TWI333059B - - Google Patents

Download PDF

Info

Publication number
TWI333059B
TWI333059B TW96114439A TW96114439A TWI333059B TW I333059 B TWI333059 B TW I333059B TW 96114439 A TW96114439 A TW 96114439A TW 96114439 A TW96114439 A TW 96114439A TW I333059 B TWI333059 B TW I333059B
Authority
TW
Taiwan
Prior art keywords
substrate
white light
measuring
interferometer
light interferometer
Prior art date
Application number
TW96114439A
Other languages
Chinese (zh)
Other versions
TW200842345A (en
Inventor
Cheng Chung Jaing
Cheng Chung Lee
Original Assignee
Univ Minghsin Sci & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Minghsin Sci & Tech filed Critical Univ Minghsin Sci & Tech
Priority to TW96114439A priority Critical patent/TW200842345A/en
Publication of TW200842345A publication Critical patent/TW200842345A/en
Application granted granted Critical
Publication of TWI333059B publication Critical patent/TWI333059B/zh

Links

Description

1333059 九、發明說明: 【發明所屬之技術領域】 本發明係有關一種非破壞性之表面量測,特別是關於一種利用白光干 涉儀之量測系統及其量測方法。 【先前技術】 在高度資訊化的21世紀社會,軟性電子應用產業將可能繼半導體、平 面顯不器產業之後,成為下一波新興的熱門產業技術。由於軟性基板的厚 度遠小於一般的玻璃基板,且部份軟性基板的揚氏係數小於玻璃基板,導 致軟性基板易受薄膜應力影響而變形,不僅造成元件電性改變,且可能造 成後續製程如曝光對位錯位、組裝元件或產品發生問題,更嚴重者甚至會 影響薄膜與軟性基板間的附著性,造成薄膜剝落(peeling)或是起皺 (wrinkling) 〇 薄膜應力大小與基板材質、薄膜材質及鍍膜方法與鍍膜參數高度相 關,薄膜應力會造成薄膜元件彎曲,不僅增加光學元件膠合組裝的困難度, 當應力過大時還會造成薄膜和基板界面間形成過多空洞、裂縫或剝落,因 而限制了鍵膜厚度、不利於薄膜堆疊並影響薄膜的光學性質,因此在膜層 設計和鍵膜製程考量時,薄膜應力量測對於鍍膜技術,特別是軟性電子之 鍍膜技術來說,係為非常重要的一環。 中華民國專利第111817號使用雷射千涉結合相位偏移技柘和相位還原 法架設干涉相移式太曼格林(Twyman-Green)應力測量儀用以量測薄膜應 力,如第一圖所示,一氦氖雷射1〇經過一顯微物鏡12與針孔14所構成之 空間濾波器形成一點光源,再經準直透鏡16產生一平面波前,藉分光鏡18 1333059 將平面波前振幅分割為反射之參考光和透射之量測光,然後參考光和量測 • 光經參考面鏡20與基板22之待測表面反射之後,兩者再經分光鏡18重新 合併成單一光束成像於屏幕24上,利用CCD攝影機26擷取屏幕24上的干 涉圖影像,可以藉由個人電腦28來量測鍍膜前和鍍膜後基板的輪廓圖與彎 曲量。 相位偏移方式的基本原理是遵循Hariharan相位還原法,於干涉儀的 參考面鏡20處安裝一電腦控制之壓電陶瓷元件(piez〇electric • Transducer,PZT)21 ’以等位移量八分之一波長連續移動參考面鏡2〇至五 個位置,就可獲得五張間隔π/2相位的相移干涉圖,而每一位置的干涉圖 強度都可由處理卡扣數位化,再將強度代人此版咖相位還原公 式計算干涉條紋的相位,求出的相位函數再經過Zernike多項式擬合後, 將傾斜量扣除則可代表待測樣品的輪廓圖與彎曲量,緊接著將鍍膜前和鍍 膜後之基板相位圖相減,得到的波束代表基板偏移量,再代入St〇ney公式 計算可求得膜應力。 不過使用干涉相移式太曼格林應力測量儀時,由於一個干涉條紋間距 代表632. 8nm ’如遇薄膜總應力過大造成基板彎曲度太大,將於量測基板表 面輪廟時產生過密的干涉條紋而無法解析,無法求得薄膜應力;而軟性基 板因於受薄膜應力影響時其弯曲程度較大,亦無法使用此應力測量儀時進 行量測,加上使用此應力·儀時,鍍麟之基板表面必須具有相當平整 度(flatness)才能量測基板表面輪廓,因此需要研磨基板表面,但對軟性 基板作研磨處理具有固難性。 有鑑於此,本發明係針對上述之困擾,提出一種利用白光干涉儀之量 测方法,以改善上述之缺失。 【發明内容】 本發Θ之主要目的’係、在提供__種卿白光干涉儀之量齡統及其量 ? ·、、纟可#測軟n基板或硬式基板之表面輪基板表面的薄膜應 力’於薄麟應力過大造成基板t曲歧大時魏進行量測。 發;^之^目的’係、在提供—種利用自光干涉儀之量測系統及其量 測方法’料要求_絲_平整度,s料需要在量猶對基板 表面進行研磨。 為達到上述之目的,本發明係提出一種利用白光干涉儀之量測系統及 其量測方法’其可量測基板表面輪細及其薄膜應力,個白光同調長度 很短的特性,結合白光干涉儀 '電触合元件攝韻(C㈣e C。㈣Device1333059 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a non-destructive surface measurement, and more particularly to a measurement system utilizing a white light interferometer and a measurement method thereof. [Prior Art] In the highly information-oriented 21st century society, the soft electronic application industry will likely become the next hot emerging industry technology after the semiconductor and flat display industry. Since the thickness of the flexible substrate is much smaller than that of a general glass substrate, and the Young's modulus of the partial flexible substrate is smaller than that of the glass substrate, the flexible substrate is susceptible to deformation due to the influence of the film stress, which not only causes electrical changes of the device, but may cause subsequent processes such as exposure. Problems with dislocations, assembly components or products, and even more serious, may affect the adhesion between the film and the soft substrate, resulting in film peeling or wrinkling, film stress and substrate material, film material and The coating method is highly correlated with the coating parameters. The film stress causes the film components to bend, which not only increases the difficulty of bonding the optical components, but also causes excessive voids, cracks or peeling between the film and the substrate interface when the stress is too large, thus limiting the keys. Film thickness is not conducive to film stacking and affects the optical properties of the film. Therefore, film thickness measurement is a very important part of coating technology, especially soft electronic coating technology, when considering film design and bond film process. . The Republic of China Patent No. 111817 uses a laser-induced phase shift technique and a phase reduction method to construct an interference phase shifting Twyman-Green stress gauge for measuring film stress, as shown in the first figure. A laser beam is formed by a spatial filter formed by a microscope objective 12 and a pinhole 14 to form a light source, and then a plane wavefront is generated by the collimator lens 16, and the plane wavefront amplitude is divided by the beam splitter 18 1333059 into Reflected reference light and transmitted light metering, then reference light and measurement. After the light is reflected by the reference mirror 20 and the surface to be tested of the substrate 22, the two are recombined into a single beam by the beam splitter 18 to be imaged on the screen 24. Then, the CCD camera 26 is used to capture the interferogram image on the screen 24, and the profile and the amount of bending of the substrate before and after the coating can be measured by the personal computer 28. The basic principle of the phase offset method is to follow the Hariharan phase reduction method, and install a computer controlled piezoelectric ceramic component (piez〇electric • Transducer, PZT) 21 ' at the reference mirror 20 of the interferometer with an equal displacement of eight points. When a wavelength continuously moves the reference mirror 2 to five positions, five phase-shifted interferograms with intervals of π/2 phase can be obtained, and the intensity of the interferogram at each position can be digitized by the processing buckle, and then the intensity is substituted. This version of the coffee phase reduction formula calculates the phase of the interference fringe, and the obtained phase function is then fitted by the Zernike polynomial, and the tilt amount is subtracted to represent the contour and bending amount of the sample to be tested, followed by the coating and coating. After the substrate phase diagram is subtracted, the obtained beam represents the substrate offset, and the film stress can be obtained by substituting the St〇ney formula. However, when using the interference phase shifting Taiman Greene stress measuring instrument, since the interference fringe spacing represents 632. 8nm 'If the total bending stress of the film is too large, the substrate curvature is too large, and the substrate surface will be measured to have excessive interference. Stripe can not be resolved, and the film stress cannot be obtained. The soft substrate has a large degree of curvature due to the influence of the film stress, and can not be measured when using the stress gauge. In addition, when using this stress meter, the plating is used. The surface of the substrate must have a fairly flatness to measure the surface contour of the substrate. Therefore, it is necessary to polish the surface of the substrate, but it is difficult to grind the soft substrate. In view of the above, the present invention has been made in view of the above problems, and proposes a measuring method using a white light interferometer to improve the above-mentioned deficiency. SUMMARY OF THE INVENTION The main purpose of the present invention is to provide a film of the surface of the surface substrate of a soft n-substrate or a hard substrate. The stress 'measures when the substrate t is too large when the stress of the thin lining is too large. The purpose of the method is to provide a measurement system using a self-optical interferometer and its measurement method. The material requirement is _ silk_flatness, and the material needs to be ground on the surface of the substrate. In order to achieve the above object, the present invention provides a measuring system using a white light interferometer and a measuring method thereof, which can measure the surface of the substrate and the film stress thereof, and the characteristics of a white light coherent length are short, combined with white light interference. Instrument 'electrical contact components rhyme (C (four) e C. (four) Device

Camera’ CCDCamera)和電腦,使用零階干涉條紋鑑定法找出干涉條紋最大 強度位置,進行基板待赚蚊縣,財轉财紐狀肖深度量測 範圍因此可精準量測較大弯曲的基板表面輪廓與薄膜附著後的彎曲量, 於70成鍍膜别和鍍膜後基板表面的輪廓圖和彎曲量量測之後便可據以計算 薄膜應力。 底下藉由具體實施例配合所附的圖式詳加說明,當更容易瞭解本發明 的目的、技術内容、特點及其所達成的功效。 【實施方式】 本發明之基本架構包括太曼格林干涉儀(Twyman_Green Interferometel0、 CCD攝影機和電腦,如第二圖所示,光源3〇提供平行度較佳之白光,引導 白光入射到分光鏡32,藉分光鏡32將白光分成參考光和量測光兩束白光, 參考光經分光鏡32反射’入射於位於移動平台35之參考面鏡34後再度反 射而到達分光鏡32 ’而重測光經分光鏡32透射、相位補償片38折射後, 入射於位於固疋平台37之基板36的待測表面後反射’再經相位補償片38 折射到達分光鏡32 ’此兩束光於分光鏡32上再度結合成一束白光後成像於 屏幕34上,得到一干涉圖譜;利用CCD攝影機40擷取干涉圖譜影像並顯 示於電腦42之螢幕上’再利用電腦42進行零階干涉條紋鑑定法 (Zero-order Interfe- rence Fringe Identification)運算,找出干涉條 紋最大峰值強度所在位置’對於此位置用CCD攝影機40作二維強度紀錄, 利用移動平台35逐步移動參考面鏡34之步進掃描方式,紀錄掃描的移動 距離與最大峰值強度所在位置,當掃描完成後,將最大峰值強度所在位置 的二維空間,配合移動距離,還原成三維輪廓圖,因此可量測鍵膜前後基 板36待測表面的輪廓圖及彎曲量。 基板36可為鑛膜前或是鍵膜後之軟性或硬式基板,例如塑膠基板或是 玻璃基板;平行白光的波長係介於400到700奈米間,且由於以參考面鏡 34當作標準平面,因此參考面鏡34的平整度必須小於白光波長的1/2〇 ; 移動平台35係利用移動平台控制器44操控,移動平台35可為壓電致動器: (Piezoelectric Transducer ’ PZT)或奈米平移台(Nanopositioner),其中 奈米平移台(Nanopositioner)係結合電動平移台與壓電致動器,其移動範 圍為100晒,最佳移動解析度為Inin ;相位補償片38用於接收自基板36之 待測表面反射之量測光並將其輸出至該分光鏡32,相位補償片38的使用是Camera' CCDCamera) and the computer use the zero-order interference fringe identification method to find the maximum intensity position of the interference fringes, and carry out the substrate to be earned in the mosquito county, and the financial conversion value can accurately measure the surface of the large curved substrate. The amount of bending after the contour and the film are attached can be used to calculate the film stress after 70% of the coating and the profile and bending amount of the substrate surface after coating. The objects, technical features, features, and effects achieved by the present invention will become more apparent from the detailed description of the embodiments of the invention. [Embodiment] The basic architecture of the present invention includes a TRYMAN_Green Interferometel0, a CCD camera, and a computer. As shown in the second figure, the light source 3〇 provides white light with better parallelism, and directs white light to be incident on the beam splitter 32. The beam splitter 32 divides the white light into two white lights of reference light and measurement light, and the reference light is reflected by the beam splitter 32 to be incident on the reference mirror 34 located on the moving platform 35 and then reflected again to reach the beam splitter 32' and re-measure the light through the beam splitter After the 32-transmission and phase compensation sheet 38 is refracted, it is incident on the surface to be tested of the substrate 36 located on the solid-state platform 37, and then reflected and then refracted by the phase compensation sheet 38 to reach the beam splitter 32'. The two beams are combined again on the beam splitter 32. After forming a white light, it is imaged on the screen 34 to obtain an interference spectrum; the CCD camera 40 is used to capture the interference image and displayed on the screen of the computer 42. The computer 42 is used to perform the zero-order interference fringe identification method (Zero-order Interfe- Rence Fringe Identification), find the position of the maximum peak intensity of the interference fringe 'for this position, use the CCD camera 40 for 2D intensity record. The stepping scanning mode of the reference mirror 34 is gradually moved by the moving platform 35, and the moving distance of the scanning and the position of the maximum peak intensity are recorded. When the scanning is completed, the two-dimensional space of the position where the maximum peak intensity is located is restored to the moving distance. The three-dimensional contour map can measure the contour map and the bending amount of the surface to be tested of the front and rear substrates 36 of the key film. The substrate 36 can be a soft or rigid substrate before or after the mineral film, such as a plastic substrate or a glass substrate; The wavelength of the white light is between 400 and 700 nm, and since the reference mirror 34 is used as the standard plane, the flatness of the reference mirror 34 must be less than 1/2 of the wavelength of the white light; the mobile platform 35 utilizes the mobile platform The controller 44 operates, and the mobile platform 35 can be a piezoelectric actuator: (Piezoelectric Transducer 'PZT) or a Nanopositioner, wherein the Nanopositioner is combined with an electric translation stage and a piezoelectric actuator. The movement range is 100, and the optimal movement resolution is Inin; the phase compensation sheet 38 is for receiving the amount of light reflected from the surface to be tested of the substrate 36 and outputting the same. The beam splitter 32, phase compensation plate 38 is

1333059 8 1333059 0為分光鏡32將白光分成量測光和參考光兩束其中參考光在分光鏡32 上比_光多行進兩次且分級32具有—定的厚度使參考光產生色散作 用’因此量測光必須通過相位補償片38以彌補此色散作用相位補償片% 的材質及厚度需與分光鏡32同。 第-圖係為本發明量測薄膜表面輪廓的流程示意圖其係參照第二圖 之系統架構實施’如騎示,該方法包括下列步驟:首先,如步驟si〇提 供-基板36,縣賴狀軟性或硬絲板,像是瓣基板歧玻璃基板, •接著如步驟S12使用干涉儀,將平行白光經分光鏡32分束後,分別照射該 基板36之待測表面與參考面鏡34,產生干涉圖譜之後如步驟犯使用 CCD攝影機4〇娜干賴譜之職,如步驟⑽使料階干涉條紋鑑定法 找出干涉圖譜之最大♦值強度位置’零階干涉條紋鑑定法係利用白光同調 長度很短的特ft ’在干賴上*找白色干涉條朗中心,即可得知對應於 該條紋中心位置的基板表面高度;接著進行步驟⑽利用步進掃描方式移 動參考面鏡34之位置’記錄該參考面鏡34之移動距離並重複步驟犯到 • S16 ’記錄不同之移動距離所對應之最大峰值強度位置,繼續步驟铷將移 動距離及其對應之最大峰值強度位置還原成第一三維輪廓圓,其代表該基 板36表面的立體形狀。 帛四圖係為本發明量測薄膜應力方法的流程示意圖,如圖所示,該方 法包括下列步驟:首先,如步驟S22提供一基板36,其可為链膜前或鍵膜.· 後之軟性或硬式基板’像是塑膝基板或是玻璃基板,接著如步帮细使用 干涉儀’將平行白光經分光鏡32分束後,分別照射該基板36之待測表面 1333059 與參考面鏡34,產生干涉圖譜’之後如步驟S26使用CCD攝影機4〇擷取干 涉圖譜之影像,如步驟S28使用零階干涉條紋鑑定法找出干涉圖譜之最大 峰值強度位置,接著進行步驟S30利用步進掃描方式移動參考面鏡34之位 置’記錄該參考面鏡34之移動距離並重複步驟S24到S28,記錄不同之該 移動距離所對應之最大峰值強度位置,繼續步驟S32將移動距離及其對應 之最大峰值強度位置還原成第一三維輪廓圖,其代表該基板36表面的立體 形狀,之後如步驟S34提供鍍膜後之該基板36,進行步驟S36,重複步驟 # $24到S30並將移動距離及其對應之最大峰值強度位置還原成第二三維輪廓 圖,其代表鍍膜後之該基板36表面的立體形狀,最後如步驟S38利用第一 二維輪廓圖與第二三維輪廓圖決定該基板36之彎曲程度及薄膜應力。 以上所述係藉由實施例說明本發明之特點,其目的在使熟習該技術者 能瞭解本發明之内容並據以實施,而非限定本發明之專利範圍,故凡其他 未脫離本發明所揭示之精神而完成之等效修飾或修改,仍應包含在以下所 述之申請專利範圍中。 • 【圖式簡單說明】 第一圖為習知干涉相移式太曼格林應力量測儀的架構示意圖。 第二圖為本發明利用白光干涉儀之量測系統的架構示意圖。 第二圖為本發明利用白光干涉儀量測基板表面輪廓的流程示意圖。 第四圖為本發明利用白光干涉儀量測基板薄膜應力的流程示意圖。 【主要元件符號說明】 10氦氖雷射 12顯微物鏡 14針孔 16準直透鏡 10 13330591333059 8 1333059 0 is a beam splitter 32 that splits white light into two beams of measurement light and reference light, wherein the reference light travels twice more on the beam splitter 32 than the light, and the level 32 has a predetermined thickness to cause the reference light to produce dispersion. The measurement light must pass through the phase compensation sheet 38 to compensate for the dispersion. The material and thickness of the phase compensation sheet % need to be the same as that of the beam splitter 32. The first figure is a schematic flow chart of measuring the surface profile of the film according to the present invention. The system is implemented according to the system architecture of the second figure. The method includes the following steps: First, if the step is provided, the substrate 36 is provided. a soft or hard wire plate, such as a valve substrate, a glass substrate, and then, after using an interferometer as in step S12, the parallel white light is split by the beam splitter 32, and then the surface to be tested of the substrate 36 and the reference mirror 34 are respectively irradiated, resulting in After the interference spectrum, if the step is to use the CCD camera 4 〇 干 赖 赖 , , , , , , , , , , , , CCD CCD CCD CCD CCD CCD CCD CCD CCD CCD CCD CCD CCD CCD CCD CCD CCD CCD CCD CCD CCD CCD CCD CCD CCD CCD CCD CCD CCD CCD CCD CCD CCD A very short special ft 'on the dry interference* to find the white interference strip center, you can know the height of the substrate surface corresponding to the center position of the stripe; then proceed to step (10) to move the position of the reference mirror 34 by step scanning. Record the moving distance of the reference mirror 34 and repeat the steps to make • S16 'record the maximum peak intensity position corresponding to the different moving distance, continue the step 铷 move the distance and The corresponding maximum peak intensity position is restored to a first three-dimensional contour circle which represents the three-dimensional shape of the surface of the substrate 36. The fourth figure is a schematic flow chart of the method for measuring the stress of the film according to the present invention. As shown in the figure, the method comprises the following steps: First, a substrate 36 is provided as in step S22, which may be a front film or a key film. The flexible or rigid substrate is like a plastic knee substrate or a glass substrate, and then the parallel white light is split by the beam splitter 32, and the surface to be tested 1333059 and the reference mirror 34 of the substrate 36 are respectively irradiated. After the interference pattern is generated, the image of the interference spectrum is captured by the CCD camera 4 as in step S26, and the maximum peak intensity position of the interference spectrum is found by using the zero-order interference fringe identification method in step S28, and then step scanning is performed in step S30. The position of the moving reference mirror 34 'records the moving distance of the reference mirror 34 and repeats steps S24 to S28 to record the maximum peak intensity position corresponding to the different moving distance, and proceeds to step S32 to move the distance and its corresponding maximum peak. The intensity position is reduced to a first three-dimensional contour map representing a three-dimensional shape of the surface of the substrate 36, and then the substrate 36 after coating is provided as in step S34. In step S36, steps #$24 to S30 are repeated and the moving distance and its corresponding maximum peak intensity position are restored to a second three-dimensional contour map, which represents the three-dimensional shape of the surface of the substrate 36 after coating, and finally the first step is used as in step S38. The two-dimensional contour map and the second three-dimensional contour map determine the degree of bending of the substrate 36 and the film stress. The above description of the present invention is intended to be illustrative of the invention, and is intended to be understood by those skilled in the art Equivalent modifications or modifications made by the spirit of the disclosure should still be included in the scope of the claims described below. • [Simplified Schematic] The first figure is a schematic diagram of the structure of a conventional interference phase shifting Taiman Green stress meter. The second figure is a schematic diagram of the architecture of the measurement system using the white light interferometer of the present invention. The second figure is a schematic flow chart of measuring the surface profile of the substrate by using a white light interferometer. The fourth figure is a schematic flow chart of measuring the stress of the substrate film by using the white light interferometer. [Main component symbol description] 10" laser 12 microscope objective 14 pinhole 16 collimator lens 10 1333059

18分光鏡 20參考面鏡 21壓電陶瓷元件 22基板 24屏幕 26 CCD攝影機 28個人電腦 30光源 32分光鏡 34參考面鏡 35移動平台 36基板 37固定平台 38相位補償片 40 CCD攝影機 42電腦 44移動平台控制器18 beamsplitter 20 reference mirror 21 piezoelectric ceramic component 22 substrate 24 screen 26 CCD camera 28 personal computer 30 light source 32 beam splitter 34 reference mirror 35 mobile platform 36 substrate 37 fixed platform 38 phase compensation sheet 40 CCD camera 42 computer 44 mobile Platform controller

Claims (1)

十、申請專利範圍: 種自轩賴之制方法用以量鞭麟和舰後之基板表面 ⑽和彎曲量以得到薄膜應力,其包括下列步驟: ω提供-基板’其具有—待測表面; (b)使用—干涉儀’將—平行㈣經—分光鏡分朿後分別照射該基板 之該待測表面與一參考面鏡,產生一干涉圖譜; (C)使用一 CCD攝影機擷取該干涉圖譜之影像; • (d)使用一零階干涉條紋鑑定法找出該干涉圖譜之一最大峰值強度位 置; (e) 利用一步進掃描方式移動該參考面鏡之位置,記錄該參考面鏡之一 移動距離’並重複步驟(b)到(d),記錄不同之該移動距離所對應之該最大 峰值強度位置; (f) 將該移動距離及其對應之該最大峰值強度位置還原成一第一三維 輪廓圖,其代表該基板表面的立體形狀; # (g)提供鍍膜後之該基板; (h) 重複步驟(b)到(e) ’將該移動距離及其對應之該最大峰值強度位 置還原成一第二三維輪廓圖’其代表鍍膜後之該基板表面的立體形狀;以 及 (i) 利用該第一三維輪廓圖與該第二三維輪廓圖決定該基板之彎曲程 度及薄膜應力。 2、如請求項1所述之利用白光干涉儀之量測方法,其中該基板係為軟性基 板或是硬式基板。 12 1333059 3、 如請求項1所述之_白光干涉儀之量晰法,其中該基板係為塑膠基 板或是玻璃基板。 4、 如請求項m狀侧白光干涉儀之4測麵其中該干涉儀係為太曼 格林干涉儀。 5、 如請柄m狀自奸涉儀之量财法,其巾料行自光之波長 係介於400到700奈米間。 6、 如請求項丨所述之湘白光干涉儀之量測方法其中該參考面鏡之平整 度小於該平行白光波長的1/20。 7、 如請求項1所述之侧㈣干涉儀之量測方法其中該零階干涉條紋鑑 定法係指在針涉圖譜上軸自色干雜財心,即可得知其對應之基板 表面高度。 8、 如請求項丨所述之顧白光干涉儀之量測方法,其中該步進掃描方式係 利用一移動平台來移動該參考面鏡位置。 9、 如請求項8所述之_白光干涉儀之制方法,其中該移動平台係為一 壓電致動器或是一奈米平移台。 10、 如請求項9所述之利用白光干涉儀之量測方法,其中該奈米平移台係 由電動平移台與壓電致動器所組成。 .. 1卜-種_白光干涉儀之量測方法,㈣量測基板的表面輪廓或彎曲量,. 其包括下列步驟: (a) 提供一基板; (b) 使用-干涉儀’將-平行白光經—分光鏡分束後,分職射該基板 13 1333059 之—待測表面與一參考面鏡,產生-干涉圖镨; (C)制-GGD攝影觸取該干_譜之影像; ·. ⑷使用—零階干涉條紋鑑定法找出衧频譜之-最構值強度位 置; ⑹利用-步進掃财式移績參考崎之位置,輯該參考面鏡之一 移動距離,並重複倾(_⑷,記鮮同之該雜雜崎應之該最大 峰值強度位置;以及 » ⑴將郷練離及其對應之雜大峰㈣纽置還原成—三維輪廟 圖’其代表該基板表面之立體形狀。 12、 如請求項U所述之利用白光干涉儀之量測方法,其中該基板係為舰 前基板或是鑛膜後基板。 13、 如請求項11或12所述之利用白光干涉儀之量測方法,其中該基板係 為軟性基板或是硬式基板。 14、 如請求項11或12所述之_白光干涉儀之量财法,其中該基板係 • 為塑膠基板或是玻璃基板。 15、 如請柄11所述之利用白光干涉儀之量測方法,其中該干涉儀係為太 曼格林干涉儀。 16、 如請求項11所述之利用白光干涉儀之量測方法,其中該平行白光之波 長係介於400到7〇〇奈米間° 17、 如請求項11所述之白光干涉儀之量測方法,其中該參考面鏡之平 整度小於該平行白光波長的1/20。 1333059 18、如請求項u所述之利用白光干涉儀之量測方法,其中該零階干涉條紋 鑑定法係指在該干涉圖譜上尋找白色干涉條紋中心,即可得知其對應之基 板表面高度。 • 19 '如請求項u所述之利用白光干涉儀之量測方法,其中該步進掃描方式 係利用一移動平台來移動該參考面鏡位置。 别、如請求们9所述之糊白光干涉儀之量測方法,其中郷動平台係為 一壓電致動器或是一奈米平移台。 • 21、如請求項20所述之利用合光干涉儀之量測方法,其中該奈米平移台係 由電動平移台與壓電致動器所組成。 22、-種白光干涉儀量測紐,肋量測基板的表面輪廓、彎曲量或其上 之薄膜應力,其包括: 一白光光源,用以提供一平行白光; 一移動平台,其上具有一參考面鏡; 一平台,用以置放一基板,該基板具有一待測表面; • 一分光鏡’用以接收該平行白光並將其分成-參考光和一量測光,該 參考光制狀射线參考面鏡,該量測光_〖认射线基板之該制 表面,該力光鏡可將反射之該參考光和該量測光合併輸出; 一透鏡’用以接收該分光鏡所輸出之反射之該參考光和該量測光,並 將其成像於一屏幕上; -CCD娜機,用以娜該屏幕上之影像並轉換成— 影像訊號;以及X. Patent application scope: The method of the method of using Xuan Lai is used to measure the surface of the substrate (10) and the amount of bending of the whip and the ship to obtain the film stress, which comprises the following steps: ω providing - the substrate 'having the surface to be tested; (b) using an interferometer to divide the parallel (four)--beam splitter and respectively irradiate the surface to be tested of the substrate with a reference mirror to generate an interference pattern; (C) using a CCD camera to extract the interference Image of the map; • (d) use a zero-order interference fringe identification method to find the maximum peak intensity position of the interferogram; (e) use a step-scan method to move the position of the reference mirror and record the reference mirror a moving distance 'and repeating steps (b) to (d), recording the maximum peak intensity position corresponding to the different moving distance; (f) reducing the moving distance and the corresponding maximum peak intensity position to a first a three-dimensional profile representing the three-dimensional shape of the surface of the substrate; # (g) providing the substrate after coating; (h) repeating steps (b) through (e) 'the moving distance and its corresponding maximum peak intensity position Original three-dimensional profile into a second 'which the three-dimensional shape of the substrate surface after the representative film; and (i) using the first three-dimensional profile of the second three-dimensional profile of the substrate determines the degree of bend and the film stress. 2. The method of measuring a white light interferometer according to claim 1, wherein the substrate is a flexible substrate or a rigid substrate. 12 1333059 3. The method of _ white light interferometer according to claim 1, wherein the substrate is a plastic substrate or a glass substrate. 4. As for the 4 measuring surface of the m-side white light interferometer of the request item, the interferometer is a Teman Green interferometer. 5, such as the handle of the m-like self-inflicted money, the wavelength of the towel from the light is between 400 and 700 nm. 6. The method of measuring a Xiangbai optical interferometer as claimed in claim 1, wherein the reference mirror has a flatness less than 1/20 of the wavelength of the parallel white light. 7. The measuring method of the side (four) interferometer according to claim 1, wherein the zero-order interference fringe identification method refers to the height of the substrate surface on the axis of the needle-related spectrum. . 8. The method of measuring the Gu Baiguang interferometer as claimed in claim 1, wherein the stepping scanning method uses a moving platform to move the reference mirror position. 9. The method of manufacturing a white light interferometer according to claim 8, wherein the mobile platform is a piezoelectric actuator or a nano translation stage. 10. The method of measuring a white light interferometer according to claim 9, wherein the nano-translation stage is composed of an electric translation stage and a piezoelectric actuator. .. 1 Bu-species _ white light interferometer measurement method, (d) measuring the surface contour or bending amount of the substrate, which comprises the following steps: (a) providing a substrate; (b) using - interferometer 'will - parallel After the white light is split by the beam splitter, the surface to be tested and the reference mirror are generated by the substrate 13 1333059, and the interference pattern is generated; (C)-GGD photography touches the image of the dry spectrum; (4) Using the zero-order interference fringe identification method to find the -most value intensity position of the 衧 spectrum; (6) Using the -step sweeping type of performance to refer to the position of the saki, the moving distance of one of the reference mirrors, and repeat Tilting (_(4), remembering the maximum peak intensity position of the miscellaneous miscellaneous; and (1) reducing the 郷 离 and its corresponding heterogeneous peak (4) to a three-dimensional temple map, which represents the solid surface of the substrate 12. The method of measuring a white light interferometer as described in claim U, wherein the substrate is a ship front substrate or a mineral film back substrate. 13. A white light interferometer as claimed in claim 11 or 12. Measuring method, wherein the substrate is a flexible substrate or a hard base 14. The method of _ white light interferometer according to claim 11 or 12, wherein the substrate is a plastic substrate or a glass substrate. 15. The measurement using a white light interferometer as described in the handle 11. The method, wherein the interferometer is a Terman Green interferometer. 16. The method of measuring a white light interferometer according to claim 11, wherein the wavelength of the parallel white light is between 400 and 7 nanometers. 17. The method of measuring a white light interferometer according to claim 11, wherein a flatness of the reference mirror is less than 1/20 of a wavelength of the parallel white light. 1333059 18. A white light interferometer as claimed in claim u The measurement method, wherein the zero-order interference fringe identification method refers to finding the center of the white interference fringe on the interference map, and the corresponding substrate surface height is known. 19 'Using the white light interferometer as claimed in claim u The measuring method, wherein the stepping scanning method uses a mobile platform to move the reference mirror position. In addition, the measuring method of the white light interferometer according to claim 9, wherein the tilting platform is a pressure Electrical actuation 21. A nano-translation stage. 21. The method of measuring a combined light interferometer according to claim 20, wherein the nano-translation stage is composed of an electric translation stage and a piezoelectric actuator. a white light interferometer measuring button, the surface profile of the substrate, the amount of bending or the film stress thereon, comprising: a white light source for providing a parallel white light; a mobile platform having a reference thereon a mirror for placing a substrate having a surface to be tested; a beam splitter for receiving the parallel white light and dividing it into a reference light and a metering light, the reference light pattern a ray reference mirror, the measurement _ 〖the surface of the ray substrate, the force mirror can combine the reflected reference light and the measurement light; a lens 'receives the output of the beam splitter Reflecting the reference light and the metering light and imaging the same on a screen; - a CCD camera for converting the image on the screen into an image signal; 15 丄333059 電聰’與該CCD攝影機耦接’用以接收來自該CCD 攝影機之辦彡像訊號,並使用—零階干涉條紋鑑定法加以處理輸出。 23如4求項22所述之白光干涉儀量測系統,其中該基板係為鍍膜前基板 或是鍍臈後基板。 如明求項22或23所述之利用白光干涉儀之量測方法,其中該基板係 為軟性基板或是硬式基板。 25、 如請求項22或23所述之利用白光干涉儀之量測方法,其十該基板係 為塑膠基板或是玻璃基板。 26、 如請求項22所述之白光干涉儀量測线,更包括—相位補償片,用以 接收自該待測表面反射之量測光並將其輸出至該分光鏡,藉賴補該參考 光在該分光鏡上比該量測光多行進兩次產生之色散作用。 27、 如請求項22所述之白光干涉儀量_統,其中解行白光之波長係介 於400到700奈米間。15 丄 333059 The driver is coupled to the CCD camera to receive the image signal from the CCD camera and process the output using the zero-order interference fringe identification method. The white light interferometer measuring system of claim 22, wherein the substrate is a pre-plated substrate or a rhodium-plated substrate. The method of measuring a white light interferometer according to claim 22 or 23, wherein the substrate is a flexible substrate or a rigid substrate. 25. The method of measuring a white light interferometer according to claim 22 or 23, wherein the substrate is a plastic substrate or a glass substrate. 26. The white light interferometer measuring line of claim 22, further comprising: a phase compensating chip for receiving the amount of light reflected from the surface to be tested and outputting the same to the beam splitter, by adding the reference The light produces a dispersion effect on the beam splitter that travels twice more than the metered light. 27. The white light interferometer according to claim 22, wherein the wavelength of the white light is between 400 and 700 nm. 28、 如請求項22所述之白光干涉儀量_統,其中該參考面鏡之平整度必 須小於該平行白光波長的1/20。 29、 如請求項22所述之利用白光干涉儀之量測方法,其中該零階干涉條紋 鑑定法係指在該干涉圖譜上尋齡色干涉條紋巾心即可得知其對應之基 板表面高度》 A 其中該移動平台係為一壓電 其中該奈米平移台係由電動 30、 如請求項22所述之白光干涉儀量測系統, 致動器或是一奈米平移台。 31、 如清求項30所述之白光干涉儀量測系統, 1333059 平移台與壓電致動器所組成。28. The white light interferometer of claim 22, wherein the reference mirror has a flatness that is less than 1/20 of the wavelength of the parallel white light. 29. The method of measuring a white light interferometer according to claim 22, wherein the zero-order interference fringe identification method refers to finding an age of the corresponding substrate surface on the interference pattern by finding the color interference fringe towel core. The mobile platform is a piezoelectric device, wherein the nano-translation stage is powered by a motor 30, a white light interferometer measuring system as claimed in claim 22, an actuator or a nano-translation stage. 31. The white light interferometer measuring system according to claim 30, wherein the 1333059 translation stage and the piezoelectric actuator are formed.
TW96114439A 2007-04-24 2007-04-24 Measurement system and method by using white light interferometer TW200842345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96114439A TW200842345A (en) 2007-04-24 2007-04-24 Measurement system and method by using white light interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96114439A TW200842345A (en) 2007-04-24 2007-04-24 Measurement system and method by using white light interferometer

Publications (2)

Publication Number Publication Date
TW200842345A TW200842345A (en) 2008-11-01
TWI333059B true TWI333059B (en) 2010-11-11

Family

ID=44821953

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96114439A TW200842345A (en) 2007-04-24 2007-04-24 Measurement system and method by using white light interferometer

Country Status (1)

Country Link
TW (1) TW200842345A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454249A (en) * 2013-09-16 2013-12-18 南京理工大学 Method and device for detecting uniformity of optical glass based on white light interferometry
TWI458960B (en) * 2012-03-20 2014-11-01 Univ Minghsin Sci & Tech White-light interference measuring device and interfere measuring method thereof
TWI663380B (en) * 2018-09-19 2019-06-21 致茂電子股份有限公司 Image capturing system and image capturing method
TWI670483B (en) * 2014-03-13 2019-09-01 新加坡國立大學 Optical interference device, phase shifter array and method for producing a spatially distributed interference light pattern
TWI801104B (en) * 2021-03-01 2023-05-01 日商歐姆龍股份有限公司 Measuring device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10794679B2 (en) * 2016-06-29 2020-10-06 Corning Incorporated Method and system for measuring geometric parameters of through holes
CN106910694B (en) * 2017-03-07 2019-09-10 中国电子科技集团公司第三十八研究所 A kind of automatic detection at circuit devcie angularity method and device
TWI788873B (en) * 2021-06-08 2023-01-01 逢甲大學 Method and system for measuring interfacial stress and residual stress in multilayer thin films coated on a substrate
CN113607084B (en) * 2021-08-11 2022-05-17 浙江大学 Method for measuring submillimeter groove structure based on white light interference and SPGD

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI458960B (en) * 2012-03-20 2014-11-01 Univ Minghsin Sci & Tech White-light interference measuring device and interfere measuring method thereof
CN103454249A (en) * 2013-09-16 2013-12-18 南京理工大学 Method and device for detecting uniformity of optical glass based on white light interferometry
CN103454249B (en) * 2013-09-16 2016-03-02 南京理工大学 Based on optical glass homogeneity detection method and the device of white light interference
TWI670483B (en) * 2014-03-13 2019-09-01 新加坡國立大學 Optical interference device, phase shifter array and method for producing a spatially distributed interference light pattern
US10760971B2 (en) 2014-03-13 2020-09-01 National University Of Singapore Optical interference device
TWI663380B (en) * 2018-09-19 2019-06-21 致茂電子股份有限公司 Image capturing system and image capturing method
TWI801104B (en) * 2021-03-01 2023-05-01 日商歐姆龍股份有限公司 Measuring device

Also Published As

Publication number Publication date
TW200842345A (en) 2008-11-01

Similar Documents

Publication Publication Date Title
TWI333059B (en)
Wyant White light interferometry
US6195168B1 (en) Infrared scanning interferometry apparatus and method
US5398113A (en) Method and apparatus for surface topography measurement by spatial-frequency analysis of interferograms
JP3946499B2 (en) Method for detecting posture of object to be observed and apparatus using the same
US7102761B2 (en) Scanning interferometry
US20010050773A1 (en) Height scanning interferometer for determining the absolute position and surface profile of an object with respect to a datum
CN112739979B (en) Surface shape measuring device and surface shape measuring method
TW200918851A (en) Methods and systems for white light interferometry and characterization of films
WO2010066949A1 (en) Method for interferometric detection of surfaces
TW201237359A (en) Three dimensional surface profilometer and microscopy, and the method using the same
Lehmann Systematic effects in coherence peak and phase evaluation of signals obtained with a vertical scanning white-light Mirau interferometer
CN109341571A (en) A kind of dual wavelength synchronizes the surface figure measuring device and method of interference
JP4208565B2 (en) Interferometer and measurement method having the same
JP2008045922A (en) Method and apparatus for measuring nanometer displacement by laser speckle
JP2003222508A (en) Surface shape measuring device and surface shape measuring method
Wang et al. Application of an optical interferometer for measuring the surface contour of micro-components
JP5518187B2 (en) Deformation measurement method
TW381167B (en) Measurement of film stress by a interference-phase-shifting method
JP3907518B2 (en) Shape measuring device
JP4988577B2 (en) Interference system with a reference surface having a specular area
JP5239049B2 (en) Roughness measuring method and roughness measuring apparatus
KR20200125149A (en) Apparatus for monitoring three-dimensional shape of target object capable of auto focusing in real time
Gastinger et al. Multi-technique platform for dynamic and static MEMS characterisation
Wang et al. Vertical scanning white light interfering profilometer based on Linnik interference microscope

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees