TWI332151B - System and method for clock signal synchronization - Google Patents

System and method for clock signal synchronization Download PDF

Info

Publication number
TWI332151B
TWI332151B TW94134435A TW94134435A TWI332151B TW I332151 B TWI332151 B TW I332151B TW 94134435 A TW94134435 A TW 94134435A TW 94134435 A TW94134435 A TW 94134435A TW I332151 B TWI332151 B TW I332151B
Authority
TW
Taiwan
Prior art keywords
count
clock signal
generating
value
edge
Prior art date
Application number
TW94134435A
Other languages
Chinese (zh)
Other versions
TW200715131A (en
Inventor
Qingjiang Ma
James Y Gao
Yongqing Ren
Original Assignee
Apexone Microelectronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apexone Microelectronics Ltd filed Critical Apexone Microelectronics Ltd
Priority to TW94134435A priority Critical patent/TWI332151B/en
Publication of TW200715131A publication Critical patent/TW200715131A/en
Application granted granted Critical
Publication of TWI332151B publication Critical patent/TWI332151B/en

Links

Description

1332151 九、發明說明: 【發明所屬之技術領域】 本發明一般涉及用於信號校準的系統和 •々法,更且體地 ’涉及用於在資料通信中將震盪器的時鐘 " ▽题t號鎖定到資料 流程的系統和方法。 【先前技術】 常規的資料通信電路需要精確定時部件以給經由信號傳 輸匯流排連接到主機的外部設備提供參考頻率時於彳1號 這種通信電路中的精確定時部件通常包括晶體震盪^件。 基於内部的計時器調整晶體震盈元件的時鐘信號以^時鐘 信號與來自主機的輸入資料流程匹配。通常,計時器中的里 鎖相回路(phase lock 1〇叩,縮寫為PLL)或延時鎖定回 路(delay lock loop,縮寫為DLL)具有通過資料修整( data training)、相移、相位選擇等來調整和鎖定時鐘信 號的功能。晶體震盪器很昂貴。基於内部的計時器通常^ 要長修整序列來調整PLL或DLL,這種長修整序列可能不適 用於現代應用,諸如通用串列匯流排(USB)應用。 另-種用於料鐘信號鎖定到輸人資料流程的方法包括 由電流控制震盪器(ICO)或電壓控制震盪器(vc〇)生成 時鐘信號’分析至少兩個週期中的輸入資料流程的速率以 生成兩個或多個控制信號,然後回應於控制信號調整時鐘 信號的頻率。調整時鐘信號的頻率以類比方式操作,並且 -般包括至少兩個步帮··粗調步帮以及隨後的微調步驟。 1332151 或⑽疋兩要大日曰另面積的特定用途積體電 ,所以增加了通信電路的成本。該類比多步驟, 慢且複雜。類比調整電路的性 "祆緩 此勿又過私和溫度轡 呈, 響。可能需要複雜的處理和電路 的衫 整過程的性能和可靠性。 方案來心變化和提高調 因此’擁有一個節約成本的备 • 奉的系統和一個用於使時鐘信號1332151 IX. Description of the Invention: [Technical Field] The present invention generally relates to a system for signal calibration and a method of 'involving a clock for an oscillator in data communication" The system and method of locking to the data flow. [Prior Art] A conventional data communication circuit requires a precise timing component to provide a reference frequency to an external device connected to the host via a signal transmission bus. The precise timing component in the communication circuit typically includes a crystal oscillator. The clock signal of the crystal shock component is adjusted based on the internal timer to match the input signal flow from the host with the clock signal. Usually, the phase lock loop (phase lock 1〇叩, abbreviated as PLL) or delay lock loop (DLL) in the timer has data training, phase shift, phase selection, etc. The function of adjusting and locking the clock signal. Crystal oscillators are expensive. Internally based timers typically have a long trim sequence to adjust the PLL or DLL. This long trim sequence may not be suitable for modern applications such as Universal Serial Bus (USB) applications. Another method for locking the clock signal to the input data flow includes generating a clock signal by a current controlled oscillator (ICO) or a voltage controlled oscillator (vc〇) to analyze the rate of the input data flow in at least two cycles. To generate two or more control signals, and then adjust the frequency of the clock signal in response to the control signal. The frequency of the clock signal is adjusted to operate in an analogous manner, and generally includes at least two steps, a coarse adjustment step, and a subsequent fine adjustment step. 1332151 or (10) 疋 要 要 要 要 曰 曰 曰 曰 曰 曰 曰 曰 曰 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定This analogy is multi-step, slow and complex. Analogy adjusts the nature of the circuit "Relieve this, and do not over-private and temperature 呈 ,, rang. Complex processing and circuit performance and reliability may be required. The program changes its mind and raises the tone. So there is a cost-effective system and a clock signal.

與資料信號校準的過程將是右刹 J ^ 竹疋有利的。人們期望系統簡單且 石夕區域咼效。人們還期望校準 x早過私快逮且可靠。系統和過 程不易受晶片製造過程和择 的 τ诔作條件的變化的影響也是有利 【發明内容】 本發明為解決上述問題,提出一種用於時鐘信號校準 的系統(101),其包括資料分析器(1⑷以及連接到Rc 震盈器(1G3)的校準時鐘信號發生器(1G5)。資料分析器 (104)生成數位控制信號,該數位控制信號表示RC震盪器 (103 )的參考i说在輸入權杖包的八位週期中的週期數。 校準信號時鐘發生器(1〇5)使用數位控制信號來將時鐘信 號鎖定到與權&包具有相同位元速帛的資訊包。 【實施方式】 下面參照附圖描述本發明的多個實施例’附圖中用相同 參考標號表示圖中相似結構或功能的部分。應該注意,附 圖的目的僅僅是幫助描述本發明的優選實施例。它們的目 1332151 的不是無遺漏地描述本發明或對本發明的範圍加以限制。The process of calibrating with the data signal will be beneficial to the right brake J ^ bamboo raft. People expect the system to be simple and the Shixi area to be effective. It is also expected that calibration x will be caught early and reliable. It is also advantageous for the system and the process to be unaffected by changes in the wafer manufacturing process and the selected conditions. SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and a system (101) for clock signal calibration is provided, which includes a data analyzer. (1(4) and a calibration clock signal generator (1G5) connected to the Rc shaker (1G3). The data analyzer (104) generates a digital control signal indicating that the reference of the RC oscillator (103) is at the input The number of cycles in the eight-bit cycle of the token package. The calibration signal clock generator (1〇5) uses the digital control signal to lock the clock signal to a packet of the same bit rate as the weight & package. The various embodiments of the present invention are described with the The present invention is not intended to be exhaustive or to limit the scope of the invention.

圖1是示出根據本發明的精確定時部件或時鐘信號校準 系統101的結構圖。舉例來說,圖1示出系統101是通用串列 匯流排(USB)設備100的一部分且用於生成與從主機(圖j 中未示出)經由USB匯流排110接收到的資訊包校準的時鐘 信號《在圖1中,元件102表示USB設備100的不同於時鐘信 號校準系統101的部分。元件1〇2,其也被稱作資料處理元 件’可以包括USB控制電路和USB設備100的其他部件。USB 控制電路,其有時也被稱作USB驅動器,用於控制在主機與 外部或從屬設備(例如USB設備100)之間經由USB匯流排11〇 的資料傳送。 USB設備1〇〇可以是經由USB匯流排110與主機通信的任何 類型的設備。USB設備1 〇〇的例子包括但不局限於:用於移 動在主電腦螢幕上的游標和向主電腦發出命令的USB滑鼠 、USB存儲設備(例如,USB硬碟驅動器、USB CD_R〇M、USB 可重寫CD、USB可重寫DVD、USB閃速記憶體等)、USB多媒體 設備(例如,USB CD播放器、USB DVD播放器、USB MP3播 放器等)。USB匯流排11〇連接在USB設備1〇〇與主機或主設備 之間。如本技術領域所公知的,USB匯流排11()包括四條導 線或電線,其中兩條是資料傳輸(D+ )線Π2和互補資料傳 輸(D-)線114,另兩條是電源線J丨5和地線丨丨7。根據本發 明的一實施例,時鐘信號校準系統1〇1構建在實現USB設備 100的部分或全部功能的積體電路晶片上。 時鐘信號校準系統101包括用作參考信號發生器的震盪 7 器103、資料序列分析器1〇4、以及校準時鐘信號發生器1〇5 。根據本發明,震盪器1 〇3提供參考頻率信號給資料序列分 析器104和校準時鐘信號發生器1〇5。資料序列分析器ι〇4 識別和分析輸入資料流程以及生成數位控制信號。回應於 來自資料序列分析器1〇4的數位控制信號和來自震盪器1〇3 的參考頻率信號,時鐘信號發生器1〇5生成與輸入資料流程 校準或鎖定到輸入資料流程的時鐘信號。在一具體實施例 中’ #號發生器1〇5包括如圖1所示的計數器1〇6和1〇8。下 文將參照圖3和圖4描述根據本發明的優選實施例的資料信 號序列分析器104和校準時鐘信號發生器1 的操作。 根據本發明的優選實施例,震盪器103是生成固定頻率信 號的阻容(RC)震盪器。與其他類型的震盪電路諸如晶體 震盪器、ICO、VC0等相比’ RC震盪器1〇3簡單且便宜。而且 ,RC震盪器1〇3足跡(f00i: print)很小,即它的矽區域很 高效。應該提到,雖然震盪器1〇3此處被描述為阢震盪器, 但目的不是為了對本發明的範圍進行限制。根據本發明, 其他類型的時鐘源,例如,另一晶片上的時鐘、晶體震盪 器、陶瓷震盪器、ICO、VC0等也可以作為系統101中的震盪 器 103。 圖2是不出根據本發明的USB通信協議中權杖包2〇〇的時 序圖。舉例來說,圖2示出根據USB 1.1版本協定在低速資 料傳輸過程中權杖包的前十位。對於USB丨版本協議中全 速資料傳輪,D +和D-線上的電壓電平與圖2所示的電壓電平 相反。權杖包200的前八位形成校準(sync )欄位,最後兩 13321511 is a block diagram showing a precision timing component or clock signal calibration system 101 in accordance with the present invention. For example, FIG. 1 illustrates system 101 being part of a universal serial bus (USB) device 100 and for generating a packet calibration that is received from a host (not shown in FIG. j) via USB bus 110. Clock Signal "In Figure 1, component 102 represents a portion of USB device 100 that is different from clock signal calibration system 101. Element 1 〇 2, which is also referred to as a data processing element 'may include USB control circuitry and other components of USB device 100. A USB control circuit, sometimes referred to as a USB drive, is used to control the transfer of data between the host and an external or slave device (e.g., USB device 100) via the USB bus. The USB device 1 can be any type of device that communicates with the host via the USB bus 110. Examples of USB devices 1 include, but are not limited to, a USB mouse for moving a cursor on the main computer screen and a command to the host computer, such as a USB hard disk drive, USB CD_R〇M, USB rewritable CD, USB rewritable DVD, USB flash memory, etc.), USB multimedia devices (eg USB CD player, USB DVD player, USB MP3 player, etc.). The USB bus 11 is connected between the USB device 1 and the host or the host device. As is known in the art, the USB busbar 11() includes four wires or wires, two of which are data transmission (D+) line Π2 and complementary data transmission (D-) line 114, and the other two are power lines J 丨5 and the ground line 丨丨 7. In accordance with an embodiment of the present invention, the clock signal calibration system 101 is built on an integrated circuit wafer that implements some or all of the functions of the USB device 100. The clock signal calibration system 101 includes an oscillating device 103 serving as a reference signal generator, a data sequence analyzer 1-4, and a calibrated clock signal generator 〇5. In accordance with the present invention, oscillator 1 提供 3 provides a reference frequency signal to data sequence analyzer 104 and calibration clock signal generator 〇5. The data sequencer ι〇4 identifies and analyzes the input data flow and generates digital control signals. In response to the digital control signal from the data sequencer 1〇4 and the reference frequency signal from the oscillator 1〇3, the clock signal generator 1〇5 generates a clock signal that is calibrated or locked to the input data flow. In a specific embodiment, the ## generator 1〇5 includes counters 1〇6 and 1〇8 as shown in FIG. The operation of the material signal sequence analyzer 104 and the calibration clock signal generator 1 in accordance with a preferred embodiment of the present invention will now be described with reference to Figs. In accordance with a preferred embodiment of the present invention, oscillator 103 is a resistive capacitance (RC) oscillator that generates a fixed frequency signal. The RC oscillator 1〇3 is simple and inexpensive compared to other types of oscillating circuits such as crystal oscillators, ICO, VC0, and the like. Moreover, the RC oscillator 1〇3 footprint (f00i: print) is small, that is, its 矽 area is very efficient. It should be mentioned that although the oscillator 1〇3 is described herein as a helium oscillator, it is not intended to limit the scope of the invention. Other types of clock sources, such as clocks on other wafers, crystal oscillators, ceramic oscillators, ICO, VC0, etc., can also be used as the oscillator 103 in system 101 in accordance with the present invention. Fig. 2 is a timing chart showing the scepter pack 2 in the USB communication protocol according to the present invention. For example, Figure 2 shows the top ten bits of the token package during low speed data transfer in accordance with the USB 1.1 version protocol. For the full-speed data transfer in the USB丨 version protocol, the voltage levels on the D+ and D- lines are opposite to the voltage levels shown in Figure 2. The first eight digits of the scepter pack 200 form a calibration (sync) field, and the last two 1332151

位是權杖包200的資訊包識別字(pid)欄位部分。 D+線上的權杖包2〇〇的前十位是1〇1 〇101110。圖2還示出 對應於這樣數值的波210。波210中的沿代表權杖包200中位 值的變化。波210的上升沿201、203、205、和207對應D + 線上從低到高變化的電壓電平或從〇到1變化的位值。同樣 地,波210的下降沿202、204、206、和208對應D +線上從高The bit is the packet identification word (pid) field portion of the token pack 200. The top ten digits of the 2nd scepter pack on the D+ line are 1〇1 〇101110. Figure 2 also shows a wave 210 corresponding to such a value. The edge in wave 210 represents a change in the bit value in the token pack 200. The rising edges 201, 203, 205, and 207 of the wave 210 correspond to a voltage level that changes from low to high on the D+ line or a bit value that changes from 〇 to 1. Similarly, the falling edges 202, 204, 206, and 208 of the wave 210 correspond to the D+ line from high.

到低變化的電壓電平或從丨到〇變化的位值。在主機傳送權 杖包200之前,USB設備1〇〇處於空閒狀態,其中,d +線上 的電壓為對應於〇位元值的低電平,以及£)_線上的電壓為對 應於1位元值的高電平。波210中的上升沿201指示權杖包 200的到來。 圖3是示出根據本發明的用於數位化地分析資訊包的過 程300的流程圖。舉例來說,可以在資料序列分析器1 中 執行為料分析過程300,為如圖1所示時鐘信號發生器1 〇5 生成數位控制信號。To a low-varying voltage level or a bit value that varies from 丨 to 〇. Before the host transmits the token pack 200, the USB device 1 is in an idle state, wherein the voltage on the d + line is a low level corresponding to the value of the clamp bit, and the voltage on the line on the £ _ corresponds to 1 bit The value is high. A rising edge 201 in wave 210 indicates the arrival of the token pack 200. 3 is a flow chart showing a process 300 for digitally analyzing a packet of information in accordance with the present invention. For example, the material analysis process 300 can be performed in the data sequence analyzer 1 to generate a digital control signal for the clock signal generator 1 〇 5 as shown in FIG.

同時參照圖1、圖2和圖3 ’當第一次加電時,元件1 〇2傳 送重疋彳&號給資料序列分析器1 〇 4和校準時鐘信號發生器 105。在USB協議中,通過設置和D-線上電壓電平都為低 持續預定週期例如10毫秒(ms )來表示重定信號。回應於 重定信號,資料序列分析器1〇4在步驟301進行初始化。一 旦完成初始化,資料序列分析器1〇4就將數位控制信號設置 為預定的初始值。根據一具體實施例,數位控制信號有八 位元,預定的初始值為1 28。 在隨後的步驟302中,資料序列分析器1〇4檢測資訊包結 1332151Referring also to Figures 1, 2 and 3', when the first power is applied, component 1 〇 2 transmits the weight & number to data sequence analyzer 1 〇 4 and calibration clock signal generator 105. In the USB protocol, the re-signal is indicated by setting and the voltage level on the D-line is low for a predetermined period of, for example, 10 milliseconds (ms). In response to the re-signal, the data sequence analyzer 1〇4 is initialized in step 301. Once the initialization is completed, the data sequencer 1〇4 sets the digital control signal to a predetermined initial value. According to a specific embodiment, the digital control signal has eight bits and the predetermined initial value is 1 28 . In the following step 302, the data sequence analyzer 1〇4 detects the information packet 1332151

具體實施例,E0P由USB 束(ΕΟΡ )信號。根據本發明的一 匯流排上D+和D-線上的電壓電平在預定週期内例如等於或 大於一位週期的週期内都保持為低來指示。在E〇p信號之後 ,USB匯流排-般進入空閒狀態,等待主機發出資訊包。In a specific embodiment, the EOP is signaled by a USB bundle (ΕΟΡ). The voltage levels on the D+ and D- lines on a bus bar according to the present invention are indicated to remain low during a predetermined period, e.g., equal to or greater than one bit period. After the E〇p signal, the USB bus goes into an idle state and waits for the host to send a packet.

當處於空間狀態時n驟303中資料序列分析器1〇4檢 測輸入包(incoming packet)。根據本發明的優選實施例 ,輸入包的開始由U S B匯流排的D+和D _線上電壓電平的變化 來指示。例如,波200中的上升沿2〇1 (圖2所示)表示D + 線中電壓電平從低到高的變化以及指示輸入包。 在檢測到輸入包之後,在步驟3〇4中資料序列分析器1〇4 試圖識別資訊包的類型。特別地,在步驟3〇4中資料序列分 析器104驗證輪入包是否是權杖包。在本發明的一具體實施 例中,資料序列分析器104回應資訊包滿足三個預置條件, 來識別輸入包為權杖包。第一個條件是在表示〇+線上的電 壓電平的波210中,第一下降沿(圖2中的沿2〇2)與第二上When in the spatial state, the data sequence analyzer 1〇4 detects the incoming packet. In accordance with a preferred embodiment of the present invention, the beginning of the input packet is indicated by a change in the voltage levels on the D+ and D_ lines of the U S B bus. For example, a rising edge 2〇1 (shown in Figure 2) in wave 200 represents a change in voltage level from low to high in the D+ line and indicates an incoming packet. After detecting the input packet, the data sequence analyzer 1〇4 attempts to identify the type of the information packet in step 3〇4. Specifically, in step 3〇4, the data sequence analyzer 104 verifies whether the round-in package is a token package. In a specific embodiment of the present invention, the data sequence analyzer 104 responds to the information packet to satisfy three preset conditions to identify the input packet as a token package. The first condition is that in the wave 210 representing the voltage level on the 〇+ line, the first falling edge (2 〇 2 in Fig. 2) and the second upper

升沿(圖2中的沿203)之間的持續時間或區間大致等於沿 203與第二下降沿(沿204 )之間的持續時間或區間。第二 個條件是在波210中,第一下降沿(沿2〇2 )與第二下降沿 (/。204 )之間的持續時間大致等於沿204與第三下降沿( 沿206 )之間的持續時間。第三個條件是在波21〇中第一 下降沿(沿202 )與第三下降沿(沿2〇6 )之間的持續時間 大致等於沿206與第四下降沿(沿2〇8 )之間的持續時間。 根據本發明,任何定時信號均可以用於測量持續時間。例 如,在本發明的優選實施例中,使用來自RC震盪器1〇3的參 1332151 考頻率信號用於時間測量。一般而言,參考頻率信號的頻 率越高’時間測量將越精確。根據一優選實施例,如果兩 個持續時間之間的差少於大約百分之十(10% ),則認為它 們大致相等。根據另一優選實施例’如果兩個持續時間之 間的差少於大約百分之五(5% ),則認為它們大致相等。 其他的標準屬於本發明的精神之内’也屬於本發明的範圍 之内。 根據本發明的一實施例,使用來自Rc震盪器1〇3的參考頻 率信號用於在過程300中測量時間和驗證條件。應該明白過 程300不局限於使用此處所述的參照步驟3〇4的條件來識別 輸入包。也可使用其他的方案用於識別輸入包。優選地, 資訊包識別不依賴對應于資訊包的波的第一沿,例如圖2 中的沿2(Π,這是因為資訊包的第一沿常常是不穩定的。 回應于輸入包不是權杖包,則過程3〇〇返回到步驟3〇3, 並等待隨後的輸入包。如果輸入包被識別為權杖包,則過 程300前進到步驟305。在步驟305中,過程⑽給數位控制 信號分配值。根據本發明的—具體實施例,過程剛分配的 值等於由RC震盪器103在權杖包的波21〇中的第一下降沿( 沿202)與第四下降沿(沿m)之間的區間持續時間中°生 成的參考頻率信號的週期數。該時間區間等於權杖包的位 週期的八倍。特別地,該時間區間占從權杖包2 _第二位 第十位的開始的持續時間。在下文參照圖4所述的 校準過程4附,該分配值用於生成與輸人包校準 的時知信號。根據數位控制信號如何用於生成 1332151 號,資料分析過程300在步驟305中可以給數位控制信號分 配不同的值。分配值優選地表示輸入包的資料率與參考頻 率信號之間的關係。另外,分配值優選地不依賴於第一沿 (例如波210中的沿201 )的時間,這是因為它可能是不穩 定的。The duration or interval between the rising edges (edge 203 in Figure 2) is approximately equal to the duration or interval between edge 203 and the second falling edge (along 204). The second condition is that in wave 210, the duration between the first falling edge (along 2〇2) and the second falling edge (/.204) is substantially equal to between edge 204 and the third falling edge (along 206) The duration. The third condition is that the duration between the first falling edge (edge 202) and the third falling edge (along 2〇6) in wave 21〇 is approximately equal to the edge 206 and the fourth falling edge (along 2〇8) The duration between the two. According to the invention, any timing signal can be used to measure the duration. For example, in a preferred embodiment of the invention, the reference 1332151 frequency signal from the RC oscillator 1〇3 is used for time measurement. In general, the higher the frequency of the reference frequency signal, the more accurate the time measurement will be. According to a preferred embodiment, if the difference between the two durations is less than about ten percent (10%), they are considered to be approximately equal. According to another preferred embodiment, if the difference between the two durations is less than about five percent (5%), they are considered to be approximately equal. Other standards are within the spirit of the invention' and are also within the scope of the invention. In accordance with an embodiment of the invention, a reference frequency signal from Rc oscillator 1〇3 is used for measuring time and verify conditions in process 300. It should be understood that the process 300 is not limited to identifying the input packets using the conditions described with reference to steps 3〇4 described herein. Other schemes can also be used to identify incoming packets. Preferably, the packet identification does not depend on the first edge of the wave corresponding to the packet, such as edge 2 in Figure 2 (Π, because the first edge of the packet is often unstable. Responding to the input packet is not right The wand, then process 3〇〇 returns to step 3〇3 and waits for subsequent input packets. If the input packet is identified as a token package, process 300 proceeds to step 305. In step 305, process (10) gives digital control Signal Assignment Value. In accordance with an embodiment of the present invention, the value just assigned by the process is equal to the first falling edge (edge 202) and the fourth falling edge (along m) of the RC oscillator 103 in the wave 21 of the token pack. The number of periods of the reference frequency signal generated during the interval duration. This time interval is equal to eight times the bit period of the token pack. In particular, the time interval occupies the scepter pack 2 _ second digit tenth The duration of the start of the bit is attached to the calibration process 4 described below with reference to Figure 4, which is used to generate a known signal that is calibrated with the input packet. How the digital control signal is used to generate the number 1332151, the data analysis process 300 can be given in step 305 The bit control signals are assigned different values. The assigned value preferably represents the relationship between the data rate of the incoming packet and the reference frequency signal. Additionally, the assigned value preferably does not depend on the time of the first edge (e.g., edge 201 in wave 210) This is because it may be unstable.

在給數位控制信號分配值之後,過程3〇〇返回到步驟3〇2 並等待新輸入包。回應于新輸入包,過程3〇〇重複步驟3〇3 、304和305,以識別資訊包,以及回應于資訊包為權杖包 ,則給數位控制信號分配值。根據本說明書的優選實施例 ’數位控制信號用於使時鐘信號與資料流程校準或鎖定到 資料流程。After assigning a value to the digital control signal, process 3 returns to step 3〇2 and waits for a new incoming packet. In response to the new input packet, the process 3 repeats steps 3〇3, 304, and 305 to identify the information packet, and in response to the information packet as the token package, assigns a value to the digital control signal. In accordance with a preferred embodiment of the present specification, the digital control signal is used to calibrate or lock the clock signal to the data flow to the data flow.

圖4是示出根據本發明的用於數位化地使時鐘信號與資 訊包校準的過程400的流程圖。舉例來說,可以在校準時鐘 信號發生器105中執行過程400,以生成鎖定到經由圖1所示 USB匯流排110從主機發送的資料流程的時鐘信號。根據本 發明的一實施例,過程400通過使用資料序列分析器1〇4的 數位控制信號計算RC震盪器103的參考頻率信號的週期數 ,來數位化地生成與資料流程中的資訊包校準的時鐘信號 。在本發明的優選實施例中,在加電之後啟動過程400。一 旦啟動’就在步驟402中,回應於來自元件1〇2的重定信號 ,將校準時鐘信號發生器105 (圖1所示)中的計數器1〇6 和108初始化且設置為零。初始化之後,從檢測位元值變化 的步驟4 0 3開始重複執行過程4 0 0 ’如圖4所不和下文所述。 在一優選實施例中’過程400的週期時間等於RC震盪器103 1332151 考頻率信號的週期。參考頻率信號的頻率越高 將導致母個單位時間的週期越多和校準越精確。 在狀震盪器103的表考 . ^考么娩的母—週期的開始,過程400 在步驟403中檢查元件ι〇2 lnn a ^ 的仏旎電平,以查看USB設備 疋aL接收或等待來自主機的資訊包。如果_設備⑽ η或㈣主機的資訊包’則過程伽檢測在謂匯流排 110中ΙΗ或D-線上的電壓雷平早 軍十疋否有邊化。當仍6設備正從4 is a flow chart showing a process 400 for digitally calibrating a clock signal with a communication packet in accordance with the present invention. For example, process 400 can be performed in calibration clock signal generator 105 to generate a clock signal that is locked to the flow of data transmitted from the host via USB bus 110 of FIG. According to an embodiment of the invention, the process 400 digitally generates the information packet calibration in the data flow by calculating the number of cycles of the reference frequency signal of the RC oscillator 103 using the digital control signal of the data sequence analyzer 1〇4. Clock signal. In a preferred embodiment of the invention, process 400 is initiated after power up. Once initiated, in step 402, counters 1 〇 6 and 108 in calibration clock signal generator 105 (shown in Figure 1) are initialized and set to zero in response to a reassertion signal from component 1 〇 2. After the initialization, the process 4 0 0 ' is repeated from the step 4 0 3 of detecting the change of the bit value as shown in Fig. 4 and described below. In a preferred embodiment, the cycle time of process 400 is equal to the period of the RC oscillator 103 1332151 test frequency signal. The higher the frequency of the reference frequency signal, the more cycles the parent unit time will be and the more accurate the calibration. At the beginning of the cycle of the oscillator 103, the process 400 checks the 仏旎 level of the component ι〇2 lnn a ^ in step 403 to see if the USB device 疋aL receives or waits for The host's information package. If the _device (10) η or (4) host's information packet' then the process gamma detects whether the voltage on the ΙΗ or D- line in the bus bar 110 is flat or not. While still 6 devices are coming from

主機接收資料流程時電壓電平中 宏电十宁的變化表明輸入資料流程 值的變化。被檢測的位可以是權杖包中的位或資料流 程中權杖包之後的任何其他資訊包中的位元。回應於檢測 到電壓電平的變化’過程彻在步浦〇生成校準時鐘信 2的週期的起始沿’例如上升沿。從而,使時鐘信號中當 月’J週期的起始沿與輸入包中位週期的開始校準或鎖定到輸 入包中位週期的開始。當在步驟4〇4中生成校準時鐘信號的 起始沿之後,過程400返回到步驟4〇2,計數器1〇6和1〇8復 位到零。過程4〇〇準備好下一個週期。 電壓電平不變表明位元值不變。這可對應兩種情況◊第 種情況是從過程400的前一個週期開始的時間推移不等 於輪入包的一位或多位的持續時間,這是因為輸入包中的 連續位可能有相同的位值。第二種情況是USB設備1〇〇正發 送輪出資料流程給主機。回應於此,計數器1〇6和1〇8的計 數在步驟406中加一。在隨後的步驟407中,過程4〇〇檢查計 數器106的計數Cm是否滿足等式(1):The change in the voltage level in the voltage level when the host receives the data flow indicates the change in the value of the input data. The detected bit can be a bit in the token pack or a bit in any other packet after the token pack in the data flow. In response to detecting a change in voltage level, the process proceeds to the beginning of the period of the period in which the calibration clock signal 2 is generated, e.g., the rising edge. Thus, the start of the month 'J cycle of the clock signal is aligned with the start of the bit period of the input packet or locked to the beginning of the bit period of the input packet. After the start of the calibration clock signal is generated in step 4〇4, process 400 returns to step 4〇2, and counters 1〇6 and 1〇8 are reset to zero. Process 4 is ready for the next cycle. A constant voltage level indicates that the bit value does not change. This may correspond to two situations. The first case is that the time lapse from the previous cycle of process 400 is not equal to the duration of one or more bits of the rounded packet, since successive bits in the input packet may have the same Bit value. In the second case, the USB device 1 is sending the data flow to the host. In response to this, the counts of the counters 1〇6 and 1〇8 are incremented by one in step 406. In the subsequent step 407, the process 4 checks whether the count Cm of the counter 106 satisfies the equation (1):

Cl06 =Dx^/8 1332151 弋(1 )中,D疋上面參照圖3所述的過程goo中生 的數位控制信號的值,N是正整數。 不滿足等式⑴的計數Cl06表明從校準時鐘信號 ㈣始的時間推移不等於輸人或輸出資料流程的位週期的° 倍數。回應於此,過程伽在步驟4附檢查校準時鐘 發生器105中計數器1〇8的計數Ci〇8是否滿足等式(2): °』 Ci〇8 = £) /16 ^滿足等式(2)的計數cm表明從校準時鐘信號的起妒 開始的時間推移不等^料流程的位週期的—半。回應 於此,過程400返回到步驟4〇3以進行下一個週期。如果; 數一滿;^式⑺,則意味著從校準時鐘 門Cl06 = Dx^/8 1332151 In 弋(1), the value of the digital control signal generated in the process goo described above with reference to Fig. 3, N is a positive integer. The count Cl06 that does not satisfy equation (1) indicates that the time lapse from the calibration clock signal (4) is not equal to the multiple of the bit period of the input or output data flow. In response to this, the process gamma checks in step 4 whether the count Ci 〇 8 of the counter 1 〇 8 in the calibration clock generator 105 satisfies the equation (2): ° 〇 Ci 〇 8 = £) / 16 ^ satisfies the equation (2) The count cm indicates that the time lapse from the start of the calibration clock signal is not equal to half of the bit period of the process flow. In response thereto, process 400 returns to step 4〇3 for the next cycle. If the number is full; ^ (7), it means from the calibration clock gate

:的時間推移等於資訊包的位元週期的-半。回;二: 過㈣0在步驟412為校準時鐘信號的#前週期生成中 如下降沿。從而’使時鐘信號中週期的中間沿與 =包令位元週期的中點校準或鎖定到資訊包令位元週期 到牛:4。匕成校準時鐘信號的中間沿之後,過程4〇。返回 二雜3以進行下—個週期。在另—實施例中,過程彻 ;括可選的步驟:當在步驟㈣為校準時鐘信號的當前週 ::士中間沿之後以及在返回到步細以進行下 狀則’將計數器108的計數復位為零。 準==Γ7,滿足等式⑴的計數—校 ;! 的起始沿開始的時間推移等於輸入或輸出資料 =的位週期㈣數。回應於此過程例在步驟川為校 蚧鐘信號的當前週期生成結束沿,例如另—上升沿。校 —個週 前職的結束沿也用作校準時鐘信號的下 中重定為裳起始沿。另外,計數器108的計數C1。8在步驟414 隨後在步驟415中,過程刪驗證計數〜是否The time lapse of : is equal to - half of the bit period of the packet. Back; 2: Over (4) 0 In step 412, the # before the cycle of the calibration clock signal is generated as a falling edge. Thus, the intermediate edge of the period in the clock signal and the midpoint of the =bit period are calibrated or locked to the packet order bit period to the cow:4. After the middle edge of the calibration clock signal is calibrated, the process 4〇. Return 2 Miscellaneous 3 for the next cycle. In another embodiment, the process is complete; an optional step is included: when the step (4) is the current week of the calibration clock signal: after the middle edge of the clock and after returning to the step to perform the lower state, the counter 108 is counted. Reset to zero. Quasi-==Γ7, satisfying the count of equation (1)—the time transition of the start of the start of the ;; is equal to the number of bit periods (four) of the input or output data =. In response to this process example, the end of the current cycle of the chime signal is generated at the step of the process, for example, another rising edge. School - Week The end of the predecessor is also used as the starting point for the calibration clock signal. In addition, the counter C1.8 is incremented in step 414 and then in step 415, the process deletes the check count~

田已:滿足了等式⑴時,計數c"6不滿足等式(3 )則 :月從校準時鐘信號的起始沿開始的時間推移不等於資料 Ά的位週期的八倍。回應這種情況,過程400返回到步驟 403以進仃下—個週期。如果a”滿足等式(3),則從校準 時鐘信號的起始沿開始的時間推移等於輸人資料流程的位 、月的\倍回應於此,過程返回到開始步驟402並將 計數器1G6和;!〇8復位為零。在步驟402之後,時鐘信號校準 過程400前進到步驟4G3且為八位元週期的下_週期而重複 應及明白,根據本發明,校準時鐘信號不局限於由上述 的過程來生成。例如,步驟409不局限於驗證計數是否 滿足等式(2)。在另外的實施例中,過程4〇〇在步驟4⑽中 可以驗證數計數器1〇6的計數Cm是否滿足等式(4): (4) (5) ^*106 = Μ /16 或等式(5): C106 =Dx(2M + \)/\β 在等式(4)和(5)中,μ表示整數。在這些可選的實施 例中,校準時鐘信號發生器1〇5僅僅需要一個計數器,例如 計數器106。 1332151 " 另外’上面參照圖3所述的過程300不局限於將數位控制 L號的值D s又置為由震堡器1〇3在等於輸入權杖包的八個位 - 週期的持續時間内所生成的參考頻率信號的週期數。可將 數位控制信號的值D設置為等於由震盪器1〇3在等於輸入權 杖包的任意數量的位週期的持續時間内所生成的參考頻率 仏號的週期數。一般地,大值D優選地用於高精度的校準。 如上面參照圖2和圖3所述,時間的開始優選地不對應第一 位的開始’這是因為它可能不穩定。限制持續時間的結束 • I得其不超過權杖包的第十位也是優選的。這是因為權杖 包的前十位被預定並且在USB協議中容易識別。因此,八位 週期的持續時間由於它的大1)值、容易識別以及容易對是 • — 四、八、十六等的倍數的數進行二進位操作,從而是 . 優選的。 此處所述的過程4〇〇中生成的校準時鐘信號被鎖定到USB 〇又備100的70件102上的資料流程。校準時鐘信號能夠使元 件102適當地實施以下功能,諸如從主機讀取資料、記錄和 處理=貝料、向主機發送資料和命令等。如上面所指出的, USB設備1GG可以是USB滑鼠、USBDVD播放器、鬚㈣播放 益、USB可重寫光學記憶體、USB硬碟驅動器、USB閃速記憶 體印表機等。校準時鐘信號使元件能夠實施多種功能。 月白根據本發明的時鐘信號校準系統或過程可以用 於任何數位資料傳輸裝置。設備U)G僅僅是用於解釋目 的的例子。 到現在應該理解已提供了用於使時鐘信號與資料信號校 1332151Tian Cong: When the equation (1) is satisfied, the count c"6 does not satisfy the equation (3): the time transition from the beginning of the calibration clock signal is not equal to eight times the bit period of the data Ά. In response to this situation, process 400 returns to step 403 to advance to the next cycle. If a" satisfies equation (3), then the time lapse from the start of the calibration clock signal is equal to the bit of the input data flow, and the response of the month is repeated, the process returns to the start step 402 and the counter 1G6 and 〇8 reset to zero. After step 402, the clock signal calibration process 400 proceeds to step 4G3 and repeats for the lower _cycle of the octet period. According to the present invention, the calibration clock signal is not limited to the above. For example, step 409 is not limited to whether the verification count satisfies equation (2). In a further embodiment, process 4 可以 can verify in step 4 (10) whether the count Cm of the number counter 1 〇 6 is satisfied, etc. Equation (4): (4) (5) ^*106 = Μ /16 or Equation (5): C106 = Dx(2M + \)/\β In equations (4) and (5), μ denotes In these alternative embodiments, the calibration clock signal generator 1〇5 requires only one counter, such as counter 106. 1332151 " Additionally, the process 300 described above with respect to Figure 3 is not limited to digitally controlling the L number The value D s is again set to be equal to eight of the input token packs by the shock banker 1〇3 Bit - The number of cycles of the reference frequency signal generated during the duration of the period. The value D of the digital control signal can be set equal to the duration of any number of bit periods equal to the input token package by the oscillator 1〇3 The number of cycles of the generated reference frequency apostrophe. Generally, the large value D is preferably used for high precision calibration. As described above with reference to Figures 2 and 3, the beginning of time preferably does not correspond to the beginning of the first bit' This is because it may be unstable. Limiting the end of the duration • It is also preferred that it does not exceed the tenth position of the token pack. This is because the top ten digits of the token pack are predetermined and easily identifiable in the USB protocol. Therefore, the duration of the eight-bit period is due to its large 1) value, easy to identify, and easy to perform a binary operation on the number of multiples of four, eight, sixteen, etc., thereby being preferred. The calibration clock signal generated in the process 4 is locked to the data flow on the 70 pieces 102 of the USB device 100. The calibration clock signal enables the component 102 to properly perform the following functions, such as reading data from the host, Recording and processing = batting, sending data and commands to the host, etc. As noted above, the USB device 1GG can be a USB mouse, a USB DVD player, a (four) playback device, a USB rewritable optical memory, a USB hard disk. Driver, USB flash memory printer, etc. Calibrating the clock signal enables the component to perform a variety of functions. Moonlight The clock signal calibration system or process according to the present invention can be used with any digital data transmission device. Device U)G is only used An example of the purpose of the explanation. It should be understood now that the clock signal and the data signal are provided for 1332151

準或鎖定到資料信號的系統和過程。根據本發明的校準系 統可以包括簡單且節約成本的此震盪器和簡單的數位電路 。這種系統具有晶片尺寸小、操作可靠和成本高效的性質 。根據本發明的校準過程涉及數位操作可以在僅一次信號 交換中實現。所以,它簡單、快速、可靠以及不易受晶^ 製造過程和操作條件的變化的影響。A system or process that is quasi- or locked to a data signal. The calibration system in accordance with the present invention can include such an oscillator and a simple digital circuit that is simple and cost effective. This system has the characteristics of small wafer size, reliable operation and cost-effectiveness. The calibration process in accordance with the present invention involves digital operations that can be implemented in only one signal exchange. Therefore, it is simple, fast, reliable, and not susceptible to changes in the manufacturing process and operating conditions.

雖然上面已描述了本發明的具體實施例,但是它們目的 不是對树明的範圍加以限制。本發明包括那些對本領域 技術人員來說是顯而易見的對所述實施例的更改和變化。 例如,雖然本㈣書結合用於低速信號傳輸的則協定來描 隸準過程,但本發明也包括各種速度的各種資料傳輸協 疋中的時鐘信號校準系統和過程。 【圖式簡單說明】 圖1是示出根據本發明的時鐘信號校準系統的結構圖; 圖2是示出根據本發明的通用串列匯流排通信協定中權 杖包(token packet)的時序圖; 圖3是示出根據本發明的用於數位化地分析資訊包( packet )的過程的流程圖;以及 圖4是示出根據本發明的用於數位化地使時鐘信號與資 訊包权準的過程的流程圖。 1332151 _ 【主要元件符號說明】 101 ......時鐘信號校準系統 100..........串列匯流排(USB)設備 110......USB匯流排 102 .........USB設備元件 112.........資料傳輸(D+)線 114 ..........互補資料傳輸(D-)線 115 ..........電源線 117..........地線 103 ..........震盪器 104 ..........資料序列分析器 . 105..........校準時鐘信號發生器 106、108…計數器 % 18Although specific embodiments of the invention have been described above, they are not intended to limit the scope of the invention. The invention includes modifications and variations to the described embodiments that are obvious to those skilled in the art. For example, although the book (b) incorporates a protocol for low-speed signal transmission to describe the quasi-process, the present invention also includes clock signal calibration systems and processes in various data transmission protocols at various speeds. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a clock signal calibration system according to the present invention; FIG. 2 is a timing chart showing a token packet in a universal serial bus communication protocol according to the present invention. 3 is a flow chart showing a process for digitally analyzing a packet according to the present invention; and FIG. 4 is a diagram showing digitally calibrating a clock signal and a packet according to the present invention. Flow chart of the process. 1332151 _ [Main component symbol description] 101 ... clock signal calibration system 100 ..... tandem bus (USB) device 110 ... USB bus bar 102 . ........USB device component 112.........data transfer (D+) line 114 ..........complementary data transfer (D-) line 115 ... .......Power line 117.......... Ground line 103 .......... Oscillator 104 .......... Data Sequence Analyzer 105..........calibration clock signal generator 106, 108... counter % 18

Claims (1)

十、申請專利範圍: 1. 一種用於使時鐘信號與資料流程校準的方法,包括以下步 驟: 生成參考信號; 生成數值,其等於所述參考信號在包括所述資料流程中的 資訊包中預定數量的位週期的持續時間内的週期數; 通過由所述數值和所述預定數量計算所述參考信號在所述 資料流程驗週_的數,簡於所述參相_每個週 期的所述資料流程中位值的變化使用計數的方式來生成與所述 資料流程校準的時鐘信號。 如申請專利範圍第1項所诚的方沐 喟所述的方法,其中,所述生成參考信號 的步锁包括制阻容震MU來域震盈信號。 如申請祠翻第1項所述的方法,財,所述生纽值的步 驟包括生鱗於所述參考信齡纟所述痛絲巾賴述資訊 包中八位7〇週期崎續的所述獅數賴述數值。 如申請專利綱第3項所述的方法,其中,所述生成數值的步 驟包括生成料所述參考錢麵述資料流程巾的所述資訊包 中伙第—位元關始到第十位的開始的持續時間内的所述週期 數的所述數值。 如申睛專利範圍第1項所述的古、土 甘士 迅的方法,其中,所述生成數值的步 驟包括根據通財舰流排協定姻所述資概程巾的所述資 訊包為權杖包的步驟。 如申請專利範圍5項所述的方法,其中,所述朗所述資訊包 為權杖包的步驟包括分析所述資訊包的前十位元的步驟。 申明專利範圍第6項所述的方法,其中,所述分析所述資訊 包的前十位元的步驟包括分析在通用串列匯流排資料傳輸線上 的電壓電平。 如申請專利範圍第5項所述的方法,其中,所述識別所述資訊 匕為權杖包的步驟還包括比較表示所述資訊包中位元值變化的 故中的多個區間的步驟。 如申請專利範圍第8項 、所迷的方法,其中,所述比較波_多個 區間的步驟包括以下步驟: 第類3L的弟—沿與第二類型的第二沿之間的區間是 否大致等於所述第二類型的所述第 沿之間的區間; 斤述第类員型的所述第—沿與所述第一類型的所述第 二沿之__是否大鱗於所述第—麵的所述第二沿與所 述第-類型的第三沿之間的區間;以及 -驗也所迷弟一類型的所述第—沿與所述第一類型的所述第 二沿之間幢㈣增峨帛—_的·三沿與所 述第—類型的第四沿之間的區間。 10. •沿與所述第一類型的第二 如申請專利範圍第9項所述的方 其中,兩個彼此大致相等 、㈣區間包括兩個相差少於百分之十㈣間區間。 11. 如申請專利範圍第1項所述的方法, 的步驟包括以下步驟: 其中,所述生成時鐘信號 設置計數為零; 檢測所述資料流程中的位值的變化; 叫151X. Patent Application Range: 1. A method for calibrating a clock signal and a data flow, comprising the steps of: generating a reference signal; generating a value equal to the reference signal being predetermined in a packet including the data flow The number of cycles of the duration of the number of bit periods; by calculating the number of the reference signal in the data flow by the value and the predetermined number, which is simpler than the phase of each phase The change in the bit value in the data flow uses a count to generate a clock signal that is calibrated with the data flow. The method of claim 1, wherein the step lock for generating the reference signal comprises a damping MU to the domain earthquake signal. If the application recites the method described in item 1, the step of generating the new value includes grading the eight-digit 7-cycle periodicity in the information package of the reference information. The number of lions is mentioned. The method of claim 3, wherein the step of generating a numerical value comprises: generating a material from the information packet of the reference money surface data to a tenth bit from the beginning to the tenth The stated value of the number of cycles for the duration of the start. The method of generating the numerical value according to the first aspect of the invention, wherein the step of generating the value comprises: according to the information package of the general manager A step of. The method of claim 5, wherein the step of said packet being a token package comprises the step of analyzing a first ten bits of said packet. The method of claim 6, wherein the step of analyzing the first ten bits of the information packet comprises analyzing a voltage level on a universal serial bus data transmission line. The method of claim 5, wherein the step of identifying the information 权 as a token package further comprises the step of comparing a plurality of intervals indicating a change in a bit value in the information packet. The method of claim 8, wherein the step of comparing the wave_multiple intervals comprises the following steps: whether the interval between the second class of the third type and the second edge of the second type is substantially Equal to the interval between the edges of the second type; whether the first edge of the first type of the type and the second edge of the first type are larger than the first a section between the second edge of the face and the third edge of the first type; and - the first edge of the type of the face and the second edge of the first type The interval between the three edges of the building (four) and the fourth edge of the first type. 10. Along the second aspect of the first type, as described in claim 9, wherein the two are substantially equal to each other, and the (four) interval includes two intervals that differ by less than ten percent (four). 11. The method of claim 1, wherein the step of generating a clock signal setting is zero; detecting a change in a bit value in the data flow; 12. 回應於所述位值的變化: 為所述時鐘信號的週期生成第一沿;以及 設置所述計數為零; 回應於所述位值不變: 將所述計數加一; 回應於所述計數等於所述數值,設置所述計數為零; 回應於所述計數等於所述數值的奇數倍除以所述預 定數量的兩倍’為所述時鐘信號的所述週期生成第二沿; 以及 回應於所述計數等於所述數值的倍數除以所述預定 數量’為所述時鐘信號的所述週期生成第三沿;以及 返回到所述檢測所述資料流程中的位元值的變化的步驟。 如申請專利範圍第11項所述的方法,其中: 所述為所述時鐘信號的週期生成第一沿的步驟包括生成所 逃時鐘信號的上升沿; 所述為所述時鐘信號的所述週期生成第二沿的步驟包括生 成所述時鐘信號的下降沿 ;以及 22 1332151, 所述為所述時鐘信號的所述週期生成第三沿的步驟包括生 成所述時鐘信號的上升沿。 13. 如申請專利細第η項所述的方法,其中,所述檢測所述資料 流程中的位元值的變化的步驟包括檢測在根據通用事列匯流排 協定的所«概財在歡包之後的:纽包巾的所述位元值 的變化。 14. 如申請專利範圍第i項所述的方法,其中,所述生成時鐘信號 的步驟包括以下步驟: 設置第-計數和第二計數為零; 檢測所述資料流程中的位值變化; 回應於檢測到所述位值變化,生成所述時鐘信號的第一 沿’並設置所述第—計數和所述第二計數為零; 回應於未檢測酬軌值變化: 將所述第—計數加一,以及將所述第二計數加一; 回應於所述第二計數等於所述數值除以所述預定數 里的兩倍’生成所述時鐘信號的第二沿; 23 回應於所述第一計數等於所述數值的倍數除以所述 預疋數置,生成所述時鐘信號的第三沿,以及設置所述第 二計數為零;以及 回應於所述第一計數等於所述數值,設置所述第—計 數和所述第二計數為零;以及 返回到所驗酬述資槪財驗元值變化的步帮。 如申睛專利範圍第14項所述的方法,其中: α所述生成所述時鐘信號的第—沿的步驟包括為所述時鐘信 號的週期生成起始沿; 所述生成所述時鐘信號的第二沿的姆包括為所述時齡 號的所述週期生成中間沿;以及 D 所述生成所物編帛三_靖料所述 號的所述週期生成結束沿。 ° 如申明糊_ 15項所述的方法,其中,為所述時讀信說的 戶斤述遇期生成結束沿還包括為所述時鐘信號的隨後週 始沿。 起 17.I33215L 如申請專利範圍第1項所述的方法 的步驟包括以下步驟: 將計數復位為零; 檢測所述資料流程中的位值的變化; 回應於所述位值的變化:12. responsive to the change in the bit value: generating a first edge for the period of the clock signal; and setting the count to zero; responding to the bit value unchanged: incrementing the count by one; Said count being equal to said value, said said count being set to zero; responsive to said count being equal to an odd multiple of said value divided by said predetermined number of times 'generating a second edge for said period of said clock signal And generating a third edge in response to the counting being equal to a multiple of the value divided by the predetermined number ' for the period of the clock signal; and returning to detecting the bit value in the data flow The steps to change. The method of claim 11, wherein: the step of generating a first edge for the period of the clock signal comprises generating a rising edge of the escaped clock signal; wherein the period of the clock signal is The step of generating a second edge includes generating a falling edge of the clock signal; and 22 1332151, the step of generating a third edge for the period of the clock signal comprising generating a rising edge of the clock signal. 13. The method of claim n, wherein the step of detecting a change in a bit value in the data flow comprises detecting a package in accordance with a general arrangement bus schedule agreement Subsequent: The change in the bit value of the button towel. 14. The method of claim i, wherein the step of generating a clock signal comprises the steps of: setting a first count and a second count to zero; detecting a change in a bit value in the data flow; And detecting the change in the bit value, generating a first edge of the clock signal and setting the first count and the second count to be zero; in response to the undetected reward value change: the first count Adding one, and incrementing the second count by one; generating a second edge of the clock signal in response to the second count being equal to the value divided by twice the predetermined number; 23 in response to the The first count is equal to a multiple of the value divided by the number of pre-turns, a third edge of the clock signal is generated, and the second count is set to zero; and the first count is equal to the value And setting the first count and the second count to zero; and returning to the step of the change of the verified financial value. The method of claim 14, wherein: the step of generating the first edge of the clock signal comprises generating a start edge for a period of the clock signal; the generating the clock signal The second edge of the m includes generating an intermediate edge for the period of the age number; and D generating the end of the cycle generation of the object number. The method of claim 15, wherein the end of the generation period for the said read letter further comprises a subsequent beginning of the clock signal. 17. I33215L The method of the method of claim 1 includes the steps of: resetting the count to zero; detecting a change in the bit value in the data flow; responding to the change in the bit value: 生成所述時鐘信號的起始沿;以及 返回到所鱗計數重絲零的步驟;以及 回應於所述位值不變: 將所述計數加一;Generating a starting edge of the clock signal; and returning to the step of counting the weight zero; and responding to the bit value unchanged: incrementing the count by one; ’其中’所述生成時鐘信號 回應於所述計數等於所述數值的倍數除以所述預定 數量: 生成所述時鐘信號的結束沿; 回應於所述計數等於所述數值’返回到所述將計 數重定為零的步驟;以及 返回到所述檢測所述資料流程中的位元值的變 化的步驟; 25 1332151 回應於所述計數等於所述數值的倍數除以所述預疋 數量的兩倍: 生成所述時鐘信號的中間沿;以及 返回到所述檢測所述資料流程中的位元值的變 化的步驟;以及 返回到所述檢測所述資料流程中的位元值的變化的 步驟。 18. 如申請專利範圍第17項所述的方法’其中,所述檢測所述資料 流程中的位元值的變化的步驟包括檢測所述資料流程中接著權 杖包之後的隨後的資訊包中的所述位元值。 19. 如申請專利範圍第17項所述的方法,其中: 所述生成所述時鐘信號的起始沿的步驟包括生成所述時鐘 信號的上升沿; 所述生成所述時鐘信號的中間沿的步驊包括生成所述時鐘 信號的下降沿;以及 所述生成所述時鐘信號的結束沿的步驟包括生成所述時鐘 信號的上升沿。 26 1332151. 2〇.辦請專利範圍第17項所述的方法,其中,所述生成所述時鐘 信號的結束沿的步驟包括為所述時鐘魏的當前獅生成所述 、’、。束W及為職時鐘錢的賴的職生成起始沿。 21.—種時鐘信號校準系統(1〇1),包括: 資料登錄匯流排(11〇); 參考信號發生H⑽),祕生賴賴率信號; 數^貝料刀析盗(104) ’其連接到所述資料登錄匯流排 (11〇)和連接到所述參考信號發生器⑽),所述數位資料 分析器⑽)用於生成數值,所述數值等於所述參考信號發生 器⑽)的所述固摘率信號在占所述資料登錄匯流排⑴〇) 上的資料流程中的資訊包令預定數量的位週期的持續時間内的 週期數;以及 ♦ 數位校準時雜號發生器咖),其連接到所述資料登錄 匯流排⑽)、連接到所述參考信號發生器⑽)、以及連 接到所述數位資料分析器⑽),所述數位校準時鐘信號發生 器(圖齡_於所述數位資料分析器⑽)的所述數值, 以及回應於所述固定頻率信號的每個週期的所述資料流程中位 27 1332151 值的變化使用計數的方式生成與所述資料流程校準的時鐘信 號。 22. 如申請專利範圍第21項所述的時鐘信號校準系統(ι〇ι),其 中,所述數位校準時鐘信號發生器(1〇5)包括計數器(1〇6), 用於以等於所述參考信號發生器(1〇3)的所述固定頻率信號的 頻率的速率計數。 23. 如申請專利範圍第22項所述的時鐘信號校準系統(1〇1),其 中,所述數位校準時鐘信號發生器(1〇5)用於通過執行包括以 下步驟的校準方法來生成所述時鐘信號: 設置所述計數器(106)的計數為零; 檢測所述資料流程中的位值的變化;'wherein the generated clock signal is responsive to the count being equal to a multiple of the value divided by the predetermined number: generating an end edge of the clock signal; responsive to the count being equal to the value 'returning to the a step of resetting the count to zero; and returning to said step of detecting a change in a bit value in said data flow; 25 1332151 responsive to said count being equal to a multiple of said value divided by twice said number of said preview : generating an intermediate edge of the clock signal; and returning to the step of detecting a change in a bit value in the data flow; and returning to the step of detecting a change in a bit value in the data flow. 18. The method of claim 17, wherein the detecting the change in the bit value in the data flow comprises detecting a subsequent information packet in the data flow subsequent to the token package The bit value of the bit. 19. The method of claim 17, wherein: the step of generating a start edge of the clock signal comprises generating a rising edge of the clock signal; the generating an intermediate edge of the clock signal The step of generating a falling edge of the clock signal; and the step of generating an end edge of the clock signal includes generating a rising edge of the clock signal. The method of claim 17, wherein the step of generating an end edge of the clock signal comprises generating the , ', for the current lion of the clock. The starting edge of the generation of the W and the job of the job. 21. A kind of clock signal calibration system (1〇1), including: data registration bus (11〇); reference signal generation H(10)), secret reliance rate signal; number ^ beech knife hacking (104) Connected to the data log bus (11〇) and to the reference signal generator (10), the digital data analyzer (10) for generating a value equal to the reference signal generator (10) The number of cycles of the predetermined period of the bit period of the information packet in the data flow on the data registration bus (1)〇), and the number of cycles in the digital calibration period; Connected to the material registration bus (10), to the reference signal generator (10), and to the digital data analyzer (10), the digital calibration clock signal generator The value of the digital data analyzer (10), and the change of the value of the bit 27 1332151 in the data flow in response to each period of the fixed frequency signal is generated by using the counting method and the data flow school Quasi-clock signal. 22. The clock signal calibration system (ι〇ι) according to claim 21, wherein the digital calibration clock signal generator (1〇5) comprises a counter (1〇6) for equalizing A rate count of the frequency of the fixed frequency signal of the reference signal generator (1〇3). 23. The clock signal calibration system (101) according to claim 22, wherein the digital calibration clock signal generator (1〇5) is used to generate a calibration method by performing a calibration method comprising the following steps Clock signal: setting the counter (106) to zero; detecting a change in a bit value in the data flow; 回應於所述位值的變化: 為所述時鐘信號的週期生成第一沿;以及 設置所述計數為零; 回應於所述位值不變: 將所述計數加一; 回應於所述計數等於所述數值,設置所述計數為零; 28 1332151 回應於所述計數等於所述數值的奇數倍除以所述預 定數量的兩倍,為所述時鐘信號的所述週期生成第二沿; 以及 - 回應於所述計數等於所述數值的倍數除以所述預定 數量,為所述時鐘信號的所述週期生成第三沿;以及- 返回到所述檢測所述資料流程中的位元值的變化的步驟。 2^ 如申請專利範圍第22項所述的時鐘信號校準系統(1〇1 ),其 中’所述數位校準時鐘信號發生器(105)用於通過執行包括以 . 下步驟的校準方法來生成所述時鐘信號: ' 設置所述計數器(106)的計數為零; 檢測所述資料流程中的位值的變化; Φ 回應於所述位值的變化: 生成所述時鐘信號的起始沿;以及 返回到所述將所述計數器(106)的計數設置為零的 步驟;以及 回應於所述位值不變: · 將所述計數加一; 29 1332151 回應於所述計數等於所述數值的倍數除以所述預定 數量: - 生成所述時鐘信號的結束沿; 回應於所述計數等於所述數值’返回到所述將所 述計數器(106)的計數設置為零的步驟;以及 返回到所述檢測所述資料流程中的位元值的變 化的步驟; 回應於所述計數等於所述數值的倍數除以所述預定 - 數量的兩倍,生成所述時鐘信號的中間沿;以及 \ 返回到所述檢測所述資料流程中的位元值的變化的 步鱗。 ® 25.如申請專利範圍第22項所述的時鐘信號校準系統(101 ),其 中,所述數位校準時鐘信號發生器(105)還包括第二計數器 (108),以及用於通過執行包括以下步驟的校準方法來生成所 述時鐘信號: 設置所述什數器(106)的第一計數為零. 設置所述第二計數器(108)的第二計數為零. 30 檢測所述資料流程中的位值變化; 喊於檢卿職錄變化,生賴轉餘號的第一 沿,以及設置所述第一計數和所述第二計數為零; 回應於未檢測到所述位值變化·· 將所述第一計數加一,以及將所述第二計數加一; • 回應於所述第二計數等於所述數值除以所述預定數 量的兩倍,生成所述時鐘信號的第二沿; 回應於所述第一計數等於所述數值的倍數除以所述 預疋數1,生成所述時鐘信號的第三沿,以及設置所述第 二計數為零;以及 回應於所述第一計數等於所述數值,設置所述第一計 •鮮7所述第二計數鱗;以及 返回到所述檢測所述資料流程中的位元值變化的步驟。 26. —種用於從主機接收資料和向主機發送資料的設備(1〇〇),包 括: 連接到所述主機的資料處理元件(1〇2);以及 數位校準單元(101),其包括: 31 震蓋器(103); 數位資料分析器(104),其連接到所述資料處理元 件(102)和連接到所述震盪器(1〇3),所述數位資料分 析Is (104)用於生成控制信號,所述控制信號的值等於所 述震盪器(103)的固定頻率信號在占所述資料處理元件 (102 )上寊料流程中的資訊包中預定數量的位週期的持續 時間内的週期數;以及 數位校準時鐘信號發生器(105),其連接到所述資 料處理元件(102)、連接到所述震盪器(1〇3)、以及連 接到所述數位資料分析器(1〇4) ’所述數位校準時鐘信號 發生器(105)用於回應於所述控制信號,以及回應於所述 固疋頻率信號的每個週期的所述資料流程中位值的變化使 用计數的方式生成與所述資料流程校準的時鐘信號。 如申請專利範圍第26項所述的設備(100),其中,所述資料 處理το件(102)用於移動經由通用串列匯流排連接到其上的主 電腦的螢幕上的游標’以及向所述主電腦發出命令。 如申請專利範圍第27項所述的設備(100),其中所述數位校 準時鐘仏號發生器(1〇5)包括計數器(1〇6),以及用於通過 32 執行权準方法來生成所述時鐘信號,所述校準方法包括以下步 設置所述計數器(106)的計數為零; 檢測所述資料流程令的位值的變化; 回應於所述位值的變化: # 為所述時鐘信號的週期生成第一沿;以及 設置所述計數為零; 回應於所述位值不變: . 將所述計數加一; 回應於所述計數等於所述控制信號的職值,設置所 述計數為零; 回應於所述計數等於所述控制信號的所述值的奇數 倍除以所賴定數量的兩倍,為所述時鐘信號的所述週期 生成第二沿;以及 回應於所述計數等於所述控制信號的所述值的倍數 除以所述預定數量’為所述時鐘钤。 15旎的所述週期生成第三 沿;以及 33 1332151 返回到所述檢測所述資料流程中的位元值的變化的步驟。 29.如申請專利範圍第27項所述的設備(100),其中,所述數位 校準時鐘信號發生器(105)包括計數器(106),以及用於通 過執行校準方法來生成所述時鐘信號,所述校準方法包括以下 步驟: • 設置所述計數器(106)的計數為零; 檢測所述資料流程中的位值的變化; 回應於所述位值的變化: - 生成所述時鐘信號的起始沿;以及 返回到所述設置所料織(1⑹的計數為零的步 驟;以及 回應於所述位值不變·· 將所述計數加—; 賴於職賴料崎_信賴所述值的倍數 除以所述預定數量: 生成所述時崎_結束沿; 回應於所述計數等於所述控制信號的所述值,返 回到所述設置所述計數器(106)的計數為零的步驟; 以及 返回到所述檢測所述資料流程中的位元值的變 化的步驟; 回應於所述計數等於所述控制信號的所述值的倍數 除以所述預定數量的兩倍’生成所述時鐘信號的中間沿; 以及 返回到所述檢測所述資料流程中的位元值的變化的 步驟。 如申請專利範圍第27項所述的設備(100),其中,所述數位校 準時鐘信號發生器(105)包括第一計數器(106)和第二計數 器(1〇8),以及用於通過執行校準方法來生成所述時鐘信號, 所述校準方法包括以下步驟: 設置所述第一計數器(106)的第一計數為零; 設置所述第二計數器(108)的第二計數為零; 檢測所述資料流程中的位值變化; 回應於檢測到所述位值變化: 生成所述時鐘信號的第一沿; 設置所述第—計數器(106)的第—計數;以及 設置所述第二計數器⑽)的第二計數為零; 回應於未檢測到所述位值變化:Responding to a change in the bit value: generating a first edge for a period of the clock signal; and setting the count to zero; responding to the bit value unchanged: incrementing the count by one; responding to the count Equal to the value, setting the count to zero; 28 1332151 generating a second edge for the period of the clock signal in response to the count being equal to an odd multiple of the value divided by twice the predetermined number And - in response to the counting being equal to a multiple of the value divided by the predetermined number, generating a third edge for the period of the clock signal; and - returning to the detecting the bit in the data flow The step of changing the value. 2^ The clock signal calibration system (1〇1) according to claim 22, wherein the digital calibration clock signal generator (105) is used to generate a calibration method by performing a calibration method including the following steps Clock signal: 'Set the count of the counter (106) to zero; detect a change in the bit value in the data flow; Φ in response to the change in the bit value: generate a starting edge of the clock signal; Returning to the step of setting the count of the counter (106) to zero; and responding to the bit value unchanged: • adding the count to one; 29 1332151 responsive to the count being equal to a multiple of the value Dividing by the predetermined number: - generating an end edge of the clock signal; responsive to the counting being equal to the value 'returning to the step of setting the count of the counter (106) to zero; and returning to the Determining a step of detecting a change in a bit value in the data flow; generating a clock signal in response to the count being equal to a multiple of the value divided by twice the predetermined amount The intermediate edge; and \ return to the step scale that detects a change in the bit value in the data flow. The clock signal calibration system (101) of claim 22, wherein the digital calibration clock signal generator (105) further comprises a second counter (108), and for performing by performing the following a calibration method of the step to generate the clock signal: setting a first count of the counter (106) to zero. setting a second count of the second counter (108) to zero. 30 detecting the data flow Change in the position value; call the change in the job title of the prosecutor, the first edge of the remnant, and set the first count and the second count to zero; in response to the change in the bit value is not detected. Adding the first count by one and incrementing the second count by one; • generating a second of the clock signal in response to the second count being equal to the value divided by twice the predetermined number In response to the first count being equal to a multiple of the value divided by the pre-turn number 1, generating a third edge of the clock signal, and setting the second count to zero; and responding to the A count equals the value, • Fresh opposite the first count of the second counter 7 scales; and returns to step detects the bit values of the data flow of the variation. 26. A device (1) for receiving data from a host and transmitting data to a host, comprising: a data processing component (1) connected to the host; and a digital calibration unit (101), including : 31 vibrator (103); digital data analyzer (104) connected to the data processing component (102) and connected to the oscillator (1〇3), the digital data analysis Is (104) For generating a control signal, the value of the control signal being equal to the duration of the predetermined frequency period of the fixed frequency signal of the oscillator (103) in the information packet in the data processing flow on the data processing component (102) a number of cycles in time; and a digital calibration clock signal generator (105) coupled to the data processing component (102), to the oscillator (1〇3), and to the digital data analyzer (1〇4) 'The digital calibration clock signal generator (105) is responsive to the control signal and is responsive to a change in a bit value in the data flow for each cycle of the fixed frequency signal Counting method Data flow calibration of the clock signal. The device (100) of claim 26, wherein the data processing component (102) is for moving a cursor on a screen of a host computer connected thereto via a universal serial busbar and The host computer issues a command. The device (100) of claim 27, wherein the digital calibration clock horn generator (1〇5) includes a counter (1〇6), and is configured to generate a weight method by 32 a clock signal, the calibration method comprising the steps of: setting a count of the counter (106) to zero; detecting a change in a bit value of the data flow command; responding to a change in the bit value: # is the clock signal a period of generating a first edge; and setting the count to zero; responding to the bit value unchanged: increasing the count by one; setting the count in response to the count being equal to a value of the control signal Zero in response to the count being equal to an odd multiple of the value of the control signal divided by twice the number of times, generating a second edge for the period of the clock signal; and responsive to the A count equal to a multiple of the value of the control signal divided by the predetermined number ' is the clock 钤. The period of 15 生成 generates a third edge; and 33 1332151 returns to the step of detecting a change in the bit value in the data flow. 29. The device (100) of claim 27, wherein the digitally calibrated clock signal generator (105) comprises a counter (106) and for generating the clock signal by performing a calibration method, The calibration method comprises the steps of: • setting a count of the counter (106) to zero; detecting a change in a bit value in the data flow; responding to a change in the bit value: - generating a start of the clock signal a starting edge; and returning to the setting (1 (6) the step of counting zero; and in response to the bit value unchanged · adding the count -; relying on the responsibility Dividing the multiple by the predetermined number: generating the time-span_end edge; in response to the count being equal to the value of the control signal, returning to the step of setting the count of the counter (106) to zero And returning to said detecting a change in a bit value in said data flow; responding to said count being equal to a multiple of said value of said control signal divided by said predetermined number of two times The intermediate edge of the clock signal; and the step of returning to the detecting the change of the bit value in the data flow. The device (100) of claim 27, wherein the digital calibration clock The signal generator (105) includes a first counter (106) and a second counter (1〇8), and is configured to generate the clock signal by performing a calibration method, the calibration method comprising the steps of: setting the first The first count of the counter (106) is zero; setting the second count of the second counter (108) to zero; detecting a change in the bit value in the data flow; in response to detecting the change in the bit value: a first edge of the clock signal; setting a first count of the first counter (106); and setting a second count of the second counter (10) to zero; in response to not detecting the change in the bit value: 將所述第-計數器⑽)的所述第—計數加一; 將所述第二計數器(108)的所述第二計數加一; 回應於所述第二計鮮於所述控制贿的所述值除 以所述預定數量的兩倍: 生成時鐘信號的第二沿;Adding the first count of the first counter (10) to one; incrementing the second count of the second counter (108) by one; in response to the second calculating the bribe Dividing the value by two times the predetermined number: generating a second edge of the clock signal; 回應於所卿-計鮮於所述控梅號輯述值的 倍數除以所述預定數量: 生成所述時鐘信號的第三沿;以及 5又置所述第二計數哭f 105?、 λ* r數-C108)的所述第二計數為 零; 回應 ;所处第梢等於所述控輪號的所述值: 36 1332151 f* · l ψ 設置所述第一計數器(106)的所述第一計數為 零;以及 設置所述第二計數器(108)的所述第二計數為 零;以及 返回到所述檢測所述資料流程中的位元值變化的步驟。In response to the doubling - the multiple of the value of the numerator number is divided by the predetermined number: a third edge of the clock signal is generated; and 5 is further set to the second count crying f 105?, λ* The second count of r-C108) is zero; response; the first tip is equal to the value of the control wheel number: 36 1332151 f* · l 设置 setting the first counter (106) The first count is zero; and the second count of the second counter (108) is set to zero; and the step of detecting a change in the bit value in the data flow is returned. 3737
TW94134435A 2005-10-03 2005-10-03 System and method for clock signal synchronization TWI332151B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94134435A TWI332151B (en) 2005-10-03 2005-10-03 System and method for clock signal synchronization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94134435A TWI332151B (en) 2005-10-03 2005-10-03 System and method for clock signal synchronization

Publications (2)

Publication Number Publication Date
TW200715131A TW200715131A (en) 2007-04-16
TWI332151B true TWI332151B (en) 2010-10-21

Family

ID=45074697

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94134435A TWI332151B (en) 2005-10-03 2005-10-03 System and method for clock signal synchronization

Country Status (1)

Country Link
TW (1) TWI332151B (en)

Also Published As

Publication number Publication date
TW200715131A (en) 2007-04-16

Similar Documents

Publication Publication Date Title
US7791330B2 (en) On-chip jitter measurement circuit
WO2019218753A1 (en) Method and apparatus for adjusting position of dqs
TW459179B (en) Dynamic wave-pipelined interface apparatus and methods therefor
US8359489B2 (en) Frequency calibration circuit for automatically calibrating a frequency generated by an oscillator and method thereof
US20140177359A1 (en) Method and apparatus for aligning a clock signal and a data strobe signal in a memory system
US7656979B2 (en) Data communication device
US7886085B2 (en) Removable memory device, phase synchronizing method, phase synchronizing program, medium recording the same, and host terminal
TWI444835B (en) A master controller for correcting the sampling phase, a semiconductor device, and a method for correcting the same
JPH0431451B2 (en)
US8589717B1 (en) Serial peripheral interface
US8634506B2 (en) Frequency calibration circuit for automatically calibrating frequency and method thereof
JP5577776B2 (en) Memory control apparatus and mask timing control method
US9438164B2 (en) System and method for calibrating capacitor-based oscillators in crystal-less devices
US11888480B2 (en) Method and apparatus for synchronizing two systems
US7864906B2 (en) System and method for clock signal synchronization
US20080175343A1 (en) Phase adjusting function evaluating method, transmission margin measuring method, information processing apparatus, program and computer readable information recording medium
TWI332151B (en) System and method for clock signal synchronization
TWI625618B (en) Control circuit programming the levels of pins
US9916888B1 (en) System for measuring access time of memory
US20090167317A1 (en) Apparatus And Method For Test, Characterization, And Calibration Of Microprocessor-Based And Digital Signal Processor-Based Integrated Circuit Digital Delay Lines
US20150145580A1 (en) Apparatus for controlling semiconductor chip characteristics
TWI271978B (en) System for providing a calibrated clock and methods thereof
TWI695376B (en) Memory apparatus and data reading method thereof
JP6685480B1 (en) Thermal detection system and method
JP3408486B2 (en) Synchronous circuit between devices

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees