1 ΜHk = R + lv ^.i , pk K, r where _; k is the 0FDM symbol index, and the number of 0FD_ 疋 in the L system is (for example, '1188 characters ^ due to the variation of the average channel estimate 3: : Estimated at the starting channel, so during the generation of the metric, the average $ and estimated variation 豸 can be used to roughly estimate the channel gain of the subcarrier. +, ^6G8 'Generate a metric for evaluating the performance of the transmitter. The subcarrier (4) is generated. If the transmitted symbol is known, the noise variation is estimated as follows: K\2 k, m II4499.doc -22- 1333349 Here, Xk,m denotes subcarrier k The in-phase component of the transmitted symbol is approximated by the vertical phase component: If the random variable Bk is the estimated number of noise variations, ^ 1 Μ
可展示出雜訊wk 以及: Ε^) = ~~Ε〇ν^) = σ2Can show the noise wk and: Ε^) = ~~Ε〇ν^) = σ2
厶一I 可依據副載波之平均頻道估計、副載波上傳輸之符元及 對於副載波接收之㈣來判定MER。可依據下列示範性方 程式來計算MER : MERk = E\Yk-Hk.pk\^ =£1Μ^ΙΑ1! 五 I % I2 ^1^12 -E\Pt\2MERI can determine the MER based on the average channel estimate of the subcarriers, the symbols transmitted on the subcarriers, and (4) for the subcarrier reception. The MER can be calculated according to the following exemplary formula: MERk = E\Yk-Hk.pk\^ =£1Μ^ΙΑ1! Five I % I2 ^1^12 -E\Pt\2
此處,^係副載波k之平均帛道估言十,^係副載波上傳輸 之符兀,Yk係經接收訊號&Nj^、awgn。此外,可藉由計 算所有副載波之平均值來計算MER。 可產生額外度量來評估發射器效能。舉例而言,度量可 包括頻率響應及群組延遲。可按如下方式來計算副载波让 的群組延遲: GDk dQ. 1 r ~Τ~ I* =--E Λο 2π △/* '-1 y 此處 k=l”",4000 ; 副載波1^與匕1之間的相位差; 114499*doc ·23· 1333349 及△•/^,係副載波k與k-l之間的頻率差。 現在請參考圖7,圖巾料在經傳輸之符元係未知情況 下評估發射器之方法論700。當傳輪即時資料流時,調變 符元(例如,QPSK416QAM符元)係未知。然而,前導符 元係已知。在步驟702,接收訊號。在步驟7〇4,可產生副 載波的粗略起始頻道估計。可使用已知之前導符元及線性 内插法與外插法來實施粗略起始頻道估計,如下文關於圖 8之描述所述。在步驟706,判定副載波的調變符元。可按 下文關於圖9及1〇描述所述,使用星座圖來判定調變符 兀。可依據介於經接收訊號之星座點與相對應於最接近符 元之調變符元之星座點之間的距離來選擇符元。將在下文 中進一步詳細描述符元選擇。在步驟708,可判定每一副 載波的起始頻域頻道估計。藉由將經接收訊號除調變符 元’可獲得每一副載波的起始頻道估計。 在步驟710,可計算整個超訊框的頻道估計平均值,以 增加精確度《可使用粗略頻道估計、依據調變符元之頻道 估計或彼等兩組頻道估計來判定平均頻道估計。在步驟 712,可產生用於至少局部基於頻道估計來評估發射器的 度量。舉例而言,可依據頻道估計及調變符元來判定每一 副載波之MER,如上文詳細描述所述。 現在請參考圖8,圖中繪示用於產生粗略頻道估計之方 法論800。如上文詳細論述所述,經接收訊號可寫為頻道 估什、副載波之符元及雜訊項AWgn之函數。在每一 OFDM符兀中’接收器已知運載前導符元之預先判定數量 114499.doc •24·Here, the average channel of the subcarrier k is estimated to be transmitted, and the signal transmitted on the subcarrier is Yk, and the Yk is received by the signal & Nj^, awgn. In addition, the MER can be calculated by calculating the average of all subcarriers. Additional metrics can be generated to evaluate transmitter performance. For example, the metrics can include frequency response and group delay. The group delay for subcarriers can be calculated as follows: GDk dQ. 1 r ~Τ~ I* =--E Λο 2π △/* '-1 y where k=l”", 4000 ; subcarrier The phase difference between 1^ and 匕1; 114499*doc ·23· 1333349 and △•/^, the frequency difference between subcarriers k and kl. Now refer to Figure 7, the towel is transmitted. The method 700 for evaluating the transmitter in the unknown case of the metasystem. The modulation symbol (e.g., QPSK416QAM symbol) is unknown when passing the instantaneous data stream. However, the preamble is known. At step 702, the signal is received. A coarse starting channel estimate of the subcarriers may be generated at step 7 。 4. The coarse starting channel estimate may be implemented using known preambles and linear interpolation and extrapolation, as described below with respect to FIG. In step 706, the modulation symbol of the subcarrier is determined. The constellation can be used to determine the modulation symbol 所述 as described below with respect to Figures 9 and 1 兀. It can be based on the constellation point and phase of the received signal. The symbol is selected corresponding to the distance between the constellation points of the modulation symbol closest to the symbol. Further details will be given below. Fine descriptor element selection. The initial frequency domain channel estimate for each subcarrier can be determined in step 708. The starting channel estimate for each subcarrier can be obtained by dividing the received signal by the modulation symbol '. 710, the channel estimation average of the entire hyperframe can be calculated to increase the accuracy. The average channel estimation can be determined using the coarse channel estimation, the channel estimation based on the modulation symbols, or the two sets of channel estimates. A metric may be generated for evaluating the transmitter based at least locally on the channel estimate. For example, the MER of each subcarrier may be determined based on channel estimates and modulation symbols, as described in detail above. Referring now to Figure 8 The method 800 for generating a coarse channel estimate is illustrated. As discussed in detail above, the received signal can be written as a function of channel estimation, subcarrier symbols, and noise term AWgn. In each OFDM symbol 'The pre-determined number of receivers known to carry the preamble 114499.doc •24·
1333349 之副載波(例如,500個運載QPSK前導符元之副載波)β因 此,已知此副載波子組的調變符元。據此,在步驟802, 可計算前導副載波的頻道估計。在步驟804,可使用線性 内插法來獲得位於兩個前導副載波之間的副載波之頻道估 計。在步驟8〇6,可使用線性外減來獲得位於超訊框結 尾處之副載波之頻道估計,並且據此獲得非位於前導副載 波之間的副載波之頻道估計。 此外,由於有對於超訊框之OFDM符元交錯排列前導符 兀的(2, 6)型樣(pattern),所以可使用目前〇FDM符元之5⑽ 個則導與先前OFDM符元之5〇〇個前導兩者來獲得頻域頻道 估計。在此等情況中,使用前導符元來產生前導副載波, 並且藉由線性外插法來獲得其餘副載波之頻道估計。 現在請參考圖9,圖中繪示用於判定調變符元之方法論 900。在步驟902,計算介於經接收訊號之星座點與可能之 調變符元之星座點之間的距離。舉例而言,可以計算介於 經接收訊號之星座點與最接近訊號星座點之QpsK星座點 之間的距離,以及介於訊號星座點與最接近訊號星座點之 16QAM星座點之間的距離。在步驟9〇4,選擇最接近訊號 星座點的調變符元星座點作為調變符元。為了增加調變符 元選擇之精確度,可以比較調變符元與具有一致調變型態 之一副載波子組的調變型態。本文中使用半交錯(half_ interlace)作為一具有一致調變型態之副載波子組的實例。 但是’在本文中所論述之系統與方法,具有—致調變型態 之副載波子組不限於半交錯。藉由對照副載波子組的調變 114499.doc •25- 1333349 型態來檢查副載波的調變符元,可以避免調變符元選擇錯 誤》在步驟906,可以判定副載波子組的調變型態。在步 驟908,判定調變符元是否與調變型態—致。若是,則處 理程序終止。若否,則在步驟910,重新評估調變符元, 並且選擇與調變型態一致之調變符元。 典型地,在半交錯期間,調變型態維持一致。一般而 a,由於FLO協定之約束,所以交錯(interiace)内的調變型 態未改變。在本文中,交錯是一副載波組(例如,500個副 載波)。據此,半交錯是二分之一交錯(例如,250個副載 波)。但是’對於2/3速率分層式調變(rate_2/3 Uyered modulation)’ 當在僅基本層模式(base_iayer 〇nly m〇de)中 運作時,可將一交錯内的調變型態切換成QpSK。甚至在 此等條件下,每一半交錯内的調變型態維持恆定。甚至在 此荨條件下’可使用多數決法(maj〇rity v〇ting)來判定每一 半父錯的調變型態。為了判定半交錯或具有一致調變型態 之任何其他副載波子組的調變型態,可判定子組内每一副 載波的調變符元,且據此判定調變型態。可使用以相對應 於每一副載波之調變型態為基礎的多數決法,來判定子組 的調變型態。舉例而言,對於包括250個副載波的半交 錯,該等副載波中之198個副載波的調變型態可與qpsk調 變型態一致’並且其餘52個副載波的調變符元可與16QAM 調變型態一致。由於大多數副載波被偵測為QPSK ,所以 將選擇QPSK作為半交錯的調變型態。相關聯於16qaM調 變型態的25個副載波可予以重新評估且依據其在星座圖中 -26- 114499.doc 1333349 的位置重新指派給QPSK調變符元❹比較調變符元與半交 錯之調變型態’並且按需要重新評估調變符元,增加調變 符元訊號之精確度。 請參考圖ίο至π ’圖ίο繪示用於判定調變符元之方法論 1000。在步驟1002,一包括表示各種調變符元之星座點的Subcarriers of 1333349 (e.g., 500 subcarriers carrying QPSK preambles) β Therefore, the modulation symbols of this subcarrier subgroup are known. Accordingly, at step 802, a channel estimate for the leading subcarriers can be calculated. At step 804, linear interpolation may be used to obtain a channel estimate for the subcarriers located between the two leading subcarriers. In step 8〇6, a linear outer subtraction can be used to obtain a channel estimate for the subcarriers located at the end of the hyperframe, and accordingly a channel estimate for the subcarriers that are not located between the leading subcarriers is obtained. In addition, since there are (2, 6) patterns of the preambles OFDM for the OFDM symbols of the hyperframe, 5 (10) of the current DMFDM symbols can be used to refer to the 5 先前 of the previous OFDM symbols. Both preambles are used to obtain frequency domain channel estimates. In such cases, the preamble is used to generate the leading subcarriers, and the channel estimates for the remaining subcarriers are obtained by linear extrapolation. Referring now to Figure 9, a methodology 900 for determining a modulated symbol is illustrated. At step 902, the distance between the constellation point of the received signal and the constellation point of the possible modulation symbol is calculated. For example, the distance between the constellation point of the received signal and the QpsK constellation point closest to the signal constellation point, and the distance between the signal constellation point and the 16QAM constellation point closest to the signal constellation point can be calculated. In step 9〇4, the modulation constellation point closest to the signal constellation point is selected as the modulation symbol. In order to increase the accuracy of the modulation symbol selection, it is possible to compare the modulation symbols with the modulation patterns of a sub-carrier sub-group having a uniform modulation type. Half-interlace is used herein as an example of a sub-carrier subset with a consistent modulation. However, in the systems and methods discussed herein, the subset of subcarriers having a modified version is not limited to being semi-interlaced. By checking the modulation symbols of the subcarriers by adjusting the sub-carrier sub-group modulation 114499.doc • 25- 1333349 type, the modulation symbol selection error can be avoided. In step 906, the sub-carrier sub-group can be determined. Variant. At step 908, it is determined whether the modulated symbol is in a modulated state. If so, the processing terminates. If not, then at step 910, the modulation symbols are re-evaluated and the modulation symbols consistent with the modulation pattern are selected. Typically, the modulation pattern remains consistent during the half-interlacing. In general, a, due to the constraints of the FLO agreement, the modulation pattern within the intent is unchanged. In this context, an interlace is a subcarrier group (e.g., 500 subcarriers). Accordingly, the half-interlace is one-half interleaved (e.g., 250 sub-carriers). But for 'rate_2/3 Uyered modulation', when operating in only the base layer mode (base_iayer 〇nly m〇de), you can switch the modulation pattern in an interlace to QpSK. Even under these conditions, the modulation pattern within each half-interlace remains constant. Even under this condition, the majority decision (maj〇rity v〇ting) can be used to determine the modulation pattern of each half-family error. To determine the modulation pattern of a semi-interlaced or any other sub-carrier subset having a uniform modulation pattern, the modulation symbols for each sub-carrier within the sub-group can be determined and the modulation pattern determined accordingly. The majority of the decisions based on the modulation patterns of each subcarrier can be used to determine the modulation pattern of the subgroup. For example, for a half-interlace comprising 250 subcarriers, the modulation pattern of 198 subcarriers of the subcarriers may be consistent with the qpsk modulation type' and the modulation symbols of the remaining 52 subcarriers may be Consistent with the 16QAM modulation pattern. Since most of the subcarriers are detected as QPSK, QPSK will be selected as a semi-interlaced modulation. The 25 subcarriers associated with the 16qaM modulation pattern can be re-evaluated and reassigned to the QPSK Modifier based on their position in the constellation -26-114499.doc 1333349. Compare the modulated symbols with the semi-interlaced The modulation type 'and re-evaluate the modulation symbols as needed to increase the accuracy of the modulation symbol. Please refer to the figure ίο to π ο ο ο ο ο ο ο ο ο ο At step 1002, a constellation point representing various modulation symbols is included
星座圖被劃分成一連串區域。每一區域相關聯於一調變符 元星座點。區域經界定,使得每一區域中的所有點皆具有 如下屬性:此一點至該區域星座點的距離小於或等於介於 该點至任何其他區域星座點之間的距離。圖i i繪示一覆蓋 星座圖之第一象限的區域組。在步驟1004,判定經接收訊 號之星座點所在的區域。相對應於經接收訊號之星座點所 在區域的調變符元被選擇作為調變符元。可對照具有一致 調變型態之副载波子組(例如,半交錯)的調變型態來檢查The constellation diagram is divided into a series of regions. Each region is associated with a modulation constellation point. The regions are defined such that all points in each region have the following properties: the distance from the point to the constellation point of the region is less than or equal to the distance between the point and any other region constellation points. Figure i i illustrates a set of regions covering the first quadrant of the constellation. At step 1004, the area in which the constellation point of the received signal is located is determined. A modulation symbol corresponding to the region of the constellation point of the received signal is selected as the modulation symbol. Can be checked against a modulation pattern of subcarrier subsets (eg, semi-interlaced) with consistent modulation patterns
調變符70。在步驟1006,可以判定副載波子組的調變型 態。在步驟1008,判定調變符元是否與調變型態—致。若 疋:則處理程序終止。若否,則在步驟丨㈣,重新評估調 變符元,並且選擇與調變型態一致之調變符元。 本文所述之發射器評㈣統與方法應亦包括相位校正, 旨在減小起因於時間頻率偏移的錯誤或失真。如果未實行 相位校正’則頻道估計平均值可能不精確,並且據此評估 ^可能有誤。典型地’可在計算頻道估計平均值之後實 仃相位校正’以校正歸因於頻率偏移的相位斜坡。 i考圖12’財緣示用於使用相位校正來評估發 °之方法’ 1200。在步驟1202 ’接收來自發射器的訊 114499.docModifier 70. At step 1006, a modulation pattern of the subcarrier subgroups can be determined. At step 1008, it is determined whether the modulated symbol is in a modulated state. If 疋: the handler terminates. If no, in step 丨 (4), re-evaluate the modulation symbol and select the modulation symbol that is consistent with the modulation pattern. The transmitter (4) system and method described herein should also include phase correction to reduce errors or distortions due to time-frequency offsets. If phase correction is not implemented, the channel estimate average may be inaccurate and may be incorrectly evaluated accordingly. The phase correction is typically performed after calculating the channel estimate average to correct the phase slope due to the frequency offset. i Fig. 12's financial indication is used to evaluate the method 1200 using phase correction. Receiving a message from the transmitter at step 1202'
-27- (· S 1333349 號。在步驟1204,可判定副載波之頻道估計。可使用已知 符元(如圖6所示)或未知符元(如圖7所示)來判定頻=2 計。在步驟1206,可實行相位校正。相位校正之後,=步 驟1208,可判定平均頻道估計。在步驟121〇 ,可產生用^ 評估發射器效能之度量。舉例而t,可依據頻道估計來判 定副載波的MER。-27- (S1333349. In step 1204, the channel estimate of the subcarrier can be determined. The known symbol (as shown in FIG. 6) or the unknown symbol (as shown in FIG. 7) can be used to determine the frequency = 2 In step 1206, phase correction may be performed. After phase correction, = step 1208, an average channel estimate may be determined. In step 121, a measure of the effectiveness of the transmitter may be generated. For example, t may be based on channel estimation. Determine the MER of the subcarrier.
現在請參考圖13,圖中繪示用於校正頻率偏移之方法論 1300。包括頻率偏移的經接收訊號可寫為如下: ’ N-1 = ^ ^^(««ο+ηΰ^+Δο)/ Πβ〇Referring now to Figure 13, a methodology 1300 for correcting frequency offsets is illustrated. The received signal including the frequency offset can be written as follows: ' N-1 = ^ ^^(««ο+ηΰ^+Δο)/ Πβ〇
此處’ Rn係第η個副載波的複振幅(compiex ampiitude),並 且N係總副載波數量。ω 〇表不起始副載波的頻率,①表干 副載波間距的頻率,以及△〇〇係頻率偏移。恆定的頻率偏移 將導致隨時間改變之線性相位。隨時間變化之頻率偏移將 導致隨時間改變之拋物線相位。恆定或線性改變之頻率偏 移皆導致拋物線相位改變,這可在計算平均值之前予以校 正,如圖12所示。 可使用一階相位校正演算法,藉由計算相位改變之斜率 來校正線性相位改變。舉例而言,可按如下方式來計算相 位改變: ^ = -η-ΨοHere, 'Rn is the complex amplitude of the nth subcarrier, and N is the total number of subcarriers. ω 〇 indicates the frequency of the starting subcarrier, 1 the frequency of the subcarrier spacing, and the Δ〇〇 frequency offset. A constant frequency offset will result in a linear phase that changes over time. A frequency offset that changes over time will result in a parabolic phase that changes over time. A constant or linearly varying frequency offset causes a parabolic phase change, which can be corrected before the average is calculated, as shown in Figure 12. A linear phase change can be corrected by calculating the slope of the phase change using a first order phase correction algorithm. For example, the phase change can be calculated as follows: ^ = -η-Ψο
dt TOFDMU φ,+]~ L 此處,A%+1 =叭+1 -外係介於兩個相鄰OFDM符元之頻道估計 的相位改變,Φβ係起始頻道估計之相位,L係OFDM符元 U4499.doc • 28· < S ) 1333349 數量及tofdm係週期β 可使用LS演算法之二階相位校正以判定拋物線函數之參 數a、b與c,來校正拋物線相位改變。經估計之相位可寫 φα, =a-t2 +b-t + c 此處’ t係時間。在計算平均值之前,可使用經估計之相 位來校正經佑計之相位。Dt TOFDMU φ,+]~ L where A%+1 = +1 +1 - the phase change of the channel estimate between two adjacent OFDM symbols, the phase of the Φβ-based initial channel estimate, L-line OFDM Symbol U4499.doc • 28· < S ) 1333349 The number and tofdm period β can be corrected using the second-order phase correction of the LS algorithm to determine the parameters a, b and c of the parabolic function to correct the parabolic phase change. The estimated phase can be written as φα, =a-t2 +b-t + c where t is the time. The estimated phase can be used to correct the predicted phase before calculating the average.
但是’頻率偏移未必是③定紐性變化。據此,相位改 變未必是線性或拋物線且可預測。一項用於校正可變頻率 偏移之可能解決方案包括:將持續期間分割成若干片段 (segment),並且接收估計每—片段之相位改變。結果,關 於圖6所描述之则心方程式中的經估計之雜訊變異數心應 被修改為如下: 4However, the 'frequency offset is not necessarily a 3 fixed change. Accordingly, the phase change is not necessarily linear or parabolic and predictable. A possible solution for correcting the variable frequency offset includes dividing the duration into segments and receiving an estimate of the phase change of each segment. As a result, the estimated noise variation number in the heart equation described in Fig. 6 should be modified as follows: 4
Bk = ΣΚ /=1Bk = ΣΚ /=1
此處,N係片段數量D 自經接收訊號所導出之每一 〇FDM符元的每一頻道之雜 訊項可被分解成兩個正交維度(。rth〇g〇nal dimensi—:振 幅維度與相位維度。振幅維度_之雜訊項可被視為加成性 :色高斯雜訊。相位維度中之雜訊項可被視為加成性白色 高斯雜訊(AWGN)與來自於頻率偏移之失真的總和。應排 除頻率偏移所造成之失真。但是,應維持相位維度中 AWGN的分量。 如圖B中的方法論13〇〇所示,在步驟咖,判定時間將 114499.doc •29· 頻;dL片段數量。在步驟1304 ’估計一片段之歸因於 ㈣7的相位改變。在步驟13()6,使用—階或二階校正 '來校JL片段。在步驟13〇8,判定是否有要校正的額 7卜片段。名:Θ ^ 疋’則處理程序回到步驟13 (Μ,以判定下一片 的相位校正。若否,則處理程序終止。 雜电端以中,如果振幅維度中的雜訊變異數等於相位 〇Ft的雜訊變異數’則最大片段數量等於正被處理器之 符兀數里。據此,將排除相位維度中的雜訊,以及 =歸因於頻率偏移的失真。結果,臟(其包括相位維 Ζ的雜訊)的真值(true value)將等於所產之減一常 數(例如,3.01 dB)之值。 傳2 Γ㈣本文料之-或多項具體實施例,可推斷 ^式、頻率等等。在本文中,用詞”推斷"意指自經由 ^或資料所榻取的一組觀測來推論關於(或推斷)系 衣%及/或使用者狀態A。舉例而言,可採用推斷來識 別特定内容或動作,或可產生狀態機率分佈(pr()babimy tr^utl0n)。推斷可能係機率性;即,依據資料與事件 之考量,計算所關注之狀態的機率分佈。推斷亦可意指對 於自、组事件及/或資料組成較高層級事件所採用之技 術。此類推斷導致自一組所觀測事件及/或所儲存事件資 料建構新事件或資料,無論事件是否在接近的時態接近性 ㈣曰temP〇raIproximity)方面互相闕聯,以及無論事件及 貧料是^來自於—或數項事件及資料來源。 根據-項實例,前文提出之—或多項方法可包括推斷相 114499.doc 30. 1333349 位校正所利用的片段數量。此外,可推斷欲顯示給使用者 的資料及格式。 現在請參考圖14,圖中繪示根據本文提出之—或多項熊 . 制於在無線通信環境中評估發射器效能之系統测4 .⑨测包括:—頻道估計產生器_2,其產生副載波之頻 4頻道估計;—平均值產生器剛,其計算副載波之平均 . ㈣估計;及—度量產生器14G6,其產生用於評估發射器 • 效能之度量’諸如MER。系統1彻亦可包括-相位校正器 1408,其校正頻率偏移所造成之相位斜坡。可藉由一訊號 分段器1410,將訊號分割成若干片段,以用於相位校正: 此外,系統1400可包括一符元判定器1412,其判定副載波 的調變符元。可依據按照一距離判定器1416所判定之在一 複數平面中介於經接收訊號與調變符元之間的距離,由一 符元選擇器1414來選擇符元。替代做法為,可藉由一複數 平面劃分器141 8將複數平面劃分成若干區域,並且可藉由 • 一區域選擇器1420來選擇經接收訊號所在之區域且用於判 定符元。另外,系統1400可包括一產生粗略頻道估計之粗 略頻道產生器1422。可使用一内插器與外插器1424來產生 粗略頻道估計。 圖15繪示用於在通信環境中監視發射器效能之系統 1500。系統1500包括一含有一接收器151〇之基地台15〇2, 其經由一或多個接收天線1506接收來自於一或多個使用者 裝置1504,並且透過一或多個傳輸天線15〇8傳輸訊號至一 或多個使用者裝置1504。在一或多項具體實施例中,可使 114499.doc -31 - (s) 1333349 用早組天線來實施接收天線1506及傳輸天線1508。接收器 1510可接收來自接收天線1506之資訊,並且運作上相關聯 於一解調變經接收之資訊的解調變器1512。接收器15 1〇可 能係(舉例而言)一耙式(Rake)接收器(例如,使用複數個基 頻相關器(baseband correlator)來個別處理多路徑訊號分量 之技術、…)、一以MMSE為基礎之接收器或用於析出其受 指派之使用者裝置的某其他適合之接收器,如熟悉此項技 術者所知。根據各項態樣,可採用多個接收器(例如,每 接收天線一個接收器),並且此等接收器可互相通信以提 供改良之使用者資料。由一處理器1514來分析經解調變之 符兀。處理器1514可能係一專用於分析由接收器151〇接收 之-貝訊及/或產生供發射器15 2〇傳輸之資訊的處理器。處 理器1514可能係一控制基地台15〇2之一或多個組件的處理 器,及/或一分析由接收器151〇接收之資訊及/或產生供發 射器1520傳輸之資訊並且控制基地台15〇2之一或多個組件 的處理器。接收器1510及/或處理器1514可聯合處理每一 天線的接收器輸出。一調變器1518可多工處理訊號,用於 由發射器1520透過傳輸天線15〇8傳輸至使用者裝置15〇4❶ 可將處理器1514耦接至一 FL〇頻道組件1522 ,該FL〇頻道 組件可促進處理相關聯於一或多個各自使用者裝置15〇4的 FLO資訊。 基地台1502亦可包括一發射器監視器1524。 器測可取樣發射器輸出及/或發射天線輸出,並^ = 發射器1520之效能。發射器監視器1524可被耦接至處理器 114499.doc -32· c s) 1514。替代做法為’發射器監視器1524可包括一用於處理 發射器輸出的單獨之處理器。此外,發射器監視器心可 獨立於基地台1 502。 基地口 1502可額外包括記憶體1516,記憶體6運作上 輕^至處理器1514且可儲存關於星座區域之資訊及/或關 於實行本文提出之各種動作與功能之任何其他適合資訊。 應明白,本文所述之資料儲存(例如,記憶體)組件可能係 揮發性記憶體裝置或非揮發性記憶體裝置,或可包括揮發 性記憶體裝置及非揮發性記憶體裝置兩者。藉由闡釋(而 非限定)’非揮發性記憶體可包括唯讀記憶體(r〇m)、可程 式化ROM (PROM)、電可程式化R〇M (EpR〇M)、電可可 抹除ROM (EEPROM)或快閃記憶體。揮發性記憶體可包括 隨機存取記憶體(RAM),其可用作為外部快取記憶體。藉 由闡釋(而非限定),可用許多形式之RAM,諸如同步式 RAM (SRAM)、動態 RAM (DRAM)、同步式 DRAM (SDRAM)、雙倍資料速率SDRAM (Dr)R sdrAM)、增強式 SDRAM (ESDRAM)、Synchlink DRAM (SLDRAM)及 directHere, the number of N-series segments D from each channel of each FDM symbol derived by the received signal can be decomposed into two orthogonal dimensions (rth〇g〇nal dimensi-: amplitude dimension) And the phase dimension. The noise dimension of the amplitude dimension can be regarded as additive: color Gaussian noise. The noise term in the phase dimension can be regarded as additive white Gaussian noise (AWGN) and from frequency offset. The sum of the distortions of the shift. The distortion caused by the frequency offset should be excluded. However, the component of the AWGN in the phase dimension should be maintained. As shown in the method 13 of Figure B, in the step coffee, the decision time will be 114499.doc • 29. The frequency of the dL segment. In step 1304, 'the phase change attributed to (4) 7 is estimated. In step 13 () 6, the JL segment is corrected using the - or second-order correction. In step 13 〇 8, the decision is made. Is there a segment of the amount to be corrected? Name: Θ ^ 疋 'The process returns to step 13 (Μ to determine the phase correction of the next slice. If not, the handler terminates. The power is in the middle, if the amplitude The number of noise variations in the dimension is equal to the number of noise variations in phase 〇Ft Then the maximum number of segments is equal to the number of symbols being processed by the processor. According to this, the noise in the phase dimension will be excluded, and the distortion due to the frequency offset will be corrected. As a result, the dirty (which includes the noise of the phase dimension) The true value of the ) will be equal to the value of the reduced one constant (for example, 3.01 dB). Pass 2 Γ (4) This paper - or a number of specific examples, can be inferred ^, frequency, etc. In this paper The use of the word "inference" means inferring (or inferring) the percentage of clothing and/or user state A from a set of observations taken from the data or data. For example, inference can be used to identify specific content. Or action, or may generate a state probability distribution (pr()babimy tr^utl0n). Inference may be probabilistic; that is, based on data and event considerations, calculate the probability distribution of the state of interest. Inference may also mean , group events and/or data constitute the techniques used at higher level events. Such inferences result in the construction of new events or data from a set of observed events and/or stored event data, regardless of whether the event is in close temporal proximity. (4) 曰temP〇r aIproximity) is associated with each other, and whether the event and the poor material are from - or several events and sources of information. According to the - item example, the above - or a number of methods may include inferring the phase 114499.doc 30. 1333349 bit correction The number of segments used. In addition, the data and format to be displayed to the user can be inferred. Reference is now made to Figure 14, which illustrates the evaluation of transmitter performance in a wireless communication environment as proposed herein. The system test 4.9 includes: - a channel estimation generator_2, which generates a frequency 4 channel estimate of the subcarrier; - an average generator, which calculates the average of the subcarriers. (4) an estimate; and - a metric generator 14G6 , which produces a measure for evaluating transmitter performance, such as MER. System 1 may also include a phase corrector 1408 that corrects the phase slope caused by the frequency offset. The signal can be segmented into segments for phase correction by a signal segmenter 1410. Additionally, system 1400 can include a symbol determiner 1412 that determines the modulation symbols for the subcarriers. The symbol can be selected by a symbol selector 1414 in accordance with the distance between the received signal and the modulated symbol in a complex plane as determined by a distance determiner 1416. Alternatively, the complex plane can be divided into regions by a complex plane divider 141 8 and the region in which the received signal is located can be selected by a region selector 1420 and used to determine symbols. Additionally, system 1400 can include a coarse channel generator 1422 that produces a coarse channel estimate. An interpolator and extrapolator 1424 can be used to generate a coarse channel estimate. Figure 15 illustrates a system 1500 for monitoring transmitter performance in a communication environment. System 1500 includes a base station 15A2 including a receiver 151, received from one or more user devices 1504 via one or more receive antennas 1506, and transmitted through one or more transmit antennas 15A Signals to one or more user devices 1504. In one or more embodiments, 114499.doc -31 - (s) 1333349 can be implemented with an early antenna to implement receive antenna 1506 and transmit antenna 1508. Receiver 1510 can receive information from receive antenna 1506 and is operatively associated with a demodulation transformer 1512 that demodulates the received information. The receiver 15 1 may be, for example, a Rake receiver (for example, a technique of using a plurality of baseband correlators to individually process multipath signal components, ...), one to MMSE A based receiver or some other suitable receiver for dispensing its assigned user device is known to those skilled in the art. Depending on the aspect, multiple receivers (e.g., one receiver per receiving antenna) may be employed, and such receivers may be in communication with one another to provide improved user data. The demodulated symbol is analyzed by a processor 1514. Processor 1514 may be a processor dedicated to analyzing the information received by receiver 151 and/or generating information for transmission by the transmitter. The processor 1514 may be a processor that controls one or more components of the base station 15〇2, and/or analyzes information received by the receiver 151〇 and/or generates information for transmission by the transmitter 1520 and controls the base station. 15〇2 processor of one or more components. Receiver 1510 and/or processor 1514 can jointly process the receiver output of each antenna. A modulator 1518 can multiplex the signal for transmission by the transmitter 1520 to the user device through the transmission antenna 15A. The processor 1514 can be coupled to a FL channel component 1522. The components can facilitate processing of FLO information associated with one or more respective user devices 15〇4. Base station 1502 can also include a transmitter monitor 1524. The detector can sample the transmitter output and/or the transmit antenna output and ^ = the performance of the transmitter 1520. Transmitter monitor 1524 can be coupled to processor 114499.doc -32·c s) 1514. Alternatively, the 'transmitter monitor 1524' can include a separate processor for processing the transmitter output. Additionally, the transmitter monitor core can be independent of base station 1 502. The base port 1502 can additionally include a memory 1516 that is operatively coupled to the processor 1514 and can store information about the constellation area and/or any other suitable information for implementing the various actions and functions presented herein. It should be understood that the data storage (e.g., memory) components described herein may be volatile memory devices or non-volatile memory devices, or may include both volatile memory devices and non-volatile memory devices. By way of illustration, not limitation, 'non-volatile memory can include read-only memory (r〇m), programmable ROM (PROM), electrically programmable R〇M (EpR〇M), and electric cocoa In addition to ROM (EEPROM) or flash memory. Volatile memory can include random access memory (RAM), which can be used as external cache memory. By way of illustration, not limitation, there are many forms of RAM available, such as Synchronous RAM (SRAM), Dynamic RAM (DRAM), Synchronous DRAM (SDRAM), Double Data Rate SDRAM (Dr) R sdrAM), Enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM) and direct
Rambus RAM (DRRAM) »主題系統及方法的記憶體記憶體 15 16意欲包括(但不限於)彼等及任何其他適合型態記憶 體。 圖16繪示示範性無線通信系統1600。為了簡潔,無線通 信系統1600描緣出一個基地台及一個使用者裝置。但是, 應明白’系統可包括一個以上基地台及/或一個以上使用 者裝置,其中額外基地台及/或使用者裝置可實質上類似 114499.doc -33- 1333349 於或不同於下文所述之示範性基地台及使用者裝置。此 外,應明白,基地台及/或使用者裝置可採用本文所述之 系統(圖1、3·4及14-15)及/或方法(圖6_1〇及1213)。 現在請參考圖16,在下行鏈路上,在接取點16〇5處,一 傳輸(ΤΧ)資料處理器1610接收、格式化、編碼、交錯及調 變(或符元映射)訊務資料,並且提供調變符元(資料符 元)。一符元調變器1615接收並處理資料符元及前導符 元,並且提供符元流。符元調變器1615多工處理資料符元 及前導符元並且提供資料符元及前導符元至一發射器單元 (TMTR) 1620。每一傳輸符元可係一資料符元、一前導符 凡或一零值訊號。在每一符元週期中可持續傳送前導符 元。前導符元可予以分頻多工(FDM)、正交分頻多工 (OFDM)、分時多工(TDM)或分碼多工(CDM)。 TMTR 1620接收符元流並且將符元流轉換成一或多個類 比訊號,並且進一步調節(例如,放大、濾波及增頻轉換) 該等類比訊號,以產生一適合透過無線頻道傳輸的下行鏈 路訊號。接著,透過一天線1625將下行鏈路訊號傳輸至使 用者裝置。在使用者裝置163〇處,一天線1635接收下行鏈 路訊號並且提供經接收訊號至一接收器單元(RCVR) 1640。接收器單凡164〇調節(例如,濾波、放大及增頻轉 換)經接收訊號並且數位化經調節之訊號,以獲得樣本。 一符元解調變器1645解調變且提供經接收之前導符元至一 處理器1650 ’以用於頻道估計。符元解調變器1645進一步 接收來自處理器1650的下行鏈路之頻率響應估計,對經接 114499.doc •34· 收之資料符元實行資料解調變以獲得資料符元估計(其係 、’’土傳輸之資料符元的估計),並且提供資料符元估計至一 接收(RX)資料處理器1655,其解調變(即,符元解映射)、 解交錯及解碼資料符元估計,以恢復經傳輸之訊務資料。 符π解調變器1645與接收(RX)資料處理器1655所實行的處 理分別互補於在接取點1605處之符元調變器1615與傳輸 (TX)資料處理器161〇所實行的處理。 在上行鏈路上,一傳輸(τχ)資料處理器1660處理訊務資 料且提供資料符元。一符元調變器1665接收並多工處理資 料符7L與前導符元 '實行調變,並且提供符元流。接著, 發射器單元1670接收且處理符元流以產生上行鏈路訊 號,該上行鏈路訊號係由天線1635傳輸至接取點16〇5。 在接取點1605處’來自使用者裝置使用者裝置163〇的上 行鏈路訊號係由天線1625接收且由接收器單元1675處理以 獲得樣本。接著,一符元解調變器168〇處理樣本且提供用 於上行鏈路的經接收之前導符元及資料符元估計。一接收 (RX)資料處理器16 8 5處理資料符元估計,以恢復使用者裝 置1630所傳輸之訊務資料。一處理器169〇實行對於在上行 鏈路上傳輸之每一作用中使用者裝置的頻道估計。多個使 用者裝置可其各自受指派之前導副載波組上同時在上行鏈 路上傳輸前導,其中前導副載波組可予以交錯。 處理器1690與1650分別指示(例如,控制、協調、管理 等等)接取點接取點1605與使用者裝置1630處之運作。各 自處理器1690與1650可相關聯於儲存程式碼及資料之記憶 114499.doc -35- 1333349 體單元(圖中未緣示)。處理器_與1650可利用本文所述 =任何方法論。各自處理器169〇與165〇亦可實行計算,以 分別導出上行鏈路與下行鍵路之頻率響應估計與脈衝響應 - 估計。 * 對於軟體實施,可運用實行本文所述之功能的模組(例 % ’程序、函式等等)來實施本文所述之技術。軟體程式 碼可被儲存在記憶體單元中並由處理器執行。記憶體單元 • 了實施在處理器内部或處理器外部,在此情況下,記憶體 單疋可經由此技術中熟知的各種裝置以通信方式轉接至處 理器》 前文所述之内容包括一或多項具體實施例之實例當然, 不可能為了描述前文提及之具體實施例而描述所有可設想 之組件或方法論之組合,.但是熟悉此項技術者應理解,許 多各項具體實施例之進一步組合與置換係可行。據此,所 描述之具體實施例旨在囊括屬於隨附申請專利範圍之精神 • 與範疇内的所有此類替代、修改及變化。另外,在一定程 度上,在【實施方式】或申請專利範圍中使用用詞"包括", 當在申請專利範圍中採用此類用詞作為轉換詞語時此類 用詞預計以類似於術語”包含"的方式納入。 【圖式簡單說明】 圖1繪示根據本文提出之一或多項態樣之發射器評估系 統的圖式。 圖2繪不根據本文提出之一或多項態樣之無線通信系統 的圖式。 114499.doc -36- (s、 圖3繪示根據本文提出 的圖式。 之一或多項態樣之無線通信 系統 圖4繪示根據本文提出 統的圖式。 之一或多項態樣之發射器評估系Rambus RAM (DRRAM) » Themes and methods of memory memory 15 16 are intended to include, but are not limited to, their and any other suitable type of memory. FIG. 16 depicts an exemplary wireless communication system 1600. For the sake of brevity, the wireless communication system 1600 depicts a base station and a user device. However, it should be understood that the system may include more than one base station and/or more than one user device, wherein the additional base station and/or user device may be substantially similar to 114499.doc -33 - 1333349 at or different from An exemplary base station and user device. In addition, it should be understood that the base station and/or user equipment may employ the systems (Figs. 1, 3, 4, and 14-15) and/or methods described herein (Figs. 6_1 and 1213). Referring now to FIG. 16, on the downlink, at the access point 16〇5, a transmission data processor 1610 receives, formats, codes, interleaves, and modulates (or symbol maps) the traffic data. And provide the modulation symbol (data symbol). A symbol modulator 1615 receives and processes the data symbols and preamble symbols and provides a symbol stream. The symbol modulator 1615 multiplexes the data symbols and preamble symbols and provides data symbols and preamble symbols to a transmitter unit (TMTR) 1620. Each transmission symbol can be a data symbol, a preamble or a zero value signal. The preamble is continuously transmitted in each symbol period. The preamble can be divided into frequency division multiplexing (FDM), orthogonal frequency division multiplexing (OFDM), time division multiplexing (TDM), or code division multiplexing (CDM). The TMTR 1620 receives the symbol stream and converts the symbol stream into one or more analog signals, and further conditions (e.g., amplifies, filters, and upconverts) the analog signals to produce a downlink suitable for transmission over the wireless channel. Signal. The downlink signal is then transmitted through an antenna 1625 to the user device. At user device 163, an antenna 1635 receives the downlink signal and provides a received signal to a receiver unit (RCVR) 1640. The receiver 164 〇 adjusts (eg, filters, amplifies, and upconverts) the received signal and digitizes the conditioned signal to obtain a sample. A symbol demodulation transformer 1645 demodulates and provides a received preamble to a processor 1650' for channel estimation. The symbol demodulator 1645 further receives the frequency response estimate of the downlink from the processor 1650, and performs data demodulation on the data symbols received by the 114499.doc • 34· to obtain a data symbol estimate (the system) , ''Earth of the data symbol of the earth transmission), and provide the data element estimate to a receiving (RX) data processor 1655, which demodulates (ie, symbol demap), deinterleaves, and decodes the data symbols. Estimated to recover the transmitted traffic information. The processing performed by the π demodulation transformer 1645 and the receiving (RX) data processor 1655 is complementary to the processing performed by the symbol modulator 1615 and the transmission (TX) data processor 161 at the access point 1605, respectively. . On the uplink, a transport (τχ) data processor 1660 processes the traffic information and provides data symbols. A symbol modulator 1665 receives and multiplexes the processing element 7L with the leading symbol 'to perform modulation, and provides a symbol stream. Next, the transmitter unit 1670 receives and processes the symbol stream to generate an uplink signal, which is transmitted by the antenna 1635 to the access point 16〇5. At the access point 1605, the uplink signal from the user device user device 163 is received by the antenna 1625 and processed by the receiver unit 1675 to obtain samples. Next, the one-element demodulation transformer 168 processes the samples and provides received pre-derivative symbols and data symbol estimates for the uplink. A receive (RX) data processor 16 8 5 processes the data symbol estimates to recover the traffic data transmitted by the user device 1630. A processor 169 implements channel estimation for each of the active devices on the uplink. Multiple user devices may each be assigned a preamble on the uplink subcarrier group on the uplink, where the preamble subcarrier groups may be interleaved. Processors 1690 and 1650 respectively instruct (e.g., control, coordinate, manage, etc.) access point picking point 1605 and operation at user device 1630. Each of the processors 1690 and 1650 can be associated with a memory for storing code and data 114499.doc -35- 1333349 body unit (not shown). Processor_ and 1650 can utilize any of the methodologies described herein. The respective processors 169〇 and 165〇 can also perform calculations to derive the frequency response estimates and impulse response-estimates for the uplink and downlink links, respectively. * For software implementations, the techniques described herein can be implemented using modules (eg, 'programs, functions, etc.) that perform the functions described herein. The software code can be stored in the memory unit and executed by the processor. The memory unit is implemented internally or external to the processor, in which case the memory unit can be communicatively transferred to the processor via various means well known in the art. Examples of Various Specific Embodiments Of course, it is not possible to describe all conceivable components or combinations of methodologies for describing the specific embodiments mentioned above, but those skilled in the art will appreciate that further combinations of many specific embodiments are understood. And replacement is feasible. Accordingly, the particular embodiments described are intended to cover all such alternatives, modifications and In addition, to some extent, the term "includes" is used in the [embodiment] or the scope of the patent application. When such terms are used as conversion terms in the scope of patent application, such terms are expected to be similar to terms. BRIEF DESCRIPTION OF THE DRAWINGS The following is a schematic diagram of a transmitter evaluation system in accordance with one or more aspects presented herein. Figure 2 depicts one or more aspects not set forth herein. A diagram of a wireless communication system. 114499.doc - 36- (s, Figure 3 illustrates a diagram in accordance with the present disclosure. One or more aspects of a wireless communication system. Figure 4 illustrates a diagram in accordance with the teachings herein. One or more aspects of the transmitter evaluation system
圖5繒·示用於解說介於所測 異的星座圖。 圖6繪示根據本文提出之— 之方法論。 量訊號與所傳輪訊號之間差 或多項態樣用於評估發射器 圖7繪示根據本文提出之-或多項態樣用於評估發射器 之方法論。 ° 、圖8繪示根據本文提出之一或多項態樣用於產生粗略頻 道估計之方法論。 圖9、、’曰示根據本文提出之一或多項態樣用於判定調變符 元之方法論。Figure 5 shows the constellation diagram for the difference between the measurements. Figure 6 illustrates a methodology in accordance with the teachings presented herein. A difference or a plurality of aspects between the volume signal and the transmitted wheel signal is used to evaluate the transmitter. Figure 7 illustrates a methodology for evaluating the transmitter according to the multi-orientation set forth herein. °, Figure 8 illustrates a methodology for generating coarse channel estimates in accordance with one or more of the aspects set forth herein. Figures 9, and illustrate the methodology used to determine the modulated symbols in accordance with one or more of the aspects set forth herein.
圖10繪示根據本文提出之一或多項態樣用於判定調變符 元之方法論。 圖11緣示根據本文提出之一或多項態樣將星座圖劃分成 右干區域。 圖12續·示根據本文提出之一或多項態樣用於使用相位校 正來評估發射器之方法論。 圖13 %示ί艮據本文提出之一或多項態樣用於實行相位校 正之方法論。 圖14續'示根據本文提出之一或多項態樣之一種在無線通 信環境中評估發射器效能之系統的圖式。 H4499.doc <5 -37· 1333349 圖15繪示根據本文提出之一或多項態樣之—種在無線通 信環境中監視發射器效能之系統的圖式。 圖16繪示可配合本文描述之各種系統與方法一起採用 無線通信環境的圖式。 < 【主要元件符號說明】 100 發射器評估系統 102 發射器 104 訊號分析器Figure 10 illustrates a methodology for determining a modulated symbol in accordance with one or more of the aspects set forth herein. Figure 11 illustrates the division of the constellation into right-hand regions according to one or more of the aspects presented herein. Figure 12 continues with a methodology for evaluating a transmitter using phase correction in accordance with one or more aspects presented herein. Figure 13 shows the methodology used to implement phase correction in accordance with one or more of the aspects presented herein. Figure 14 continued to illustrate a diagram of a system for evaluating transmitter performance in a wireless communication environment in accordance with one or more aspects set forth herein. H4499.doc <5 - 37. 1333349 Figure 15 illustrates a diagram of a system for monitoring transmitter performance in a wireless communication environment in accordance with one or more aspects set forth herein. Figure 16 illustrates a diagram of a wireless communication environment that can be employed in conjunction with the various systems and methods described herein. < [Description of main component symbols] 100 Transmitter evaluation system 102 Transmitter 104 Signal analyzer
106 處理器 108 頻道估計器 110 度量產生器 112 記憶體 114 顯示器組件 200 無線通信系統 202 基地台106 Processor 108 Channel Estimator 110 Metric Generator 112 Memory 114 Display Component 200 Wireless Communication System 202 Base Station
204 行動裝置 3〇〇 無線通信系統 302 發射器 304 通信衛星系統 306 整合式接收器解碼器 308 衛星解調變器 31〇 簡易網路管理協定(SNMP)控制單_ 312 激發器 314 網際網路提供者(IP)網路 114499.doc 1333349 316 數據機 318 SNMP控制單元 320 剖析器與訊號頻率網路(SFN)緩衝器 322 投手核心(bowler core) 324 數位轉類比轉換器(DAC)與I/Q調變器 326 合成器 328 功率放大器 330 諧波濾波器204 Mobile Device 3 Wireless Communication System 302 Transmitter 304 Communication Satellite System 306 Integrated Receiver Decoder 308 Satellite Demodulation Device 31 Simple Network Management Protocol (SNMP) Control Sheet _ 312 Exciter 314 Internet Provisioning (IP) Network 114499.doc 1333349 316 Data Machine 318 SNMP Control Unit 320 Profiler and Signal Frequency Network (SFN) Buffer 322 Pitcher Core 324 Digital to Analog Converter (DAC) and I/Q Modulator 326 Synthesizer 328 Power Amplifier 330 Harmonic Filter
332 頻道濾波器 334 天線 400 發射器評估系統 402 全球定位系統(GPS)接收器 1400 系統 1402 頻道估計產生器 1404 平均值產生器332 Channel Filter 334 Antenna 400 Transmitter Evaluation System 402 Global Positioning System (GPS) Receiver 1400 System 1402 Channel Estimator Generator 1404 Average Generator
1406 度量產生器 1408 相位校正器 1410 訊號分段器 1412 符元判定器 1414 符元選擇器 1416 距離判定器 1418 複數平面劃分器 1420 區域選擇器 1422 粗略頻道產生器 114499.doc •39· (s ϊ 13333491406 metric generator 1408 phase corrector 1410 signal segmenter 1412 symbol determiner 1414 symbol selector 1416 distance determiner 1418 complex plane divider 1420 region selector 1422 coarse channel generator 114499.doc • 39· (s ϊ 1333349
1424 内插器與外插器 1500 系統 1502 基地台 1504 使用者裝置 1506 接收天線 1508 傳輸天線 1510 接收器 1512 解調變器 1514 處理器 1516 記憶體 1518 調變器 1520 發射器 1522 FLO頻道組件 1524 發射器監視器 1600 無線通信系統 1605 接取點 1610 傳輸(TX)資料處理器 1615 符元調變器 1620 發射器單元(TMTR) 1625 天線 1630 使用者裝置 1635 天線 1640 接收器單元(RCVR) 1645 符元解調變器 -40- \ I4499.doc 1333349 1650 處理器 1655 接收(RX)資料處理器 1660 傳輸(TX)資料處理器 1665 符元調變器 1670 發射器單元 1675 接收器單元 1680 符元解調變器 1685 接收(RX)資料處理器 1690 處理器 114499.doc •41 -1424 Interposer and Outer 1500 System 1502 Base Station 1504 User Equipment 1506 Receiving Antenna 1508 Transmission Antenna 1510 Receiver 1512 Demodulation Transformer 1514 Processor 1516 Memory 1518 Modulator 1520 Transmitter 1522 FLO Channel Component 1524 Transmit Monitor 1600 Wireless Communication System 1605 Access Point 1610 Transmission (TX) Data Processor 1615 Symbol Modulator 1620 Transmitter Unit (TMTR) 1625 Antenna 1630 User Equipment 1635 Antenna 1640 Receiver Unit (RCVR) 1645 Symbol Demodulation Converter -40 - \ I4499.doc 1333349 1650 Processor 1655 Receiver (RX) Data Processor 1660 Transport (TX) Data Processor 1665 Symbol Modulator 1670 Transmitter Unit 1675 Receiver Unit 1680 Symbol Demodulation Transmitter 1685 Receive (RX) Data Processor 1690 Processor 114499.doc • 41 -
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US72137205P | 2005-09-27 | 2005-09-27 | |
US11/361,085 US7733968B2 (en) | 2005-09-27 | 2006-02-22 | Evaluation of transmitter performance |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200723752A TW200723752A (en) | 2007-06-16 |
TWI333349B true TWI333349B (en) | 2010-11-11 |
Family
ID=37759956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW095133919A TWI333349B (en) | 2005-09-27 | 2006-09-13 | Evaluation of transmitter performance |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1929694A2 (en) |
JP (1) | JP2009510926A (en) |
KR (1) | KR20080053940A (en) |
TW (1) | TWI333349B (en) |
WO (1) | WO2007038554A2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070070877A1 (en) * | 2005-09-27 | 2007-03-29 | Thomas Sun | Modulation type determination for evaluation of transmitter performance |
KR101365807B1 (en) * | 2010-11-16 | 2014-02-21 | 한국전자통신연구원 | System and method for testing performance of transponder |
KR101877231B1 (en) * | 2017-01-03 | 2018-07-11 | 국방과학연구소 | Apparatus of measuring RF performance for Satellite terminal |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6275523B1 (en) * | 1998-11-03 | 2001-08-14 | Textronic, Inc. | In-service measurement of transmitter nonlinearities |
JP2003348042A (en) * | 2002-05-29 | 2003-12-05 | Mitsubishi Electric Corp | Estimating device and compensating device for transmission line characteristic |
EP1434381B1 (en) * | 2002-12-23 | 2006-08-09 | Mitsubishi Electric Information Technology Centre Europe B.V. | Link adaptation process |
US7231183B2 (en) * | 2003-04-29 | 2007-06-12 | Telefonaktiebolaget Lm Ericsson (Publ) | Quality determination for a wireless communications link |
JP4009672B2 (en) * | 2003-10-30 | 2007-11-21 | テクトロニクス・インターナショナル・セールス・ゲーエムベーハー | Measuring method of digital modulation signal transmission circuit |
-
2006
- 2006-09-13 TW TW095133919A patent/TWI333349B/en not_active IP Right Cessation
- 2006-09-26 KR KR1020087010014A patent/KR20080053940A/en active IP Right Grant
- 2006-09-26 EP EP06815515A patent/EP1929694A2/en not_active Withdrawn
- 2006-09-26 JP JP2008533546A patent/JP2009510926A/en active Pending
- 2006-09-26 WO PCT/US2006/037568 patent/WO2007038554A2/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
KR20080053940A (en) | 2008-06-16 |
EP1929694A2 (en) | 2008-06-11 |
WO2007038554A3 (en) | 2007-06-21 |
TW200723752A (en) | 2007-06-16 |
WO2007038554A2 (en) | 2007-04-05 |
JP2009510926A (en) | 2009-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI327837B (en) | Modulation type determination for evaluation of transmitter performance | |
US7734303B2 (en) | Pilot modulation error ratio for evaluation of transmitter performance | |
US7693231B2 (en) | System and method of calculating noise variance | |
CA3112710C (en) | Dynamic configuration of a flexible orthogonal frequency division multiplexing phy transport data frame preamble | |
JP2009534955A (en) | Phase correction in test receiver | |
TW201119274A (en) | Reception apparatus, reception method, program, and reception system | |
US8077659B2 (en) | Method and apparatus for locating mobile multimedia multicast system capable wireless devices | |
US7733968B2 (en) | Evaluation of transmitter performance | |
TWI333349B (en) | Evaluation of transmitter performance | |
USRE44776E1 (en) | Robust fine frequency and time estimation in mobile receivers | |
JP2008042574A (en) | Receiver and delay profile detecting method | |
CN101444022A (en) | System and method of calculating noise variance | |
CN101421966A (en) | Pilot modulation error ratio for evaluation of transmitter performance | |
US20240214090A1 (en) | Wireless communication apparatus and operating method thereof | |
Shim et al. | Synchronization receiver for OFDM-based FM broadcasting systems | |
Kim et al. | An effective frame detection and FFT window point tracking algorithm for digital radio mondiale receivers | |
CN101313504A (en) | Evaluation of transmitter performance | |
CN101356788A (en) | Modulation type determination for evaluation of transmitter performance | |
Chang et al. | Correlated Scrambling Scheme for Time-Frequency Diversity in OFDM Single-Frequency-Network Systems | |
May | Avoiding Data Loss With Hard and Soft DVB-H Handovers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |