TWI332302B - Variable wake up level current circuit, variable wake up current circuit, and battery charging apparatus - Google Patents

Variable wake up level current circuit, variable wake up current circuit, and battery charging apparatus Download PDF

Info

Publication number
TWI332302B
TWI332302B TW096105152A TW96105152A TWI332302B TW I332302 B TWI332302 B TW I332302B TW 096105152 A TW096105152 A TW 096105152A TW 96105152 A TW96105152 A TW 96105152A TW I332302 B TWI332302 B TW I332302B
Authority
TW
Taiwan
Prior art keywords
signal
circuit
voltage
current
battery
Prior art date
Application number
TW096105152A
Other languages
Chinese (zh)
Inventor
Niculae Marian
Bucur Constantin
Original Assignee
O2Micro Int Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/355,746 external-priority patent/US7564220B2/en
Application filed by O2Micro Int Ltd filed Critical O2Micro Int Ltd
Application granted granted Critical
Publication of TWI332302B publication Critical patent/TWI332302B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

1332302 U0 :電源管理控制電路 4〇9:選擇器電路 411 :控制電路 ’八、本案若有化學式時,請揭示最能顯示㈣特徵的化學式 九、發明說明: 【發明所屬之技術領域】 本發明係關於電源管理的拓撲架構(t_卿),且 為電池充電控制器(controliers)。 ^ ° 【先前技術】 ,各種可攜式的電子裝置都有一個供電系統,該系統可監 視、控制並指示各種電源供電給該電子裝置的該系統負載。這 些電源通常都包括一個固定輸出的交流轉直流(ACDC)適配器 (adapter)和一個或一個以上的可充電電池。該電源系統包含 一個電源轉換區塊,例如,一個直流轉直流的轉換器,該轉換 器可把該ACDC適配器所提供的一個固定的直流電壓轉換為一 個精確控制的可變的直流電壓輸出,以充電該電池。 5 該電源系統從該ACDC適配器或該主電池供電給該系統, 如果符合適當的條件,並進行電池充電。如此,通常有一個用 於選擇耗接(couple)該ACDC適配器至該系統的一個ACDC電源 開關,與一個用於選擇耦接該主電池至該系統的一個電池開 關,與一個可連接該主電池至用於充電的該直流轉直流轉換器 的一個輸出端的充電開關。當該ACDC適配器供電給該系統 時,該ACDC的電源開關係閉合的(ci〇sed),該電池開係斷開 = (〇pen),且該充電開關可以為閉合的或斷開的。相較之下, 當該電池供電給該系統時,該電池開關係閉合的,而該ACDC 電源開關與該充電開關皆為斷開的。 时為使電池的充電能夠達到其最大工作電壓,該ACDC適配 益的該輸出電壓通常選擇為高於該電池的該最大工作電廢(通 常至少高出1至2伏特)。因為該ACDC適配器的該輸出電壓為 一個固定值,然而該電池的該輸出電壓可以改變很大(根據其 被充電的狀態)’所以該ACDC適配器和該電池在某段時間不能 並聯耦合以供電給該系統負載。這種電壓差異會導致從該較高 的電壓源(ACDC適配器)到該較低的電壓源(電池)間,有 不想要的内部電流產生。結果,為解決該系統瞬間性高電壓的 需要,該ACDC適配器通常會偏大,因而顯著增加該電源系統 的成本。 此外,因為該ACDC適配器的輸出電壓值係固定,它的輸 出電壓不能用來給限定精確的充電電壓與電流控制的該電池 充電。如此,必須有一個由直流轉直流轉換器來完成第二電源 轉換步驟。此第二電源轉換步驟更加造成本增加並降低該電 源系統的總效率。 於是,本領域對電源管理拓撲架構存有一種需要,即電源 管理拓撲架構能僅用一個電源轉換就可提供一個可控制的/直 流輸出給該系統負載與該電池’或能使並聯耦接的一個可控制 的直流電源與電池供電給該系統負载,或者同時具有前述兩種 特徵。 【發明内容】 本發明之優點,在於提供了一種高效、 電路ίί明G :到減少充電時間與節省成本的目標。 本發明沾—種電池充電的方法。該方 =池的電壓生成的—個第—信號’與—個代表最大電池^ 電k的的-個可奴電壓值相比較’且產生—個代表一個1332302 U0: power management control circuit 4〇9: selector circuit 411: control circuit '8. If there is a chemical formula in this case, please disclose the chemical formula which can best display the characteristics of (4). Description of the invention: [Technical Field of the Invention] The present invention It is a topology structure (t_qing) about power management, and is a battery charge controller (controliers). ^ ° [Prior Art] A variety of portable electronic devices have a power supply system that monitors, controls, and indicates the various system power supplies to the electronic device. These power supplies typically include a fixed output AC to DC adapter and one or more rechargeable batteries. The power system includes a power conversion block, such as a DC to DC converter that converts a fixed DC voltage provided by the ACDC adapter into a precisely controlled variable DC voltage output to Charge the battery. 5 The power system supplies power to the system from the ACDC adapter or the main battery, and if the appropriate conditions are met, the battery is charged. As such, there is typically an ACDC power switch for selecting the ACDC adapter to the system, and a battery switch for selectively coupling the main battery to the system, and a main battery connectable to the main battery A charging switch to an output of the DC to DC converter for charging. When the ACDC adapter is powered to the system, the ACDC's power-on relationship is closed (ci〇sed), the battery is disconnected = (〇pen), and the charge switch can be closed or open. In contrast, when the battery is powered to the system, the battery open relationship is closed and the ACDC power switch and the charge switch are both open. In order for the battery to be charged to its maximum operating voltage, the output voltage of the ACDC adaptation is typically selected to be higher than the maximum operating electrical waste of the battery (typically at least 1 to 2 volts higher). Because the output voltage of the ACDC adapter is a fixed value, the output voltage of the battery can be changed greatly (according to the state in which it is charged), so the ACDC adapter and the battery cannot be coupled in parallel for a certain period of time to supply power to The system is loaded. This voltage difference can result in unwanted internal current generation from the higher voltage source (ACDC adapter) to the lower voltage source (battery). As a result, to address the need for transient high voltages in the system, the ACDC adapter is typically oversized, thereby significantly increasing the cost of the power system. In addition, because the output voltage of the ACDC adapter is fixed, its output voltage cannot be used to charge the battery that defines the precise charging voltage and current control. Thus, there must be a DC to DC converter to complete the second power conversion step. This second power conversion step further increases the overall efficiency of the power system. Thus, there is a need in the art for a power management topology that a power management topology can provide a controllable/DC output to the system load and the battery can be coupled in parallel with only one power conversion. A controllable DC power source and battery power supply to the system load, or both. SUMMARY OF THE INVENTION An advantage of the present invention is to provide an efficient, circuit-clearing G: to reduce charging time and cost. The invention is a method for charging a battery. The square=the voltage generated by the voltage of the pool is compared with the value of the slave voltage representing the maximum battery ^, and the generated one represents one

J流的,二信號給該電池。該第二信號的電壓值從該第一信於 與該可設定電壓值中選取該較小的電壓值。 本發明提供一種可變喚醒值電路(variable wake up levelJ stream, two signals to the battery. The voltage value of the second signal is selected from the first signal and the settable voltage value. The invention provides a variable wake up level circuit (variable wake up level)

路可触—個姐錢’該錄絲—個供給 電池的充電電X該可變倾值電路包括—個信號處理電路和 一個比較電路。該信號處理電路可以為一個加法類型 (summmg-type)電路,該電路可接收一個第一可設定電壓, 該電壓代表-個最小的喚醒電流,且接收—個第三信號,該作 號代表-個電池電壓。該信號處理電路被配適(adapt)來產^ 一個第一輸出信號’其電壓值取決於該第一可設定電壓和該第 二h號的該等電壓值。該比較電路被配適來接收該第一輪出 號與該第二可設定,該第二可設定電壓代表—個最大^ 的喚醒電流,且該比較電路產生該唤醒信號。該喚醒信號從該 第一輸出信號和該第二可設定電壓的電壓值中選取一個較小 的值電壓值。 本發明還提供一種可變喚醒電流電路(variable wake up current circuit) ’該電流電路經由一個串聯接在該電池充電 路控上的電流流程控制裝置(current f i〇w CC)ntlOmng device)可至少設定和控制一個供給一個電池的喚醒電流。該 可變喚醒電流電路包括一個可變喚醒值電路、一個誤差放大器 (error amplifier)和一個驅動電路(driving circuit)。該可 7 1332302The road is touchable - a sister's money'. The recording wire - a charging electric power supply to the battery X. The variable inclination circuit includes a signal processing circuit and a comparison circuit. The signal processing circuit can be an summmg-type circuit that receives a first settable voltage that represents a minimum wake-up current and receives a third signal that represents - Battery voltage. The signal processing circuit is adapted to produce a first output signal ' whose voltage value is dependent on the first settable voltage and the second h value. The comparison circuit is adapted to receive the first round number and the second settable, the second settable voltage represents a maximum wake-up current, and the comparing circuit generates the wake-up signal. The wake-up signal selects a smaller value voltage value from the voltage values of the first output signal and the second settable voltage. The present invention also provides a variable wake up current circuit 'the current circuit can be set at least through a current flow control device (current fi〇w CC) ntlOmng device connected in series to the battery charging path) And control a wake-up current that supplies a battery. The variable wake-up current circuit includes a variable wake-up value circuit, an error amplifier, and a driving circuit. The can 7 1332302

變喚醒值電路反應-個第-信號,該信號代表該電池的該瞬間 電壓,反應一個第一可設定電壓,該電壓代表該電池的一個最 小喚醒電;^^及反應一個第二可設定電壓’該電壓代表該電 池的一個隶大容許喚醒電流^該可變喚醒值電路還可產生一個 喚醒彳S號’該彳§號代表用於該電池充電的該喚醒電流。該喚醒 信號的電壓值至少取決於該第一可設定電壓和該第一信號的 該等電壓值。織差放大^接收触難號和—個電池電流檢 測信號’該電池電流檢測信號餘流經該電紐概置的該電 池的-個_充電f流。雜紐大器反應該喚醒信號和該 電池電流檢測信號的該差值而產生一個誤差信號。該驅動電路 配適來至少反應該誤差信號而輸丨—個裝置驅動信號。該裝置 驅動信號根據該賴錢略齡令該糕流程㈣裝置將 該瞬間充電電流維持在某一個值。 本發明還提供一種電池充電裝置。該電池充電裝置包括一 個流向-個可充電電池的電祕徑、㈣雛在該電流路徑上 的-個電:¾控概置和—個可變倾電流電路。該電流控 置配適以控制供給該電池的—個充電電流。該可變喚醒電流^The wake-up value circuit reacts a first-signal representing the instantaneous voltage of the battery, reacting with a first settable voltage representing a minimum wake-up power of the battery; and reacting a second settable voltage 'This voltage represents a large allowable wake-up current for the battery. ^ The variable wake-up value circuit can also generate a wake-up 彳S number' which represents the wake-up current for charging the battery. The voltage value of the wake-up signal depends at least on the first settable voltage and the voltage values of the first signal. Weaving amplifying ^ receiving the touch difficulty number and - a battery current detection signal 'The battery current detection signal flows through the battery--charged flow of the battery. The multiplexer reacts the difference between the wake-up signal and the battery current detection signal to generate an error signal. The drive circuit is adapted to at least react to the error signal to output a device drive signal. The device driving signal maintains the instantaneous charging current at a certain value according to the device (4). The invention also provides a battery charging device. The battery charging device includes an electric path to a rechargeable battery, (4) a power in the current path: a control unit and a variable tilt current circuit. The current control is adapted to control the charging current supplied to the battery. The variable wake-up current ^

表該電池的一個瞬間電壓的一個第-信號,反應 ,表該電池的一個最小喚醒充電電流值的一個第一可設 壓,反應代表該電池的—個最大料倾充電電流值的二個 ===’!^及反應代表該電池的—個瞬間充電電流的— 购信號的魏隸而_充電電流維 【實施方式】 ’該電子裴置100 電池105供電,或 圖1所示為電子裝置100的一個方塊圖 具有’一個可由可控制直流電源104或一個 8 1332302 者由該可控制直流電源10 4和該電池1 ο 5並聯供電的系統負載 110。表格180顯示開關SW1和S呢在各種不同供電模式下 位置二在一個實施例中,該可控制直流電源1〇4可以是i此進 一步詳Ϊ的可控制適配器(adapter),例如一個ACDC適配器, 該適配器只需將電源轉換即可供電給鹤統負载11Q和^ 此’巧的電源系統通常需要—個額外的電Ϊ轉 ==一 1固ίί轉直流轉換器提供一個精確控制的輸 出…電池充電),在本實施例中並無需要。 該電子以是本領域所知的各種冑置如 里電腦、行動電話、個人數位助理器、電動工具、電動 °。 該可控制直流電源104提供-個動態可控制的直流 麟述該電源1〇4為可控制適配器或直流^直 兄。該可控做流電源104可以分離或整合於該 3子,置100。該電池105包括一個或複數個f池。i 疋'^不同類型的可充電電池’例如,轉子電池、x錄録 電池、錄氫電池或其他此類之電池。 ’、 擇性114 選 王幻祸接於一個即點116。該電池105可以經 和路徑118選擇性的耦接於該節點116。該系 經由路f m输於該節點116。 μ絲m還可 =常二個電源管理控制電路13〇與本發明在不同的狀離 、控制且指示電源104、105供電給該系統負載110 = 對電池充電)一致。該電源管理控電路130可沿著 狀ί、各種輸人錢。這些輸人錢可酬各種負载 個電力狀態,例如該電池105的一個輸出電壓值^二 電相同地’該可控制直流電源親的該供 ^^力^ ’例如該電源1G4的—個輸出電馳 電机值。該系統負載110的該負餘態可以是一個電力狀^出 9 何特輯刻該系統負载需要的-個電麵或需要的 管理控制ΐ路 員:提電源 如i常’該電縣理糊電路13()可以藉由沿著路徑133的 輸__該可㈣直流電源綱的= 數’例個輸出電壓值,並能藉由沿著路徑20的— 信號來控制開關SW1和sw2的狀態而在複數個供電 某一實施例的優點,該電源管理控制 $⑽詳述的-種供電模式185,使得該可㈣直^=〇如 1〇5並翻接供電給該系統負載110。並聯輕^ =制直流電源104和該電池1()5存在的問題是,兩者間的^ g不同㈣致較高電壓關健電顧-個不想要的= 電流(inter-current)。 想要的内部電流可以藉由單向開關和選擇性的單向 ^關允許電流流向-個方向而防止其往另一個方向。例如 2所述’在緩衝器電池供電模式185下’如表格18〇中 允許電流’開關撕可以為一個選擇性單向開關,而開 可以為一個單向開關。此外,當電池電壓變化時,例如 =據/、充電狀態而變,開關SW2可以包含一個雙向放電開關, 藉由維持該可控制直流電源1〇4的該電壓值 值的一個容許範圍内,可以控制該直流電源1G4和該電=〇壓 之間不想要的内部電流。 ^該並聯供電模式185可以藉由經由路徑141接收到的指令 h號而被選擇。此供電模式185為反應一個電源危機狀態也可 被選擇。此一個電源危機狀態,發生於當該系統負載11()的一 個負載需求超過該可控制直流電源1〇4單獨的該最大可容許 1332302 功率與超過該電池105單獨的該最大可容許功率時。然而,在 必要的期間内,該電源能夠提供足夠的電力來滿足該系統負载 110的該負載需要。因此,該可控制直流電源1〇4可以不必 增大(oversized)來應付此狀況。A first signal of a transient voltage of the battery, a reaction, a first settable voltage of a minimum wake-up charge current value of the battery, and a response representing two values of the maximum charge current of the battery = =='!^ and the reaction represents the instantaneous charging current of the battery - the purchase of the signal Wei Li and the charging current dimension [embodiment] 'The electronic device 100 battery 105 power supply, or Figure 1 shows the electronic device A block diagram of 100 has a system load 110 that can be powered by the controllable DC power source 104 or an 8 1332302 from the controllable DC power source 104 and the battery 1 ο 5 in parallel. Table 180 shows switches SW1 and S in various power modes. In one embodiment, the controllable DC power supply 1〇4 can be a further detail controllable adapter, such as an ACDC adapter. The adapter only needs to convert the power supply to supply the crane load 11Q and ^ This 'powerful power system usually needs - an extra power switch == a solid-turn converter provides a precisely controlled output... battery Charging) is not required in this embodiment. The electronics are known in the art as computers, mobile phones, personal digital assistants, power tools, electrics. The controllable DC power supply 104 provides a dynamically controllable DC. The power supply 1〇4 is a controllable adapter or DC. The controllable flow source 104 can be separated or integrated into the 3, set to 100. The battery 105 includes one or a plurality of f-cells. i 疋 '^ Different types of rechargeable batteries' For example, a rotor battery, an x-recording battery, a hydrogen recording battery, or the like. ‘, Selective 114 The king’s illusion is connected to a point 116. The battery 105 can be selectively coupled to the node 116 via a path 118. The system is routed to the node 116 via the path fm. The μm m can also be used to indicate that the two power management control circuits 13 are different from the present invention in controlling and indicating that the power supplies 104, 105 are powered to the system load 110 = charging the battery. The power management control circuit 130 can be used to input money. These input money can be used to charge various power states, for example, an output voltage value of the battery 105 is the same as that of the power supply of the DC power source, for example, the output power of the power supply 1G4. Chi motor value. The negative residual state of the system load 110 can be a power-like output of 9 watts of the system load required - an electrical surface or a required management control circuit breaker: the power supply such as i often 'the electric county paste circuit 13() can be controlled by the value of the output voltage value along the path 133, and can be controlled by the signal along the path 20 to control the state of the switches SW1 and sw2. In the advantage of a plurality of power supply embodiments, the power management controls the power mode 185 detailed in $10 such that the power can be supplied to the system load 110. Parallel light ^=The DC power supply 104 and the battery 1()5 have a problem that the difference between the two is different (4), resulting in a higher voltage-critical power supply - an unwanted current (inter-current). The desired internal current can be prevented from flowing in the other direction by the unidirectional switch and the selective one-way switching. For example, 2 'under buffer battery power mode 185', as shown in Table 18, allows current to be switched as a selective unidirectional switch, and open can be a unidirectional switch. In addition, when the battery voltage changes, for example, according to the data state, the switch SW2 may include a bidirectional discharge switch, which can be maintained within an allowable range of the voltage value of the controllable DC power source 1〇4. Controls the unwanted internal current between the DC power source 1G4 and the voltage = voltage. The parallel power mode 185 can be selected by the command h number received via path 141. This power mode 185 can also be selected in response to a power crisis condition. This power crisis condition occurs when a load demand of the system load 11() exceeds the maximum allowable 1332302 power of the controllable DC power source 1〇4 alone and exceeds the maximum allowable power of the battery 105 alone. However, the power supply can provide sufficient power to meet the load requirements of the system load 110 for the necessary period of time. Therefore, the controllable DC power source 1〇4 can be oversized to cope with this situation.

於此之一個並聯電源供電模式185,該電源管理控制電路 130的另一優點是藉由控制開關SW1和別2的該狀態而防止該 可控制直流電源104和該電池1〇5之間的交叉傳導。開關SW2 可以是一個選擇性單向開關,而該開關SW1可以是一個單向開 關。也就是,該開關SW2可以根據其選擇的供電模式為閉合或 者斷開時,允許電流只流向一個方向。當該系統負載11〇僅由 該可控制直流電源104供電(因此開關SW1為閉合)且沒有任 何充電發生時(供電模式181),開關SW2可以斷開。In a parallel power supply mode 185, another advantage of the power management control circuit 130 is to prevent crossover between the controllable DC power source 104 and the battery 1〇5 by controlling the state of the switches SW1 and 2 Conduction. Switch SW2 can be a selective unidirectional switch, and switch SW1 can be a one-way switch. That is, the switch SW2 can allow current to flow only in one direction depending on whether the selected power supply mode is closed or turned off. When the system load 11 is only powered by the controllable DC power source 104 (and thus the switch SW1 is closed) and no charging occurs (power mode 181), the switch SW2 can be turned off.

開關SW2可有-個第-放制合狀態,此時電流通常只允 許從該電池流出。例如,於此第一放電閉合狀態,允許電流從 該電池105流向該系統負載110,但不允許電流從該可控制直 流電源104流向該電池1〇5。此外,開關SW2也可有一個第二 充電閉合狀態,於此只允許電流流向該電池。例如,在此第二 充電閉合狀態’只允許電流從該可控制直流電源1〇4流向該^ 池105,而防止從該電池105流向該系統負載11〇。開關聰 可以是-個單向開關,當開關SW1閉合時,只允許電流從 控制直流電源104流向節點丨16。 因此在該可控制直流電源1〇4和該電池1〇5同時供 系統負載110的並聯供電模幻85下,開關SW2可以閉合^ -放電狀態’且開關SW1可以是閉合的。因此該電池1G5= 供電流給該系統負載11Q,而從該可控制直流電源⑽到該 池105的不想要的内部電流可被開關SW2所防止。此外二 制直流電㈣4的枝料_電流可被Ϊ 本領域的技術人員了解各種可《實現選雜單向開關的 不同方法。例如,可以採用相互串聯耦接的一對開關,和與每 個=並聯的-對相關的二極體。一個特殊的二極體可以^止 電流流向某Γ方向,而一侧合開關可以允許電流雙向流通。 該電源管理控制電路130的一個優點,係可以選擇另一種 或183,於此該可控制直流電源104供電給該系 於此例該電池1G5可以被充電(表格⑽的供 Γϋ)或不被充電(表格180的供電模式⑻)。在這些 沿細£ 141 #給該電源管理電路130的複數; 中的一個信號’可以代表該系統負載110的一個功率 ί雷漁it二個電壓需求、—個電流需求等等。其優點是, SinTI /電路130能反應此一信號來調整該可控制直流電 出參數,例如輸㈣壓值、輸㈣流值等等^ 130=^、载110的該需求。在某一财,該電源管理電路 i 1控繼直流電源104的翻^電壓值,使盆ί於 該需求電壓範圍内。因此: 的·=巾’之别所述龍緩衝電池供賴式可雜據所要 供電系統之需求而存在(如表格180)或不存在(,表格 除該可控制適配器l〇4a外,圖2所千的呤祝+ / 它組件與圖i相似且標號相同卜。=所其 對這些組件重複的描述。該:為二楚5見在此省略 可控制交流轉直流適配器,該適配器接收常規的交 1332302 =來自該電源管理控制電路13_ 一個沿著路徑133的控制 將其轉換為-個可控制直流電壓值。可以由該電源管理 控,電路130控制該可控制適配器馳的複數個參數,包括 Ϊί,、最大輸出功率、最大輸出電流、啟 私山^啟動β又疋(Pr〇flle)等等。該可控制適配器104a的該 輸出電壓可以由該電源管理控制電路13〇所控制而動態調整。 如圖3所示,圖1中的該可控制直流電源可以是一個與路 ^14減的該直流轉直流轉馳。與雜114相連的Switch SW2 can have a first-to-release state where current is typically only allowed to flow from the battery. For example, in this first discharge closed state, current is allowed to flow from the battery 105 to the system load 110, but current is not allowed to flow from the controllable DC power source 104 to the battery 1〇5. In addition, switch SW2 can also have a second charge closed state, where only current is allowed to flow to the battery. For example, in this second charge closed state, only current is allowed to flow from the controllable DC power source 1〇4 to the battery 105, preventing flow from the battery 105 to the system load 11〇. The switch can be a one-way switch. When the switch SW1 is closed, only current is allowed to flow from the control DC power source 104 to the node 丨16. Therefore, at the time when the controllable DC power source 1〇4 and the battery 1〇5 are simultaneously supplied to the parallel load supply mode of the system load 110, the switch SW2 can be closed and the switch SW1 can be closed. Therefore, the battery 1G5 = supply current to the system load 11Q, and the unwanted internal current from the controllable DC power supply (10) to the pool 105 can be prevented by the switch SW2. In addition, the two-component DC (4) 4 branch _ current can be used by those skilled in the art to understand various methods that can be implemented to select a unidirectional switch. For example, a pair of switches coupled in series with each other, and a pair of diodes associated with each pair in parallel may be employed. A special diode can stop current flow to a certain direction, while a side switch can allow current to flow in both directions. One advantage of the power management control circuit 130 is that another or 183 can be selected, where the controllable DC power source 104 can be powered to the system. In this example, the battery 1G5 can be charged (the supply of the table (10)) or not charged. (Power mode (8) of Table 180). A signal 'in the complex number of the power management circuit 130; a signal ' can represent a power of the system load 110, a voltage demand, a current demand, and the like. Advantageously, the SinTI/circuitry 130 can react to the signal to adjust the controllable DC output parameters, such as the input (four) voltage value, the input (four) current value, etc., 130, and the demand for the load 110. In a certain amount, the power management circuit i 1 controls the voltage value of the DC power source 104 so that the basin is within the required voltage range. Therefore: the ?= towel's description of the dragon buffer battery can be used to supply the system according to the needs of the power supply system (such as Table 180) or does not exist (, in addition to the controllable adapter l〇4a, Figure 2 The thousands of wishes + / its components are similar to the figure i and the same label. = the repeated description of these components. This: for the second five see here to omit the controllable AC to DC adapter, the adapter receives the conventional Intersection 1332302 = from the power management control circuit 13_ a control along path 133 converts it to a controllable DC voltage value. Controlled by the power supply, the circuit 130 controls the plurality of parameters of the controllable adapter, including Ϊί,, maximum output power, maximum output current, Qiqishan ^ start β 疋 (Pr〇flle), etc. The output voltage of the controllable adapter 104a can be dynamically adjusted by the power management control circuit 13〇 As shown in FIG. 3, the controllable DC power supply in FIG. 1 may be a DC-to-DC conversion that is subtracted from the path 14.

-個開關swi和-個固定適配器3G2。如圖所示,開關撕 ^接在該直流轉直流轉換器麵和該節點116之間的路徑 上。此外,開關SW1也可以耦接在該固定適配器3〇2與 §A ”IL轉直々,L轉換器l〇4b之間的路徑114,此在圖9到圖15 的其他實_帽作進-步魏。 抑υ順15- A switch swi and a fixed adapter 3G2. As shown, the switch is torn across the path between the DC to DC converter face and the node 116. In addition, the switch SW1 can also be coupled to the path 114 between the fixed adapter 3〇2 and the §A”IL turn-to-turn, L-converter 〇4b, which is implemented in the other real hoods of FIGS. 9-15. Step Wei.

—圖3所示的實施例,為兩級的電源轉換,而非圖2所示的 =電源轉換。亦即該固定適配器观和該直流轉直流轉換 =^〇4b的該電源轉換。圖3所示的實施例仍使得供電系統工 一個緩衝電池供電模式185,例如,如前所述使得該電池 ·_和該可控制直流電源l〇4b同時供電給該系統負載no。除 該直流,直流轉換器l〇4b和該固定適配器302外,圖3所示 電系統的其它組件與圖1所示相似且標號相同。因此, 為清楚起見在此省略對這些組件重複的描述。 該直流轉直流轉換器l〇4b可以是由任何來自該電源控制 ^路13^、沿著路徑303的各種控制信號控制的各種轉換器。 一個貫施例中,該直流轉直流轉換器1〇4b可以是本領域周 八有個咼端(high side)開關、一個低端(lowside)開關 個LC據波器的降壓型轉換器(Buck Converter)。來自該 ,源控制電路130的控制信號可以是一個脈寬調變(PWM)信 號。Pp信號的脈寬控制“閉合,,狀態的時段(高端開關閉合 且低端開關斷開)和“斷開”狀態的時段(高端開關斷開且低 13 1332302 關閉合)’從而控制該直流轉直流轉換器1〇4b的該輸出電 至和電流值。 如圖4到圖8所示,本發明不同的實施例的供電系統都 =如可控制直流電源104的可控制適配器1〇4a和兩個電池 池A和電池B)。如此,圖4到圖8所示的實施例中,由 ;該可控適配器l〇4a供電給該系統負載11〇和該電池1〇5, ^只有-級電源轉換。該-級電源轉換的實施例可以單獨 $用於前述的緩衝電池模式而使該電池和該可流 源同時供電給該系統負載11〇。 =較之下’於此進-步詳述的圖9到圖15的另外實施例 換;tn:個控?直流電源1〇4的該可控直流轉直流轉 ,态104b,且也有兩個電池(電池A和電池B)。由於 =定適配器302和該直流轉直流轉換器輸,圖9到圖15 的實施例而至少有兩次電源轉換。 圖4所示的實施例可以有圖!和圖2實施 ;二但是,圖4所示的實施例可以有、也可以無前述 ^該可控制直流電源並聯供電給該系統負載11〇的該 模式。例如,一個特別的供電系統可能只想要該一級電 源轉換而不想要該緩衝電池供電模式。 圖4=-些組件相似於圖2的那些組件,且標號相同。因 ϊ 見在此省略對重複組件和功能的重複描述。通 吊’“可控父流轉直流適配器1〇4a、電池Α、或電池β中 個或其組合’可以透過該電源管理控制電 間供電給該_載心該_載1Η)經由路^^ =116接收電力。該可控制適配器购可以選擇性的瘦由開 I SW1與路徑114雛至節點116。電池A可、1 開關SW2A*路徑118a耗接於節點116。同理池 擇性的經由開關SW2B和_ 118b_於節點116 可以為-個獨立的外部開關。開關SW1也可以是一個如T所述 14 1332302 的單向開關。M SW2A和開關sra可能是獨立關關或分別 嵌入於電池包IGa和11a ’例如,用於延長電池使用壽命的方 =採用嵌人在該電池包中的該電_關能減少電源開關的該 里和相關的功率損耗。開關SW2A和開關SW2B也可以是前述 的選擇性單向開關。- The embodiment shown in Figure 3 is a two-stage power conversion instead of the = power conversion shown in Figure 2. That is, the fixed adapter view and the DC to DC conversion = ^ 4b of the power conversion. The embodiment shown in Fig. 3 still causes the power supply system to operate in a buffered battery power mode 185, for example, such that the battery and the controllable DC power supply 104b are simultaneously powered to the system load no as previously described. Except for the DC, DC converter 104b and the fixed adapter 302, the other components of the electrical system shown in Fig. 3 are similar to those shown in Fig. 1 and have the same reference numerals. Therefore, repeated description of these components is omitted herein for the sake of clarity. The DC to DC converter 104b can be any of a variety of converters controlled by various control signals from the power control circuit 13 along path 303. In one embodiment, the DC-to-DC converter 1〇4b may be a buck converter with a high side switch and a low side switch LC instrument in the field ( Buck Converter). From this, the control signal of source control circuit 130 can be a pulse width modulation (PWM) signal. The pulse width control of the Pp signal is "closed, the period of the state (the high-side switch is closed and the low-side switch is open) and the "off" state (the high-side switch is open and the low 13 1332302 is closed) to control the DC transfer. The output of the DC converter 1〇4b is electrically connected to the current value. As shown in Figures 4 to 8, the power supply system of the different embodiments of the present invention = the controllable adapter 1〇4a and the two of the controllable DC power source 104 Battery cell A and battery B). Thus, in the embodiment shown in Figures 4 to 8, the controllable adapter 10a4a supplies power to the system load 11〇 and the battery 1〇5, ^ only-level Power conversion. The embodiment of the power conversion can be used separately for the aforementioned buffer battery mode to simultaneously supply the battery and the current source to the system load 11 〇. The other embodiments of FIG. 9 to FIG. 15 are replaced; tn: the controllable DC-to-DC conversion of the DC power supply 1〇4, state 104b, and also two batteries (Battery A and Battery B). The adapter 302 and the DC to DC converter are input, and the embodiment of Figures 9 to 15 is at least The power conversion is performed twice. The embodiment shown in FIG. 4 can be implemented with FIG. 2 and FIG. 2; however, the embodiment shown in FIG. 4 may or may not have the aforementioned DC power supply in parallel to the system load. This mode of 11 。. For example, a particular power supply system may only want the primary power conversion without the buffered battery power supply mode. Figure 4 = Some components are similar to those of Figure 2, and the labels are the same. The repeated description of the repeated components and functions is omitted here. The "controllable parent-to-work DC adapter 1〇4a, the battery pack, or the battery β or a combination thereof' can be powered by the power management control room. _Caring the _ Η 1Η) Receive power via the road ^^ =116. The controllable adapter can be selectively thinned by I SW1 and path 114 to node 116. Battery A, 1 switch SW2A* path 118a is consuming at node 116. The same pool can be an independent external switch via switches SW2B and _118b_ to node 116. The switch SW1 can also be a one-way switch as described in T 1 1332302. The M SW2A and the switch sra may be independently closed or embedded in the battery packs IGa and 11a respectively, for example, for extending the battery life = using the electric energy in the battery pack to reduce the power switch And related power loss. The switch SW2A and the switch SW2B may also be the aforementioned selective unidirectional switches.

如刖所述’該電源管理控制電路13〇可以接收經由不同路 徑的不同輸人信號。圖4所示的實施例中,—個適配器檢測電 阻4、一個系統檢測電阻3、一個電池A檢測電阻7和一個電 f檢測雜5,提絲示沿著各自電_徑至該電源管理控 ^電路13G的電流值的輸人信號。例如,該適配器檢測電阻4 提供表示從該可控制適配器馳沿著路徑114的電流一個資 料,號。該系統檢測電阻3提供表示沿著路徑121從任何電源 ΪΓ,Ϊ電給該系統負載11G的電流的—個資料信號。該電池A 凋阻7提供表示來自或流向電池A而沿著路徑Η如電流 個資料信號。最後,該電池⑽測電阻5提供表示從電池 机出或流入而沿著路徑118b的電流的一個資料信號。 伯上Γ ’表示電的該電壓值(VFB-A)、電池B的該電壓 ϊ 和祕負載(VFB—SYS)的該電壓值的輸入信號也As described above, the power management control circuit 13 can receive different input signals via different paths. In the embodiment shown in FIG. 4, an adapter detecting resistor 4, a system detecting resistor 3, a battery A detecting resistor 7 and an electric f detecting impurity 5, the wire is shown along the respective electric_path to the power management control ^ The input signal of the current value of circuit 13G. For example, the adapter sense resistor 4 provides a data indicating the current flowing along the path 114 from the controllable adapter. The system sense resistor 3 provides a data signal indicative of the current flowing from any source 路径 to the system load 11G along path 121. The battery A withering 7 provides a data signal indicative of flow or flow to the battery A along the path, such as current. Finally, the battery (10) sense resistor 5 provides a data signal indicative of the current flowing or flowing from the battery along path 118b. The upper Γ indicates the input signal of the voltage value (VFB-A) of the electric power, the voltage ϊ of the battery B, and the voltage value of the secret load (VFB-SYS).

人該電源管理控制電路13G。此外,輸人信號,例如 才曰貝料信號也可以從一個主電源管理單元(pMU) 12經由 主匯流排22輸入給該電源管理控制電路13(^該pM[J 12可 二來運作本領域周知的各種電源管理程序。這些來自該 ^的輸入信號,包括但不限於:充電電流、充電電壓、 制的預置電壓、適配器功率限制、適配器電流限制、 =番=子在、電池存在、複數個警告信號例如過電壓、過埶、 充電、該適配器104a或該系統11{)的過功率。該主·匯 ς排22可以具有複數條線,並能載送類比和數位指令信號的 &二例如,如果該ΡΜϋ 12被規畫來運作一個SMBus協 疋壬 該主匯流排可以是一個SMJBus。該PMU 12可以是一 15 ί分ί的組件,也可以嵌人到該電子裝置期的—個更複雜的 處理盗中。 另外,電池Α和電池Β的一個電池匯流排24可以提供額 ^的訊息給該獅管理控制電路13()。透過此匯流排24可以 二供此類訊息,其可表示各種參數,包括但不限於:充電電 〉、、充電電壓、電池存在、複數個¥告信號例如過電壓、過熱 或過電流。 對於該電源管理控制電路13Q,可以包括:—個主介面 個電流檢測放大器14、15、17、18,相關的控制和 i探帝ΐ ’與—個判定電路16 °該判定電路16還包括一個 认409 ’該選擇器電路409、經由匯流排20提供的一個 制 的-是;"Λ真I介面’規劃來接收來自該酬12 ;==給_定電路16。傳送給該判定電 信 對電池Α、電池Β、該可控制適配器職和該李统 負载110的電壓和電流限制。該主介面13可接收來,自該= 12的類比和數位信號。 以 如果該簡12提供數位信號,該主介面可 ς面’例如一個SMBus或I2C介面。於此例中 = 括-個多工器(臓)與數位轉類比轉換二13 來把數位信號轉換為類比信號’且提供合適數 ^ ^ 該判定電路16。該MUX可以是任何數|的 ^比k5虎、,。 取決於提供給該判定電路I6的信號數量。、、、、數置部分 因為該檢測電阻通常都很小,所以黨 大器丨4、15、17、摩大來自各:檢:3=流5檢= 1332302 信號。例如,檢測放大器〗4放大該系統檢測跨過該電阻3上 的該電壓降,並提供表示沿著路徑12ι的該電流的一個丨SYS ^號。心測放大器15放大跨過該適配器檢測電阻4上的該電 ' 壓降’並k供表示經由路控114的該電流的一個iad信號。檢 測放大器17放大該電池B檢測電阻5上的該電壓降7 ^提供 ,示沿著路徑118b的電流的一個iCDB信號。最後,檢測放^ ,18放大該電池A檢測電阻7上的該電壓降,並提供表示沿 著路徑118a的電流的一個icda信號。 、 。 然後來自檢測放大器14、15、17、18的ISYS、IAD、ICDB • 和1CDA信號分別提供給該判定電路16,且具體而言,是提供 給該判定電路16的該控制電路411的部分。此外,表示該系 ,負載110的該電壓值的該VFB_SYS信號、表示電池B的^^ 壓值的該VFB_B信號和表示電池人的該電壓值的該VFB—A信號 也可以提供給該判定電路16,具體而言,是提供給該判定電 路16的該控制電路4Π部分。 該控制電路 411 接收 ISYS、IAD、ICDB、ICM、、 VFB-B和VFB_A這些輸入信號,並把這些信號與例如由該pMU 12提供的各個臨限值(thresh〇ld)相比較。基於這些比較结 果,該控制電路411提供的第一組輸出信號經由該適g"己器控g 匯流排133來控制該適配器104a的一個輸出參數,例如 輸出電壓值。 苐組的輸出^§號控制該可控制適配器l〇4a的一個或複 數個輸出參數,使得該供電祕完成各種工作,包括如前述圖 1和圖2的各種工作。此外,此工作還可以,包括但不限於, 至少下述的一個任務: 、 1. 提供所有該需要的適配器電流達該適配器的一個最大 ,出電流值,達該系統負載11Q的該供電極限;如果需要, 還可以提供充電電流對該電池1〇5充電; 2. 在一個充電模式期間限制傳送至該電池1〇5的該總充 17 1332302 電電流於該適配器104a的該最大輸出電流值與該系統負载 110該所需電流值的該差異之間; ' 3.只要任何一個電池都未達到最大充電電壓,則提供該 最大充電電流給每一個電池(電池A和電池B); 4·只要任何一個電池未都達到最大充電電壓,則提供該 最大充電電流給該最低電壓電池;和 5.當沒有電池或沒有接收到任何充電請求時,提供一组 (set)最大供電電壓給該系統負載11〇。 ’、''The power management control circuit 13G. In addition, an input signal, such as a bedding signal, can also be input from a main power management unit (pMU) 12 to the power management control circuit 13 via the main bus bar 22 (^pM[J12 can operate in the field] Various power management programs are known. These input signals from the ^ include, but are not limited to: charging current, charging voltage, preset voltage, adapter power limit, adapter current limit, = = = sub, battery presence, plural Warning signals such as overvoltage, overshoot, charging, over power of the adapter 104a or the system 11{). The master/sink row 22 can have a plurality of lines and can carry analog and digital command signals. For example, if the ΡΜϋ 12 is programmed to operate an SMBus protocol, the main bus can be an SMJBus. . The PMU 12 can be a 15 ί component, or it can be embedded in the electronic device - a more complex process of stealing. In addition, a battery bus 24 of the battery pack and the battery pack can provide a message to the lion management control circuit 13(). Through this bus 24, such a message can be provided, which can represent various parameters including, but not limited to, charging power, charging voltage, battery presence, and multiple signals such as overvoltage, overheating or overcurrent. For the power management control circuit 13Q, it may include: a main interface current detecting amplifiers 14, 15, 17, 18, and associated control and detection circuits 16 and the determining circuit 16 further includes a The selector circuit 409, the one provided via the bus bar 20, is a "Λ真I interface' plan to receive the slave circuit 12; The voltage and current limits are communicated to the determination signal to the battery pack, the battery pack, the controllable adapter, and the Lie load 110. The main interface 13 can receive analog and digital signals from the =12. If the Jane 12 provides a digital signal, the main interface can be referred to as 'an SMBus or I2C interface'. In this example, a multi-multiplexer (臓) and a digital-to-analog conversion 13 are used to convert the digital signal into an analog signal ' and provide a suitable number ^ ^ the decision circuit 16. The MUX can be any number | ^ than k5 tiger,. It depends on the number of signals supplied to the decision circuit I6. Because, the detection resistance is usually very small, so the party 丨 4, 15, 17, and Mo Da from each: check: 3 = stream 5 check = 1332302 signal. For example, sense amplifier 4 amplifies the system to detect the voltage drop across the resistor 3 and provides a 丨SYS^ number indicating the current along path 12i. The cardiometer amplifier 15 amplifies the electrical 'voltage drop' across the adapter sense resistor 4 and k for an iad signal indicative of the current through the path 114. Sense amplifier 17 amplifies the voltage drop 7 ^ on the battery B sense resistor 5 to provide an iCDB signal indicative of the current along path 118b. Finally, the sense amplifier 18 amplifies the voltage drop across the battery A sense resistor 7 and provides an icda signal indicative of the current along path 118a. , . The ISYS, IAD, ICDB, and 1CDA signals from the sense amplifiers 14, 15, 17, 18 are then provided to the decision circuit 16, and in particular, to the control circuit 411 of the decision circuit 16, respectively. Further, the VFB_SYS signal indicating the voltage value of the load 110, the VFB_B signal indicating the voltage value of the battery B, and the VFB_A signal indicating the voltage value of the battery person may be supplied to the determination circuit. 16. Specifically, it is a portion of the control circuit that is provided to the decision circuit 16. The control circuit 411 receives input signals such as ISYS, IAD, ICDB, ICM, VFB-B, and VFB_A, and compares these signals with, for example, respective thresholds (thresh〇ld) provided by the pMU 12. Based on these comparisons, the first set of output signals provided by the control circuit 411 controls an output parameter of the adapter 104a, such as an output voltage value, via the appropriate g" The output of the 苐 group controls one or a plurality of output parameters of the controllable adapter 〇4a, so that the power supply accomplishes various tasks, including various operations as in the foregoing FIGS. 1 and 2. In addition, this work may also include, but is not limited to, at least one of the following tasks: 1. Providing all of the required adapter currents to a maximum, current output value of the adapter, up to the power supply limit of the system load 11Q; If necessary, a charging current can also be supplied to charge the battery 1〇5; 2. during a charging mode, the total current output value of the total charging 17 1332302 that is transmitted to the battery 1〇5 is limited to the maximum output current value of the adapter 104a. The system load 110 is between the difference in the required current value; ' 3. As long as any one of the batteries does not reach the maximum charging voltage, the maximum charging current is supplied to each of the batteries (Battery A and Battery B); Providing the maximum charging current to the lowest voltage battery if any of the batteries does not reach the maximum charging voltage; and 5. providing a set of maximum supply voltage to the system load when there is no battery or no charging request is received 11〇. ',''

本領域的技術人員將理解,該判定電路16的該控制電路 411部分的功能可以透過純硬體、純軟體或兩者的組合實現的 各種方法。例如,採用硬體,該控制電路411可以包括複數Those skilled in the art will appreciate that the functionality of the portion of the control circuit 411 of the decision circuit 16 can be implemented by pure hardware, pure software, or a combination of both. For example, with hardware, the control circuit 411 can include a plurality of

誤差放大器將信號 ISYS、IAD、ICDB、ICDA、VFB_B 和 VFB A ,與與每麵關參數相_最大臨限仙味;該複數個誤 差放大器可以-個類比「有線或閘(wire(K)R)」架構來設: ^得首先檢測到超出該相關最大值狀態 ^來 =艮值’然後就可發送-個合適的輸出 =The error amplifier compares the signals ISYS, IAD, ICDB, ICDA, VFB_B, and VFB A with the parameters of each side. The complex error amplifiers can be analogized to "wired or gate (wire) The architecture is set up: ^ It is first detected that the relevant maximum value is exceeded ^^=艮 value' and then it can be sent - a suitable output =

10=例如,降低該適配器驗的—個輸出功率 該判定電路16經由該選擇I!輸出匯流排 =信號,可控糊_、SW2A * SW2B的該^的 Ϊ電供賴式。該第二組輸出“可由該判 义電路16的該選擇器電路彻提供。結果 = ,104a、電池A和電池B)至該系❹果適 如’充電期間)的各種電源鮮^姑、塔、^ 0 ”電/原之間(例 狀況、事件和的請求而產生^,際供電 ,各種硬體和/或軟體錢理給該可以 電路_的各種輸入信號。該算法似 該選擇器 =趣動開請、SW2A和SW2B處的t f=當的驅動 各種任務,包括但並不限於至少下n斷開’以完成 1332302 1. 只要至少一個電源(交流轉直流適配器1〇4a、電池a 和電池B)存在,就保證連續供電給該系統負載11(); 2. 由該PMU12請求,而連接該適當的電池(或複數個電 池)至一個充電路徑; 3. 由該PMU12請求,而連接該適當的電池(或複數個電 池)至一個放電路徑以供電給該系統負載11(); 4. 當複數個電池並聯輕接時,消除電池間的交又傳導, 以及該交流轉直流適配器與該等電池間於並聯供電模式時消 除其之間的交叉傳導;10 = For example, reducing the output power of the adapter. The decision circuit 16 outputs the bus = signal via the selection I!, and controls the power supply of the _, SW2A * SW2B. The second set of outputs "can be provided by the selector circuit of the arbitration circuit 16. The result = , 104a, battery A and battery B) to the system is as appropriate as the 'charging period' of various power supply , ^ 0 "electricity / original (such as the situation, events and requests generated ^, power supply, various hardware and / or software money to the various input signals of the circuit _. The algorithm seems like the selector = Fun to open, SW2A and SW2B at tf=When driving various tasks, including but not limited to at least n disconnected to complete 1332302 1. As long as at least one power supply (AC to DC adapter 1〇4a, battery a and Battery B) exists to ensure continuous power supply to the system load 11 (); 2. Requested by the PMU 12 to connect the appropriate battery (or multiple batteries) to a charging path; 3. Requested by the PMU 12, and connected The appropriate battery (or a plurality of batteries) to a discharge path to supply power to the system load 11 (); 4. When a plurality of batteries are connected in parallel, the intersection and conduction between the batteries are eliminated, and the AC to DC adapter is The battery cells are connected in parallel mode Eliminate cross-conduction between them;

一 5.獨立解決所有的電源危機事件,例如電源連接/斷開、 短路等,以及其它相類似情況; 6.當該主機PMU 12不能發送該適當的控制信號時,獨立 且安全的管理該供電系統。 為了完成這些任務,尤其是需要使用兩個或兩個以上的電 池(例如,避免電池之間的交叉傳導)的任務,就要參考2〇〇3 年γ月11提出的美國專利申請案案號10/364,288,其内容 已援引併人作為參考,其所揭露的_媽擇器 : 發明之電源系統的-部分。 塔以田作本1. Independently solve all power crisis events, such as power connection/disconnection, short circuit, etc., and other similar situations; 6. When the host PMU 12 cannot send the appropriate control signal, independently and securely manage the power supply. system. In order to accomplish these tasks, especially the task of using two or more batteries (for example, to avoid cross-conduction between cells), reference is made to the US Patent Application No. 11 of 〇〇月11 10/364,288, the content of which has been cited as a reference, the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Tajita

A圖^8所示為本發明圖1和圖2的電源系統的另外幾個實 器馳/兩個電池(電池八和 的眘® ^兒圖5—8所不的貝施例與如前所述的圖4 用了較少的檢測電阻,該狀電路可; ^置,否則’該實施例的功能類似之前對圖4 Ϊ二二具有一:適配器檢測電阻4、〜 赛f你丨,且右彳/和個電池B檢測電阻5。圖6所示的 貝施例具有一個糸統檢測電阻3、一個電池a檢測雷阻7的 、 個/σ著路徑U8的檢測電流的電池檢測電 1332302 阻5。最後,圖8的實施例,具有一個系統檢測電阻3和一 個檢測沿著路徑118的檢測電流的電池檢測電阻5。 圖9-15所示為本發明圖1和圖3電源系統的另外幾個實 施例’圖1和圖3的實施例,包括一個作為該可控制直流電源 104的直流轉直流轉換器l〇4b、一個固定適配器302和作為該 電池源105的兩個電池(電池A和電池B)。總括來說,圖9-15 所示的實施例和如前所述的圖1和圖3的主要差別在於沿著各 種電源路徑所使用的檢測電阻的該數量和該位置。A is shown in Fig. 8 is another embodiment of the power supply system of Fig. 1 and Fig. 2, and two batteries (battery of the battery and the patient's Fig. 5-8) Figure 4 uses fewer sense resistors, and the circuit can be set; otherwise, the function of this embodiment is similar to that of Figure 4 Ϊ二二: Adapter sense resistor 4, ~ 赛f you, And right 彳 / and a battery B detection resistor 5. The embodiment of the present invention has a 检测 detection resistor 3, a battery a detects the lightning resistance 7, the / σ path U8 detection current battery detection 1332302 Resistor 5. Finally, the embodiment of Figure 8 has a system sense resistor 3 and a battery sense resistor 5 that senses the sense current along path 118. Figures 9-15 illustrate the power system of Figures 1 and 3 of the present invention. Still other embodiments of the embodiment of Figures 1 and 3 include a DC to DC converter 104a as the controllable DC power source 104, a fixed adapter 302 and two batteries as the battery source 105 ( Battery A and Battery B). In summary, the embodiment shown in Figures 9-15 and Figures 1 and 3 as previously described The main difference is that the number and the position detecting resistor along various power paths used.

圖9所示的實施例,包括一個直流轉直流轉換器的檢测電 阻4、一個系統檢測電阻3、一個電池A的檢測電阻7和一個 電池β的檢測電阻5。圖10所示的實施例,包括一個直流轉 直流轉換盗的檢測電阻4、一個電池a的檢測電阻7和一個電 池B的檢測電阻5。圖11所示的實施例,包括一個系統檢測 電阻3、一個電池A的檢測電阻7和一個電池B的檢測電阻5。 圖12所示的實施例,包括一個適配器的檢測電阻4和一個用 來巧測沿著路徑118的電流的電池檢測電阻5。圖13所示的 實施例,包括一個系統檢測電阻3和一個用於檢測沿著路徑 U8的電流的電池檢測電阻5。圖14所示的實施例,包括一The embodiment shown in Fig. 9 includes a detecting resistor 4 of a DC-DC converter, a system detecting resistor 3, a detecting resistor 7 of a battery A, and a detecting resistor 5 of a battery β. The embodiment shown in Fig. 10 includes a sense resistor 4 for DC-to-DC conversion, a sense resistor 7 for a battery a, and a sense resistor 5 for a battery B. The embodiment shown in Fig. 11 includes a system detecting resistor 3, a detecting resistor 7 of a battery A, and a detecting resistor 5 of a battery B. The embodiment shown in Fig. 12 includes a sense resistor 4 of an adapter and a battery sense resistor 5 for measuring the current along path 118. The embodiment shown in Fig. 13 includes a system sense resistor 3 and a battery sense resistor 5 for detecting current along path U8. The embodiment shown in Figure 14 includes one

個,該直流轉直流的轉換器的一個輸出路徑串聯搞接的 产流轉直流轉換器的檢測電阻3和一個電池檢測電阻5。最 ,,圖15所示的實施例,包括與該固定適配器3〇2的一個輸 ,端和該直流轉直流轉換器1〇4b的一個輸入端耦接的一個適 ^檢測電阻4、以及—個電池八檢測電阻7和—個電池嫌 的測電阻5。 在^些例子中,一個或複數個電池可能深度放電。也就是 度放電_電池的該輸出電塵可能會低於該電池和/ I,正常運作所必需的該最小電壓。當對這樣一個深度放 池。'鱼/充ί時,就需要提供一個喚醒電池充電電流給該電 /、該正㊉充電電流相比’通常該喚醒電池充電電流值相對 20 充ΐ以f目:例常充電電流的皿。同樣’與 ㈣、、以值相比該奐醒電池充電電壓值也相對較小。當 ;和雷^輪出電壓超過—個喚醒臨限值時’就輸送正常充電 放^雷、、也,如果使用—個正常充電電流對—個深度 放電電池錢’將會導致該電池的老化。 T 些電池供電拓撲架構中’該電池和該系統負載可以由 ΪΪΪΪ源供電’如此樣就可用—個電源,例如—個直流轉直 ^ 、崙,為一個深度放電電池提供一個減少的充電電流和電 堅,同時用另外-個電源,例如一個ACDC適配器,為系统負 載提供一個相對較高的電流和電壓。在圖1所示實施例的電 池供電拓撲架構巾賴—個電源(例如可控制直流電源104), 此電源既供電給該系統負載11G,也對電池1G5充電(如表格 180中的供電模式183),因此’如果有一種可選擇的方法既能 為該電池105提供一個喚醒充電電流,且能為該系統負載11〇 提供所需的電壓,其優點將顯而易見。 圖16所示為一個電子裝置1600的另一實施例,該電子裝 置包括一個可控制直流電源104和電池A,它們可單獨或共同 供電給該系統負載110。圖16中有一些與圖丨中相似的^件 t相同的標號’於此為清楚起見省略這些重複組件的描述。為 /月楚起見圖16僅出示一個電池、電池a以及與它相關的選擇 性單向開關SW2A。當然,額外的電池和與電池a並聯的額外 相關的選擇性單向開關也可使用。 在圖16所示的實施例中,與電池A對應的選擇性單向開 關SW2A可以透過使用開關SW2A1和SW2A2來實現,其中開關 挪2A1和SW2A2各有一個與其並聯的二極體D1和D2。當閉合 母個開關SW2A1和SW2A2時’就可以雙向地允許電流從兩個方 向流過。然而,當該開關SW2A1和該SW2A2中的一個斷開而另 —個閉合時’該開關SW2A就可以實現一個選擇性單向開關的 功能,即使用與斷開開關並聯的該體二極體D1或D2,允許電 21 1332302 流從一個方向流過同時透過與一個斷開的開關的來阻斷反向 電流。 例如’如表格1680中所詳細描述的’在一充電供電模式183 、· 中,開關SW2A1可以為閉合,開關SW2A2可以為斷開。因此, 來自該電源1 〇4的充電電流可透過閉合的開關SW2A1以及與斷 開的開關SW2A2並聯的二極體D2而為電池A充電。然而,在 此充電供電模式183中,從電池Λ到系統負載11〇的反方向電 流則被二極體D2所防止。 有一優點,該電源管理控制電路1630可以包括一個喚醒電 • 路1608。喚醒電路1608將反應不同的輸入和/或指令信號, 經由路徑20對該選擇性單向開關SW2A提供一個控制信號。由 ,喚醒電路1608提供的該控制信號可以表示一個唤醒充電狀 態或一個正常充電狀態。當反應一個喚醒充電狀態信號時,該 選^性單向開關SW2A僅允許一個喚醒充電電流流至電池a。 而當反應一個正常充電狀態信號時,該選擇性單向開關SW2A 可以允許正常充電電流流至電池A。 圖17所示,其中詳細描述了圖16中的該電源管理控制電 路1630和該喚醒電路16〇8。為清楚起見,圖17中僅僅描述 了圖16中該選擇性單向開關SW2A中的開關SW2A卜該喚醒電 • 路1608可以包括一個比較電路1718和一個輸出判定電路 1612。該比較電路1718可以包括一個誤差放大器πιο。當該 系統處於如表格1680所述的該充電供電模式183的狀態;,X 該誤差放大器1610可以在其反相輸入端接收一個表示提供仏 電池A的一個瞬間充電電流的一個ICDA信號。該iCDA信穿^ 以由檢測放大器17經由路徑1706來提供。檢測放大器17的 非反相輸入端可搞接至接點1702 ’其反相輸入端連接至接點 1704。導線可跨接在電池A檢測電阻7兩端並且連接至接點 1702,1704 ’從而為該檢測放大器17提供輸入信號,該輸^ js號表示在一充電供電模式下提供給電池A的該充電電流。 22 一該誤差放大器1610也可以在其非反相輸入端接收一個表 示預設值的喚醒電流值的信號。該預設唤醒電流值可以為一個 固定的或者可編程(programmable)的電流值,從而適應不同的 電池尺寸、種類以及充電條件。這種表示喚醒電流的一個信號 可以有多種來源,包括從一個PMU12經由主介面13傳來的一 個信號。然後該誤差放大器1610將表示該瞬間充電的電流值 的信號與表示該喚醒電流值的該ICDA信號進行比較,並且將 一個比較輸出信號提供給該輸出該判定電路1612。 該喚醒電路1608中的該輸出判定電路1612接收各種輸入 和/或指令信號,包括來自該比較電路1718的該比較輸出信號 和來自一個選擇器電路409經由路徑1714的一個選擇器_ 號。該輸出判定電路1612可以提供該比較輸出信號或者該選 擇器信號到該開關SW2A1的一個控制端,從而控制該開關 SW2A1的一個導通狀態。該輸出判定電路1612可以包括多種 本領域中所熟知的邏輯電路所提供需要的功能。 當該輸出判定電路1612將來自該比較電路1718的該比較 輸出信號提供給該開關SW2A1時,該開關SW2A1就反應此信號 從而限制提供給電池A的該充電電流值為該喚醒電流值。在一 個實施例中’該開關SW2A1可以為電池A提供等於該喚醒充電 電流值的一個定值電流。該比較輸出信號可以是一個類比信 號,同時該開關SW2A1可反應此類比信號並且進入一種中間導 通狀態。這裡所述的一種“中間導通狀態”是指一種至少略微 限制電流從該開關的一端流向另一端的狀態。如此,在該電池 A深度放電的情況下,處於中間導通狀態的該開關SW2A1可以 限制提供給電池A的電流為一個喚醒電流值。在一個例子中, 當該開關SW2A1接收到來自該比較電路1718的該比較輸出信 號時,該開關表現的與一個由誤差放大器控制的電阻類似。 該開關SW2A1可以為任何類型的電晶體,而可接收任何類 型的類比信號。例如,該開關可以是一個場效應電晶體,其閘 23 信號的錄賴肢魏。該電流類比 的該集極和該射 ===的電一An output path of the DC-to-DC converter is connected in series to the detection resistor 3 of the DC-DC converter and a battery detection resistor 5. Most, the embodiment shown in FIG. 15 includes a suitable detecting resistor 4 coupled to an input end of the fixed adapter 3〇2 and an input end of the DC-to-DC converter 1〇4b, and A battery eight detects the resistor 7 and a battery sense resistor 5. In some examples, one or more of the batteries may be deeply discharged. That is, the discharge of the battery _ the battery's output dust may be lower than the battery and / I, the minimum voltage necessary for normal operation. When it comes to such a deep pool. 'Fish/Filling', it is necessary to provide a wake-up battery charging current to the electric /, the positive ten charging current compared to the usual wake-up battery charging current value relative to 20 f: the usual charging current of the dish. Similarly, the value of the charging voltage of the wake-up battery is relatively small compared to (4). When the lightning voltage exceeds the threshold of a wake-up threshold, the normal charging charge is applied, and if a normal charging current is used, the deep discharge battery will cause the battery to age. . In some battery-powered topologies, 'the battery and the system load can be powered by a power supply' so that a power supply, such as a DC to DC, provides a reduced charge current for a deep discharge battery and The battery is powered by a different power source, such as an ACDC adapter, to provide a relatively high current and voltage to the system load. The battery-powered topology of the embodiment shown in FIG. 1 is a power source (eg, controllable DC power source 104) that supplies both the system load 11G and the battery 1G5 (as in the power mode 183 in Table 180). Therefore, 'if there is an alternative method that can provide a wake-up charging current for the battery 105 and provide the required voltage for the system load 11 ,, the advantages will be obvious. Figure 16 shows another embodiment of an electronic device 1600 that includes a controllable DC power source 104 and a battery A that can be individually or collectively powered to the system load 110. In Fig. 16, there are some of the same reference numerals as in the drawings, and the description of these overlapping components is omitted here for the sake of clarity. As shown in Fig. 16, only one battery, battery a, and selective unidirectional switch SW2A associated therewith are shown. Of course, additional batteries and additional associated selective unidirectional switches in parallel with battery a can also be used. In the embodiment shown in Fig. 16, the selective one-way switch SW2A corresponding to the battery A can be realized by using the switches SW2A1 and SW2A2, wherein the switches 2A1 and SW2A2 each have a diode D1 and D2 connected in parallel therewith. When the parent switches SW2A1 and SW2A2 are closed, the current can be allowed to flow in both directions in both directions. However, when one of the switch SW2A1 and the SW2A2 is turned off and the other is closed, the switch SW2A can realize the function of a selective unidirectional switch, that is, the body diode D1 connected in parallel with the open switch. Or D2, allowing the electrical 21 1332302 flow to flow in one direction while blocking the reverse current through a disconnected switch. For example, as described in detail in Table 1680, switch SW2A1 may be closed and switch SW2A2 may be open in a charge supply mode 183, . Therefore, the charging current from the power source 1 〇 4 can charge the battery A through the closed switch SW2A1 and the diode D2 in parallel with the open switch SW2A2. However, in this charging power supply mode 183, the current in the opposite direction from the battery pack to the system load 11 is prevented by the diode D2. Advantageously, the power management control circuit 1630 can include a wake-up circuit 1608. The wake-up circuit 1608 will respond to the different input and/or command signals, providing a control signal to the selective unidirectional switch SW2A via path 20. The control signal provided by wake-up circuit 1608 can represent a wake-up state or a normal state of charge. The selective one-way switch SW2A allows only one wake-up charging current to flow to the battery a when reacting to a wake-up state signal. The selective unidirectional switch SW2A can allow normal charging current to flow to the battery A when reacting to a normal state of charge signal. As shown in Fig. 17, the power management control circuit 1630 and the wake-up circuit 16A in Fig. 16 are described in detail. For the sake of clarity, only switch SW2A in the selective unidirectional switch SW2A of Fig. 16 is described in Fig. 17. The wakeup circuit 1608 may include a comparison circuit 1718 and an output decision circuit 1612. The comparison circuit 1718 can include an error amplifier πιο. When the system is in the state of the charge mode 183 as described in Table 1680; X the error amplifier 1610 can receive an ICDA signal at its inverting input indicative of a momentary charge current supplied to the battery A. The iCDA signal is provided by the sense amplifier 17 via path 1706. The non-inverting input of sense amplifier 17 can be coupled to contact 1702' with its inverting input coupled to contact 1704. A wire may be connected across the battery A sense resistor 7 and connected to the contacts 1702, 1704' to provide an input signal to the sense amplifier 17, the charge indicating the charge provided to the battery A in a charge mode. Current. 22 The error amplifier 1610 can also receive a signal at its non-inverting input that represents a wake-up current value of a preset value. The preset wake-up current value can be a fixed or programmable current value to accommodate different battery sizes, types, and charging conditions. This signal representing the wake-up current can be sourced from a variety of sources, including a signal from a PMU 12 via the primary interface 13. The error amplifier 1610 then compares the signal indicative of the instantaneously charged current value to the ICDA signal indicative of the wake-up current value and provides a comparison output signal to the output decision circuit 1612. The output decision circuit 1612 in the wake-up circuit 1608 receives various input and/or command signals including the comparison output signal from the comparison circuit 1718 and a selector_number from a selector circuit 409 via path 1714. The output decision circuit 1612 can provide the comparison output signal or the selector signal to a control terminal of the switch SW2A1 to control an on state of the switch SW2A1. The output decision circuit 1612 can include a variety of functions required by logic circuits well known in the art. When the output decision circuit 1612 supplies the comparison output signal from the comparison circuit 1718 to the switch SW2A1, the switch SW2A1 reflects the signal to limit the charging current value supplied to the battery A to the wake-up current value. In one embodiment, the switch SW2A1 can provide battery A with a constant current equal to the wake-up charge current value. The comparison output signal can be an analog signal, and the switch SW2A1 can react to such a ratio signal and enter an intermediate conduction state. An "intermediate conduction state" as used herein refers to a state in which at least a slight limit current flows from one end of the switch to the other end. Thus, in the case where the battery A is deeply discharged, the switch SW2A1 in the intermediate conduction state can limit the current supplied to the battery A to a wake-up current value. In one example, when the switch SW2A1 receives the comparison output signal from the comparison circuit 1718, the switch behaves like a resistor controlled by an error amplifier. The switch SW2A1 can be any type of transistor and can accept any type of analog signal. For example, the switch can be a field effect transistor whose gate 23 signal is recorded. The collector of the current analogy and the electric one of the shot ===

關路1612提供該選擇器輸出信號時,該開 的_" Ζ ^號而細合或斷開。由闕擇器電路提供 數健號,這樣如果該數位錢為數位1 =L=二應該選擇器輸出信號時開關_閉合, 1 f可以處於—種完全導通狀態。這裡所述的-種 '疋王導通狀態是指一種對從開關的一端流向另一端電流When the switch 1612 provides the selector output signal, the open _" Ζ ^ sign is finely closed or disconnected. The number is given by the selector circuit, so that if the digit is a digit 1 = L = two, the switch should be closed when the selector outputs a signal, and 1 f can be in a fully-on state. The term "疋王" is a kind of current flowing from one end of the switch to the other end.

ΐϊΐ何限制的狀態。因此’如果開關sw2ai反應該選擇器輸 出信號而閉合時,正常充電電流值就可以提供給電池A。所以, 該比較輸出信號’例如本發明的實施例中為一個類比信號,可 以在電池A深度放電時用來控制該開關8觀,而充電電流可 以被限制至-個喚醒充電電流值。此外,該選擇器輸出信號, 例如本發明的實知例中的一個數位信號,可以用來控制開關 SW2A1 ’並且提供較高的正常充電電流值給電池a。 該輸出判定電路1612也可以經由匯流排16丨4接收另外的 輸入和/或指令信號。這樣的信號可以由許多來源提供,包括 透過主介面13的PMU12所提供,該電源管理控制電路1630所 提供’或者可以由該電源管理控制電路1630從外部設定。經 由匯流排1614接收到的此一種信號可以是一個致能 (enabling)信號。如果該致能信號處於一第一狀態,例如為一 個數位1 ’該輸出判定電路1612可被致能以將來自該比較電 路1718的該比較輸出信號提供給開關SW2A1。如果該致能信 24 可為另該開=提電路1612則 池繼號。如果此電池s顯===;, 的該電壓值超過了-個臨限的該電池The state of any restrictions. Therefore, if the switch sw2ai is closed by reacting the selector output signal, the normal charging current value can be supplied to the battery A. Therefore, the comparison output signal ', for example, an analog signal in the embodiment of the present invention, can be used to control the switch 8 when the battery A is deeply discharged, and the charge current can be limited to a wake-up charge current value. Moreover, the selector output signal, such as a digital signal in the embodiment of the present invention, can be used to control switch SW2A1' and provide a higher normal charge current value to battery a. The output decision circuit 1612 can also receive additional input and/or command signals via the bus bar 16丨4. Such signals may be provided by a number of sources, including through the PMU 12 of the primary interface 13, which may be provided by the power management control circuitry 1630 or may be externally set by the power management control circuitry 1630. This type of signal received via bus 1614 can be an enabling signal. If the enable signal is in a first state, such as a digit 1 ', the output decision circuit 1612 can be enabled to provide the comparison output signal from the comparison circuit 1718 to the switch SW2A1. If the enablement message 24 can be another open circuit, the circuit is 1612. If the battery s shows ===;, the voltage value exceeds the threshold of the battery

電池接收倾充電電流的時間超過 ^ = ===,擇職 較雷triHjr提供了一個喚醒電路,該電路包括一個比 〜較電路配適以接收一個表示經由一條路徑提供仏 二個電池的-個充電電流值的第—錢和—録示一個^The battery receives the tilting charge current for more than ^ = ===, and the electrified triHjr provides a wake-up circuit. The circuit includes a ratio of ~ than the circuit to receive a signal indicating that two batteries are provided via one path. The first value of the charging current value and the recording of a ^

‘醒值的第二信號’並且提供一個該比較電路反應該第一 ,第二信號的比較輸出信號。該唤醒電路還可包括一個輸出 =定電路,該輸出判定電路配適以至少接收該比較輸出信號和 a自一個選擇器電路的一個選擇器信號,該輸出判定電路將該 比較輸出信號和該選擇器信號其中的一個提供給一個開關,從 而控制與該路徑相耦接的該開關的一個狀態。 …在另一個實施例中提供了一種裝置,該裝置包括一個與前 詳述實施例一致的喚醒電路。 f另外一個實施例中提供了一種裝置,該裝置包括:一個 ,設計來與—個可控制直流電源耦接的第一路徑;一個被設計 來與一個電池耦接的第二路徑;一個被設計來與一個系統負載 耦接的第三路徑,其中該第一、第二和第三路徑耦接於一個共 25 1332302 同節點’·-個與該第-路_接的第—關允許該可控制直流 電源經由該共同節點與該系統負載選擇性祕;—個與該第二 路么福接的第—開關允許該電池與該共同節點選擇性搞接;以 及一個包括一個比較電路和一個輸出判定電路的喚醒電路。該 比較電路可配適以接收-絲示經由該第二雜提供給該電 池的-個充電電流值的第-信號和—個表補電池的一個預 定喚醒電流制第二信號’並且該比較電路反應該第一和該第 二信號而提供一個比較輸出信號’該輸出判定電路配適以至少 接收該比較輸出信號和來自一個選擇器電路的一個選擇器信 號’該輸出判定電路提供該比較輸出信號和該選擇器信號其中 的一個,從而控制該第二開關的一個狀態。 σ…八 一本發明還提供了一種用於一個電池充電的新方法,其效率 更高。一般說來,一個喚醒電路(例如圖17所示的該喚醒電 路1608)可接收一個“唤醒程式,’ (wake_up pr〇g)信號, 該信號代表了一個喚醒電流值。通常,提供給該電池的醒 電流為一個定值電流值lwk〇,其值由該“喚醒程式”信號的 該電壓值決定。由於該喚醒充電過程可以只是該電池充士^程 的第一部分,直至該電池電壓超過一個預設的電壓臨限 (threshold)值’該總充電時間直接取決於該喚醒充電過程所 需的時間,也就是一個深度放電電池的該電壓從一個初始值 Vbatto升高到該喚醒臨限值電壓Vwkth所需的時間。實^上 一個深度放電的電池之該電壓Vbatto係可低於vwkth的任何 值,以下為簡便起見,認為其可能的最低值為〇伏特。 由於該充電時間是一個電源管理拓撲架構的一個重要性 能參數,作為該電池總充電時間的一部分的該喚醒充電時間必 須儘可能地短少。因此,該喚醒電流值lwk〇應該在最高可容 許值下被編程(program)。限制該喚醒電流的該最大佶可古夂 種不同因素’但其最重要的因素如下: @一個有關電池的限制(在此可以用限制電池的一個最大 26 喚醒電流lwkmb來表示),主要為電池的特性,例如化學成份 和電池尺寸等,此類因素由該電池製造商決定; c^一個有關功率消耗的限制(在此可以用限制功率消耗的 * 個表大喚醒電流Iwkmp來表不),主要為負責驅動該充電電 . 流給該電池的一個電流流程控制裝置(CFCD)(例如圖17實施 例中所示的該電晶體SW2A1)所支援的該最大功耗Pm。 圖18A為該電流流程控制裝置CFCD在該唤醒充電過程中 驅動一個定值電流lwko時該功率消耗pwk計算的一種簡化模 式。圖18A中Vadwk為該電源在該喚醒充電過程中提供的一個 • 定值直流輸出電壓。為了確保該喚醒電流lwko的該流動,需 要設定該Vadwk的該數值比在該喚醒模式充電期間的該最大 電池電壓稍高’(喚醒電池電壓臨限值,Vwkth)(一般高出〇. 2 到 0. 4 伏),也就是說 Vadwk = Vwkth + (〇. 2 〜0· 4 V)。當 該電池電壓為一個瞬間值Vbatt時,該電流控制裝置CFCD的 該瞬間功率消耗量Pwk滿足以下等式(1):'Awakening the second signal' and providing a comparison output signal that the comparison circuit reflects the first and second signals. The wake-up circuit can also include an output=determination circuit adapted to receive at least the comparison output signal and a selector signal from a selector circuit, the output decision circuit comparing the output signal to the selection One of the signals is provided to a switch to control a state of the switch coupled to the path. In another embodiment, a device is provided that includes a wake-up circuit consistent with the previously detailed embodiments. In another embodiment, a device is provided, the device comprising: a first path designed to be coupled to a controllable DC power source; a second path designed to be coupled to a battery; And a third path coupled to a system load, wherein the first, second, and third paths are coupled to a total of 25 1332302, and the first node and the first path are connected to each other to allow the Controlling the DC power supply via the common node and the system load selectivity; a first switch connected to the second path allows the battery to selectively connect with the common node; and a comparator circuit and an output The wake-up circuit of the decision circuit. The comparison circuit is adapted to receive a first signal of a predetermined charging current and a second signal of a predetermined charging current supplied to the battery via the second impurity, and the comparison circuit Reacting the first and second signals to provide a comparison output signal. The output decision circuit is adapted to receive at least the comparison output signal and a selector signal from a selector circuit. The output determination circuit provides the comparison output signal And one of the selector signals, thereby controlling a state of the second switch. σ... The present invention also provides a new method for charging a battery, which is more efficient. In general, a wake-up circuit (such as the wake-up circuit 1608 shown in Figure 17) can receive a "wake-up program," (wake_up pr〇g) signal that represents a wake-up current value. Typically, the battery is provided. The wake-up current is a constant current value lwk〇, and the value is determined by the voltage value of the “wake-up program” signal. Since the wake-up charging process can be only the first part of the battery charging process, until the battery voltage exceeds one The preset voltage threshold value 'this total charging time is directly dependent on the time required for the wake-up charging process, that is, the voltage of a deep discharge battery rises from an initial value Vbatto to the wake-up threshold voltage The time required for Vwkth. The voltage Vbatto of a deeply discharged battery can be lower than any value of vwkth. For the sake of simplicity, the lowest possible value is 〇V. Since the charging time is a power supply An important performance parameter for managing the topology architecture, the wake-up charging time as part of the total charging time of the battery must be as short as possible. The wake-up current value lwk〇 should be programmed at the highest allowable value. Limiting the maximum value of the wake-up current can be different from the different factors' but the most important factors are as follows: @a battery-related limit ( Here, it can be expressed by limiting a battery's maximum 26 wake-up current lwkmb), mainly for battery characteristics, such as chemical composition and battery size, etc., such factors are determined by the battery manufacturer; c^ a limitation on power consumption ( Here, it can be represented by * table large wake-up current Iwkmp which limits power consumption, mainly for a current flow control device (CFCD) responsible for driving the charging current to the battery (for example, as shown in the embodiment of FIG. 17). The maximum power consumption Pm supported by the transistor SW2A1) Fig. 18A is a simplified mode of the power consumption pwk calculation when the current flow control device CFCD drives a constant current lwko during the wake-up charging process. Vadwk is a fixed-value DC output voltage provided by the power supply during the wake-up charging process. In order to ensure the flow of the wake-up current lwko, it is necessary to set The value of the Vadwk is slightly higher than the maximum battery voltage during charging in the awake mode (wake-up battery voltage threshold, Vwkth) (generally higher than 〇. 2 to 0.4 volts), that is, Vadwk = Vwkth + (〇. 2 〜0· 4 V). When the battery voltage is an instantaneous value Vbatt, the instantaneous power consumption amount Pwk of the current control device CFCD satisfies the following equation (1):

Pwk = lwko * (Vadwk - Vbatt) ⑴ 圖18B為根據等式(i)計算的該CFCD的該功率消耗pwk 隨該電池電壓Vbatt變化的曲線。顯然可見在該電池電壓最低 ,的該功率消耗最大,實際上最低電池電壓可為〇伏特。在計 鲁算該功率消耗限制的最大喚醒電流值lwkmp時,應該考慮 Vbatt、0這一最壞情況,此時該相對的功率消耗應等於該 CFCD的最大容許功率消耗’即pm。因此,在等式(1)中,如 果用Pm代替Pwk,用lwkmp代替lwko且令Vbatt = 0,就可 得到功率消耗限制的最大喚醒電流lwkmp : lwkmp = Pm/Vadwk ⑵ 门在許多實例中’該功率消耗所致對lwkmp的限制所加諸於 該最大可設定之定值喚醒電流lwk〇,比起電池類型的相關限 制要嚴厲知·夕,也就疋説等式(2)中所給的lWkmp比IwJyjjb 要小得多。舉例來說,對於一個Pm =丨· 2W的電流控制裝置和 27 1332302 2t,VadWk = 1GV的一個定值直流電源(通常3個 電池串聯的鐘電池包之電壓值可以為1〇伏特)來說,等式 所給的lwkmp將為120mA,而馳同電池麵最大料電 限制喚醒電流可為3〇〇到400mA。Pwk = lwko * (Vadwk - Vbatt) (1) Fig. 18B is a graph showing the power consumption pwk of the CFCD calculated according to the equation (i) as a function of the battery voltage Vbatt. It is obvious that the battery has the lowest voltage and the power consumption is the largest, and in fact the lowest battery voltage can be 〇V. When calculating the maximum wake-up current value lwkmp of the power consumption limit, the worst case of Vbatt, 0 should be considered, and the relative power consumption should be equal to the maximum allowable power consumption of the CFCD, i.e., pm. Therefore, in equation (1), if Pm is used instead of Pwk, lwkmp is used instead of lwko and Vbatt = 0, the maximum wake-up current lwkmp of power consumption limit is obtained: lwkmp = Pm/Vadwk (2) Gate in many instances' The limitation of lwkmp caused by the power consumption is added to the maximum settable wake-up current lwk〇, which is stricter than the relevant limitation of the battery type, that is, the equation (2) The lWkmp is much smaller than IwJyjjb. For example, for a current control device with Pm = 丨 · 2W and 27 1332302 2t, a fixed-value DC power supply with VadWk = 1GV (usually the voltage of the battery pack in series with three batteries can be 1 volt) The lwkmp given by the equation will be 120 mA, and the maximum power-on limit of the battery surface can be 3 〇〇 to 400 mA.

然而,如果將該定值喚醒電流lwk0設定為其功率 限制值(即上例中的12(M),會導致—長_倾充電=, 性能下降。同時,參照等式⑵,如果要將該ΐΛρ 限制值k升職lwkmb關似上,職要個—個功率消 ,原來高出幾倍的⑽。使用此-種高功率裝置不具成本效 益,而且該相對的高功率消耗也將降低該喚醒充電的效率。因 此,在技術上需要有一種更先進的方法和電路,能夠在使用一 種功耗相對較低的CFCD的同時而可維持一較短的喚醒充電時 F曰 1 〇 ' 圖19A和圖19B揭露本發明控制一個喚醒電流方法之原 理。圖19A為一可變唤醒電流iwk隨該瞬間電池電壓變 化的曲線。圖19B揭露一 CFCD的該功率消耗pwk隨同該相同 電池電壓Vbatt變化的曲線。在此新方法中,本發明使用一個However, if the fixed-value wake-up current lwk0 is set to its power limit value (ie, 12 (M) in the above example, it will cause - long_dumping charge =, performance is degraded. Meanwhile, refer to equation (2), if ΐΛρ The limit value k is promoted to lwkmb. It is a power-saving, which is several times higher. (10) It is not cost-effective to use this high-power device, and the relative high power consumption will also reduce the wake-up. The efficiency of charging. Therefore, there is a need in the art for a more advanced method and circuit that can maintain a shorter wake-up charge while using a relatively low power CFCD while Fig. 19A and Figure 19B discloses the principle of the method for controlling a wake-up current according to the present invention. Figure 19A is a graph of a variable wake-up current iwk as a function of the instantaneous battery voltage. Figure 19B discloses a curve of the power consumption pwk of a CFCD as a function of the same battery voltage Vbatt. In this new method, the present invention uses a

依電池電壓而變的喚醒電流lwk替代該定值喚醒電流lwk〇, 如以下等式(3)所示: lwk - lwkmin + K * Vbatt (3) 該唤醒電流lwk在該電池電壓最低時具有一最小值(假設 該電池,壓隶低值為〇伏特,此最小值為lwkmin),如圖“A 所不,當電池電壓低於Vbattl (當該喚醒電流達到該電池限 制最大喚醒電流值Iwkmb時的一相關電池電壓)時,隨著該電 池電麼Vbatt的增加,該喚醒電流iwk也以一常數李數κ呈绫 性增加。此時該CFCD的該功率消耗可表示為:” 、'The wake-up current lwk according to the battery voltage is substituted for the set value wake-up current lwk〇, as shown in the following equation (3): lwk - lwkmin + K * Vbatt (3) The wake-up current lwk has one at the lowest battery voltage Minimum value (assuming the battery, the low value of the voltage is 〇V, this minimum is lwkmin), as shown in Figure A, when the battery voltage is lower than Vbattl (when the wake-up current reaches the maximum wake-up current value Iwkmb of the battery limit) When the battery voltage is increased, the wake-up current iwk also increases linearly with a constant number of κ. The power consumption of the CFCD can be expressed as: ", '

Pwk = (lvwmin + K*Vbatt)(Vadwk—Vbatt) (4) 等式(4)與等式(1)等效,而以等式(3)中的該可變喚醒 電》IL替代了該定值喚醒電流lwko。 28 1332302 ,過鮮的檢查可以魏,如目⑽槪, mm4)=功物耗電壓Pwk = (lvwmin + K*Vbatt) (Vadwk - Vbatt) (4) Equation (4) is equivalent to Equation (1), and is replaced by the variable wake-up power IL in Equation (3) The fixed value wakes up the current lwko. 28 1332302, too fresh inspection can be Wei, such as (10) 槪, mm4) = power consumption voltage

Pwk具有—最大值Pwkmax,其值同時取決於= 醒電流值lwkrain和該常數系數κ的值。、、、§Λ 、 ^發明的充電方法對於目19Α和圖19 該功率消耗曲線提出了兩個條件H杜倾電抓乂及 程中的财賴電池t驗倾充電過 下大;:單地說= 醒電,圍内的電壓來說,需要有—個喚 ^定值賴電流方法中的該功率消耗限制的電流、(即趾〉 個高倾電流具有可以驗該唤醒充電時間的優 數學方法可找到複數個相關lwk-的 值和K值而可滿足上述兩個條件。 再看所述實财的該倾充電方法,透過—個⑽驅動 二=定功率絲PnH. 2W的喚醒電流,—個直流電源之一個 1輸出電壓VadwHG伏特’如果lwkmin設定為8(Μ,該 糸數Κ的值設為K=30mA/V,$時假定該冑池喚 在Vwk制.6伏特,根據等式(3) *⑷, 特充電至9· 6伏特時該喚醒電流從80mA線性增加到368mA, 而該功率消耗在電壓Vbatt =3.7伏特時到達峰值12w。 時,從該電池電壓達到Vbatt=l· 33伏特開始,該喚醒電流的 值都將大於lwkmp =120mA,即為該定值喚醒電流充電方^中 的功率消耗限制電流。與使用該一個值喚醒電流lwk〇的充 該方法相比較,該喚醒電流lwko在該整個喚醒充電過程中 β又疋為該功率>肖耗限制值lwkmp=120niA,而本發明提供的新方 法提供的一個可變喚醒電流在幾乎整個電池^醒電壓 '範圍内 都大於120mA,從而減少了該喚醒充電時間。 29 本發明提供的喚醒充電方法的另一特性是當透過等式(3) 厅侍的該喚醒電流值(wake up level)超過該可設定值時,可 ^將該喚SI電流雜關在-個可設定值之内(例如該電池類 制的喚醒電流值Iwkmb)。圖19A和19B的實例亦揭露此 種情況’即假設電池電壓超過Vbattl。 本發明的另一實施例提供了一種可變喚醒電流值(WL)電 電路可提供一個代表提供給一個電池的可變充電電流輸 出信號,其充電方法與上述新方法一致。圖2〇即為本發明提 供的一種可變喚醒電流值WL電路2000的典型實施例。Pwk has a maximum value Pwkmax whose value depends on both the = wake current value lwkrain and the value of the constant coefficient κ. , , § Λ , ^ Inductive charging method for the head 19 Α and Figure 19 This power consumption curve proposes two conditions H Du Ding electric grab and the process of the financial battery t test charge is too large; Say = wake up, the voltage inside the enclosure needs to have a current that limits the power consumption in the constant current method, (ie, toe > high tilt current has excellent mathematics that can check the wake-up charging time) The method can find a plurality of related lwk- values and K values to satisfy the above two conditions. Looking at the tilting charging method of the real money, the wake-up current of the second power cable PnH. 2W is driven by (10), - One output voltage of the DC power supply VadwHG Volt' If lwkmin is set to 8 (Μ, the value of the number of turns is set to K = 30 mA / V, $ is assumed to be called the Vwk system. 6 volts, according to etc. Equation (3) *(4), the wake-up current is linearly increased from 80 mA to 368 mA when charged to 9.6 volts, and the power consumption reaches a peak value of 12 w at a voltage of Vbatt = 3.7 volts. From this battery voltage, Vbatt = l · At the beginning of 33 volts, the value of the wake-up current will be greater than lwkmp = 120mA, which is the The value wakes up the power consumption limiting current in the current charging side. Compared with the charging method using the one value wake-up current lwk〇, the wake-up current lwko is again reduced to the power during the entire wake-up charging process. The limit value lwkmp=120 niA, and the new method provided by the present invention provides a variable wake-up current greater than 120 mA in almost the entire battery wake-up voltage range, thereby reducing the wake-up charging time. 29 The wake-up charging method provided by the present invention Another characteristic is that when the wake up level of the equation (3) exceeds the settable value, the SI current can be mismatched within a settable value (for example The battery-like wake-up current value Iwkmb). The examples of Figures 19A and 19B also disclose the case of assuming that the battery voltage exceeds Vbattl. Another embodiment of the present invention provides a variable wake-up current value (WL) electrical circuit. A variable charging current output signal representative of a battery can be provided, the charging method of which is consistent with the above new method. FIG. 2 is a variable wake-up current value WL circuit provided by the present invention. A typical embodiment of 2000.

該WL電路2000包括一個加法電路2〇〇1和一個比較電路 2002。本領域技術人員顯然可以理解,該運算放大器AMP 2004 和多個電阻 R1 2006、R2 2008、R3 2012、R4 2014 與 Rs 2010 係按照圖20所示連接而可如該加法電路2001般運作。本領域 技術人員顯然還可以理解,該加法電路2〇〇1的該輸出電壓 Viwk疋該Viwkmin和該Vbatt兩個電壓的一個線性組合,這 兩個電壓分別透過電阻和輸入到該運算放大器2〇〇4的 該非反相輸入端(+端),作為加法電路的一個加法節點。於 是該加法電路2001的該輸出電壓的形式為: ‘、The WL circuit 2000 includes an addition circuit 2〇〇1 and a comparison circuit 2002. It will be apparent to those skilled in the art that the operational amplifier AMP 2004 and the plurality of resistors R1 2006, R2 2008, R3 2012, R4 2014 and Rs 2010 can be operated as shown in FIG. It will be apparent to those skilled in the art that the output voltage Viwk of the summing circuit 2〇〇1 is a linear combination of the two voltages of Viwkmin and Vbatt, which are respectively transmitted through the resistor and input to the operational amplifier 2〇. The non-inverting input terminal (+ terminal) of 〇4 serves as an addition node of the adding circuit. The output voltage of the summing circuit 2001 is then in the form of:

Viwk = a*Viwkmin + b^Vbatt ⑸ 如果令 P = (R3+R4)/R4,令 RP = l/(i/Ri+1/R2+1/Rs),則等 式(5)可寫為:Viwk = a*Viwkmin + b^Vbatt (5) If let P = (R3+R4)/R4, let RP = l/(i/Ri+1/R2+1/Rs), then equation (5) can be written as :

Viwk = (p*Rp/Rl) *Viwkmin +(p*Rp/R2)*Vbatt (6) 顯然,專式(5)中的系數,即系數& = (p*Rp)/Rl,系數& = (p*Rp)/R2 ’那麼系數a和b僅僅取決於所選取的電阻ri、R2、 R3、R4和Rs的該電阻值。而且選取的該電阻值可選為如a= 1, b = K * Γ,其中r是一個代表性電壓對於該相對表示電流的 一個可設定比例,而K即為等式(3)中的該常數系數 (factor)。在此例中,如果viwkmin為等式(3)中代表該最 30 小喚醒電流Iwkmin的-個電壓,則該加法電路謹的該輸出 電壓Viwk將代表該等式(3)中所示的該可變喚醒電流值陳。 該信號Viwmiri可從外部發送至該WL電路(如圖2〇所示), 可於内部生成’並由該WL電路崎的常用電路設定為一個合 i商66估。 一再參照圖20巾的實施例’該比較電路2〇〇2可包括一個比 較器COMP 2016,包括-個開關驅動電路SDC麗以及 開關SW1 2G2G和SW2 2G22。該比較器2016將加法電路2001Viwk = (p*Rp/Rl) *Viwkmin +(p*Rp/R2)*Vbatt (6) Obviously, the coefficient in the equation (5), ie the coefficient & = (p*Rp)/Rl, coefficient &; = (p*Rp)/R2 'The coefficients a and b then only depend on the resistance of the selected resistors ri, R2, R3, R4 and Rs. Moreover, the selected resistance value can be selected as a = 1, b = K * Γ, where r is a settable ratio of the representative voltage to the relative representative current, and K is the equation (3) Constant coefficient (factor). In this example, if viwkmin is the voltage representing the 30th minimum wake-up current Iwkmin in equation (3), the output voltage Viwk of the adder circuit will represent the one shown in the equation (3). The variable wake-up current value is Chen. The signal Viwmiri can be externally transmitted to the WL circuit (as shown in FIG. 2A), can be internally generated and set by a common circuit of the WL circuit to be a combined estimate. Referring again to the embodiment of Fig. 20, the comparison circuit 2〇〇2 may include a comparator COMP 2016 including a switch drive circuit SDC MN and switches SW1 2G2G and SW2 2G22. The comparator 2016 will add circuit 2001

提供的該信號Viwk與-個可設定的定值信號viwkffl相比較, 1表-個最大唤醒電流lwkm’並遞送—個數位輸出信號 compout 。該最大唤醒電流lwkm可以是由除該CFCD之該° 功率消耗之外的任何限個素所決定,例如lwkm可等於前述 ^該電池限制的最大喚醒電流開關驅動電路2〇18, 藉由當Viwk小於Viwkm時保持該開關SW1閉合而該開關SW2 斷開’當Viwk大於Viwkm時保持該開關SW1斷開而該開關SW2 閉合來反應該比較器薦提供的該數位輸= 。c^npout 。因此’該可變喚醒電流值電路2〇〇〇的該輸出信 號‘喚醒程式(wk-up prog),,的值等於該viwk或該Viwkm ^The provided signal Viwk is compared with a settable fixed value signal viwkff1, 1 table-maximum wake-up current lwkm' and delivers a digital output signal compout. The maximum wake-up current lwkm may be determined by any limiter other than the power consumption of the CFCD, for example, lwkm may be equal to the maximum wake-up current switch drive circuit 2〇18 of the battery limit, by Viwk When the switch is smaller than Viwkm, the switch SW1 is closed and the switch SW2 is turned off. When the Viwk is greater than Viwkm, the switch SW1 is kept open and the switch SW2 is closed to reflect the digital input recommended by the comparator. c^npout. Therefore, the value of the output signal 'wk-up prog' of the variable wake-up current value circuit 2〇〇〇 is equal to the viwk or the Viwkm ^

個值之中較小的一個。 需要說明的是,圖20中的該開關SW1和該SW2可選用任 何^適的電晶體,包括雙極性電晶體和場效應電晶體。本領域 技術人員顯然可以理解,該開關驅動電路2〇18易於實現,例 如使用能實現上述功能的合適的邏輯閘和電平位移器(lev shifter)。 曰本發明還提供了一種至少可控制提供一個給電池的該喚 醒充電電軸可變倾電流電路(VWUG),其充電方式如g前 新方法。圖21為本發明的可變喚醒電流電路的—個典型 實施例3000。此可變喚醒電流電路可被插入類似圖17所示的 一個電源管理拓撲架構中。簡便起見,在圖17僅繪出與該可 31 1332302 變喚醒電流電路功能相連的該元件。 在圖21所示的實施例中,該可變唤醒電流電路21〇〇包括 • 一個可變喚醒電流值WL電路2000、一個誤差放大器1610和 .· 一個輸出判定電路1612 (也稱為一個驅動電路)。該WL電路 2000的架構和功能如同本發明前文所述。該電路提供一個可 • 變的“喚醒程式”信號,該信號代表透過該開關SW2A1 (在此 作為一個CFCD)提供給電池Batt. A的一個可變喚醒充電電 流。該“喚醒程式”信號的該電壓值係以常數系數而隨著該電 池電壓Vbatt呈線性增加,而該常數系數的值完全可以藉由選 • 擇該叽電路2000中的該電阻R1、1^2、1{3、[{4和1^的該電阻 值而能設定。該“喚醒程式”信號的該電壓值在電池電壓為一 個〇伏特時具有一個最小值Viwkmin (也可在該電路2000中 设定)’同時被該信號Viwkm限制在一個最大值設定之内,在 此,實施例中經由該主介面13提供該信號viwkm。該“喚醒程 式”信號還提供給該誤差放大器1610的該非反相輸入端。該 誤差放大器1610的該反相輸入端從一個電流檢測放大器(圖 21中未示出)接收一個丨CDA信號,該ICDA信號代表提供給 該電^Batt.A的該瞬間充電電流。該誤差放大器161〇和該& 馨出判定電路1612的工作模式與圖17中所述的該唤醒電路丨6〇8 =的該誤差放大器和該輸出判定電路完全相同,在此不再贅 、卯需要說明的是在此描述之方法或該方法所實現的電路可 以單獨使用,也可與其它電池充電方法或電路一起使用,或者 作為更大廣泛的電池充電方法或電路中的一部分。 值得注意的是,本實施例中所描述的電源管理控制電路和 ,醒電路的功能同樣可以透過軟體,或結合軟硬體來實現。如 μ用軟體來實現’則需要—個處理||和機器可讀賴。該處理 是能提供本發明實關所需要的速度和功能的任何類 1的處理器。例如’該處理ϋ可以是英特爾公司生產的 32 1332302 ㈣^⑧處理器系歹,!,或者摩托羅拉生產的處理器系列。機 器可項媒體包括任何關存贼理器可執行指令的媒體。這些 ^但不限於,例如:唯讀記憶體⑽)、隨機存取記 可編程賴記‘_⑽m)、可_可編程唯讀 電子可抹除可編程唯讀^*憶體(eepr〇m)、 ΐί存取記憶體_)、磁碟片(例如軟碟片和硬碟)、 二碟片^例如CD-ROM)和其它可以存儲數位資訊的襄置。在 ^中固貝關中’該指令係以壓縮和/或加密格式存儲在該媒 、、+在〇^所描述的實施例是一些利用本發明的具體例子 ,在此 龜ΪΪΪΪ!來描述,但不僅限於此。賴,令本躺技術人員 ^^的許?其它的實關都不脫縣發明的精神和權利 =的域。後附之申請專利翻旨在涵蓋所有的實施例和同 寻物。 【圖式簡單說明】 ^,L^為—種具有電源減架構的電子裝置的高階方塊 釦—t _括與本發明—致的—個可控制直流電源 和一個電源管理控制電路; 為圖1中該電子裝置的電源減架構的—個實施例的 圖,其中該可控制直流電源為一個可控制適配器; 為圖1中該電子裝置的電源拓撲架構的另一個實施例 的、&塊圖’其中該可控制直流電源為一個可以從^固固定 圖】出1配器接收電源的直流轉直流轉換器; ^斤示為圖2中該電源拓撲架構的—個實施例的詳細方塊 該可控做流電源為個可控㈣㈣,該電池源包 絲;電池,該電源系統包括一個適配器檢測電阻、一個系 圖t則電阻和每個電池各自的—個檢測電阻; 圖,為圖2中該電源拓撲架構的另—個實施例的詳細方塊 曰該可控制直流電源為一個可控制適配器,該電池源包 33 括複數個電池,該電源系铋白 於每個電池的制電阻;個適配11檢測電阻和一個用 圖6所示為圖2中該電源拓揸恕 圖,其中可㈣鼓魏健關的詳細方塊 多個電池,該電齡統包適=,該電池源, 電池的檢測電阻; 系統檢測電阻和-侧於每個 中亩3源_架構的另-個實施例的詳細方塊 彡彳電源為一個可控制適配器,該電池源包括 =所2圖2中該電源拓撲架構的的另-個實施例的詳細方 々紅二/該可控制直流電源為—個可控制適配器,該電池源 t 電池’該1源系統包括-個位於該直流轉直流轉換 ^U輸出端的系統檢測電阻和—個用於複數個電池的電池 檢測電阻; 圖9所示為圖3中該電^5撲架構的另一個實施例的詳細方塊 圖’其中該可_直流電源為—個直流轉直鱗換器,該電池 :原J括複數個電池,該電源系統包括—個位於該直流轉直流轉 換器的該輸出端的直流轉直流轉換器檢測電阻、一個系統檢測 電阻和一個用於每個電池的檢測電阻; 圖10所示為圖3中該電源拓撲架構的另一個實施例的詳細方 塊圖,其中該可控制直流電源為一個直流轉直流轉換器,該電 池源包括複數個電池,該電源系統包括一個位於該直流轉直流 轉換器的該輸出端的直流轉直流轉換器檢測電阻和一個用於 每個電池的檢測電阻; 圖11所示為圖3中該電源拓撲架構的另一個實施例的詳細方 塊圖,其中該可控制直流電源為一個直流轉直流轉換器,該電 池源包括複數個電池’該電源系統包括一個系統檢測電阻和一 個用於每個電池的檢測電阻; 34 圖12所示為圖3中該電源括撲架構的另—個實施例的詳 塊圖’其中該可控制直流魏為—個直流轉直流轉換器, 池源包括複數個電池,該電料統包括—個雜驗測電阻和 一個用於該電池源的電池檢測電阻; 圖13所示為圖3中該電源#撲架構的另—個實施例的詳細方 ,圖’其巾該可控制直流電源為—個直流轉直流轉換器,該電 ]源包括複數個電池,該電源系統包括一個系統檢測電阻和一 個用於該電池源的電池檢測電阻; =4 H為圖3中該電馳撲轉的另—個實施例的詳細方 ?圖二其巾該可控做流電源為—個纽轉錢轉換器,該電 也,,系統包括一個位於該直流轉直流 轉換益的該輸出端的直W直流轉換器檢測電阻和—細於該 電池源的檢測電阻; =5 為圖3中該電源拓撲架構的另—個實施例的詳細方 3二=可控制直_、為一個直流轉直流轉換器,該電 ίί 數個電池’該電源系統包括-個位於該固定適配器 伽“ Ί端的適配H檢測電p且和—細於每個電池的檢測電 阻, ϊ ϋ示為—_子裝置的另—個實施例的方塊圖,該電子 ^醒Sr個用來控制流至—個深度放電電池的充電電流的 ξ 17所示為圖16中該電源管理和該喚醒電路的-個詳細方塊 圖, 開關sw2ai在倾充電過程中接收—個定值電流 I =的力率消耗μ計算的—種簡化模式; lwk〇B#^f _ SW2M在喚醒充電過程中接收一個定值電流 同功钱耗隨該電池電壓Vbatt變化的曲線; iJmqr ϋ個可變喚醒電流lwk隨Vbatt變化的曲線; 马使用一個可變喚醒電流Iwk時Pwk隨Vbatt變化的曲 35 1332302 線; 圖20為提供一個可變喚醒電流的電路的一個典型實施例; • 圖21為與圖17類似的電源管理拓撲架構的典型實施例,其中 .. 加入了圖20所示的該電路。 * 【主要元件符號說明】 3:系統檢測電阻 4 :檢測電阻 5:電池B檢測電阻 φ 7:電池A檢測電阻 10 :電池 10a :電池包 11 :電池 11a :電池包 12 :主電源管理單元(PMU) 13 :主介面 14 :檢測放大器 15 :檢測放大器 16 =判定電路 • 17 :檢測放大器 18 :檢測放大器 20 :路徑 22 :主匯流排 23 :内部信號匯流排 24 :電池匯流排 29 = PWM輸出 100 :電子裝置 104 :可控制直流電源 104a :可控制適配器 1332302 104b :直流轉直流轉換器 105 :電池 • 110 :系統負載(系統直流轉直流) _ 114 :路徑 116 :節點 • 118:路徑 118a :路徑 118b :路徑 121 :路徑 φ 130 :電源管理控制電路 133 :路徑(適配器控制匯流排) 141 :路徑 180 :表格 181 :供電模式 183 :供電模式 185 :供電模式 187 :供電模式 190 :表格 302:固定適配器(固定輸出交流適配器) • 303 :路徑 409 :選擇器電路 411 :控制電路 1600 :電子裝置 1604 :路徑 1608 :喚醒電路 1610 :誤差放大器 1612 :輸出判定電路 1614 :匯流排 1630 :電源管理控制電路 37 1332302 1680 :表格 1702 :接點 • 1704 :接點 1706 :路徑 1712 :路徑 • 1714 :路徑 1718 :比較電路 2000 :可變喚醒電流值電路 2001 :加法電路 φ 2002 :比較電路 2004 :運算放大器 2006 :電阻R1 2008 :電阻R2 2010 :電阻Rs 2012 :電阻R3 2014 :電阻R4The smaller of the values. It should be noted that the switch SW1 and the SW2 in FIG. 20 can be selected from any suitable transistor, including a bipolar transistor and a field effect transistor. It will be apparent to those skilled in the art that the switch drive circuit 2〇18 is easy to implement, such as using suitable logic gates and lev shifters that enable the above functions. The present invention also provides a wake-up charging electric axis variable tilt current circuit (VWUG) capable of at least controlling the supply of a battery to a new method. Figure 21 is an exemplary embodiment 3000 of a variable wake-up current circuit of the present invention. This variable wake-up current circuit can be inserted into a power management topology similar to that shown in FIG. For simplicity, only the components associated with the function of the wake-up current circuit of Figure 31 can be depicted in FIG. In the embodiment shown in FIG. 21, the variable wake-up current circuit 21A includes a variable wake-up current value WL circuit 2000, an error amplifier 1610, and an output decision circuit 1612 (also referred to as a drive circuit). ). The architecture and function of the WL circuit 2000 is as previously described herein. The circuit provides a variable "wake-up" signal that represents a variable wake-up charge current supplied to battery Batt.A through switch SW2A1 (here as a CFCD). The voltage value of the "wake-up program" signal is linearly increased with the constant voltage coefficient Vbatt, and the value of the constant coefficient can be completely selected by selecting the resistor R1, 1^ in the chirp circuit 2000. 2, 1{3, [{4 and 1^ of this resistance value can be set. The voltage value of the "wake-up program" signal has a minimum value Viwkmin (which can also be set in the circuit 2000) when the battery voltage is one volt volt. At the same time, the signal Viwkm is limited to a maximum value setting. Thus, the signal viwkm is provided via the main interface 13 in an embodiment. The "wake-up mode" signal is also provided to the non-inverting input of the error amplifier 1610. The inverting input of the error amplifier 1610 receives a 丨CDA signal from a current sense amplifier (not shown in Figure 21) that represents the instantaneous charging current supplied to the battery. The error amplifier 161 and the operation mode of the & singularity decision circuit 1612 are identical to the error amplifier and the output decision circuit of the wake-up circuit 丨6 〇 8 = described in FIG. 17, and no longer, It should be noted that the methods described herein or the circuits implemented by the methods can be used alone, in conjunction with other battery charging methods or circuits, or as part of a broader battery charging method or circuit. It should be noted that the functions of the power management control circuit and the wake-up circuit described in this embodiment can also be implemented by using software or combining hardware and software. If μ is implemented in software, then it needs to be processed || and machine-readable. This process is any class 1 processor that provides the speed and functionality required by the present invention. For example, the processing can be 32 1332302 (four) ^ 8 processor system produced by Intel Corporation! Or a processor series produced by Motorola. The machine-receivable medium includes any media that holds executable instructions for the thief. These are, but are not limited to, for example: read-only memory (10), random access memory programmable _ '(10) m), _ programmable read-only electronic erasable programmable read only ^ * memory (eepr 〇 m) , 存取 存取 access memory _), floppy disk (such as floppy disk and hard disk), two-disc film (such as CD-ROM) and other devices that can store digital information. In the example of "the instruction is stored in the compressed and / or encrypted format in the medium," the embodiment described in the 是 ^ is a specific example of the use of the present invention, described here, but Not limited to this. Lai, let the lie technician ^^'s promise? Other realities do not deviate from the spirit and rights of the county invention. The appended patent application is intended to cover all embodiments and the same. [Simple diagram of the figure] ^, L^ is a high-order block of an electronic device with a power supply reduction architecture - t _ including a controllable DC power supply and a power management control circuit of the present invention; A diagram of an embodiment of a power supply architecture of the electronic device, wherein the controllable DC power source is a controllable adapter; and is a block diagram of another embodiment of the power supply topology of the electronic device of FIG. 'The controllable DC power supply is a DC-to-DC converter that can receive the power from the 1 fixed device. The voltage is shown as the detailed block of the embodiment of the power supply topology in Figure 2. The power supply is controlled (four) (four), the battery source is wrapped; the battery, the power system includes an adapter detection resistor, a circuit diagram t, a resistor and a respective detection resistor of each battery; A block diagram of another embodiment of the power supply topology, the controllable DC power supply is a controllable adapter, and the battery source package 33 includes a plurality of batteries, the power supply being smeared by each battery Resistor; an adaptation 11 sense resistor and a diagram shown in Figure 6 for the power supply diagram in Figure 2, where (four) drum Wei Jianguan detailed block multiple batteries, the battery age package =, the battery Source, battery sense resistor; system sense resistor and - side in each of the 3 acres _ architecture of another embodiment of the detailed block 彡彳 power supply is a controllable adapter, the battery source includes = 2 in Figure 2 Another embodiment of the power supply topology is detailed in detail. The controllable DC power supply is a controllable adapter. The battery source t battery 'the 1 source system includes one of the DC to DC conversion ^U outputs. The system detection resistor of the terminal and the battery detection resistor for a plurality of batteries; FIG. 9 is a detailed block diagram of another embodiment of the electrical architecture of FIG. 3, wherein the DC power supply is The direct current converter, the battery: the original J includes a plurality of batteries, the power system includes a DC to DC converter detection resistor at the output of the DC to DC converter, a system detection resistor and a Each battery FIG. 10 is a detailed block diagram of another embodiment of the power supply topology of FIG. 3, wherein the controllable DC power source is a DC to DC converter, and the battery source includes a plurality of batteries, the power source The system includes a DC to DC converter sense resistor at the output of the DC to DC converter and a sense resistor for each battery; FIG. 11 is another embodiment of the power topology of FIG. Detailed block diagram, wherein the controllable DC power source is a DC to DC converter, the battery source includes a plurality of batteries. The power system includes a system sense resistor and a sense resistor for each battery; 34 It is a detailed block diagram of another embodiment of the power supply architecture in FIG. 3, wherein the controllable DC is a DC-to-DC converter, and the pool source includes a plurality of batteries, and the battery system includes a plurality of batteries. A test resistor and a battery sense resistor for the battery source; FIG. 13 is a detailed view of another embodiment of the power source architecture of FIG. The towel control DC power source is a DC to DC converter, and the power source includes a plurality of batteries, the power system includes a system detection resistor and a battery detection resistor for the battery source; = 4 H is a graph In the detailed description of another embodiment of the electric motor, the controllable flow power source is a button-transfer converter, and the system includes a DC-to-DC converter. The direct W DC converter of the output detects the resistance and is finer than the detection resistance of the battery source; =5 is the detailed description of another embodiment of the power supply topology in FIG. 3 = controllable straight _, For a DC-to-DC converter, the battery is powered by a number of batteries. The power system includes a matching H detection power p at the end of the fixed adapter and a finer than the detection resistance of each battery. For the block diagram of another embodiment of the sub-device, the electronic scream Sr is used to control the charging current flowing to the deep discharge battery, and the power management and the wake-up circuit in FIG. 16 are shown. - a detailed block diagram, switch sw2a i receives the constant rate current I = the rate of consumption in the process of tilting charging - a simplified mode; lwk〇B#^f _ SW2M receives a constant current in the wake-up charging process with the power consumption of the battery Curve of voltage Vbatt change; iJmqr curve of variable wake-up current lwk as Vbatt changes; horse uses a variable wake-up current Iwk when Pwk changes with Vbatt 35 1332302 line; Figure 20 shows a circuit that provides a variable wake-up current A typical embodiment of the present invention; Fig. 21 is a typical embodiment of a power management topology similar to that of Fig. 17, in which the circuit shown in Fig. 20 is added. * [Main component symbol description] 3: System detection resistance 4: Detection resistance 5: Battery B detection resistance φ 7: Battery A detection resistance 10: Battery 10a: Battery pack 11: Battery 11a: Battery pack 12: Main power management unit ( PMU) 13: Main interface 14: Sense amplifier 15: Sense amplifier 16 = decision circuit • 17: Sense amplifier 18: Sense amplifier 20: Path 22: Main bus 23: Internal signal bus 24: Battery bus 29 = PWM output 100: electronic device 104: controllable DC power supply 104a: controllable adapter 1332302 104b: DC to DC converter 105: battery • 110: system load (system DC to DC) _ 114: path 116: node • 118: path 118a: Path 118b: path 121: path φ 130: power management control circuit 133: path (adapter control bus) 141: path 180: Table 181: power supply mode 183: power supply mode 185: power supply mode 187: power supply mode 190: Table 302: Fixed adapter (fixed output AC adapter) • 303: path 409: selector circuit 411: control circuit 1600: electronic device 1604: path 1608: wake-up circuit 161 0: error amplifier 1612: output decision circuit 1614: bus bar 1630: power management control circuit 37 1332302 1680: table 1702: contact point 1704: contact 1706: path 1712: path • 1714: path 1718: comparison circuit 2000: Change wake-up current value circuit 2001: Addition circuit φ 2002: Comparison circuit 2004: Operational amplifier 2006: Resistance R1 2008: Resistance R2 2010: Resistance Rs 2012: Resistance R3 2014: Resistance R4

2016 :比較器COMP2016: Comparator COMP

2018 :開關驅動電路SDC 2020 :開關 SW1 • 2022 :開關 SW2 2100 :可變喚醒電流電路 382018 : Switch drive circuit SDC 2020 : Switch SW1 • 2022 : Switch SW2 2100 : Variable wake-up current circuit 38

Claims (1)

十、申請專利範圍: __ 1 .-種可變喚醒電流值電路,該電路 S的—個充電電流的喚醒信號,所述 壓代表-個可^定,,該電 代表一個電池電壓,i中所诚作 第一4號,該第三信號 第一,出信號,其電壓值取決產生一個 三信號的該等電壓值;以及&罘可设疋電壓和所述第 一個比較電路,可適配以接收 可設定電塵,該第二可执定雪厭」輸出^虎和-個第二 該比較電路還用於產生;;述容許喚醒電流, 壓值從所述第-輪出信號和所述=電 取一個較小的電壓值。k弟一了°又疋電壓的電壓值中選 圍第1項所述之可變喚醒電流值電路,並中所 小電壓時,能夠設定所I設定最 所述第三信號破以一個可設定的系數而隨著 2項所述之可變喚醒電流值電路,其中所 ϋΐΓ電,括一個加法類型電路’所述加法類型電路至 ^^ 固運异放大器和複數個電阻,透過選取所述複數個f _電阻值可設定所述可設定系數的該數值。錢數個電 4 ·如申請專利範圍第3項所述之可變嗓醒電流值電路, 述加法類型電路包括: /、τ /τ 個第一輪入端,接收所述第一可設定電壓; 曰修(史)正替換頁 個弟—輸入端,接收所述第三信號; 二,總2輸出端’輸出所述第“號; 4 ^异放大器,該運算放大器具有一個反相輸入端、一個 目輸人端和—個放大器輸出端,所述總和輸出端輕接到所 述放大器輪出端; > π.個第一電阻,耦接在所述第一輪入端和所述非反相輸入端 之間, 一個第二電阻,耦接在所述第二輸入端和所述非反相輸入 之間, 们第二電阻’耦接在所述反相輸入端和所述總和輸出端之 間, 一=第四電阻’耦接在所述反相輸入端和該接地端之間;且 口第五電卩且’耗接在所述非反相輸入端和該接地端之間。 專利範圍第1項所述之可變喚醒電流值電路’其中所 述比較電路還包括: ^比較,配適以在一個第一輸入端接收所述第一輸出信 ^第-輪輸入端接收所述第二可設定電壓’並反應; 較ί出第二可設定賴賴差值而產生—個比 個^^生一個第-命令信號和-Ρ ·?Ία現以反應所述比較輸出信號; 至所=1一币開々關’輕接至所述比較器的該第一輸入端,且_ 信號迷路的該輸出端,所述第—開關反應所述第一命令 接至ϋ第ϋ關’麵接至所述比較器的所述第二輸入端,且輕 令信號k電路的該輸出端’所述第二開關反應所述第二命X. The scope of application for patents: __ 1 .- a variable wake-up current value circuit, the wake-up signal of the charging current of the circuit S, the pressure represents a certain voltage, and the electricity represents a battery voltage, i As the first No. 4, the third signal is first, the signal is output, and the voltage value is determined by the voltage values of the three signals; and the & can be set to the voltage and the first comparison circuit can be Adapted to receive settable electric dust, the second definable snow slap" output and the second of the comparison circuit are also used to generate;; the allowable wake-up current, the pressure value from the first-round signal And the = electric takes a smaller voltage value. k is one of the voltage values of the voltage and the voltage of the voltage is selected from the variable wake-up current value circuit described in item 1. When the voltage is small, the setting of the third signal can be set to a maximum. The variable wake-up current value circuit according to the two items, wherein the electric power includes an addition type circuit 'the addition type circuit to the ^^ fixed-effect amplifier and the plurality of resistors, by selecting the complex number The f _ resistance value sets the value of the settable coefficient. The variable wake-up current value circuit described in claim 3, wherein the add-on type circuit includes: /, τ / τ first round-in terminals, receiving the first settable voltage曰修(史) is replacing the page-input-input, receiving the third signal; second, the total 2 output is 'outputting the number'; 4^iso-amplifier, the op amp has an inverting input And a amp output, the sum output is lightly connected to the amplifier wheel; > π. a first resistor coupled to the first wheel and the Between the non-inverting input terminals, a second resistor coupled between the second input terminal and the non-inverting input, the second resistor 'coupled to the inverting input terminal and the sum Between the output terminals, a = fourth resistor 'coupled between the inverting input terminal and the ground terminal; and the port is electrically connected to the non-inverting input terminal and the ground terminal The variable wake-up current value circuit described in the first item of the patent scope, wherein the comparison circuit further Comprising: comparing, receiving, at a first input, receiving the first output signal, the first wheel input receiving the second settable voltage' and reacting; comparing the second settable difference And generating a first-command signal and -Ρ ·?Ία to react to the comparison output signal; to the =1 currency opening and closing 'lighting to the first of the comparator The input terminal, and the output terminal of the _ signal is lost, the first switch reacts the first command to the second input end of the comparator, and the signal k is lightly signaled The output of the circuit 'the second switch reacts to the second life •如申請專利範圍第5項所述 f第-開關和第二開關都具有—個'=流=路’其令所 述第一開關係為ON狀態,所述第一 疋电壓時,所 第—輪出信號的該電壓值高於狀態,當所述 關係輪狀態,所述第二開關;^;^時,所述第一開 7 ·如申請專利範圍第1項所述之 一個參考電麼電路,鮮所奐醒電^值電路,還包括 電路提供給所述信號處理電路。可没疋電壓由所述電塵參考 8 · —種可變喚醒電流電路,透過— l 上的電流控制裝置,該可變喚“ 電路徑 贿給,峨― 應二值電路反 =ί::ΓΓ最小喚醒電流的第 表=迷電池的-個敢大容許喚醒電流的第二可設定電壓 可&喚醒電紐電路產生―個代表於、 所述第-^认電壓和所述第—信號的該等電壓值; -個誤差放大器’接收所述喚醒信號和一個代表所述電池的 -個啤間充電電流的電池電流檢測信號,其中所述瞬間^電電 流流經所述電流控制裝置’且所述誤差放大器反應 號和電池電流檢測信號的該差值而產生一個誤差信號;兴 一個動電路配適來至少反應所述誤差信號而輸出一個裝 置驅動信號’其巾所述裝置驅齡錄獅述喚醒錢而能^ 命令所达電流控她置使所频狀電t流轉在某—健。 L v月6,〇ίι(幻心删丨 物輸電流電路 ’其中所述 ί電ii壓值取決於所述第-信號和所述第^可設 設定=^配適以接收所述第一輸出信號和所述第二, 所述ί-輸出ί”:ί Ji,,其令該唤醒信號的電壓值從 二Ϊ 所述弟二可設定電壓的電壓值中選取-個 1〇 ·如申請專利範圍第9項所述之可變喚 所述第-信號處於所述電池的—個 j -中田 信號處理電路能夠設雜述第值時’所述 設定電壓,並能夠使得所述第一輪出弟一4 而隨著所述第-信號呈線性的增加出4以一個可设定的系數 設定雷懕,祐铱忽伯π 4」〇儿使八荨於所述第一可 11.如申請專利範圍第10項所述之可_ 述信號處理電路包括-個加法類型路’其中所 阻的電阻值可設定職可選擇所述複數個電 其中所 12 ·如申請專職圍第n項_ 述加法類型的電路包括: 電路’ 一個第一輸入端,接收所述第一 一個第二輸入端,接收所述第三作^疋電I, -個總和輸出端’輸出所述第—认:二 一個運算放大器,該運算放大’ 非反相輸入端和一個放大器輪出她 4侧八鳊、— ’其中所述總和輸出端輕 …·盗具有一個反相輸入端、—個 接• The f-switch and the second switch as described in item 5 of the patent application have a '=stream=road' which causes the first open relationship to be in an ON state, and the first threshold voltage is - the voltage value of the turn-off signal is higher than the state, when the relationship wheel state, the second switch; ^; ^, the first open 7 · a reference power as described in claim 1 The circuit, the refreshing circuit value circuit, and the circuit are also provided to the signal processing circuit. The voltage can be ignited by the electric dust reference 8 · a variable wake-up current circuit, through the current control device on the - l, the variable call "electric path bribe, 峨 - should be binary circuit reverse = ί:: ΓΓThe table of the minimum wake-up current=the second settable voltage of the battery that can withstand the wake-up current can be generated by the wake-up circuit and the first signal and the first signal The voltage values are received by the error amplifiers 'the wake-up signal and a battery current detection signal representing a charging current of the battery, wherein the instantaneous current flows through the current control device' And generating the error signal by the difference between the error amplifier reaction number and the battery current detection signal; and the driving circuit is adapted to at least react to the error signal to output a device driving signal. The lion recites the money and can ^ command the current to control her to set the frequency of electricity t flow in a certain - health. L v month 6, 〇ίι (the magic heart to remove the current circuit) Value depends on the - a signal and the second settable setting = ^ adapted to receive the first output signal and the second, the ί-output ί": ί Ji, which causes the wake-up signal to have a voltage value from two Ϊ The second voltage of the set voltage can be selected as one of the voltage values of the voltage range of the first and second signals as described in claim 9 of the patent application. Let's set the voltage when the first value is mixed, and can make the first round of the 4th and the linear increase of the first signal 4 to set the Thunder with a settable coefficient.铱 伯 π π 〇 〇 〇 π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π 如 如 如 如 如 如 如 如 如 如 如 如 如The job may select the plurality of electric powers. 12] If the application for the full-time nth item _ the addition type circuit includes: a circuit 'a first input terminal, receiving the first one second input end, receiving the The third one is ^, the sum of the outputs, the output of the first - recognition: two An operational amplifier that amplifies the non-inverting input and an amplifier that rotates her 4 side gossip, — where the sum output is light...·There is an inverting input, 到所述放大II輪出端; 頁 之間i第-電阻,耦接在所述第一輸入端和所述非反相輸入端 之間 ;個第-電阻’墟在㈣第二輸人端和舰敍相輸入端 間 ;個第二電阻’輕接在所述反相輸入端和所述總和輸出端之 —個第五電阻間且 述比圍第9項所述之可變喚醒電流電路,其中所 號,在,個第一輸入端接收所述第-輸出信 第-輪出信;定電壓,並反應所述 較輪出信號;—了°又疋電壓的一個差值而產生一個比 個^藉由產生-個第-命令信號和--應所述比較輸出信號; 接至所w電器的所述第-輸入端’並耦 令信號;且 輸出碥,所述第一開關反應所述第一命 接至所述比較交器的所述第二輸入端,並耦 令信號。 出裢’所述第二開關反應所述第二命 U·如申請專利範圍 述第—開關和第二開之可變喚醒電流電路,其中所 所述第-輸出信號的 狀態和一個QFF狀態,當 第一開關係為二可奴電壓時,所述 、弟一開關係為OFF狀態,當所述第 Ι33»Θ3· 月日修(幻正替換頁1 的時,所述第-開_ δ又疋電壓由所述參考電壓電路提供給所述信號處理電路l。 16 · —種對可充電電池充電的電池充電裝置,包括·· 一個通向該可充電電池的電流路徑; 置===電的:=;中該電流 :〜表:述電池的-個最小喚醒充電電二 ^可的—個最大容許喚醒充電電流的第 電池;⑶反=====電電流的 J置,所述電流控制跑適以在動 電 電^in斤述裝置驅動信號的該電壓值而將所述充又 如m , 觸魏值’以確保於所述電流控制裝晋6A 糾率、桃小於所魏定最大轉功賴耗。 裝置的 電池充電裝置,其中所迷可 一巧可變喚醒電流值電路,其中所述可變喚醒電流值電路接 ,所述第一信號、所述第一可設定電壓和所述第二可設定電 =,所述可變喚醒電流值電路產生一個代表用於充電所述電池 =所述喚醒電流的喚醒信號,其中所述喚醒信號的電壓值至少 決於所述第一可設定電壓和所述第一信號的該等電壓值; 個誤差放大器’接收所述喚醒信號和所述電池電流檢測信 二二其中所述誤差放大器反應所述喚醒信號和所述電池電流檢 號的一個差值而產生一個誤差信號; 一個驅動、電路,配適以至少反應所述誤差信號而輸出一個所 二二ί驅動錢,其巾所述裝置驅動錢依據所述唤醒信號而 :夠中令所述電流控制裝置將所述瞬間充電電流維持在某—個 ^如申請專利範圍第18項所述之電池充電裝置,其中所述可 變喚醒電流值電路包括: 'T 個信處理電路’用於接收所述第—信號和所述第-可設 中所述信號處理電路配適以產生-個第-輸出信 等"電ΐί雖取決於所述第—信號和所述第—可設定電壓的該 設定 =比配適以接收所述第一輸出信號和所述第二可 ^所ΥΪ二述喚醒信號,其中所述喚醒信號的電壓值 -個二ΪΙΪ述第二可設定賴的該電壓值中選取 述第—信號而呈線性增加。 又疋乐数旭者所 7 威#· 〇1巧免正替換頁 3虛利乾圍第19項所述之電池充11裝置,其中所述信 荃少一個運以=大型的電路,所述加法類型電路包括 電阻的電個個電阻,透過選擇所述的複數個 的屯阻值可,又疋所述可設定系數的該數值。 專利範圍第21項所述之電池充電裝置,其中所述加 法類型的電路包括: 八T/^TiL刀口 们第輸入端,接收所述第一可設定電壓; 一個第二輸入端,接收所述第三信號; 二輪出端,輸出所述第-輸二言號; 非反相辁人’錢异放大11具有—個反相輸人端、一個 述放大器輸^大器輸出端,—所述總和輪出端输到所 之間Ί個第一電阻铺在所述第—輸入端和所述非反相輸入端 之間Ί個第二電阻’麵接在所述第二輸入端和所述非反相輸入端 間;一個第三電阻,減在所述反相輸人端和所述總和輸出端之 一:C且’耦接在所述反相輸入端和該接地端之間; 电阻’轉接在所述非反相輸入端和該接地端之間。 =電帛19顿述之電_裝置,其中所述比 俨號:適以在-個第-輸入端接收所述第-輪出 中二輸入端接收所述第二可設定電壓,並反: 較輸出=㈣和所述第二可設定電壓的該差值而產生—;比 换頁 —個開關驅動電路’該電路藉由產生-個第1令信^Γ 一個第二命令信號而反應所述比較輸出信號; 儿 -個第-開關’輕接至所述比較器的所述第一輸入端,並 述i較電路的該輸出端,所述第—開關反應所述第一 -個第二開關’輕接至所述比較器的所述第二輸入端,並 ^ ϊί?4比較電路的該輸出端,所述第二關反應所述第二 °Ρ令信號。 j .如申請專利範圍第23項所述之電池充電裝置,其中所述第 =和第二開關都具有一個〇N狀態和一個卿狀態,當所述 雨出k號的該電壓值低於所述第二可設定電壓時,第一開 二二狀:態’第二開關係為°ff狀態’當所述第一輸出信號 笙^堅值尚於第二可設定電壓時,第一開關係為0FF狀態, 弟一開關係為ON狀態。 25變電 申4專利範圍第18項所述之電池充電裝置,其中所述可 一醒電流值電路還包括一個參考電壓電路,所述第一可設定 壓由所述參考電壓電路提供給所述信號處理電 如申請專利範圍第16項所述之電池充電裝置,苴中所述電 叫控制裝置包括-個雙極性電晶體或-個場效應電晶體。To the amplification II wheel output; between the pages, the first-resistor is coupled between the first input terminal and the non-inverting input terminal; the first-resistance is in the (four) second input end Between the input terminals of the ship and the phase of the ship; a second resistor 'lightly connected between the inverting input terminal and the fifth resistor of the sum output terminal and the variable wake-up current circuit described in item 9 , wherein the number is received at the first input end of the first output terminal to receive the first-round signal; the voltage is set, and the relatively round-out signal is reflected; and the difference between the voltage and the voltage is generated. Comparing the output signal to the first-input terminal and coupling the signal to the first input terminal of the electrical device; and outputting 碥, the first switching reaction The first connection to the second input of the comparator is coupled to a signal. The second switch reacts to the second life, such as the switch-type switch and the second open variable wake-up current circuit, wherein the state of the first-output signal and a QFF state, When the first open relationship is a secondary slave voltage, the brother-off relationship is in an OFF state, and when the third Θ33»Θ3·月日修 (the illusion is replaced by page 1, the first-open _ δ The voltage is supplied from the reference voltage circuit to the signal processing circuit 1. 16 - A battery charging device for charging a rechargeable battery, comprising: a current path to the rechargeable battery; setting === The electric current: =; the current: ~ table: the battery's minimum wake-up charging power 2 ^ can be - the maximum allowable wake-up charging current of the battery; (3) reverse ===== electric current J, the The current control run is adapted to the voltage value of the driving signal of the electro-mechanical device, and the charging is again as m, and the value of the device is 'to ensure the value of the current control device. The maximum power conversion is required. The battery charging device of the device is one of the fans. a variable wake-up current value circuit, wherein the variable wake-up current value circuit is connected, the first signal, the first settable voltage, and the second settable power=, the variable wake-up current value circuit Generating a wake-up signal representative of charging the battery = the wake-up current, wherein the voltage value of the wake-up signal is at least dependent on the first settable voltage and the voltage values of the first signal; The amplifier 'receives the wake-up signal and the battery current detection signal 22, wherein the error amplifier reacts a difference between the wake-up signal and the battery current check to generate an error signal; a drive, a circuit, and a suitable Outputting a voltage of at least one of the two signals in response to the error signal, wherein the device drives the money according to the wake-up signal: the current control device maintains the instantaneous charging current at a certain one The battery charging device of claim 18, wherein the variable wake-up current value circuit comprises: 'T signal processing circuits' for receiving the first letter And the signal processing circuit of the first-configurable device is adapted to generate a first-output signal, etc., depending on the setting of the first signal and the first settable voltage= Configuring to receive the first output signal and the second available wake-up signal, wherein the voltage value of the wake-up signal is selected from the second settable voltage value - The signal is linearly increased. Also, the music number is as follows: 7 威 · 巧 巧 巧 巧 巧 巧 巧 替换 替换 替换 替换 替换 3 3 3 3 3 3 3 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池= a large circuit, the addition type circuit comprising a plurality of resistors of the resistor, the value of the settable coefficient being selectable by selecting the plurality of resistor values. The battery charging device of claim 21, wherein the adding type circuit comprises: an input terminal of eight T/^TiL blades, receiving the first settable voltage; and a second input receiving the The third signal; the second round of the output, the output of the first-input second-speaker; the non-inverted 辁人 'money-extended 11 has an inverting input terminal, an amplifier output terminal, the And a first resistor placed between the first input terminal and the non-inverting input terminal, a second resistor' is connected to the second input terminal and the a non-inverting input terminal; a third resistor, subtracting one of the inverting input terminal and the summing output terminal: C and 'coupled between the inverting input terminal and the grounding terminal; 'Switching between the non-inverting input and the ground. = 帛 顿 顿 顿 顿 顿 顿 , , , , , 顿 顿 顿 顿 顿 顿 顿 顿 顿 顿 顿 顿 顿 顿 顿 顿 顿 顿 顿 顿 顿 顿 顿 顿 顿 顿 顿 顿 顿 顿 顿 顿 顿Produced by the difference between the output = (4) and the second settable voltage - the ratio of the page switch - the drive circuit of the switch - the circuit generates a second command signal by generating a second command signal Comparing the output signal; the first-switch is lightly connected to the first input of the comparator, and the output of the comparator is compared to the output of the circuit, the first switch reacts to the first-first The second switch 'lights" to the second input of the comparator and compares the output of the circuit with the second switch. The battery charging device of claim 23, wherein the first and second switches have a 〇N state and a qing state, and when the rain is out of the k, the voltage value is lower than When the second settable voltage is described, the first open second shape: the state 'the second open relationship is the ° ff state'. When the first output signal 笙^ is still at the second settable voltage, the first open relationship In the 0FF state, the brother-off relationship is ON. The battery charging device of claim 18, wherein the awake current value circuit further comprises a reference voltage circuit, the first settable voltage being supplied by the reference voltage circuit to the The signal processing device is the battery charging device according to claim 16, wherein the electric control device comprises a bipolar transistor or a field effect transistor.
TW096105152A 2006-02-16 2007-02-13 Variable wake up level current circuit, variable wake up current circuit, and battery charging apparatus TWI332302B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/355,746 US7564220B2 (en) 2000-09-21 2006-02-16 Method and electronic circuit for efficient battery wake up charging

Publications (1)

Publication Number Publication Date
TWI332302B true TWI332302B (en) 2010-10-21

Family

ID=38783014

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096105152A TWI332302B (en) 2006-02-16 2007-02-13 Variable wake up level current circuit, variable wake up current circuit, and battery charging apparatus

Country Status (2)

Country Link
CN (1) CN101051755B (en)
TW (1) TWI332302B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832650A (en) * 2011-06-13 2012-12-19 立锜科技股份有限公司 Multipurpose power supply management device, charge path control circuit and control method of charge path control circuit
CN107161017B (en) * 2017-05-02 2023-10-24 北京欧鹏巴赫新能源科技股份有限公司 Alternating-current charging interface control device with double wake-up function
CN109094392B (en) * 2018-07-20 2024-02-02 上海思致汽车工程技术有限公司 Electric automobile alternating-current charging awakening circuit and method
CN111864287B (en) * 2020-06-30 2022-05-06 北京小米移动软件有限公司 Lithium battery activation charging method and device and lithium battery activation charger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3620118B2 (en) * 1995-10-24 2005-02-16 松下電器産業株式会社 Constant current / constant voltage charger
US20040145348A1 (en) * 2000-09-21 2004-07-29 Constantin Bucur Power management topologies
US7348760B2 (en) * 2000-09-21 2008-03-25 O2Micro International Limited Power management topologies
US6498461B1 (en) * 2001-08-17 2002-12-24 O2 Micro International Limited Voltage mode, high accuracy battery charger

Also Published As

Publication number Publication date
CN101051755A (en) 2007-10-10
CN101051755B (en) 2010-08-25

Similar Documents

Publication Publication Date Title
US8350534B2 (en) Method and electronic circuit for efficient battery wake up charging
JP3893124B2 (en) Power management topology
JP3917608B2 (en) Power management topology
US6184660B1 (en) High-side current-sensing smart battery charger
TWI375390B (en) Dual-input dc-dc converter with integrated ideal diode function
TWI246215B (en) Battery pack and a battery charging/discharging circuit incorporating the same
JP5057689B2 (en) A power supply device using a fuel cell, a control method for the power supply device, and a computer-readable recording medium.
US8125189B2 (en) Systems for charging a battery in a closed loop configuration
KR101041730B1 (en) Voltage converter with combined capacitive voltage divider, buck converter and battery charger
US20070079153A1 (en) Information handling system, current and voltage mode power adapter, and method of operation
US20110215656A1 (en) Power supply with zero power consumption capability
TW201212478A (en) Power control systems, apparatus, and methods
CA2730646A1 (en) Output power port management control
TWI332302B (en) Variable wake up level current circuit, variable wake up current circuit, and battery charging apparatus
US11764595B2 (en) Clamping current limit of a hysteretic power converter to a minimum value to ensure graceful shutdown at battery end of life
CN112134316A (en) Adapter power superposition features for multi-port systems
TWI247468B (en) DC to DC controller with inrush current protection
JP5843589B2 (en) Charging circuit and electronic device using the same
CN110783909B (en) Power management circuit, electronic device and power supply method thereof
JP2004215464A (en) Electronic apparatus
CN111835059A (en) Buck-boost charger configuration with reverse boost mode
TW202111478A (en) Adapter power add-up feature for multiport systems

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees