TWI247468B - DC to DC controller with inrush current protection - Google Patents

DC to DC controller with inrush current protection Download PDF

Info

Publication number
TWI247468B
TWI247468B TW93112786A TW93112786A TWI247468B TW I247468 B TWI247468 B TW I247468B TW 93112786 A TW93112786 A TW 93112786A TW 93112786 A TW93112786 A TW 93112786A TW I247468 B TWI247468 B TW I247468B
Authority
TW
Taiwan
Prior art keywords
switch
potential
battery
state
converter
Prior art date
Application number
TW93112786A
Other languages
Chinese (zh)
Other versions
TW200507397A (en
Inventor
You-Yuh Shyr
Constantin Bucur
Vlad Popescu-Stanesti
Original Assignee
O2Micro Int Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/431,815 external-priority patent/US7203048B2/en
Application filed by O2Micro Int Ltd filed Critical O2Micro Int Ltd
Publication of TW200507397A publication Critical patent/TW200507397A/en
Application granted granted Critical
Publication of TWI247468B publication Critical patent/TWI247468B/en

Links

Abstract

A DC to DC controller for controlling an inrush current from a DC to DC converter to a battery system having an internal isolating switch. The DC to DC controller is configured to control the DC to DC converter based on a state of the internal isolating switch. If the switch is open, the DC to DC controller adjusts the output voltage of the DC to DC converter to a predetermined voltage level. Based on the value of such voltage level, in rush current from the DC to DC converter to the battery system can be reduced or eliminated when the isolating switch changes from an open state to a closed state. An electronic device including such a DC to DC controller is provided. Related methods for controlling inrush current are also provided.

Description

1247468 九、發明說明: 【發明所屬之技術領域】 本發明係有關電子裝置的電源管理,更具體的是有關一 種含有湧入電流保護的直流至直流控制器。 【先前技術】 攜帶型電子裝置(例如筆記型電腦、手機、呼叫器、個人 數位助理等)隨著其性能和用途的不斷擴大,在當今社會中 越來越普遍。許多攜帶型電子裝置由一個可充電電池(例如 鋰、鎳-鎘或鎳-氫等類型的電池)供電來滿足這些裝置便攜 的特性。只要條件允許(例如將一個交流/直流適配器插入一 個標準交流插座),這些攜帶型電子裝置還可以由一個直流 電源供電。該直流電源還可在電池充電模式下供電,從而 對可充電電池充電。 在電池充電模式下,各種攜帶型電子裝置還可包括一個 直流至直流轉換器(converter),該直流至直流轉換器接收直 流電源的非穩壓電源並提供穩壓直流電源,從而對可充電 電池充電。直流至直流轉換器由一個直流至直流控制器 (controller)控制。該直流至直流控制器可接收表示各種供 電和充電狀況的各種輸入信號。例如,一個表示直流電源 供電電流的輸入、一個表示一個輸出充電電流的輸入和另 一個表示一個輸出充電電壓的輸入。該直流至直流控制器 還可以包括與每個輸入信號(例如一個輸入供電電流控制 路L、 個輸出充電電流控制路徑和一個輸出充電電壓控 制路從)相關的各種控制路徑或路徑。接著,該直流至直流 92900.doc 1247468 2制根據這些控制信號中的至少一個提供一個控制信號 、《直他至直流轉換器’從而控制可充電電池的輸出充電電 源電位。 一些可充電電池有一個内部開關,在電池在充電時,斷 ^亥開關將隔離單電池和其他部件(例如直流至直流轉換 ^ )之間的電力。该内部開關在各種情況下均可斷開。例 ^ Θ開關由於自我校準而斷開,這樣,電池可監控其單 電池的電壓電位’而沒有電流流過。該開關還可由於保護 (例士田傳輸給電池的暫態電源超出電池的最大允許電源 時)而斷開。 但是該開關的斷開和閉合會引起漠入電流(iiwush current)的問題。例如,當該開關在電池充電模式時斷開, 直μ至直流控制器將檢測到充電電流下降至零安培。直流 至直流控制器回應該檢測情況而增大直流至直流輸出電廢 電位’直到該電位達到某個預定最大電位。接著,一旦電 池的内邛開關再次閉合,由於直流至直流轉換器的輸出電 麼和電池電敎間的電壓差值將產生-個大㈣入電流。 =^的>勇入電流將導致可充電電池和相關電子裝置發生故 ㈣H該以電流的幅值主要由該電麼差值的幅值決 定。該渴入電流的持續時間由多種因素決定,這些因素包 括直流至直流控制器的電流控制路徑或路徑的速度和一個 輸出電容的電容值。 因此而要種旎克服上述先前技術的缺陷,並能夠控 制湧入電流的直流至直流控制器和方法。 92900.doc 1247468 【發明内容】 本發明的-種控制一個從直流至直流轉換器到一個含有 :^部隔離開關的電池㈣的湧人電流的直流至直流控 制态匕括· 一個第一路徑、一個第— H狀 1U罘一路徑和一個調節電路〇 …_#接收一個表示直流至直流轉換器的輸出電源電 / 輸入信號’並提供一個第一控制信號。該第二路 :接收該第一輸入信號,若該内部隔離開關處於斷開狀 悲,則提供一個第二控制信號。該調節電路接收該第一和 第二控制信號,若調節電路由該第一控制信號控制,則調 節該輸出電源電位至一個第一電位,若調節電路由該第二 控制枱號控制,則調節該輸出電源參數至一個第二電位。 在本發明的另—個實施例中,提供了—種電子裝置。該 電子裝置包括:一個電池系,统,該電池系統包括一個可充 電電池和一個與該可充電電池耦合的内部隔離電池開關; 個直"IL至直流轉換器,該直流至直流轉換器接收一個來 自直流電源的輪入電源電位、並提供一個輸出電源電位給 該電池系統,從而對該可充電電池充電;和一個直流至直 流控制器,該直流至直流控制器控制一個從該直流至1直流 轉換器到該電池系統的诱入電流。該直流至直流控制器Z 括:一個第一路徑,該第一路徑接收一個表示該輸出電源 電位的第一輸入信號、並提供一個第一控制信號;一個第 二路徑,該第二路徑接收該第一輸入信號、若該内部隔離 電池開關處於斷開狀態,則提供一個第二控制信號;和一 個調節電路,該調節電路接收該第一和第二控制信號,若 92900.doc 1247468 調節電路由該第一控制信號 至一個筮.y 貝]凋即该輸出電源電位 坰r兮认1 μ第一才工制信號控制,則 5 周即该輸出電源電位至一個第二電位。 在本發明的另一個實施例中, # . w ^ , 徒仏了 一種電子裝置。該 尾子4置包括:一個電池奉絲 Φ冷、, 电糸統,该電池系統包括一個可充 電電池和一個與該可φ、、★ & a 電池耦曰的内部電池開關;一個 直&至直流轉換器,該直流至 t ^ ^ ^ AA ^ 轉換态接收從一個來自 ,電源的輸入電源電位、並提供-個輸出電源電位至該 電池系統,從而對該可充雷雷妯古φ ^ 電電池充電;和-個直流至直流 4工制器’該直流至直流控制 U工制态根據该内部電池開關的狀態 控制該直流至直流轉換器。 在本發明的另-個實施财,還提供了—種控制從直流 至直肌轉換益到一個含有一個内部電池隔離開關的電池系 統的潘入電流的方法。該方法包括:檢測該内部電池隔離 開關的狀態’·和若該内部電池開關處於斷開狀態,則調節 该直流至直流轉換器的輸出電壓電位至一個預定輸出電壓 電位。 【實施方式】 第1圖所不為一個電子裝置1〇4和一個直流電源1〇2的簡 化方塊圖。電子裝置104可以為一種攜帶型裝置,例如,筆 圮型電腦、手機、傳呼機、個人數位助理等。通常,電子 裝置104包括一個供電模組1〇6、一個電池系統116和系統電 路110。通常,供電模組106可包括在各種情況下監視、控 制和指揮從每個電源(直流電源102、電池系統i丨6)到其他電 92900.doc 1247468 源和電子裝置104的系統110的電源的各種部件。供電模組 106的一種部件包括直流至直流轉換器系統12〇,若存在一 個具有合適特性的直流電源102且電池118需要充電,則該 直流至直流轉換器系統12〇能提供一個充電電流給電池 118 〇 為了給電池充電和/或給電子裝置104供電,將一個直流 電源102與電子裝置1〇4耦合。直流電源1〇2可以為一個接收 插座的標準交流電壓並將其轉換為直流輸出電壓的交流/ 直流適配器。直流電源102還可以為一個可插入該類型插座 的直流至直流適配器,例如一個”點火器㈦胖代…Hghter),, 型適配器。電源102如第i圖所示與電子裝置1〇4分離,但也 可以集成於一些裝置中。 電池系、、先116包括一個可充電電池丨18和一個内部隔離開 關SWi。開關SW1斷開時將隔離可充電電池118和供電模組 106、任何其他與電池系統116耦合的電子部件之間的電 力可充電電池118可以為鐘、鎳-鎘、鎳-氫等電池等。雖 然在此所述的具體實施例參考了一個電池118,但本領域的 技術人員知道可採用任意數目的電池。通常,内部隔離開 關SW1閉σ,但在各種情況下都可斷開。例如,該開關swi 可由於自我校準而斷開,從而電池可監控其單電池(無電流 流經)的電壓電位。該開關SW1還由於保護(例如,當傳輸給 電池的暫態電源超出電池的最大允許電源時)而斷開。開關 SW1可由一個集成於電池系統116的電池開關控制器m或 來自任何其他開關控制器控制。 92900.doc -10 - 1247468 有利的是’如在此所詳述,直流至直流轉換器系統12〇 回應開關SW1的開關狀態,如此,若開關SW1在電池充電 模式下斷開,則直流至直流轉換器將減小其輸出電壓至一 個預定輸出電壓電位。該預定輸出電壓設定在一個最小電 池電壓電位的預定範圍内,從而獲得一個期望的電壓電位 的隶大差值。通過控制該電壓電位的差值,可以控制湧入 電流。如此,當開關SW1再次閉合時,流入電池118的湧入 電流可以保持在一個足夠低的電位。另外,還可通過調節 直流至直流轉換器120的該預定輸出電壓電位等於或小於 一個最小電池電壓來消除湧入電流。給開關SW1提供控制 信號的開關控制器121還可以提供一個控制信號給直流至 直流轉換器系統120。另外,直流至直流轉換器系統丨2〇的 直流至直流控制器部分可配備開關狀態檢測電路來檢測開 關SW1的狀態,將如下所述。 第2圖所示為一個直流至直流控制器222的一個實施例的 更具體的方塊圖,該直流至直流控制器222控制由直流至直 流轉換器220提供給電池系統216的電池218的湧入電流。充 電模式下,開關SW4閉合來提供一個從直流至直流轉換器 220到電池系統216的充電導通路徑。其他開關(未示出)也可 閉合從而使得直流電源給系統供電。在該實施例中,直流 至直流控制器222包括一個檢測電池系統216的内部開關 SW1狀態的開關狀態檢測電路230。 直流至直流轉換器220可以為一個本領域熟知的常規直 流至直流轉換器。在一個示範性實施例中,直流至直流轉 92900.doc 11 1247468 換器可以為一個包括一個高端開關SW2、一個低端開關 SW3和一個電感電容濾波器的降壓型轉換器,該電感電容 濾、波器包括一個電感L1和一個電容C1。本發明的一個直流 至直流控制器222控制高端開關SW2和低端開關SW3的狀 態,如此,這些開關在"開關閉合(〇Ν)π和’’開關斷開(off),, 的狀恶之間切換。在開關閉合狀態下,開關SW2閉合,而 開關SW3斷開。在開關斷開狀態下,開關sw2斷開,而開 關SW3閉合。如此,降壓型轉換器的輸出電壓在開關閉合 狀恶下增大,而在開關斷開狀態下減小。開關狀態的切換 用於在各種狀態下提供一個期望輸出充電電壓和電流給電 池系統216的電池218(例如,當電池系統216的開關SW1斷 開時),將在此進一步詳述。 通常,本發明的一個直流至直流控制器222接收表示各種 狀態的各_人信號,且包括提供相_㈣號給調節電 路226的各個内部控制路徑。調節電路226響應至少一個來 自各種控制路徑的控制信號而產生一個輸出控制信號,從 而控制直流至直流轉換器220的高端開關SW2和低端開關 SW3的狀態,調節電路226可以為本領域熟知的、採用任何 類型的輸出控制信號的各種電路。在一個實施例中,調節 電路226可以為-個脈寬調變電路,該脈寬調變電路提供一 個脈寬調變(PWM)控制信號給開關s W2和s w3。正如本領 域所熟知’可以通過改變脈寬調變控制信號的工作週期來 控制開關SW2和SW3的"開關閉合"狀態和"開關斷開"狀態 的持續時間。如此,就能得到期望的直流至直流轉換器22〇 92900.doc 12 1247468 的輸出特性。 為了清晰起見’直流至直流控制器2 2 2未示出所有可#白勺 控制路徑。例如,一個可接收一個來自檢測電阻r 1、表示 直流電源供電電流的輸入信號的供電電流路徑。或者,一 個可接收一個來自檢測電阻R2、表示提供給電池系統216 的充電電流的輸入信號的充電電流控制路徑。同樣為了清 晰起見,這些供電和充電電流控制路徑均未在直流至直流 控制器222中示出。 直流至直流控制器222包括一個從端點234到調節電路 226的常規電壓控制路徑232。常規電壓控制路徑232接收一 個表示節點239處電壓電位的信號VFB。常規電壓控制路徑 232可包括一對電阻幻和!^形成的一個分壓器,該分壓器 將按比例減小電壓信號VFB至一個相對於V一DAC較低的電 壓電位信號VFB-10。比較器238比較該按比例減小的信號 VFB—1 〇和一個表示直流至直流轉換器22〇的一個最大輸出 電壓電位的信號(例如,V_DAC),從而提供一個表示該差 值的輸出控制信號給調節電路226。 有利的是,直流至直流控制器222還可包括一個低電壓控 制路徑242。控制路徑242回應電池開關狀態檢測電路230, 從而提供一個控制信號來控制開關SW5的狀態。電池開關 狀態檢測電路230包括一個第一比較器252、一個第二比較 器254、一個第一邊緣檢測器256、一個第二邊緣檢測器258 和一個正反器260。 工作時,若電池系統216的内部開關SW1在電池充電模式 92900.doc 1247468 下斷開,則提供給電池218的充電電流下降到零安培。常規 電壓控制路徑232通常控制直流至直流轉換器220的輸出, 並驅動該輸出至一個最大允許充電電壓電位V_DAC。驅動 直流至直流轉換器220的輸出至該V^DAC電位將造成直流 至直流轉換器220和電池系統2 16之間的一個大的正電壓差 值。該大的正電壓差值在開關SW1閉合時將導致一個過大 的湧入電流。 有利的是,開關狀態檢測電路230在開關SW1斷開時進行 檢測。由於開關SW1斷開時,直流至直流轉換器220的電壓 輸出開始上升。當該電壓電位達到一個預定電位VMAX(其 中VMAX小於V—DAC)時,比較器252輸出一個高電位信 號。一旦正邊緣檢測器256檢測到該變化,就提供一個脈衝 來置位正反器260的輸出。設置後,正反器260會產生一個 輸出控制信號BATT—DCN來閉合開關SW5,從而啟動低電 壓控制路徑242。另外,正反器260的BATT_DCN控制信號 通常斷開與電流源268耦合的閉合開關SW6。 低電壓控制路徑242接著提供一個控制信號給調節電路 226,調節電路226接著響應該控制信號而控制開關SW2和 SW3的狀態,從而驅動直流至直流轉換器220的輸出電壓下 降至一個預定電壓電位。例如,當調節電路226為一個脈寬 調變電路時,可減小脈寬調變信號的工作週期比。該預定 電壓電位可通過調節電阻R3和R4的阻值和/或電流源270提 供的補償電流值來設置。該電位值可由精密參考電源 (internal trimmed reference)確定 〇 92900.doc 14 1247468 開關狀態檢測電路230也可在開關SW1閉合時進行檢 測。比較器254比較一個表示VFB處的電壓(例如VFBj^ 的信號和一個預定最小電壓電位VMIN。該預定最小電愚電 位VMIN可以設置為一個小於電池最小充電電壓(例如〇·丨伏 特)的值。因此,當SW1閉合時,比較器254輸出一個高電 位信號。一旦正邊緣檢測器258檢測到這個變化,就提供一 個脈衝來復位正反器260的輸出。如此,正反器26〇的輪出 控制信號即表示一個閉合的内部電池開關SW1。因此,開 關SW5斷開,且低電壓控制路徑242為無效。因此,直流至 直流轉換器220由其他控制路徑和路徑控制。 充電控制開關SW4可以為一個獨立開關或有一個與開關 SW4並聯的二極體D1。通常,開關SW4由一個開關控制器 控制(圖中未示出)。若充電電流達到一個預定充電電流電位 的下限值’則該開關控制器可以斷開開關SW4。如此,在 這種情況下,任何充電電流將流經二極體D丨。若充電電流 超出該預定充電電流電位的下限值,則開關控制器將閉合 開關SW4。如此,二極體⑴不消耗任何電源。因此,二極 體D1可防止電流從電池系統216流回直流至直流轉換器 220。當直流至直流轉換器22〇為一個降壓型轉換器時,該 優點能防止降壓型轉換器在一個不期望的升壓模式下工 作。 第3圖所示為本發明一個直流至直流控制器^“的另一個 實施例的方塊圖’該控制器控制由直流至直流轉換器32〇 提供給電池系統316的電池318的汤入電流。第㈣_類似的 92900.doc -15- 1247468 部件的標號與第2圖中類似的部件的標號相似,因此,為了 清晰起見,在此省略任何重複的描述。通常,與第2圖的實 施例所示的相比,第3圖對開關狀態電路330和低電壓控制 路徑342進行了修改。 開關狀態檢測電路330包括比較器352、354和正反器 360。工作中,當開關SW1斷開時,直流至直流轉換器32〇 的輸出電壓開始上升直到達到一個預定電位VMAX(其中 VMAX小於V—DAC)。當直流至直流轉換器320的輸出電壓 達到VMAX時,比較器352輸出一個高電位信號,接著置位 正反器360。正反器360提供一個表示該狀態的電池開關狀 態信號給開關SW5和SW6。開關SW5閉合來啟動低電壓控制 路徑342。 低電壓控制路徑342的比較器390比較一個表示直流至直 流轉換器320輸出電壓的第一信號(VFB_ 1 〇)和一個表示一 個預定直流至直流輸出電壓電位的第二信號。在該例中, 直流至直流轉換器320的最大輸出電壓電位經過一個折減 係數折減後(例如〇_5)減小,並等於該預定直流至直流輸出 電壓電位。該折減係數可由本領域所熟知的各種方法獲 得’例如採用各種類型的電阻394、396和3 98構成一個分壓 器來獲得一個期望折減係數。 如此,當開關SW1閉合時,直流至直流轉換器32〇的輸出 電壓調節至該預定輸出電壓電位。因此,電池3 18的湧入電 流可通過選擇該預定輸出電壓電位來控制。另外,可提供 與開關S W4並聯的二極體D1。如上述所詳述,控制開關s 92900.doc -16- 1247468 可以保持斷開直到充電電流達到一個預定最小電位。因為 充電電流在開關SW1斷開時基本上為零安培,所以在該例 中’開關SW4也可以斷開。因此,由於二極體d 1上的壓降, 直流至直流轉換器320的輸出電壓稍大於二極體D1的輸出 電壓。因此,開關狀態檢測電路330的比較器354應該比較 個在其反相輸入端的弟一電位(例如,0 MXV—DAC)和比 較器390的非反相輸入端的電壓(例如,〇.5xv—DAC),其中 前者稍大於後者,從而解決二極體01上壓降的問題。 一旦開關SW1閉合,端點VFB將檢測電池電壓,比較器 354將產生一個正脈衝來復位正反器36〇。因此,開關sw5 再次斷開,而直流至直流轉換器320將由直流至直流控制器 232的其他控制路控和路徑控制。一旦充電電流增大至超出 預定充電電流電位(可由檢測電阻R2和一個比較器判定), 開關SW4將閉合,從而通過開關SW4進行充電。因此,通 過正確地選擇該預定直流至直流轉換器的輸出電壓電位, 湧入電流可被控制至一個期望電位,甚至若有必要則完全 消除。 第4圖所示為本發明一個直流至直流控制器422的另一個 實施例的方塊圖。在該實施例中,一個電池開關狀態檢測 電路430在開關SW1斷開或閉合時進行檢測。開關狀態檢測 電路430可以為上述貫施例的開關狀態檢測電路230或 330。通常,比較器490提供一個控制信號給調節電路426, 從而驅動直流至直流轉換器420的輸出電壓至兩個電壓中 的一個。比較器490在開關SW1閉合時提供一個控制信號來 92900.doc -17- 1247468 驅動該輸出至V—DAC,而在開關SW1斷開時提供一個控制 k號來驅動該輸出至VMIN。 例如,在一個實施例中,電池開關狀態檢測電路43〇—旦 檢測到開關SW1斷開,就發送一個控制信號經由路徑429至 多工器(MUX)497。多工器497接著提供一個信號VMIN至比 較器490的非反相端。否則,若開關swi閉合,MUX497則 提供另一個信號\^〇八0至比較器490的非反相端。 另外,電池開關狀態檢測電路430提供一個控制信號經由 路# 43 1至電壓暫存器495。該信號將一個相應的低數位信 戒寫入該電壓暫存器。該相應低數位信號接著通過數位/類 比轉換器(DAC)493轉換為一個類比信號,接著通過多工器 497提供給比較器49〇的非反相輸入端。 各種實施例中的所有開關SWI、SW2、SW3、SW4、SW5 和SW6都可以為本領域所熟知的任一類型的電晶體,例如 雙極性電晶體(例如PNP和NPN)或場效應電晶體,例如 MOSFET(例如 PMOS和 NMOS)。 雖然在此根據硬體進行描述,但值得重視的是本發明的 直流至直流控制器還可採用軟體、或硬體和軟體相結合以 及熟知的信號處理技術來實現。若採用軟體來實現,則需 一個處理器和機器可讀媒體。處理器可以為任一種能提供 本發明實施例所需的速度和功能的處理器。例如,該處理 器可以為一種英特爾公司(Intel Corporation)生產的奔騰家 族的處理器,或一種摩托羅拉(Motorola)生產的處理器。機 器可讀媒體包括任一種可存儲處理器執行的指令的媒體。 92900.doc -18· 1247468 這些媒體可以為唯讀記憶體(職)、隨機記憶體(ra⑷、可 編程唯讀記憶體(PR0M)、可擦可編程唯讀記憶體 (EPROM)、電氣可擦拭可程式 , 八化笨續5己憶體(EEPROM)、動 態隨機記憶體(繼M)、磁片(例如軟碟和硬碟驅動器)、光 碟(例如CD-娜),和其他可以存儲數位資訊的裝置,但並 不受限於此。在一個會祐在丨由杜人 貫^例中,指令以一種壓縮和/或加密 格式存儲在媒體上。 在此所述的實施例只是採用本發明的其中幾個,但並不 受限於本發明。明顯可知,還存在其他本領域的技術人貞 # 瞭解的並不脫離申請專利範圍所定義的本發明的精神和範 圍的實施例。 【圖式簡單說明】 第1圖所示為本發明的一個示範性電子裝置的方塊圖,該 裝置包括—個含有—個直流/直流直流至直流控制器的/ 流/直流直流至直流轉換器系統; 第2圖所示為本發明的—個直流/直流直流至直流控制器 的-個實施例的方塊圖,該控制器通過—個内部隔離開_ _ 控制流至電池系統的湧入電流; 第3圖所不為本發明的一個直流/直流直流至直流控制器 的另一個實施例的方塊圖,該控制器通過一個内部隔離開 關控制流至電池系統的湧入電流;和 , 第4圖所示為本發明的一個直流/直流直流至直流控制器 · 的另一個實施例的方塊圖,該控制器通過一個内部隔離開 關控制流至電池系統的湧入電流。 92900.doc -19- 1247468 【主要元件符號說明】 100 102 104 106 116 、 216 、 316 、 416 110 118 、 218 、 318 、 418 120 121 220 、 320 、 420 222 、 322 、 422 226 、 426 230 、 330 、 430 232 、 242 、 342 、 431 234 238 、 252 、 254 、 338 、 352 、 354 、 390 、 490 239 256 、 258 260 ^ 360 268 > 270 394 、 396 、 398 495 示範性電子裝置方塊圖 直流電源 電子裝置 供電模組 電池系統 系統電路 電池 直流至直流轉換器系統 電池開關控制器 直流至直流轉換器 直流至直流控制器 調節電路 開關狀態檢測電路 路徑 端點 比較器 節點 邊緣檢測器 正反器 電流源 電阻 暫存器 92900.doc -20- 497 1247468 SW1、SW2、SW3、SW4、 SW5、SW6 92900.doc -21 -1247468 IX. Description of the Invention: [Technical Field] The present invention relates to power management of electronic devices, and more particularly to a DC-to-DC controller including inrush current protection. [Prior Art] Portable electronic devices (such as notebook computers, mobile phones, pagers, personal digital assistants, etc.) are becoming more and more popular in today's society as their performance and use continue to expand. Many portable electronic devices are powered by a rechargeable battery (such as lithium, nickel-cadmium or nickel-hydrogen type batteries) to meet the portable characteristics of these devices. These portable electronic devices can also be powered by a DC power source as long as conditions permit (such as plugging an AC/DC adapter into a standard AC outlet). The DC power supply can also be powered in battery charging mode to charge the rechargeable battery. In the battery charging mode, various portable electronic devices may further include a DC to DC converter that receives the unregulated power of the DC power supply and provides a regulated DC power supply, thereby charging the battery Charging. The DC to DC converter is controlled by a DC to DC controller. The DC to DC controller can receive various input signals indicative of various power and charging conditions. For example, an input indicating the DC power supply current, an input indicating an output charging current, and another input indicating an output charging voltage. The DC to DC controller may also include various control paths or paths associated with each input signal (e.g., an input supply current control path L, an output charge current control path, and an output charge voltage control path slave). Next, the DC to DC 92900.doc 1247468 2 provides a control signal, "straight to DC converter" based on at least one of these control signals to control the output charging potential of the rechargeable battery. Some rechargeable batteries have an internal switch that isolates the power between the battery and other components (such as DC to DC conversion ^) while the battery is charging. This internal switch can be opened in all cases. Example ^ The Θ switch is disconnected due to self-calibration so that the battery can monitor the voltage potential of its battery' without current flowing. The switch can also be disconnected due to protection (when the transient power delivered by the Shishi to the battery exceeds the maximum allowable power of the battery). However, the opening and closing of the switch causes a problem of iiwush current. For example, when the switch is turned off in battery charging mode, a straight μ to DC controller will detect that the charging current drops to zero amps. The DC to DC controller should detect the condition and increase the DC to DC output power waste potential ' until the potential reaches a predetermined maximum potential. Then, once the battery's internal switch is closed again, a large (four) input current will be generated due to the voltage difference between the output of the DC-to-DC converter and the battery. The power of =^ will cause the rechargeable battery and related electronic devices to occur. (IV) H The magnitude of the current is mainly determined by the magnitude of the difference. The duration of this thirsty current is determined by a number of factors, including the current control path of the DC to DC controller or the speed of the path and the capacitance of an output capacitor. Therefore, it is necessary to develop a DC-to-DC controller and method that overcomes the drawbacks of the prior art described above and is capable of controlling the inrush current. 92900.doc 1247468 SUMMARY OF THE INVENTION The present invention controls a DC-to-DC control state of a surge current from a DC-to-DC converter to a battery (4) containing: a partial isolation switch, a first path, A first-H-shaped 1U罘-path and an adjustment circuit 〇..._# receives an output power/input signal representing a DC-to-DC converter and provides a first control signal. The second way: receiving the first input signal, and providing a second control signal if the internal isolation switch is in a disconnected state. The adjusting circuit receives the first and second control signals, and if the adjusting circuit is controlled by the first control signal, adjusting the output power potential to a first potential, and if the adjusting circuit is controlled by the second console number, adjusting The output power parameter is to a second potential. In another embodiment of the invention, an electronic device is provided. The electronic device includes: a battery system including a rechargeable battery and an internal isolated battery switch coupled to the rechargeable battery; a straight "IL to DC converter, the DC to DC converter receiving a DC power source that turns into the power supply potential and provides an output power potential to the battery system to charge the rechargeable battery; and a DC to DC controller that controls a DC to DC The induced current of the DC converter to the battery system. The DC to DC controller Z includes: a first path that receives a first input signal indicative of the output power potential and provides a first control signal; a second path that receives the second path a first input signal, if the internal isolation battery switch is in an off state, providing a second control signal; and an adjustment circuit that receives the first and second control signals, if the 92900.doc 1247468 adjustment circuit is The first control signal is to a 筮.y ]], that is, the output power supply potential 坰r 兮 1 μ first working signal control, then the output power potential to a second potential is 5 weeks. In another embodiment of the invention, #.w^, an electronic device. The tail 4 includes: a battery for wire Φ cold, an electric system, the battery system includes a rechargeable battery and an internal battery switch coupled to the φ, , ★ & a battery; a straight & To the DC converter, the DC to t ^ ^ ^ AA ^ conversion state receives the input power supply potential from a power supply, and provides an output power potential to the battery system, thereby charging the rechargeable Thunder ^ Electric battery charging; and - DC to DC 4 industrial device 'The DC to DC control U industrial state control the DC to DC converter according to the state of the internal battery switch. In another implementation of the present invention, a method of controlling the input current from a DC to a rectus transition to a battery system containing an internal battery disconnector is also provided. The method includes: detecting a state of the internal battery disconnect switch' and adjusting an output voltage potential of the DC to DC converter to a predetermined output voltage potential if the internal battery switch is in an open state. [Embodiment] FIG. 1 is a simplified block diagram of an electronic device 1〇4 and a DC power supply 1〇2. The electronic device 104 can be a portable device such as a pen-type computer, a cell phone, a pager, a personal digital assistant, and the like. Typically, electronic device 104 includes a power supply module 160, a battery system 116, and system circuitry 110. In general, the power supply module 106 can include power to monitor, control, and direct power from each of the power sources (DC power source 102, battery system i丨6) to other systems 110 of the source and electronic device 104 in various circumstances. Various parts. A component of the power module 106 includes a DC to DC converter system 12A. If a DC power source 102 having suitable characteristics is present and the battery 118 needs to be charged, the DC to DC converter system 12 can provide a charging current to the battery. 118 〇 To charge the battery and/or power the electronic device 104, a DC power source 102 is coupled to the electronic device 1〇4. The DC power supply 1〇2 can be an AC/DC adapter that accepts the standard AC voltage of the socket and converts it to a DC output voltage. The DC power source 102 can also be a DC to DC adapter that can be plugged into this type of socket, such as an "Ignition (Hepter), type adapter. The power source 102 is separated from the electronic device 1A4 as shown in FIG. However, it can also be integrated in some devices. The battery system 116 includes a rechargeable battery pack 18 and an internal disconnect switch SWi. When the switch SW1 is disconnected, the rechargeable battery 118 and the power supply module 106, any other battery are isolated. The electrically rechargeable battery 118 between the electronic components coupled by system 116 can be a clock, nickel-cadmium, nickel-hydrogen, etc., etc. Although the specific embodiment described herein refers to a battery 118, those skilled in the art will recognize those skilled in the art. It is known that any number of batteries can be used. Usually, the internal isolation switch SW1 is closed σ, but can be disconnected under various conditions. For example, the switch swi can be disconnected due to self-calibration, so that the battery can monitor its battery (no current) The voltage potential flowing through. The switch SW1 is also disconnected due to protection (for example, when the transient power supply to the battery exceeds the maximum allowable power supply of the battery). W1 can be controlled by a battery switch controller m integrated into battery system 116 or from any other switch controller. 92900.doc -10 - 1247468 advantageously [as detailed herein, DC to DC converter system 12〇 response The switching state of the switch SW1, such that if the switch SW1 is turned off in the battery charging mode, the DC to DC converter will reduce its output voltage to a predetermined output voltage potential. The predetermined output voltage is set at a minimum battery voltage potential. Within a predetermined range, thereby obtaining a magnitude difference of a desired voltage potential. By controlling the difference of the voltage potential, the inrush current can be controlled. Thus, when the switch SW1 is closed again, the inrush current flowing into the battery 118 can be maintained. At a sufficiently low potential, in addition, the inrush current can be eliminated by adjusting the predetermined output voltage potential of the DC to DC converter 120 to be equal to or less than a minimum battery voltage. The switch controller 121 that supplies the control signal to the switch SW1 also A control signal can be provided to the DC to DC converter system 120. In addition, DC to DC The DC to DC controller portion of the converter system 可2〇 can be equipped with a switch state detection circuit to detect the state of the switch SW1 as will be described below. Figure 2 shows a further embodiment of a DC to DC controller 222. In particular, the DC to DC controller 222 controls the inrush current supplied by the DC to DC converter 220 to the battery 218 of the battery system 216. In the charging mode, the switch SW4 is closed to provide a DC to DC converter 220. The charging conduction path to the battery system 216. Other switches (not shown) may also be closed to cause the DC power to power the system. In this embodiment, the DC to DC controller 222 includes an internal switch SW1 state that detects the battery system 216. Switch state detection circuit 230. The DC to DC converter 220 can be a conventional DC to DC converter as is well known in the art. In an exemplary embodiment, the DC to DC converter 92900.doc 11 1247468 converter can be a buck converter including a high side switch SW2, a low side switch SW3 and an inductor-capacitor filter. The wave device includes an inductor L1 and a capacitor C1. A DC-to-DC controller 222 of the present invention controls the state of the high side switch SW2 and the low side switch SW3, such that these switches are in the "switch closed (〇Ν) π and ''switch open (off), Switch between. In the closed state of the switch, the switch SW2 is closed and the switch SW3 is opened. In the open state of the switch, the switch sw2 is opened and the switch SW3 is closed. Thus, the output voltage of the buck converter increases as the switch is closed and decreases when the switch is off. Switching of Switching States is used to provide a desired output charging voltage and current to battery 218 of battery system 216 in various states (e.g., when switch SW1 of battery system 216 is open), as will be described in further detail herein. In general, a DC to DC controller 222 of the present invention receives respective _person signals representative of various states and includes various internal control paths for providing phase _(4) to the regulating circuit 226. The conditioning circuit 226 generates an output control signal in response to at least one control signal from the various control paths to control the state of the high side switch SW2 and the low side switch SW3 of the DC to DC converter 220, which may be well known in the art. Various circuits that use any type of output control signal. In one embodiment, the adjustment circuit 226 can be a pulse width modulation circuit that provides a pulse width modulation (PWM) control signal to the switches s W2 and s w3. As is well known in the art, the duration of the "switch closure" state and "switch off" state of switches SW2 and SW3 can be controlled by varying the duty cycle of the pulse width modulation control signal. In this way, the desired output characteristics of the DC-to-DC converter 22〇 92900.doc 12 1247468 can be obtained. For the sake of clarity, the DC to DC controller 2 2 2 does not show all of the control paths. For example, one can receive a supply current path from the sense resistor r 1 that represents the input signal to the DC power supply current. Alternatively, a charging current control path can be received that receives an input signal from the sense resistor R2 indicating the charge current supplied to the battery system 216. Also for clarity, none of these power and charge current control paths are shown in the DC to DC controller 222. The DC to DC controller 222 includes a conventional voltage control path 232 from the endpoint 234 to the regulation circuit 226. The conventional voltage control path 232 receives a signal VFB indicative of the voltage potential at node 239. The conventional voltage control path 232 can include a pair of resistors and illusions! ^ A voltage divider is formed which will scale down the voltage signal VFB to a lower electrical potential signal VFB-10 relative to the V-DAC. Comparator 238 compares the scaled down signal VFB-1 〇 with a signal representative of a maximum output voltage potential of the DC to DC converter 22A (eg, V_DAC) to provide an output control signal representative of the difference The adjustment circuit 226 is provided. Advantageously, the DC to DC controller 222 can also include a low voltage control path 242. Control path 242 is responsive to battery switch state detection circuit 230 to provide a control signal to control the state of switch SW5. Battery switch state detection circuit 230 includes a first comparator 252, a second comparator 254, a first edge detector 256, a second edge detector 258, and a flip flop 260. In operation, if the internal switch SW1 of the battery system 216 is disconnected in the battery charging mode 92900.doc 1247468, the charging current supplied to the battery 218 drops to zero amps. The conventional voltage control path 232 typically controls the output of the DC to DC converter 220 and drives the output to a maximum allowable charging voltage potential V_DAC. Driving the output of the DC to DC converter 220 to the V^DAC potential will cause a large positive voltage difference between the DC to DC converter 220 and the battery system 2 16 . This large positive voltage difference will cause an excessive inrush current when switch SW1 is closed. Advantageously, the switch state detection circuit 230 detects when the switch SW1 is open. When the switch SW1 is turned off, the voltage output of the DC-to-DC converter 220 starts to rise. When the voltage potential reaches a predetermined potential VMAX (where VMAX is less than V-DAC), comparator 252 outputs a high potential signal. Once positive edge detector 256 detects the change, a pulse is provided to set the output of flip flop 260. After being set, the flip flop 260 generates an output control signal BATT_DCN to close the switch SW5, thereby activating the low voltage control path 242. Additionally, the BATT_DCN control signal of flip flop 260 typically turns off closed switch SW6 coupled to current source 268. The low voltage control path 242 then provides a control signal to the conditioning circuit 226 which in turn controls the state of the switches SW2 and SW3 in response to the control signal to thereby drive the output voltage of the DC to DC converter 220 down to a predetermined voltage potential. For example, when the adjustment circuit 226 is a pulse width modulation circuit, the duty cycle ratio of the pulse width modulation signal can be reduced. The predetermined voltage potential can be set by adjusting the resistance of resistors R3 and R4 and/or the value of the compensation current provided by current source 270. The potential value can be determined by an internal trimmed reference. 〇 92900.doc 14 1247468 The switch state detection circuit 230 can also detect when the switch SW1 is closed. The comparator 254 compares a signal indicative of the voltage at VFB (e.g., VFBj^ and a predetermined minimum voltage potential VMIN. The predetermined minimum electrical potential VMIN can be set to a value less than the minimum charging voltage of the battery (e.g., 〇·丨 volts). Thus, when SW1 is closed, comparator 254 outputs a high potential signal. Once positive edge detector 258 detects this change, a pulse is provided to reset the output of flip flop 260. Thus, the flip of the flip flop 26 〇 The control signal represents a closed internal battery switch SW1. Therefore, the switch SW5 is open and the low voltage control path 242 is inactive. Therefore, the DC to DC converter 220 is controlled by other control paths and paths. The charge control switch SW4 can be An independent switch or a diode D1 connected in parallel with the switch SW4. Typically, the switch SW4 is controlled by a switch controller (not shown). If the charging current reaches a lower limit value of a predetermined charging current potential, then the The switch controller can open switch SW4. Thus, in this case, any charging current will flow through the diode D. When the electrical current exceeds the lower limit of the predetermined charging current potential, the switch controller will close the switch SW4. Thus, the diode (1) does not consume any power. Therefore, the diode D1 prevents current from flowing back from the battery system 216 to the DC. DC converter 220. This advantage prevents the buck converter from operating in an undesired boost mode when the DC to DC converter 22 is a buck converter. Figure 3 shows the present invention. A block diagram of another embodiment of a DC to DC controller "This controller controls the incoming current supplied to the battery 318 of the battery system 316 by the DC to DC converter 32". (4) _ similar to 92900.doc -15- 1247468 The reference numerals of the components are similar to those of the similar components in Fig. 2. Therefore, for the sake of clarity, any repeated description is omitted here. Generally, compared with the embodiment shown in Fig. 2, 3 is a modification of the switch state circuit 330 and the low voltage control path 342. The switch state detection circuit 330 includes comparators 352, 354 and a flip-flop 360. In operation, when the switch SW1 is turned off, DC to straight The output voltage of the stream converter 32A begins to rise until a predetermined potential VMAX is reached (where VMAX is less than V-DAC). When the output voltage of the DC to DC converter 320 reaches VMAX, the comparator 352 outputs a high potential signal, followed by The bit flip-flop 360. The flip-flop 360 provides a battery switch status signal indicating the state to the switches SW5 and SW6. The switch SW5 is closed to activate the low voltage control path 342. The comparator 390 of the low voltage control path 342 compares one indicating DC A first signal (VFB_1 〇) to the DC converter 320 output voltage and a second signal indicative of a predetermined DC to DC output voltage potential. In this example, the maximum output voltage potential of the DC to DC converter 320 is reduced by a reduction factor (e.g., 〇_5) and is equal to the predetermined DC to DC output voltage potential. The reduction factor can be obtained by various methods well known in the art. For example, a voltage divider is constructed using various types of resistors 394, 396 and 3 98 to obtain a desired reduction factor. Thus, when the switch SW1 is closed, the output voltage of the DC-to-DC converter 32A is adjusted to the predetermined output voltage potential. Therefore, the inrush current of the battery 3 18 can be controlled by selecting the predetermined output voltage potential. In addition, a diode D1 connected in parallel with the switch S W4 can be provided. As detailed above, the control switch s 92900.doc -16 - 1247468 can remain open until the charging current reaches a predetermined minimum potential. Since the charging current is substantially zero amps when the switch SW1 is turned off, the switch SW4 can also be turned off in this example. Therefore, due to the voltage drop across the diode d1, the output voltage of the DC to DC converter 320 is slightly larger than the output voltage of the diode D1. Therefore, comparator 354 of switching state detection circuit 330 should compare the voltage of a potential (eg, 0 MXV-DAC) at its inverting input and the non-inverting input of comparator 390 (eg, 〇.5xv-DAC). ), wherein the former is slightly larger than the latter, thereby solving the problem of voltage drop on the diode 01. Once switch SW1 is closed, terminal VFB will detect the battery voltage and comparator 354 will generate a positive pulse to reset flip-flop 36. Thus, switch sw5 is again turned off, and DC to DC converter 320 will be controlled by other control loops and paths from DC to DC controller 232. Once the charging current has increased beyond the predetermined charging current potential (which can be determined by the sense resistor R2 and a comparator), the switch SW4 will be closed to be charged by the switch SW4. Therefore, by correctly selecting the output voltage potential of the predetermined DC-to-DC converter, the inrush current can be controlled to a desired potential, and even eliminated if necessary. Figure 4 is a block diagram showing another embodiment of a DC to DC controller 422 of the present invention. In this embodiment, a battery switch state detecting circuit 430 detects when the switch SW1 is turned off or closed. The switch state detecting circuit 430 may be the switch state detecting circuit 230 or 330 of the above-described embodiment. Typically, comparator 490 provides a control signal to regulation circuit 426 to drive the output voltage of DC to DC converter 420 to one of two voltages. Comparator 490 provides a control signal when switch SW1 is closed to drive 92900.doc -17-1247468 to the V-DAC and a control k to drive the output to VMIN when switch SW1 is open. For example, in one embodiment, battery switch state detection circuit 43 sends a control signal via path 429 to multiplexer (MUX) 497 upon detecting that switch SW1 is open. Multiplexer 497 then provides a signal VMIN to the non-inverting terminal of comparator 490. Otherwise, if the switch swi is closed, the MUX 497 provides another signal, 〇8 0, to the non-inverting terminal of the comparator 490. In addition, the battery switch state detecting circuit 430 supplies a control signal to the voltage register 495 via the path #431. This signal writes a corresponding low-order signal to the voltage register. The corresponding lower digital signal is then converted to an analog signal by a digital/analog converter (DAC) 493 and then supplied to the non-inverting input of comparator 49A via multiplexer 497. All of the switches SWI, SW2, SW3, SW4, SW5, and SW6 in various embodiments may be any type of transistor known in the art, such as bipolar transistors (eg, PNP and NPN) or field effect transistors. For example MOSFETs (eg PMOS and NMOS). Although described herein in terms of hardware, it is important to note that the DC to DC controller of the present invention can also be implemented using software, or a combination of hardware and software, and well known signal processing techniques. If implemented in software, a processor and machine readable medium is required. The processor can be any processor that provides the speed and functionality required by embodiments of the present invention. For example, the processor can be a processor of a Pentium family manufactured by Intel Corporation, or a processor manufactured by Motorola. The machine readable medium includes any medium that can store instructions executed by the processor. 92900.doc -18· 1247468 These media can be read-only memory (job), random memory (ra(4), programmable read-only memory (PR0M), erasable programmable read-only memory (EPROM), electrically wipeable Programmable, simplistic 5 EEPROM, dynamic random memory (following M), magnetic disk (such as floppy disk and hard disk drive), optical disk (such as CD-na), and others can store digital information The apparatus is, but is not limited to, the instructions stored in the medium in a compressed and/or encrypted format in a case of a singularity. The embodiments described herein are merely illustrative of the present invention. The invention is not limited to the invention, and it is obvious that there are other embodiments of the invention that are not limited by the spirit and scope of the invention as defined by the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of an exemplary electronic device including a DC/DC DC-to-DC converter system with a DC/DC DC to DC controller; Figure 2 shows the present Invented is a block diagram of an embodiment of a DC/DC direct current to DC controller that controls the inrush current flowing to the battery system through an internal isolation __; FIG. 3 is not the present invention A block diagram of another embodiment of a DC/DC DC to DC controller that controls the inrush current flowing to the battery system through an internal isolation switch; and, Figure 4 shows a DC of the present invention Block diagram of another embodiment of a DC/DC to DC controller that controls the inrush current flowing to the battery system through an internal isolating switch. 92900.doc -19- 1247468 [Key Symbol Description] 100 102 104 106 116 , 216 , 316 , 416 110 118 , 218 , 318 , 418 120 121 220 , 320 , 420 222 , 322 , 422 226 , 426 230 , 330 , 430 232 , 242 , 342 , 431 234 238 , 252 , 254 , 338, 352, 354, 390, 490 239 256, 258 260 ^ 360 268 > 270 394, 396, 398 495 Exemplary electronic device block diagram DC power supply electronic device supply mode Battery System System Circuit Battery DC to DC Converter System Battery Switch Controller DC to DC Converter DC to DC Controller Regulation Circuit Switch State Detection Circuit Path Endpoint Comparator Node Edge Detector Positive and Negative Current Source Resistor Scratch 929000 .doc -20- 497 1247468 SW1, SW2, SW3, SW4, SW5, SW6 92900.doc -21 -

Claims (1)

1247^^^2786號專利申請案 中文申請專利範圍替換本(94年7月) 十、申請專利範圍: Λ ; 1. -種直流至直流控制器’其用於控制—從直流至直流轉換器 到含有-内部隔離開關的電池系統之汤入電流,該直流至直 流控制器包括: -第-路徑’其係配置用以接收—表示該直流至直流轉換 器的一輸出電源電位之第—輸人信號,並提供—第—控制信 號; 一第二路徑’其係配置用以接收該[輸人信號,若該内 部隔離開關處於一斷開狀態’該第二路徑提供一第二控制信 號,及 二調節電路’其係配置用以接收該第一及第二控制信號, 右相節電路由該第一控制信號控制,則調節該輸出電源電 位至-第-電位,若該調節電路由該第二控制信號控制,則 凋即該輸出電源電位至一第二電位。 2. =睛求項1之直流至直流控制器,其中該輸出電源電位係一輸 出電壓電位’該第一電位係一第一輸出 位係-第二輸出電壓電位。 J-電· 3. 如請求項2之直流至直流控制器,其中該電池系統包括一具最 2池電壓電位之電池,且其中該第二輸出電壓電位係在該 池電壓電位之一預定範圍内,從而當該内部隔離開關 =亥斷開狀態切換到一閉合狀態時,防止該汤入電流超出一 固預定可接受之湧入電流電位。 明求項2之直流至直流控制器,其中該電池系統包括一且有 小電池電壓電位之電池,且其中該第二輸出電壓電位:於 1247468 5. :该最小電池電壓電位’從而當該内部隔離開關自該斷 汗、匕切換到一閉合狀態時消除該湧入電流。 月求項1之直流至直流控制器,該直流至直流控制器進一步 包括-開關狀態檢測電路’其檢測該内部隔離開關之狀態, 並提供—表示該内部隔離開關狀態之開關狀態控制該 第二路徑。 6. =求項5之直流至直流控制器,其中該輸出電源電位係一該 直流至直流轉換器之輸出電壓電位,且其中該開關狀態檢測 •括帛t匕較器,其比較一表示該直流至直流轉換器 ㈣=電壓電位之第-比較信號及_表示該直流至直流轉換 器預定最大電壓電位之第二比較信號;若該第一比較信號大 於该第二比較信號,則該開關狀態檢測電路產生表示該内部 隔離開關之該斷開狀態之該開關狀態控制信號。 7·如7求項丨之直流至直流控制器,其中該輸出電源電位係一該 直流至直流轉換器之輸出電壓電位,該第二電位係一第二輸 出電壓1:位’且其中該第二路徑進_步包括—比較器,其接 收表示違直流至直流轉換器該輸出電壓電位之第一比較信 唬及表不該第二輸出電壓電位之第二比較信號,從而當該 内部隔離開關處於該斷開狀態時,驅動該輸出電壓電位至該 第二電壓電位。 8.如#求項1之直流至直流控制器,其中該調節電路包括一提供 脈寬調變控制信號之脈寬調變電路。 9· 一種電子裝置,其包括: 929〇〇-94〇7(^。。電池系統,其包括一可充電電池及一與該可充電電池耦 1247468 合之内部隔離電池開關; 之輪=直流轉換器’其係配置用以接收-來自直流電源 :源電位’並提供一輪出電源電位至該電 而對該可充電電池充電;及 攸 一直流至直流控制器,1 ^ 哕 控制一自该直流至直流轉換器到 ^池糸統之汤人電流,該直流至直流控制器包括: 第=路#係配置用以接收一表示該輸出電源電位之 第一_輪入信號的,並提供一第一控制信號,· 部::二路徑’其係配置用以接收該第-輸入信號,若該内· :離電池開關處於一斷開狀態,該第二路徑提 制信號;及 一調節電路,其係配置心接收該第—和第二控制信號, 周節電路由該第-控制信號控制,則調節該輸出電源電 若該調節電路由第二控制信號控制,則調 卽該輸出電源電位至一第二電位。 ίο. 11. 12. 92900· 士 -月求項9之電子裝置’其中該輪出電源電位係一輸出電壓電 位,該第-電位係一第一輸出電壓電位且該第二電位係一第 二輸出電壓電位。 如請求項U)之電子裝置,其中該可充電電池具—最小電池電 Μ電位^中該第二輸㈣壓電位係在該最小電池電壓電位 之預疋祀圍内,從而當該内部隔離電池開關自該斷開狀態 切換到-Ρ4合狀態時,防止_人電流超出―騎可接受之 湧入電流電位。 •9tlf項10之電子裝置’3其中該可充電電池具一最小電池電 1247468 =電位’其中該第二輸出電壓電位小於或等於該最小電池電· 壓電位,從而當該内部隔離電池開關自該斷開狀態切換到一. 閉合狀態時消除該湧入電流。 13·如請求項9之電子裝置’其中該直流至直流控制器進一步包括 一開關狀態檢測電路,其配置用以檢測該内部隔離電池開關 之狀態’並提供一表示該内部隔離電池開關狀態之開關狀態 控制信號至該第二路徑。 “ 14·如明求項13之電子裝置’其中該輸出電源電位係一該直流至 直流控制器之輸出電壓電位’且其中該開關狀態檢測電路包 括•第一比較器’其比較一表示該直流至直流控制器該輸出 電壓電位之第-比較信號及—表示該直流至直流轉換器之— 預定最大電壓電位第二比較信號,若該第一比較信號大於該 第二比較信號,則該開關狀態檢測電路產生表示該斷開狀態 之該開關狀態控制信號。 K如tf求項9之電子裝置’其中該輸出電源電位係該直流至直流 轉換器之一輸出電壓電位,且該第二電位為一第二輸出電壓 電位’且其中該第二路徑進-步包括一比較器,其係配置用 以接收-表示該直流至直流轉換器該輸出電壓電位之第一比 較信號及一表示該第二輸出電壓電位之第二比較器,從而當 該内部隔離電池開關處於該斷開狀態時,驅動該輸出電壓電 位至該第二電壓電位。 16· —種電子裝置,其包括: 一電池系統’其包括-可充電電池及—與該可充電電池柄 合之内部電池開關; 92900-940707.doc ^ Λ ^ 1247468 一直流至直流轉換器,其係配置用以接收一來自直流電源 之輸入電源電位,並提供一輸出電源電位至該電池系統,從 而對該可充電電池充電;及 一直流至直流控制器,其係配置用以根據該内部電池開關 之狀態控制該直流至直流轉換器。 .士叫求項16之電子裝置,其中當該内部開關斷開時,該直流 ^直流控制器提供-_斷開控制信號至該直流至直流轉換 益其中该直流至直流轉換器回應該開關斷開控制信號,從 而在該直流至直流轉換器之輸出產生-預定輸出電壓電位。 18.如請求項16之電子I置’其中該預定輸出電壓電位係在一該 可充電電池最小電壓電位之敎範圍内,從而當該内部電池 開關自-斷開狀態切換到一閉合狀態時,能控制自該直流至 直流轉換器到該可充電電池之湧入電流。 19·如:求項16之電子裝置’其中該預定輸出電麼電位等於或小 於-該可充電電池之最小電壓電位,從而當該内部電池開關 自-斷開狀態切換到一閉合狀態時,能消除 轉換器到該可充電電池之渴入電流。 直抓 I電自一直流至直流轉換器到含有一内部電池隔離開關 電池糸統之湧入電流之方法’該方法包括: 檢測該内部電池隔離開關之狀態;及 =部=開關處於一斷開狀態時,調節該直流至直流 轉換益之一輸出電壓電位至一預定輸出電磨電位,盆中 定,出電壓電位係在該電池系統可充電電池之一最:電㈣ 麵::圍内’從而當該内部5電池開關自該斷開狀態切換到一閉 1247468 合狀態時,能控制自該直流至直流轉換器到該 J兄電電 >也之 湧入電流。。 21 如請求項20之方法,其中該預定輸出電壓電位等於哎小於一 該電池系統可充電電池之最小電壓電 ' 開關自該斷開狀態切換到一閉合 内。p電池 亩、、古錄拖00 〜、寺,能消除自該直流5 直Μ轉換裔到該可充電電池之湧入電漭 罝/;IL至1247^^^2786 Patent Application Replacement of Chinese Patent Application (July 1994) X. Application Patent Range: Λ ; 1. Kind of DC to DC Controller 'It is used for control - from DC to DC converter a soup input current to a battery system including an internal isolation switch, the DC to DC controller comprising: - a first path configured to receive - a first output of an output power potential of the DC to DC converter a human signal, and providing a -th control signal; a second path 'which is configured to receive the [input signal, if the internal isolation switch is in an open state], the second path provides a second control signal, And the second adjusting circuit is configured to receive the first and second control signals, and the right phase node circuit is controlled by the first control signal, and the output power potential is adjusted to a -first potential, if the adjusting circuit is configured by the first When the control signal is controlled, the output power potential is turned to a second potential. 2. = DC to DC controller of claim 1, wherein the output power supply potential is an output voltage potential 'the first potential is a first output level - a second output voltage potential. J-Electrical 3. The DC-to-DC controller of claim 2, wherein the battery system comprises a battery having a voltage potential of a maximum of two cells, and wherein the second output voltage potential is within a predetermined range of the voltage potential of the cell Therefore, when the internal isolation switch = the off state is switched to a closed state, the inrush current is prevented from exceeding a predetermined predetermined inrush current potential. The DC to DC controller of claim 2, wherein the battery system comprises a battery having a small battery voltage potential, and wherein the second output voltage potential is: 1247468 5. : the minimum battery voltage potential 'and thus the internal The isolating switch eliminates the inrush current when the disconnected sweat or sputum is switched to a closed state. The DC-to-DC controller of claim 1, wherein the DC-to-DC controller further includes a -switch state detection circuit that detects the state of the internal isolation switch and provides - a switch state indicating the internal isolation switch state to control the second path. 6. = DC to DC controller of claim 5, wherein the output power supply potential is an output voltage potential of the DC to DC converter, and wherein the switch state detection includes a comparator, the comparison of which indicates The DC-to-DC converter (4)=the first-comparison signal of the voltage potential and the second comparison signal indicating the predetermined maximum voltage potential of the DC-to-DC converter; if the first comparison signal is greater than the second comparison signal, the switch state The detection circuit generates the switch state control signal indicative of the open state of the internal isolation switch. 7. The DC to DC controller of claim 7, wherein the output power potential is an output voltage potential of the DC to DC converter, and the second potential is a second output voltage 1: bit 'and wherein the The second path includes a comparator that receives a first comparison signal indicating the output voltage potential of the DC to DC converter and a second comparison signal indicating the second output voltage potential, thereby the internal isolation switch In the off state, the output voltage potential is driven to the second voltage potential. 8. The DC to DC controller of claim 1, wherein the adjustment circuit comprises a pulse width modulation circuit that provides a pulse width modulation control signal. 9. An electronic device comprising: 929 〇〇 - 94 〇 7 (b. battery system comprising a rechargeable battery and an internal isolated battery switch coupled to the rechargeable battery 1247468; wheel = DC conversion The device 'is configured to receive - from the DC power source: source potential' and provide a round of power supply potential to the electricity to charge the rechargeable battery; and 攸 flow to the DC controller, 1 ^ 哕 control one from the DC To the DC converter to the pool of the soup current, the DC to DC controller comprises: a = #路系系系 configured to receive a first _ wheeling signal indicating the output power potential, and provide a a control signal, a portion: a second path 'is configured to receive the first input signal, if the inner: is in an off state from the battery switch, the second path is to raise a signal; and an adjustment circuit, The system is configured to receive the first and second control signals, and the peripheral circuit is controlled by the first control signal, and the output power is adjusted. If the adjustment circuit is controlled by the second control signal, the output power is adjusted. To a second potential. ίο. 11. 12. 92900·士月月9的电子装置' wherein the power supply potential is an output voltage potential, the first potential is a first output voltage potential and the first The second potential is a second output voltage potential, such as the electronic device of claim U), wherein the rechargeable battery device - the minimum battery power potential ^ in the second (four) piezoelectric position is at the minimum battery voltage potential Within the circumference, when the internal isolation battery switch is switched from the off state to the -4 state, the _person current is prevented from exceeding the acceptable inrush current potential. • 9tlf item 10 of the electronic device '3 where the rechargeable battery has a minimum battery power 1247468 = potential 'where the second output voltage potential is less than or equal to the minimum battery power · piezoelectric position, so that when the internal isolation battery switch The off state is switched to a closed state to eliminate the inrush current. 13. The electronic device of claim 9, wherein the DC to DC controller further comprises a switch state detection circuit configured to detect a state of the internal isolated battery switch and provide a switch indicating the internal isolation battery switch state A status control signal to the second path. [14] The electronic device of claim 13, wherein the output power potential is an output voltage potential of the DC to DC controller and wherein the switch state detection circuit comprises: a first comparator, wherein the comparison indicates a DC a first comparison signal to the output voltage potential of the DC controller and - a predetermined maximum voltage potential second comparison signal of the DC to DC converter, if the first comparison signal is greater than the second comparison signal, the switch state The detection circuit generates the switch state control signal indicating the off state. K, as in tf, the electronic device of claim 9 wherein the output power supply potential is one of the DC to DC converter output voltage potentials, and the second potential is one a second output voltage potential 'and wherein the second path further comprises a comparator configured to receive a first comparison signal indicative of the output voltage potential of the DC to DC converter and a representation of the second output a second comparator of a voltage potential to drive the output voltage potential when the internal isolation battery switch is in the off state The second voltage potential is an electronic device comprising: a battery system comprising: a rechargeable battery and an internal battery switch combined with the rechargeable battery handle; 92900-940707.doc ^ Λ ^ 1247468 a DC-to-DC converter configured to receive an input power potential from a DC power source and provide an output power potential to the battery system to charge the rechargeable battery; and to flow to the DC controller The electronic device configured to control the DC to DC converter according to the state of the internal battery switch. The electronic device of claim 16 wherein the DC switch provides a -_disconnect control signal when the internal switch is turned off Up to the DC to DC conversion benefit, wherein the DC to DC converter should switch the switch off control signal to generate a predetermined output voltage potential at the output of the DC to DC converter. 18. The electron I of claim 16 is set to ' Wherein the predetermined output voltage potential is within a range of a minimum voltage potential of the rechargeable battery, such that when the internal battery switch is self-disconnected When the state is switched to a closed state, the inrush current from the DC to DC converter to the rechargeable battery can be controlled. 19. The electronic device of claim 16, wherein the predetermined output potential is equal to or less than - The minimum voltage potential of the rechargeable battery, so that when the internal battery switch is switched from the open state to the closed state, the thirst current of the converter to the rechargeable battery can be eliminated. The method of injecting current into an internal battery disconnecting switch battery system includes: detecting the state of the internal battery disconnecting switch; and adjusting the DC to DC converting benefit when the switch is in an open state One of the output voltage potentials to a predetermined output electric grinder potential, the pot is set, and the output voltage potential is one of the most rechargeable batteries in the battery system: electric (four) surface:: encircling 'so that when the internal 5 battery switch is off When the on state is switched to a closed state of 1247468, it is possible to control the inrush current from the DC to DC converter to the J electric power. . The method of claim 20, wherein the predetermined output voltage potential is equal to 哎 less than a minimum voltage of the rechargeable battery of the battery system. The switch is switched from the open state to a closed state. p battery acre, ancient record tow 00 ~, temple, can eliminate the conversion from the DC 5 straight to the rechargeable battery into the electricity 漭 /; IL to 92900-940707.doc92900-940707.doc
TW93112786A 2003-05-08 2004-05-06 DC to DC controller with inrush current protection TWI247468B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/431,815 US7203048B2 (en) 2002-10-24 2003-05-08 DC to DC controller with inrush current protection

Publications (2)

Publication Number Publication Date
TW200507397A TW200507397A (en) 2005-02-16
TWI247468B true TWI247468B (en) 2006-01-11

Family

ID=34375160

Family Applications (2)

Application Number Title Priority Date Filing Date
TW93207071U TWM261910U (en) 2003-05-08 2004-05-06 DC to DC controller with inrush current protection
TW93112786A TWI247468B (en) 2003-05-08 2004-05-06 DC to DC controller with inrush current protection

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW93207071U TWM261910U (en) 2003-05-08 2004-05-06 DC to DC controller with inrush current protection

Country Status (2)

Country Link
CN (2) CN100367594C (en)
TW (2) TWM261910U (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100367594C (en) * 2003-05-08 2008-02-06 美国凹凸微系有限公司 DC to DC controller with inrush current protection
KR101518162B1 (en) * 2011-06-13 2015-05-06 미쓰비시덴키 가부시키가이샤 Elevator control device
CN103023349B (en) * 2011-09-26 2015-07-29 光宝电子(广州)有限公司 Interchange turns direct current adaptive device and adaptive voltage output intent
CN108307651B (en) * 2015-06-26 2019-12-24 三菱电机株式会社 Air conditioning apparatus
US11056896B2 (en) 2016-10-12 2021-07-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Terminal and device
RU2727724C1 (en) 2017-04-07 2020-07-23 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Wireless charging device and method, and device to be charged
CN109417308B (en) 2017-04-07 2023-06-20 Oppo广东移动通信有限公司 Wireless charging system, device and method and equipment to be charged
EP3462565B1 (en) 2017-04-13 2021-02-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Device to be charged and charging method
CN109782087B (en) * 2018-12-28 2021-07-27 Oppo(重庆)智能科技有限公司 Test platform and test method of electronic device
CN109873561A (en) * 2019-04-15 2019-06-11 苏州浪潮智能科技有限公司 A kind of the energy utilization circuit and electronic equipment of overshoot voltage

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5698964A (en) * 1995-10-20 1997-12-16 Dell Usa, L.P. Adaptive power battery charging apparatus
US6184660B1 (en) * 1998-03-26 2001-02-06 Micro International, Ltd. High-side current-sensing smart battery charger
CN100367594C (en) * 2003-05-08 2008-02-06 美国凹凸微系有限公司 DC to DC controller with inrush current protection

Also Published As

Publication number Publication date
CN100367594C (en) 2008-02-06
TW200507397A (en) 2005-02-16
CN2741264Y (en) 2005-11-16
CN1551444A (en) 2004-12-01
TWM261910U (en) 2005-04-11

Similar Documents

Publication Publication Date Title
TWI327807B (en) Replaceable battery pack, information handling system and method of charging battery cells
US6456049B2 (en) Power supply device and information processing apparatus providing a stable power supply
KR101041730B1 (en) Voltage converter with combined capacitive voltage divider, buck converter and battery charger
TWI271016B (en) Power management system, the apparatus and the method thereof
US6998820B2 (en) Li-ion/Li-polymer battery charger configured to be DC-powered from multiple types of wall adapters
US20090033289A1 (en) Voltage converter with combined buck converter and capacitive voltage divider
JP3848239B2 (en) Battery charging method, battery charging circuit, and portable electronic device having battery
US20150069958A1 (en) Battery charger with buck-boost operation
US20100127666A1 (en) Multiple mode battery charger
TW200421689A (en) Power management topologies
EP1440503A1 (en) Dual input ac/dc/battery operated power supply
TWI247468B (en) DC to DC controller with inrush current protection
TW201212478A (en) Power control systems, apparatus, and methods
US7402981B2 (en) Method and apparatus to perform battery charging using a DC-DC converter circuit
TWI288322B (en) An electrical device with adjustable voltage
JP2013099040A (en) Charging circuit and electronic equipment using the same
US6967468B2 (en) Overvoltage and backflow current protection for a battery charger
WO2005076099A1 (en) Enabling circuit for avoiding negative voltage transients
US7203048B2 (en) DC to DC controller with inrush current protection
JP2006262610A (en) Power supply circuit
JP2013132184A (en) Charging circuit and electronic equipment using the same
TWI278737B (en) Limited current circuit and computer system using the same
JP5843589B2 (en) Charging circuit and electronic device using the same
EP2430739A1 (en) Dc-dc converter for the control of a battery charge current in portable electronic devices
JP2004215464A (en) Electronic apparatus