TWI331531B - Pharmaceutical preparation and method of treatment of human malignancies with arginine deprivation - Google Patents
Pharmaceutical preparation and method of treatment of human malignancies with arginine deprivation Download PDFInfo
- Publication number
- TWI331531B TWI331531B TW092124884A TW92124884A TWI331531B TW I331531 B TWI331531 B TW I331531B TW 092124884 A TW092124884 A TW 092124884A TW 92124884 A TW92124884 A TW 92124884A TW I331531 B TWI331531 B TW I331531B
- Authority
- TW
- Taiwan
- Prior art keywords
- arginase
- lane
- hours
- protein
- arginine
- Prior art date
Links
Landscapes
- Enzymes And Modification Thereof (AREA)
Description
1331531 坎、發明說明: 【發明所屬之技術領威】 發明領域 本發明涉及包含精氨酸酶的藥物組合物及其應用。具 5體地’本發明涉及能降低腫瘤患者體内精氨酸水平的藥物 組合物’及其在治療人惡性腫瘤中的應用。本發明還涉及 生產一種重組蛋白質的方法。1331531 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pharmaceutical composition comprising arginase and use thereof. The present invention relates to a pharmaceutical composition which reduces arginine levels in a tumor patient and its use in the treatment of human malignancies. The invention also relates to a method of producing a recombinant protein.
【先前技j 發明背景 10 精氨酸酶I(EC3.5.3.1 ;L-精氨酸脒基水解酶),是一種[Previous technology j Background of the invention 10 arginase I (EC 3.5.3.1; L-arginine hydrazine hydrolase), is a kind
關鍵的哺乳動物肝臟酶,其催化尿素循環中尿素形成的最 終步驟’將精氨酸轉變爲鳥氨酸和尿素。當具有高含量精 氨酸酶的大鼠肝臟提取物被偶然加入到腫瘤細胞培養基中 時發現其具有體外抗腫瘤性質(Burton等,1967,皮質類固 15 醇對胸腺和淋巴瘤細胞的體外溶細胞作用,加拿大生物化 學雜諸45,289-297)。隨後的實驗示出所述酶的抗腫瘤作 用是因爲精氨酸耗竭(depletion)所致,精氨酸是培養基中的 一種必需氨基酸。精氨酸低於8μΜ水平時,癌細胞發生不 可回復的細胞死亡(Storr & Burton,1974,精氨酸缺乏對 淋巴瘤細胞的作用,Br. J. Cancer 30,50-59丨。 精氨酸的一個更新的方面集t在其作爲強信號傳導分 子氧化氮(NO)合成的直接前體,NO作爲一種神經遞質,平 滑肌鬆弛劑和血管擴張劑而起作用。NO的生物合成涉及由 氧化氮合酶(NOS)催化的Ca++及NADPH-依賴性反應。精氨 1331531 酸的另一個公認的作用是其經烏氨酸而作爲聚胺’亞精胺 和精胺的前體,參與不同的生理過程’包括細胞增殖和生 長(Wu & Morris,1998,精氨酸代謝:氧化氮及其它,生 物化學雜誌336,1-17)。 5 精氨酸還是一些重要酶如氧化氮合酶(NOS)的底物。A key mammalian liver enzyme that catalyzes the final step of urea formation in the urea cycle's conversion of arginine to ornithine and urea. When a rat liver extract with high levels of arginase was accidentally added to tumor cell culture medium, it was found to have antitumor properties in vitro (Burton et al., 1967, corticosteroid 15 in vitro dissolution of thymus and lymphoma cells). Cellular action, Canadian biochemistry, 45, 289-297). Subsequent experiments showed that the anti-tumor effect of the enzyme is due to arginine depletion, which is an essential amino acid in the medium. When arginine is below 8 μΜ, cancer cells undergo irreversible cell death (Storr & Burton, 1974, Effect of arginine deficiency on lymphoma cells, Br. J. Cancer 30, 50-59 精. A newer aspect of the acid set in its role as a direct precursor of the strong signaling molecule nitric oxide (NO) synthesis, NO acts as a neurotransmitter, smooth muscle relaxant and vasodilator. The biosynthesis of NO involves Nitric oxide synthase (NOS) catalyzed Ca++ and NADPH-dependent reactions. Another recognized role of arginine 13351531 acid is its precursor to polyamines, spermidine and spermine, which participates in different Physiological processes 'including cell proliferation and growth (Wu & Morris, 1998, Arginine Metabolism: Nitric Oxide and Others, J. Biol. 336, 1-17). 5 Arginine is also an important enzyme such as nitric oxide synthase. Substrate for (NOS).
現有三種類型的NOS即nNOS,eNOS和iNOS,它們均能將 精ll酸轉變爲氧化氮和瓜氨酸。由NO引起的面部發紅例如 是由nN〇S介導的,nNOS是神經元類型NOS。iNOS即誘導 型NOS,由巨噬細胞產生,而且在敗血病期間從精氨酸中 10 如此産生的NO導致内毒性休克中血管舒張。eNOS即内皮 NOS,由血管中的内皮細胞産生,其將精氨酸轉變爲NO, 然後通過cGMP機制在内皮細胞表面引起血小板解聚集。從 局部内皮細胞層中的eNOS産生的NO的半衰期爲大約5秒 ,擴散距離爲大約2微米。 15 這些酶的産生由分別在染色體12, 17和7中編碼的不同There are three types of NOS, nNOS, eNOS and iNOS, which convert the acid to nitric oxide and citrulline. Facial redness caused by NO is mediated, for example, by nN〇S, which is a neuronal type NOS. iNOS, an inducible NOS, is produced by macrophages, and NO produced in this way from arginine during septicemia causes vasodilation in endotoxic shock. eNOS, the endothelial NOS, is produced by endothelial cells in blood vessels, which converts arginine to NO and then causes platelet deaggregation on the surface of endothelial cells by the cGMP mechanism. The half-life of NO produced from eNOS in the local endothelial cell layer is about 5 seconds and the diffusion distance is about 2 microns. 15 The production of these enzymes is encoded by chromosomes 12, 17 and 7 respectively.
NOS基因(NOS1 ’ NOS2,NOS3)控制。這些基因在外顯子 大小和剪接點位置方面呈現令人驚異的相似基因組結構。 精氨酸耗竭的體外抗腫瘤作用最近由英國蘇格蘭的一 個研究小組證實(Scott等,2000,單氨基酸(精氨酸)剝奪:培 20養的轉化和惡性腫瘤細胞的快速及選擇性死亡,Br jThe NOS gene (NOS1 'NOS2, NOS3) is controlled. These genes present an amazingly similar genomic structure in terms of exon size and splice junction location. The in vitro anti-tumor effect of arginine depletion was recently confirmed by a research team in Scotland, UK (Scott et al., 2000, single amino acid (arginine) deprivation: transformation of cultured 20 and rapid and selective death of malignant cells, Br j
Cancer 83,800-810 ; Wheatley等,2000,單氨基酸(精氨酸 )限制:培養的HeLa和人二倍體成纖維細胞的生長和死亡, 細胞生理生物化學10,37_55)。在測試的24種不同的腫瘤細 胞系中’所有細胞均在精氨酸_5天内死亡,所述細胞系 6 1331531Cancer 83, 800-810; Wheatley et al., 2000, Single amino acid (arginine) restriction: growth and death of cultured HeLa and human diploid fibroblasts, Cell Physiology Biochemistry 10, 37_55). In all 24 different tumor cell lines tested, 'all cells died within 5 days of arginine, the cell line 6 1331531
K 包括普通癌知乳腺癌’結腸直腸癌,肺癌,前列腺癌和卵 巢癌細胞系。使用流式細胞術研究能示出正常細胞系在細 胞周期GO期進入靜止狀態直至幾周,而沒有任何明顯的傷 害。然而,腫瘤細胞由於精氨酸缺乏而經過G 1期的” R”點進 5入3期。精氨酸是一種不能替代的氨基酸,如果沒有精氨酸 時’蛋白質合成被擾亂…些細胞系示出死於細胞程式死 亡。更令人興奮地,重複耗竭可以産生腫瘤死亡而不産生” 抗性”(Lamb等,2000,單氨基酸(精氨酸)剝奪在培養的人二 倍體成纖維細胞中引起與Cdk4表連的抑制㈣的⑴停滯 3 ,實驗細胞研究225,238-249)。 15 20 儘管體外數據很有前景,但在體时試精氨酸耗竭^ 療癌症還未成功。最她⑽小組嘗試在腹職内用肝_ 取物治療«腫瘤的大鼠,但未獲成功⑼⑽& Bu_, 1974,精氨酸缺乏對淋巴瘤細胞的作用,仏】c繼犷& ,50-59)。目前-般認爲在正f生理條件下,血㈣氨則 平及其它氨基酸水平同樣保持在正常範圍之間_- _M) ’肌肉是主要霸物。面對氨基酸缺乏,胞内蛋白 質分解途徑破啟動(蛋白酶體和溶酶體),將氨基酸釋放至鴻 環中_UmbfeS&Bafbadd,_,循環或不循環:癌症中 的關鍵決斷,自然綜述1,22? ^ 、 .,± . A . _ 3l)。廷種氨基酸適應性擴 制使各似从水平簡在恒定制。因此,先前用多卷 物理方法或精氨酸降解酶耗竭精氨酸的嘗試均失敗了是因 爲機體的氨基酸適應性機制所致。 爲克服機體的天然適應性傾向這一問題,恤等在美 7 國專利6,261,<557中闡述τ # ϋ 種治療組合物及用於治療癌症 的方法,其中將一種赭一 ., 虱酸分解酶與一種蛋白質分解抑制 背J如胰島素組合使用,u r ' 酸。 防止機體的肌肉補充耗竭的精氨 儘管胰島素可以作s π 還具有深遠生理學作/ 分解抑制劑,但其對人體 有限的正常範_則可^果患=血糖水平不嚴格保持在 . 導致致命問題。因此本發明的— 個目的是發現改良的用於、^ ;冶療癌症的治療方法和組合物。 C明内 10 15 發明概要 因此,本發明一方品K includes common cancer known as breast cancer's colorectal cancer, lung cancer, prostate cancer and ovarian cancer cell lines. Flow cytometry studies have shown that normal cell lines enter a resting state during the GO phase of the cell cycle up to several weeks without any significant injury. However, tumor cells enter the 5th phase of the G1 phase by the "R" point due to arginine deficiency. Arginine is an irreplaceable amino acid, and if there is no arginine, protein synthesis is disturbed... some cell lines show death from cell death. Even more exciting, repeated depletion can lead to tumor death without "resistance" (Lamb et al., 2000, single amino acid (arginine) deprivation causes Cdk4 phenotype in cultured human diploid fibroblasts Inhibition of (4) (1) stagnation 3, experimental cell research 225, 238-249). 15 20 Despite the promising data in vitro, it has not been successful to try arginine depletion in the body. Most of her (10) groups tried to treat the tumor-bearing rats with the liver in the abdominal cavity, but did not succeed (9) (10) & Bu_, 1974, the effect of arginine deficiency on lymphoma cells, 仏 c followed by 犷 & 50-59). At present, it is generally believed that under normal physiological conditions, blood (tetra) ammonia levels and other amino acid levels remain within the normal range _- _M) ‘muscle is the main hegemony. In the face of amino acid deficiency, the intracellular proteolytic pathway is broken (proteasome and lysosome), releasing amino acids into the circumstance _UmbfeS&Bafbadd, _, circulatory or non-circulating: key decisions in cancer, Nature Review 1, 22? ^, ., ± . A . _ 3l). The adaptive expansion of the amino acid species makes the various levels seem to be constant. Therefore, previous attempts to deplete arginine by multi-volume physical methods or arginine degrading enzymes have failed due to the amino acid adaptation mechanism of the organism. In order to overcome the problem of the natural adaptability of the body, the shirts and the like are described in U.S. Patent No. 6,261, < 557, the τ # ϋ therapeutic composition and a method for treating cancer, wherein a bismuth, citric acid is used. Decomposing enzymes are combined with a protein to inhibit the use of back-J, such as insulin, ur' acid. Preventing the body's muscles from replenishing depleted spermatorrhea Although insulin can be used as a s π with far-reaching physiology/decomposition inhibitors, its limited normality to the human body can be affected by the fact that the blood sugar level is not strictly maintained. problem. It is therefore an object of the present invention to find improved therapeutic methods and compositions for the treatment of cancer. C 明内 10 15 SUMMARY OF THE INVENTION Therefore, one product of the present invention
面提供了一種分離的和基本純化的 重組人精氨酸酶I (除北M F特別說明,否則後文中均稱爲精氨 酉义酶),純度爲80-100。/ 。在一個優選的實施方案中,所述 精氨酸酶純度爲^啊。在最優選的實施方案中,本發 月的精氨酸酶至少99。/。純。在下文所述實施例中,所述精 氣酸ϋ在SDS_PAGE分離後基於光密度測定追縱純度爲 99.9%以上。 在另一個優選的實施方案中,本發明的精氨酸酶經修 部具有足夠高的酶活性和穩定性以在患者體内保持至少3 〇天的足夠的精氣酸剝奪"(adequate arginine deprivation,後 文稱爲AAD)。一個優選的修飾方法是一個6組氨酸氨基末 端標記。另一個優選修飾是聚乙二醇化(pegylation)以提高 所述酶的穩定性及使患者發生的免疫反應性最小。在下文 所述實施例中,所述精氨酸酶的血漿半衰期爲至少大約3天 8 1331531 ,比活性爲至少大約250 I.u./mg。 在本發明的再一個方面中,提供了生産重組蛋白質的 方法,包括(a)克隆編碼所述蛋白質的基因;(b)構建—種重 組的枯草芽孢桿菌(Bacillus subtiHs)菌株以表達所述蛋白 5質;(c)使用補料分批發酵法發酵所述重組B. subtilis細胞 ;(d)熱激所述重組B. subtilis細胞以刺激所述重組蛋白質 的表達’及(e)從所述發酵産物中純化所述重組蛋白質。在 一個優選的實施方案中,使用原噬菌體作爲重組菌株。使 用上述補料分批發酵方法和原噬菌體進行人重組精氨酸酶 10的克隆和表達,在波長600nm的最大光密度(OD)提高4倍以 上’而且所述精氨酸酶産量和産率均提高5倍以上,如下文 實施例3所述。在另—個實施方案中,發酵步驟可以按比例 擴大以生產重組蛋白。在又一個實施方案中,使用已知成 分流加培養基進行發酵步驟,所述培養基由18〇_32〇 15 萄糖,2-4 g/Lmgs〇4· 7H2O,45-80 g/L胰化蛋白腺,7]2 g/L IHPO4和3-6 g/L KH2P〇4組成。使用已知成分培養基可防 止非所需物質與重組蛋白一起純化,使所述方法安全有效 地生産藥物級重組物質。 在另一個優選實施方案中,提供了具有編碼位於氨基 〇末*而的6個額外組氨酸的額外編碼區的人精氨酸酶基因,而 且純化步驟包括—個鼇合柱層析步驟。在再一個優選實施 方案中,所述精氨酸酶通過聚乙二醇化進一步純化以改良 穩定性。 在本發明的另—個方面中,進一步提供了包含精氨酸 9 1331531 酶的藥物組合,物。在優選的實施方案中,所述精氨酸酶具 有足夠高的酶活性和穩定性以在患者體内保持至少3天 AAD。在最優選的實施方案中,所述精氨酸酶還通過聚乙 二醇化修飾以改良穩定性及使免疫反應性最小化。 5 根據本發明的另一方面,使用精氨酸酶進一步配製一 種藥物組合物。 在本發明的另一方面中,提供了一種治療疾病的方法 ,包括給予患者本發明的配製的藥物組合物,以保持患者 體内精氨酸水平在至少3天内低於ΙΟμΜ,而不需要其他蛋 10 白質分解抑制劑。在一個優選的實施方案中,對非糖尿病 患者不外源性給予胰島素。 另外,本發明最優選的治療方法包括監測患者血小板 計數(優選保持在50,ΟΟΟχ 109以上)和凝血時間(保持不超過 正常值的2倍)。不外源性給予氧化氮産生劑,除非上述這 15 些血小板計數水平和凝血時間未達到。An isolated and substantially purified recombinant human arginase I (except for the Northern M F, otherwise referred to as arginine serotonin) is provided in a purity of 80-100. / . In a preferred embodiment, the arginase is of a purity. In a most preferred embodiment, the arginase of the present month is at least 99. /. pure. In the examples described below, the purine acid bismuth was determined to have a purity of 99.9% or more based on optical density after SDS_PAGE separation. In another preferred embodiment, the arginase enzyme of the present invention has a sufficiently high enzymatic activity and stability to maintain sufficient acid deprivation of at least 3 days in a patient" (adequate arginine) Deprivation, hereinafter referred to as AAD). A preferred modification is a 6-histidine amino terminal label. Another preferred modification is pegylation to increase the stability of the enzyme and minimize the immunoreactivity that occurs in the patient. In the examples described below, the arginase has a plasma half-life of at least about 3 days 8 1331531 and a specific activity of at least about 250 I.u./mg. In still another aspect of the invention, there is provided a method of producing a recombinant protein comprising (a) cloning a gene encoding the protein; (b) constructing a recombinant Bacillus subtiHs strain to express the protein (c) fermenting the recombinant B. subtilis cells using fed-batch fermentation; (d) heat-shocking the recombinant B. subtilis cells to stimulate expression of the recombinant protein' and (e) from said The recombinant protein is purified in the fermentation product. In a preferred embodiment, prophage is used as a recombinant strain. Cloning and expression of human recombinant arginase 10 using the above fed-batch fermentation method and prophage, increasing the maximum optical density (OD) at a wavelength of 600 nm by more than 4 times' and the arginase yield and yield Both were increased by more than 5 times as described in Example 3 below. In another embodiment, the fermentation step can be scaled up to produce recombinant protein. In yet another embodiment, the fermentation step is carried out using a known component fed-batch medium consisting of 18 〇 32 〇 15 glucosamine, 2-4 g/L mgs 〇 4 · 7 H 2 O, 45-80 g/L. The protein gland is composed of 7] 2 g/L IHPO4 and 3-6 g/L KH2P〇4. The use of a known component medium prevents the undesired material from being purified together with the recombinant protein, making the method safe and effective in the production of pharmaceutical grade recombinant materials. In another preferred embodiment, a human arginase gene having an additional coding region encoding six additional histidines at amino oxime* is provided, and the purification step comprises a chelating column chromatography step. In still another preferred embodiment, the arginase is further purified by pegylation to improve stability. In another aspect of the invention, there is further provided a pharmaceutical combination comprising an arginine 9 1331531 enzyme. In a preferred embodiment, the arginase has a sufficiently high enzymatic activity and stability to maintain at least 3 days of AAD in the patient. In a most preferred embodiment, the arginase is also modified by polyethylene glycolation to improve stability and minimize immunoreactivity. 5 According to another aspect of the invention, a pharmaceutical composition is further formulated using arginase. In another aspect of the invention, there is provided a method of treating a disease comprising administering to a patient a formulated pharmaceutical composition of the invention to maintain arginine levels in the patient below ΙΟμΜ for at least 3 days without the need for additional Egg 10 white matter decomposition inhibitor. In a preferred embodiment, insulin is not administered exogenously to a non-diabetic patient. In addition, the most preferred method of treatment of the present invention involves monitoring the patient's platelet count (preferably maintained at 50, above 109) and clotting time (not exceeding 2 times normal). The nitric oxide generator is not administered exogenously unless the above-mentioned 15 platelet count levels and clotting time are not reached.
在本發明此方面的另一個優選實施方案中,聚乙二醇 化的精氨酸酶以3,000 — 5,000 I.U./kg在30分鐘時間内進行 短期輸注。在精氨酸酶輸注前和輸注後每天測定精氨酸水 平和精氨酸酶活性。如果在第二天未達到A AD,下一次精 20 氨酸酶的輸注劑量根據經治醫生的判斷確定。AAD的最大 耐受期間定義爲在此期間血壓在控制之下(由經治醫生認 爲用或不用藥物控制),血小板計數在50,000xl09之上及凝 血時間低於正常值的兩倍。每日測定精氨酸水平,全血計 數(CBC)和凝血時間(PT) 〇在治療期間每周至少監測兩次 10 1331531 肝功能。 , 以下詳細描述中提供的實驗數據示出精氨酸酶如果以 足夠強力的形式提供,可以用於治療惡性腫瘤。儘管重組 人精氨酸酶I是用於本發明的精氨酸酶的具體實施方案,作 5應清楚其他形式的精氨酸酶和/或來自其他來源的精氨酸 酶根據本發明也可以使用。 圖式簡單說明 第1圖示出PAB101的質粒圖。這個質粒攜帶編碼精氨 酸酶的基因(arg),而且只在大腸桿菌中複製,不在b. subtilis 10 中複製》 第2A圖,第2B圖和第2C圖示出人精氨酸酶!的核苦酸 序列及其推導的氨基酸序列。第2A圖示出質粒pab 1 〇 1的 EcoRI/MunI至Xbal位點的核苷酸序列(SEQ ID NO : 1)。柱 苷酸(nt) 1 — 6,EcoRI/MunI位點;nt 481 - 486,啓動子 ^ 的 15 -35區域;nt 504— 509,啓動子 1 的-10區域;nt 544—549, 啓動子2的-35區域;nt 566— 571,啓動子2的-10區域; 600 —605,核糖體結合位點;nt 614 —616,起始密褐子. nt 632 — 637’Ndel位點;nt 1601 — 1603 ’ 終止密碼子;nt 199*7 —2002,Xbal位點。 2〇 第2B圖示出經修飾的人精氨酸酶的編碼核苷酸序列 (SEQ ID NO : 2)及其相應編碼的氨基酸序列(SEQ ID :3)。第2A圖中核苷酸614— 1603是修飾的精氨酸酶氨基賤 序列的編碼區。N末端的6組氨酸(SEQ ID NO: 4)標記以下 劃線標示。翻譯終止密碼子以*標示。 11 1331531 第2C圖乔出正常人精氨酸酶I的編碼核苷酸序列(SEq ID NO . 8)及其相應編喝的氨基酸序列(seq id NO : 9)。 第3圖是構建可表達精氨酸酶的B subtiHs原噬菌體的 示意圖。 5 第4A圖和第圖示出在2L發酵罐中重組Bacillus subtilis菌株LLC101的發酵時程。第4A圖示出得自分批發酵 的結果。第4B圖示出得自補料分批發酵的結果。 第5A圖和第5B圖示出發酵史圊’示出參數的變化如溫 度,攪拌速度,pH和溶解氧的數值。第5八圖示出分批發酵 10的史圖。第5B圖示出補料分批發酵的史圖。 第6A圖和第6B圖示出在熱激後3小時通過第—個5ml HiTrap黎合柱對人精氨酸酶進行生物化學純化後的結果。 第6A圖示出FPLC運行參數和蛋白質洗脫圖。第6]B圖示出從 所述柱中收集的5μ 1 11 —31各級分的SDS_PAGE (12 %)分 15析。蛋白質凝膠用考馬斯亮藍染色並脫色,以示出蛋白質 條帶。泳道Μ :低分子量範圍的標記(1 μ§/條帶;Bi〇 Rad) ,MW (道爾頓):97,400 ; 66,200 ; 45,000 ; 31,000 ; 21,500 ;14,400。 第7A圖和第7B圖示出在熱激後3小時通過第二個5ml 20 HiTraP鼇合柱對人精氨酸酶進行純化的結果。第7A圖示出 FPLC運行參數及蛋白質洗脫圖。第7B圖示出從所述柱收集 的1 μΐ 9 — 39各級分的SDS-PAGE (12 %)分析。蛋白質凝朦 用考馬斯贵藍染色並脫色,以示出蛋白質條帶。泳道Μ:低 分子量範圍標記(1 pg/條帶;Bio-Rad),MW (道_頓):97,400 12 1331531 ;66,200 ; 45,000 ; 31,000 ; 21,500 ; 14,400。 第8A圖和第8B圖示出在熱激後6小時通過第一個5ml HiTrap鼇合柱對人精氨酸酶進行純化的結果。第8A圖示出 FPLC運行參數及蛋白質洗脫圖。第8B圖示出從所述柱收集 5 的2·5μ1 10—32各級分的SDS-PAGE (12 %)分析。蛋白質凝 膠用考馬斯亮藍染色並脫色,以示出蛋白質條帶。泳道Μ :低分子量範圍標記(1 pg/條帶;Bio-Rad),MW (道爾頓) :97,400 ; 66,200 ; 45,000 ; 31,000 ; 21,500 ; 14,400。In another preferred embodiment of this aspect of the invention, the pegylated arginase is administered in a short-term infusion over a period of 30 minutes at 3,000 to 5,000 I.U./kg. Arginine levels and arginase activity were measured daily before and after arginase infusion. If A AD is not reached the next day, the next infusion dose of the spermatoxin is determined according to the judgment of the treating physician. The maximum tolerated period of AAD is defined as the blood pressure is under control during this period (either by the treating physician or without drug control), the platelet count is above 50,000 x 109 and the clotting time is less than twice the normal value. Arginine levels were measured daily, whole blood count (CBC) and clotting time (PT). 肝 10 1331531 Liver function was monitored at least twice a week during treatment. The experimental data provided in the detailed description below shows that arginase can be used to treat malignant tumors if provided in a sufficiently strong form. Although recombinant human arginase I is a specific embodiment of the arginase used in the present invention, it should be clear that other forms of arginase and/or arginase from other sources may also be used according to the present invention. use. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 shows a plasmid map of PAB101. This plasmid carries the gene encoding arginase (arg) and is only replicated in E. coli, not in b. subtilis 10. Figure 2A, Figure 2B and Figure 2C show human arginase! The nucleotide sequence of the nucleotide and its deduced amino acid sequence. Figure 2A shows the nucleotide sequence of the EcoRI/MunI to Xbal site of plasmid pab 1 〇 1 (SEQ ID NO: 1). Column nucleotide (nt) 1 - 6, EcoRI/MunI site; nt 481 - 486, 15 -35 region of promoter ^; nt 504-509, promoter region -10 region; nt 544-549, promoter -35 region of 2; nt 566-571, region -10 of promoter 2; 600-605, ribosome binding site; nt 614-616, initiation of tambucus. nt 632 - 637 'Ndel site; nt 1601 — 1603 ' Stop codon; nt 199*7 — 2002, Xbal site. 2〇 Figure 2B shows the nucleotide sequence encoding the modified human arginase (SEQ ID NO: 2) and its corresponding encoded amino acid sequence (SEQ ID: 3). Nucleotides 616-1603 in Figure 2A are the coding regions for the modified arginase aminoguanidine sequence. The 6-histidine (SEQ ID NO: 4) label at the N-terminus is underlined. The translation stop codon is indicated by *. 11 1331531 Figure 2C shows the coding sequence of the normal human arginase I (SEq ID NO. 8) and its corresponding amino acid sequence (seq id NO: 9). Figure 3 is a schematic representation of the construction of B subtiHs prophage expressing arginase. 5 Figure 4A and Figure 5 show the fermentation time course of recombinant Bacillus subtilis strain LLC101 in a 2L fermentor. Figure 4A shows the results from batch fermentation. Figure 4B shows the results from the fed-batch fermentation. Figures 5A and 5B show the fermentation history' showing changes in parameters such as temperature, agitation speed, pH and dissolved oxygen values. Figure 5 shows a history of batch fermentation 10. Figure 5B shows a history of fed batch fermentation. Figures 6A and 6B show the results of biochemical purification of human arginase by the first 5 ml HiTrap column 3 hours after heat shock. Figure 6A shows FPLC operating parameters and protein elution profiles. Figure 6B shows the SDS_PAGE (12%) of the 5μ 1 11 - 31 fractions collected from the column. The protein gel was stained with Coomassie Brilliant Blue and destained to show the protein band. Lane Μ: low molecular weight range label (1 μ§/band; Bi〇 Rad), MW (Dalton): 97,400; 66,200; 45,000; 31,000; 21,500; 14,400. Figures 7A and 7B show the results of purification of human arginase by a second 5 ml 20 HiTraP binding column 3 hours after heat shock. Figure 7A shows FPLC operating parameters and protein elution profiles. Figure 7B shows an SDS-PAGE (12%) analysis of 1 μΐ 9 - 39 fractions collected from the column. Protein coagulation was stained with Coomassie Blue and destained to show protein bands. Lane Μ: low molecular weight range marker (1 pg/band; Bio-Rad), MW (dao_ton): 97,400 12 1331531; 66,200; 45,000; 31,000; 21,500; Figures 8A and 8B show the results of purification of human arginase by the first 5 ml HiTrap gel column 6 hours after heat shock. Figure 8A shows FPLC operating parameters and protein elution profiles. Figure 8B shows an SDS-PAGE (12%) analysis of 2·5 μl 10–32 fractions collected from the column 5 . The protein gel was stained with Coomassie Brilliant Blue and destained to show the protein band. Lane Μ: low molecular weight range marker (1 pg/band; Bio-Rad), MW (Dalton): 97,400; 66,200; 45,000; 31,000; 21,500; 14,400.
第9A圖和第9B圖示出在熱激後6小時通過第二個5ml 10 HiTrap鼇合柱對人精氨酸酶進行純化的結果。第9A圖示出 FPLC運行參數及蛋白質洗脫圖。第9B圖示出從所述柱收集 的2 μΐ 8 —E6各級分的SDS-PAGE (12 %)分析。蛋白質凝膠 用考馬斯亮藍染色並脫色,以示出蛋白質條帶。泳道Μ :低 分子量範圍標記(1 pg/條帶;Bio-Rad),MW (道爾頓):97,400 15 ; 66,200 ; 45,000 ; 31,000 ; 21,500 ; 14,400。Figures 9A and 9B show the results of purification of human arginase by a second 5 ml 10 HiTrap coupling column 6 hours after heat shock. Figure 9A shows FPLC operating parameters and protein elution profiles. Figure 9B shows an SDS-PAGE (12%) analysis of 2 μΐ 8 -E6 fractions collected from the column. The protein gel was stained with Coomassie Brilliant Blue and destained to show the protein bands. Lane Μ: low molecular weight range marker (1 pg/band; Bio-Rad), MW (Dalton): 97,400 15; 66,200; 45,000; 31,000; 21,500; 14,400.
第10圖示出當在較高細胞密度進行熱激時細菌細胞生 長的時程。當培養密度(〇D6_m)爲大約25時,在8小時進行 熱激。 第11圖是當在較高密度進行熱激時補料分批發酵的史 20 圖。這個圖示出參數變化如溫度,攪拌速度,pH和溶解氧 數值。 第12A圖和第12B圖示出在熱激6小時後(在OD25的較 高細胞密度),通過第一個5ml HiTrap鼇合柱對人精氨酸酶 進行純化的結果。第12A圖示出FPLC運行參數和蛋白質洗 13 1331531 脫圖。第12B.圖示出從所述柱中收集的5μ1每種級分16_45 的SDS-PAGE (I2 %)分析結果。將蛋白質凝膠用考馬斯亮藍 染色並脫色,以示出蛋白質條帶。泳道Μ :低分子量範圍 的標記(1 pg/條帶;Bi〇-Rad),MW (道爾頓):97,400 ; 66,200 5 ; 45,000 ; 31,000 ; 21,5〇〇 ; 14,400。泳道”粗提物,,:5μ1 加 樣於柱中之前的細胞粗提物。 第13Α圖和第13Β圖示出在熱激後6小時(在〇D25的較 高細胞密度),通過第二個5ml HiTrap鼇合柱對人精氨酸酶 進行純化的結果。第13A圖示出FPLC運行參數和蛋白質洗 10脫圖。第圖示出從所述柱中收集的5 μΐ每種級分7 —% 的SDS-PAGE (12 °/。)分析結果。將蛋白質凝膠用考馬斯亮藍 染色並脫色’以示出蛋白質條帶。泳道Μ:低分子量範圍 的標記(1 pg/條帶;Bio-Rad),MW (道爾頓):97,400; 66,20〇 ;45,000 ; 31,000 ; 21,500 ; 14,400。 15 第14A圖和第14B圖示出在熱激後6小時(在〇D25的較 高細胞密度),通過第一個1 ml HiTrapSP FF鼇合柱對人精氨 酸酶進行純化的結果。第14A圖示出FPLC運行參數和蛋白 質洗脫圖。第14B圖示出從所述柱中收集的5 μι每種級分 A11 — Β7的SDS-PAGE (12 %)分析結果。將蛋白質凝膠用考 20馬斯亮藍染色並脫色’以示出蛋白質條帶。泳道Μ :低分 子量範圍的標記(1 pg/條帶;Bio-Rad),MW (到道爾頓):97,4〇〇 ;66,200 ; 45,000 ; 31,000 ; 21,500 ; 14,400。 第15A圖和第15B圖示出在熱激後6小時(在〇D25的較 高細胞密度)’通過第二個lml HiTrap SP FF鼇合柱對人精 ]4 氨酸酶進行純化的結果。第15A圖示出FPLC運行參數和蛋 白質洗脫圖。第15B圖示出從所述柱中收集的5 μΐ每種級分 Α6 — Β12的SDS-PAGE (12 〇/〇)分析結果。將蛋白質凝膠用考 馬斯亮藍染色並脫色,以示出蛋白質條帶。泳道Μ :低分子 5里範圍的標記(1叩/條帶;Bio-Rad) ’ MW (道爾頓):97,400 ; 66,200 ; 45,000 ; 31,000 ; 21,500 ; 14,400 ° 第16A圖和第16B圖是對用mPEG-SPA (MW 5,0〇〇)修 飾的人精氨酸酶進行的SDS-PAGE (15%)分析,所用精氨 酸酶與PEG的比率爲1 : 50。第16A圖示出當在冰上進行反 10 應時的結果。泳道1 :低分子量範圍蛋白質標記;泳道2 : 未加入PEG的精氨酸酶(5.35 pg)(對照組);泳道3 :反應後1 小時;泳道4 :反應後0.5小時;泳道5 :反應後2小時;泳 道6 :反應後3小時;泳道7 :反應後4小時;泳道8 :反應後 5小時;泳道9:反應後23小時。第16B圖示出在室溫進行反 15 應的結果。泳道1 :低分子量範圍蛋白質標記;泳道2 :未 加入PEG的精氨酸酶(5_35pg)(對照組);泳道3 :反應後1小 時;泳道4 :反應後0.5小時;泳道5 :反應後2小時;泳道6 :反應後3小時;泳道7 :反應後4小時;泳道8 :反應後5小 時;泳道9 :反應後23小時。 20 第17A圖和第17B圖是對用mPEG-SPA (MW 5,000)修 飾的人精氨酸酶進行的SDS-PAGE (15%)分析,所用精氨 酸酶與PEG的比率爲1 : 20。第17A圖示出當在冰上進行反 應時的結果。泳道1 :低分子量範圍蛋白質標記;泳道2 : 未加入PEG的精氨酸酶(5.35 pg)(對照組);泳道3 :反應後1 15 1331531Figure 10 shows the time course of bacterial cell growth when heat shock is performed at a higher cell density. When the culture density (〇D6_m) was about 25, heat shock was performed at 8 hours. Figure 11 is a graph of the history of fed-batch fermentation when heat shock is performed at a higher density. This figure shows the parameter changes such as temperature, agitation speed, pH and dissolved oxygen values. Fig. 12A and Fig. 12B show the results of purification of human arginase by the first 5 ml HiTrap column after 6 hours of heat shock (higher cell density at OD25). Figure 12A shows the FPLC operating parameters and protein wash 13 1331531 off-line. Figure 12B. shows the results of SDS-PAGE (I2%) analysis of 5 μl of each fraction 16_45 collected from the column. The protein gel was stained with Coomassie Brilliant Blue and destained to show the protein bands. Lane Μ: marker of low molecular weight range (1 pg/band; Bi〇-Rad), MW (Dalton): 97,400; 66,200 5; 45,000; 31,000; 21,5〇〇; 14,400. Lane "crude extract,: 5μ1 crude extract of cells before loading in the column. Figures 13 and 13 show 6 hours after heat shock (higher cell density at 〇D25), pass the second Results of purification of human arginase by a 5 ml HiTrap column. Figure 13A shows FPLC operating parameters and protein wash 10 off. The figure shows 5 μΐ of each fraction collected from the column 7 - % SDS-PAGE (12 °/.) analysis results. Protein gel was stained with Coomassie brilliant blue and decolorized to show protein bands. Lane Μ: low molecular weight range label (1 pg/band; Bio -Rad), MW (Dalton): 97,400; 66,20〇; 45,000; 31,000; 21,500; 14,400. 15 Figures 14A and 14B show 6 hours after heat shock (higher cells at 〇D25) Density), the result of purification of human arginase by the first 1 ml HiTrapSP FF binding column. Figure 14A shows FPLC operating parameters and protein elution profiles. Figure 14B shows collection from the column 5 μιη of each fraction A11 — SDS-PAGE (12%) analysis of Β7. The protein gel was stained with 20 mas blue Color 'to show the protein band. Lane Μ: low molecular weight range of markers (1 pg / band; Bio-Rad), MW (to Dalton): 97, 4 〇〇; 66, 200; 45,000; 31,000; , 500 ; 14,400. Figures 15A and 15B show 6 hours after heat shock (higher cell density at 〇D25)' by humans]4L HiTrap SP FF binding column The results of the purification were performed. Figure 15A shows the FPLC operating parameters and the protein elution map. Figure 15B shows the SDS-PAGE (12 〇/〇) of 5 μΐ of each fraction Α6 - Β12 collected from the column. The results were analyzed. The protein gel was stained with Coomassie brilliant blue and destained to show the protein band. Lane Μ: low molecular 5 mile range marker (1 叩 / band; Bio-Rad) ' MW (Dalton) : 97,400 ; 66,200 ; 45,000 ; 31,000 ; 21,500 ; 14,400 ° Figure 16A and Figure 16B are SDS-PAGE (15%) of human arginase modified with mPEG-SPA (MW 5,0〇〇) For analysis, the ratio of arginase to PEG used was 1:50. Figure 16A shows the results when anti-10 on ice. Lane 1: low molecular weight range protein Lane 2: arginase without PEG (5.35 pg) (control group); lane 3: 1 hour after reaction; lane 4: 0.5 hour after reaction; lane 5: 2 hours after reaction; lane 6: reaction The last 3 hours; Lane 7: 4 hours after the reaction; Lane 8: 5 hours after the reaction; Lane 9: 23 hours after the reaction. Fig. 16B shows the results of the reaction at room temperature. Lane 1: low molecular weight range protein labeling; lane 2: arginase without PEG (5-35 pg) (control); lane 3: 1 hour after reaction; lane 4: 0.5 hour after reaction; lane 5: after reaction 2 Hours; Lane 6: 3 hours after the reaction; Lane 7: 4 hours after the reaction; Lane 8: 5 hours after the reaction; Lane 9: 23 hours after the reaction. 20 Figures 17A and 17B are SDS-PAGE (15%) analysis of human arginase modified with mPEG-SPA (MW 5,000) using a ratio of arginase to PEG of 1:20. Fig. 17A shows the result when the reaction was carried out on ice. Lane 1: low molecular weight range protein labeling; lane 2: arginase without PEG (5.35 pg) (control); lane 3: 1 15 1331531 after reaction
小時;泳道4.:反應後〇·5小時;泳道5 :反應後2小時,泳 道6 :反應後3小時;泳道7 :反應後4小時;泳道8 .反應後 5小時;泳道9 :反應後23小時。第17B圖示出在室溫進行反 應的結果。泳道1 :低分子量範圍蛋白質標記;泳道2 :未 5加入PEG的精氨酸酶(5.35 pg)(對照組);泳道3 :反應後1 小時;泳道4 :反應後〇·5小時;泳道5 :反應後2小時;泳 道6 :反應後3小時;泳道7 :反應後4小時;泳道8 :反應後 5小時;泳道9 :反應後23小時。 第18Α圖是對用mPEG-CC (MW 5,000)修飾的人精氨酸 10 酶進行的SDS-PAGE (15%)分析。將反應在冰上進行。泳 道1 :低分子量範圍蛋白質標記;泳道2 :未加入PEG的精 氨酸酶(5.35 pg)(對照組);泳道3 :用1 : 50摩爾比率的精氨 酸酶:PEG反應後2小時;泳道4 :空白;泳道5 :用1 : 50 摩爾比率的精氨酸酶:PEG反應後23小時;泳道6 :用1 : 15 20摩爾比率的精氨酸酶:PEG反應後2小時;泳道7 :用1 :20摩爾比率的精氨酸酶:PEG反應後5小時;泳道8 :用 1 : 20摩爾比率的精氨酸酶:PEG反應後23小時。 第18B圖示出對天然精氨酸酶和聚乙二醇化精氨酸酶 進行的SDS-PAGE (12%)分析,所述精氨酸酶是高活性及穩 20 定的。泳道1 :低分子量範圍蛋白質標記(Bio-rad);泳道2 :天然精氨酸酶(1 pg);泳道3 :聚乙二醇化精氨酸酶(1 μβ) :泳道4 :超透析後的聚乙二醇化精氨酸酶(1.5 Hg)。 第19A圖和第19B圖示出分離的重組人精氨酸酶純度 的測定。第19A圖示出泳道1 :得自Ikemoto等所述方法 16 1331531 (Ikemoto等ι?90,生物化學雜誌270,697-703)的5 pg純化的 大腸桿菌表達的重組人精氨酸酶。泳道2 :得自本發明方法 的5 pg純化的B. subtilis表達的重組人精氨酸酶。第19B圖示 出用 Lumi-imager™ 的 Lumianalyst 32程式(Roche Molecular 5 Biochemicals)對第19A圖中所示蛋白質條帶的密度分析。上 方:第19A圖的泳道1的結果。下方:第19A圖的泳道2的結 果。Hours; Lane 4.: 〇·5 hours after the reaction; Lane 5: 2 hours after the reaction, Lane 6: 3 hours after the reaction; Lane 7: 4 hours after the reaction; Lane 8: 5 hours after the reaction; Lane 9: After the reaction 23 hours. Fig. 17B shows the result of the reaction at room temperature. Lane 1: low molecular weight range protein labeling; lane 2: arginase without enzyme 5 (5.35 pg) (control group); lane 3: 1 hour after reaction; lane 4: 〇·5 hours after reaction; lane 5 2 hours after the reaction; Lane 6: 3 hours after the reaction; Lane 7: 4 hours after the reaction; Lane 8: 5 hours after the reaction; Lane 9: 23 hours after the reaction. Figure 18 is an SDS-PAGE (15%) analysis of human arginine 10 enzyme modified with mPEG-CC (MW 5,000). The reaction was carried out on ice. Lane 1: low molecular weight range protein labeling; lane 2: arginase without PEG (5.35 pg) (control); lane 3: 1:1 tyrosinase: 2 hours after PEG reaction; Lane 4: blank; Lane 5: arginase with 1:50 molar ratio: 23 hours after PEG reaction; Lane 6: arginase with 1:15 20 molar ratio: 2 hours after PEG reaction; Lane 7 : 1 : 20 molar ratio of arginase: 5 hours after PEG reaction; Lane 8 : with a 1: 20 molar ratio of arginase: 23 hours after PEG reaction. Figure 18B shows an SDS-PAGE (12%) analysis of natural arginase and PEGylated arginase, which are highly active and stable. Lane 1: low molecular weight range protein labeling (Bio-rad); lane 2: natural arginase (1 pg); lane 3: PEGylated arginase (1 μβ): lane 4: after ultradialysis Pegylated arginase (1.5 Hg). Figures 19A and 19B show the determination of the purity of the isolated recombinant human arginase. Figure 19A shows Lane 1 : 5 pg of purified E. coli expressed recombinant human arginase from Ikemoto et al., 16 1331531 (Ikemoto et al., J. Biol. Chem. 270, 697-703). Lane 2: 5 pg of purified recombinant human arginase expressed by B. subtilis from the method of the invention. Figure 19B illustrates the density analysis of the protein bands shown in Figure 19A using the Lumiianalyst 32 program of Lumi-imagerTM (Roche Molecular 5 Biochemicals). Upper: Results of Lane 1 of Figure 19A. Bottom: The result of lane 2 in Figure 19A.
第20圖是聚乙二醇化的精氨酸酶在人血漿中的體外穩 定性示意圖。 1〇 第21圖和第22圖示出得自實施例8A所述方法的聚乙二 醇化精氨酸酶在體内的半衰期測定。第21圖示出根據本發 明方法生産的聚乙二醇化精氨酸酶的體内活性’使用實施 例9 A所述活性測試測得。 第2 2圖是測定聚乙二醇化精氨酸酶的第一次半衰期和 15 第二次半衰期的示意圖。Figure 20 is a graphical representation of the in vitro stability of PEGylated arginase in human plasma. 1 〇 21 and 22 show the half-life determination of the poly(ethylene glycol) arginase obtained in the method described in Example 8A in vivo. Figure 21 shows the in vivo activity of PEGylated arginase produced by the method of the present invention as measured using the activity assay described in Example 9A. Figure 2 2 is a graphical representation of the first half-life and the second half-life of the PEGylated arginase.
第23圖是4組實驗室大鼠中精氨酸耗竭對比,所述大鼠 經腹膜内給予不同劑量的聚乙二醇化重組人精氨酸酶 (500 1., 1000 LU.,150〇I.U.和3000 I.U.)。 第24圖示出2組裸鼠的存活率、平均腫瘤大小和腫瘤生 2〇 長速度對比’所述裸机通過植入Hep3B細胞而産生腫瘤。 一組經腺膜内給予5〇〇ι_υ·劑量的精氨酸酶進行處理,另一 對照組不用精氨酸酶處理。 第25Α圖和第25Β圖示出2組裸鼠的平均腫瘤大小和平 均腫瘤重量對比,所述裸鼠通過植入PLC/PRF/5細胞而産生 17 腫瘤&~腹膜内給予5GG I.U.劑量的精氨酸酶進行處理 另對如、組不用精氨酸酶處理。 赛 θ ί第26B圖示出2組裸鼠的平均腫瘤大小和平 @腫瘤重’所述裸鼠通過植人ΗιιΗ·7細胞而産生腫瘤 5 ° —組祕膜内給予5〇Gl.U.劑量的精氨酸酶進行處理,另 一對照組不用精氨酸酶處理。 第27圖不出2組裸鼠的平均腫瘤大小對比,所述裸鼠通 過植入MCF-7細胞而産生腫瘤。一組經腹膜内施用5〇〇 π. β里的精行處理,另—對照組不用精氨酸酶處理。 10 帛2 8圖和第2 9圖分別示出如實施例12所述進行治療期 間,患者的體内精氨酸和CEA水平。 L· 較佳實施例之詳細說明 本發明所用術語,,聚乙二醇化精氨酸酶,,是指通過聚乙 15二醇化修飾的本發明精⑽酶卜以提高所述酶的穩定性及 使免疫反應性最小化。 本發明所用術語”基本相同,,無論是針對D N A的核苷酸 序列,RNA的核糖歸酸序列,還是蛋白質的氨基酸序列 ’均是指肖树明所揭示的實際序列有微小的及非相因而 20生的序列變化的序列。具有基本相同序列的種類被認爲與 所揭示序列相等價並包含在所附權利要求範圍内。在此方 面。,,微小的及非相因而生的序列變化”是指與本文所揭示. 的和/或權利要求的DNA,RNA或蛋白質基本相同的序列與 本文揭示的和/«财麵相,力能㈣。功鮮價序列 18 1331531 以基本相同約方式起作用,産生與本文所揭示的和權利要 求的核酸和氨基酸組合物基本相同的組合物。特別地,功 月b相專的DNA編碼與本文所揭示的那些蛋白質相同的蛋白 質,或者編碼具有保守氨基酸變化的蛋白質,所述變化如 5用一個非極性殘基取代另一個非極性殘基,或者用一個帶 電殘基取代另一個相似帶電的殘基。這些變化包括本領域 技術人員已知的那些基本不改變蛋白質三級結構的變化。 術語”足夠高的酶活性,,是指重組人精氨酸酶的酶比活性爲 至少250 I.U./mg’優選至少300-350 I.U./mg,更優選至少500 10 I.U./mg。在一個優選的實施方案中,所述精氨酸酶的比活 性爲500 — 600 I.U_/mg。術語”穩定性,,是指所述精氨酸酶在 體外的穩定性。更優選地,所述穩定性是指在體内的穩定 性。酶活性降低率與分離的純化的重組人精氨酸酶的血漿 穩疋性成反比。計算這種人精氨酸酶在血製中的半衰期。 15 本發明所用術語”足夠的精氨酸剥奪(AAD),,是指體内 精氨酸水平爲10 μ Μ或低於1 〇 μΜ。術語,,疾病”是指任何病 理狀態,包括但非限於肝臟疾病或癌症。 本發明所用術語”半衰期”是指所述精氨酸酶在體外人 血漿中的濃度降至一半所需的時間。在2〇〇丨年早些時候, 〇本發明人缺測到肝細胞癌(HCC)自發暫時消退的三個病例 。所有這三個患者均自發Hcc破裂,導致血性腹膜炎。在 一個病例中,發現血漿精氨酸水平低至3 μΜ,腹水中精氨 酸水平爲7 μΜ。這些患者在未使用任何藥物治療的情況下 ,其肝臟腫瘤在破裂性肝臟損傷後均自發消退,同時曱胎 19 1331531 蛋白(AFP)正常化。一個患者其HCc消退6個月以上。根據 本發明,確信這種延長的消退是由於精氨酸耗竭所致,精 氨酸耗竭是由於内源精氨酸酶從破裂的肝臟自發及持續釋 放至腹膜所致。因此,本發明人推斷精氨酸耗竭延長是導 致HCC消退的因素。 10 15 本發明人然後設計了一系列實驗,示出經肝動脈栓塞 後内源的肝精氨酸酶可以從肝臟中釋放,導致全身性精氨 酸剝奪。這已經在美國臨時專利申請6〇/351816中提請專利 。玄申π並入本文作爲參考。在本發明人設計的實驗中, 發現在具有不可切除的轉移的HCC的患者中,在使用導致 暫時肝灌注缺_ npiGd()1和凝膠泡料肝動脈栓塞治療後 ’發現中等可測定量的㈣肝精氨酸畴放至體循環中。 在:療方案中加人高劑量胰島素輸注以産生血氨基酸過少 狀態。f所治療的-系列6個腦病例中,有4個肝癌肝外 消退’提不所述治療作用是全身性的。—個經ρΕτ 20 放射線檢查其肝臟和肝外疾病(腹腔腺病)持續完^消退,其 AFP水平在3周内降至正常,而且持續4個月以上。間隔4個 月的CT檢録出在肝臟和肝外均無可證實的腫瘤。在栓塞4 周後經P職查,其他3個患者其肝外疾病均消退卜個是肺 /在2 j時個疋腸系膜/腹膜後/骨腺病,—個是腹膜後腺病 μ0,—2天的時間内測試其精氨酸酶活性和精氨酸水 平’所有患者均示出足夠的精氨_蝎 持續時間與肝臌4 n 于蜮和肝外腫瘤消退的程度和持續時間密切相 關0 20 1331531 儘管經肝動脈栓塞技術與高劑量胰島素輸注聯合進行 ,然而本發明人根據本發明隨後認識到需要給予胰島素是 因爲這樣的事實,即釋放至患者全身的精氨酸酶活性不足 ,由此來自肌肉的任何蛋白質降解均具有對精氨酸剝奪的 5 補償性作用,並導致治療無效。根據本發明,本發明人意 識到爲改良治療及消除與精氨酸剝奪治療聯合的胰島素給 藥的需求,患者系統中必需存在足夠高數量的精說酸酶活 性,以抵消來自肌肉的任何蛋白質降解。根據本發明,本 發明人因此致力於生産一種精氨酸酶,其具有足夠高的酶 10 活性和穩定性,以在患者體内保持1〇μΜ以下的”足夠的精 氨酸剝奪(後文稱爲AAD)”,而不需要給予高劑量的胰島素 。因此,除了增加内源精氨酸酶之外,本發明的高穩定的 活性精氨酸酶提供了額外益處,可以不給予對患者具有不 希望的副作用的蛋白質降解抑制劑而實現AAD。 15 精氨酸的全身性耗竭可以引起與氧化氮缺乏相關的其 他不希望的副作用。這些副作用包括由於缺乏NO對血管内 皮的血管擴張作用所致高血壓,.由於缺乏NO及與細胞分裂 暫時停止相關的早期凝血因子耗竭所致血小板聚集和血小 板減少。然而,本發明人驗證了在氧化氮剔除的小鼠中, 20 動物無高血壓而且具有正常血小板計數動物的正常預期壽 命。因此,根據本發明的另一方面及在具有血小板減少症 的患者中,直至血小板計數低於50,000χ 109仍未見明顯的出 血傾向。在具有出血傾向的患者中,所進行的治療必需使 凝血時間延長至正常的2倍。 21 以下詳述的實施例教導怎樣生產和使用本發明的 定和活性的精氨㈣。實施例1_ 了含有人精氨酸酶门认 因的—subtilisLLC1()1的重組_株的構建。^ 組B.W的發_兩個實叫在重組LLC1 =重 ==驗中,在,L發酵罐中進行分批發酵和補: t酵。發現在分批條件下,不能達到足夠高的^ 。只有在本發服供&猶幻 度 =。-_上。這些實驗 10 發酵=::對比示於賁施例3。因此選擇補料分批 以産生分離的和純化的重έ且人胜^缺# 酵料按比例放大進行補料分1芯精=:二魏發 於實施例2C。 L财錢和結果示 LLC101菌株是一種熱敏菌株,其使精氨酸酶在机孰 U激2達。在!7始的優化Γ驗中’在不同細胞密度進行熱 吨仔産生最大量精氨酸酶的最佳條件。實施例5 的,閣户述了純化方法及在12·8和25這兩種不同0D(在60〇nm 的,密度)進行熱激的兩種不同的補料分批發酵獲得的純 |^氨黾酶産I ^所述實驗數據示出儘管所有熱激均在 20 LC101的指數生長期期間進行,但在較低細胞密度例如 0 12·8 00進行熱激産生較好的結果。 熱激後精氨酸酶的最大程度表達條件也通過改變熱激 /文穫時間而優化。實施例4示出在熱激後3小時收穫細胞 及使用補料分批發酵方法的結果。 貫施例5闡述了在細胞密度爲12.8 OD熱激後6小時精 22 1331531 氨酸酶的純化。實施例6闡述在細胞密度爲250D熱激後6小 時精氨酸酶的純化。實施例7示出在不同收穫和純化條件下 精氨酸酶産量的對比數據。這些數據示出在12.8的較低細 胞密度熱激後6小時收穫細胞産生較高産率的精氨酸酶,産 5 率爲162mg/L。對所述精氨酸酶進行修飾以改良穩定性。實 施例8 A示出聚乙二醇化精氣酸酶的一種方法,使用氰尿醯 氣(cc)作爲交聯劑’以1 : 140(精氨酸酶:pEG)摩爾比率進 行。實施例8B闡述了 一種不同的聚乙二醇化方法,其中向 含有酶的反應混合物中加入更低比例的交聯劑。對“和丙 10酸的琥珀醯亞胺(S P A)作爲交聯劑均進行了測試。實驗結果 示出實施例SB所述使用SPA的方法提供一種聚乙二醇化精 氛酸酶,其半衰期爲3天,比活性爲大約255,如實 施例9和_論述。實施例8C闡述了—種㈣高活性聚乙二 醇化精氨酸酶的方法,所述精氨酸酶的比活性爲大約592 15 I-U./mg 〇 2〇Figure 23 is a comparison of arginine depletion in four groups of laboratory rats administered intraperitoneally with different doses of PEGylated recombinant human arginase (500 1., 1000 LU., 150 IU And 3000 IU). Figure 24 shows the survival rate, mean tumor size, and tumor growth rate of the two groups of nude mice. The bare metal produced tumors by implanting Hep3B cells. One group was treated with a 5 〇〇ι_υ· dose of arginase in the glandular membrane, and the other control group was not treated with arginase. Figure 25 and Figure 25 show the mean tumor size and mean tumor weight comparison of two groups of nude mice that were injected with PLC/PRF/5 cells to produce 17 tumors & ~ intraperitoneal dose of 5 GG IU The arginase was treated in the same manner as the group without arginase treatment. Figure θ ί, Figure 26B shows the average tumor size of two groups of nude mice and the tumor weight of the nude mice. The nude mice produced tumors by implanting ΗιιΗ·7 cells. 5 °. The group secreted 5 〇Gl.U. The arginase was treated and the other control group was not treated with arginase. Figure 27 shows the average tumor size comparison of two groups of nude mice that were tumorigenic by implantation of MCF-7 cells. One group was treated intraperitoneally with 5 〇〇 π. β, and the other control group was not treated with arginase. 10 帛 2 8 and 2.9 show the arginine and CEA levels in the patient during the treatment as described in Example 12, respectively. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The term "pegylated arginase" as used in the present invention refers to the sperm (10) of the present invention modified by polyethylene glycol diolation to enhance the stability of the enzyme and Minimize immunoreactivity. The term "substantially the same as used in the present invention, whether it is a nucleotide sequence for DNA, a ribose acid sequence of RNA, or an amino acid sequence of a protein" means that the actual sequence revealed by Xiao Shuming has a small and non-phase and thus 20 Sequence of sequence changes. Species having substantially the same sequence are considered to be equivalent to the disclosed sequences and are included in the scope of the appended claims. In this respect, "small and non-phase-like sequence changes" means The sequences substantially identical to the DNA, RNA or protein disclosed herein and/or claimed herein are disclosed in the context of the invention, and the energy (IV). The euvalent sequence 18 1331531 functions in substantially the same manner, yielding a composition substantially identical to the nucleic acid and amino acid compositions disclosed and claimed herein. In particular, the DNA of the power phase b phase encodes the same protein as those disclosed herein, or encodes a protein with a conservative amino acid change, such as 5 replacing one non-polar residue with another non-polar residue, Alternatively, one charged residue is substituted for another similarly charged residue. These variations include those known to those skilled in the art that do not substantially alter the tertiary structure of the protein. The term "sufficiently high enzymatic activity" means that the recombinant human arginase has an enzyme specific activity of at least 250 IU/mg', preferably at least 300-350 IU/mg, more preferably at least 500 10 IU/mg. In a preferred In an embodiment, the arginase has a specific activity of 500 to 600 I.U_/mg. The term "stability" refers to the stability of the arginase in vitro. More preferably, the stability refers to stability in the body. The rate of decrease in enzyme activity is inversely proportional to the plasma stability of the isolated purified recombinant human arginase. The half-life of this human arginase in the blood system was calculated. 15 The term "sufficient arginine deprivation (AAD)" as used in the present invention means that the level of arginine in the body is 10 μΜ or less than 1 μ〇. The term "disease" refers to any pathological condition, including but not Limited to liver disease or cancer. The term "half-life" as used in the present invention means the time required for the concentration of the arginase to be reduced to half in human plasma in vitro. Earlier in the second year, the inventors were short of three cases in which hepatocellular carcinoma (HCC) spontaneously resolved spontaneously. All three patients spontaneously ruptured Hcc, leading to bloody peritonitis. In one case, plasma arginine levels were found to be as low as 3 μΜ and ascites in ascites at 7 μΜ. In these patients without any medication, their liver tumors spontaneously resolved after ruptured liver injury, while abortion 19 1331531 protein (AFP) normalized. One patient had his HCc subsided for more than 6 months. According to the present invention, it is believed that this prolonged regression is due to arginine depletion, which is caused by the spontaneous and sustained release of endogenous arginase from the ruptured liver to the peritoneum. Therefore, the inventors concluded that prolonged arginine depletion is a factor that causes HCC to resolve. 10 15 The inventors then designed a series of experiments showing that endogenous hepatic arginase can be released from the liver after transcatheter arterial embolization, resulting in systemic arginine deprivation. This has been filed in U.S. Provisional Patent Application No. 6/351,816. Xuan Shen π is incorporated herein by reference. In experiments designed by the present inventors, it was found that in patients with unresectable metastatic HCC, a moderately measurable amount was found after treatment with temporary hepatic perfusion _npiGd()1 and gelatinous hepatic artery embolization. (4) The liver arginine domain is placed in the systemic circulation. In the treatment program, a high-dose insulin infusion is added to produce a state in which the blood amino acid is too small. Of the 6 brain cases treated by f, 4 of the liver cancers of the liver were regressed, and the therapeutic effect was systemic. A liver and extrahepatic disease (abdominal adenosis) was continuously regressed by ρΕτ 20 radiation, and its AFP level fell to normal within 3 weeks and lasted for more than 4 months. CT scans at 4 months intervals showed no confirmed tumors in the liver and outside the liver. After 4 weeks of embolization, the other 3 patients had their extrahepatic disease disappeared. The lungs were at 2 j 疋 mesenteric / retroperitoneal / skeletal adenosis, and the latter was retroperitoneal adenopathy μ0,- All arginase activity and arginine levels were tested within 2 days'. All patients showed sufficient spermatozoa_蝎 duration to be closely related to the extent and duration of hepatic sputum 4 n in sputum and extrahepatic tumor regression. 0 20 1331531 Although transcatheter arterial embolization techniques are performed in conjunction with high-dose insulin infusion, the inventors have subsequently recognized in accordance with the present invention that the need to administer insulin is due to the fact that the arginase activity released into the patient's system is insufficient, Any protein degradation from the muscle has a compensatory effect on arginine deprivation and leads to ineffective treatment. In accordance with the present invention, the inventors have recognized that in order to improve the treatment and eliminate the need for insulin administration in combination with arginine deprivation therapy, a sufficiently high amount of serotonase activity must be present in the patient system to counteract any protein from the muscle. degradation. According to the present invention, the present inventors are therefore directed to producing an arginase having a sufficiently high activity and stability of enzyme 10 to maintain a sufficient arginine deprivation of less than 1 μM in a patient (hereinafter) Called AAD)" without the need to administer high doses of insulin. Thus, in addition to increasing endogenous arginase, the highly stable active arginase of the present invention provides the added benefit of achieving AAD without the administration of a protein degradation inhibitor that has undesirable side effects to the patient. Systemic depletion of arginine can cause other undesirable side effects associated with nitrogen oxide deficiency. These side effects include hypertension due to lack of NO to the vasodilatation of the endothelium, platelet aggregation and platelet reduction due to lack of NO and early clotting factor depletion associated with the temporary cessation of cell division. However, the inventors have verified that in the nitric oxide knockout mice, 20 animals have no hypertension and have a normal expected life of normal platelet count animals. Thus, according to another aspect of the invention and in patients with thrombocytopenia, no significant bleeding tendency is observed until the platelet count is below 50,000 χ 109. In patients with a tendency to bleed, the treatment must be such that the clotting time is extended to twice the normal rate. 21 The examples detailed below teach how to produce and use the sulphuric acid (IV) of the present invention. Example 1_ Construction of a recombinant strain of subtilis LLC1()1 containing human arginase gate recognition. ^ Group B.W hair _ two real calls in the recombinant LLC1 = heavy == test, in the L fermenter batch fermentation and supplement: t leaven. It was found that under batch conditions, a sufficiently high ^ could not be achieved. Only in this hair service & -_on. These experiments 10 Fermentation =:: Comparisons are shown in Example 3. Therefore, the fed batch was selected to produce the separated and purified heavy mash and the human extract was shortened. The ferment was scaled up to feed the fraction 1 core == Diwei was used in Example 2C. L money and results show that the LLC101 strain is a heat-sensitive strain that causes the arginase to swell at the machine. In the optimization test at the beginning of !7, the optimal conditions for producing the maximum amount of arginase in the heat of different cell densities. In Example 5, the cabinet describes the purification method and the pure feed obtained by two different fed batch fermentations of 12D and 12D (different density at 60 〇nm, density). Ammoxime production I ^ The experimental data shows that although all heat shocks are performed during the exponential growth phase of 20 LC101, heat shock at lower cell densities such as 0 12·800 produces better results. The maximum expression condition of arginase after heat shock is also optimized by changing the heat shock/text time. Example 4 shows the results of harvesting cells 3 hours after heat shock and using a fed-batch fermentation method. Example 5 illustrates the purification of the sperm 22 1331531 lysin 6 hours after the cell density of 12.8 OD heat shock. Example 6 illustrates the purification of arginase 6 hours after the cell density is 250D heat shock. Example 7 shows comparative data for arginase production under different harvesting and purification conditions. These data show that harvesting cells at 6 hours after a lower cell density heat shock of 12.8 produced a higher yield of arginase with a yield of 162 mg/L. The arginase is modified to improve stability. Example 8 A shows a method of PEGylated semen enzyme using cyanuric guanidine gas (cc) as a crosslinking agent' at a molar ratio of 1:140 (arginase: pEG). Example 8B illustrates a different pegylation process in which a lower proportion of crosslinker is added to the reaction mixture containing the enzyme. "Amber succinimide (SPA) with propionic acid was tested as a cross-linking agent. The experimental results show that the method using SPA described in Example SB provides a PEGylated synductase with a half-life of For 3 days, the specific activity was about 255, as discussed in Examples 9 and _. Example 8C illustrates a method for seeding (four) highly active PEGylated arginase, the specific activity of the arginase being about 592. 15 IU./mg 〇2〇
使用上述方法已經産生了高穩定㈣^性的精氨酸函 ’其具有足夠高㈣性和絲性料療患者,而不用使拜 ^白質降解抑制劑’因爲由肌肉補充的任何精氨酸均會廷 2啸酸酶迅速除去。因此,可以達到低於1〇_的, 明二精氨酸剝奪而不用大劑量外源施用胰島素。使用本智 的各種治療方法見實施例u所述。實施例似 了給予患者精氨酸酶的臨床數據, ^所述治療方h Μ —步支援實施分 實施例13—14是對大鼠進行的兩個動物實驗,以㈣ 23 1331531 對本發明精氨酸酶的劑量應答和安全劑量。實施例15一18 是對裸鼠進行的另一系列動物實驗,以研究由不同的人癌 細胞系産生的腫瘤對給予修飾的精氨酸酶而産生的精氨酸 耗竭的應答。 5 以上引用的所有參考文獻在此均並入作爲參考。本發 明的實踐在以下非限制性實施例中得以示出。本發明的範 圍僅由所附權利要求限定,其沒有限制本發明内容或範圍 之意。 實施例 10 實施例1 :構建重組菌株LLC101 (a)分離編碼人精氨酸酶〗的基因 人精氨酸酶I的基因序列公佈於1987年(Haraguchi,Y. 等,1987 ,美國科學院院報84,412-415),基於該序列設計 引物。使用Expand高保真PCR系統試劑盒(Roche)進行聚合 15酶鏈反應(pCR)以分離編碼人精氨酸酶的基因。引物Argi (5 ^CCAAACCATATGAGCGCCAAGTCCAGAACCATA-S5) (SEQ ID NO : 5)和 Arg2 (5’-CCAAACTCTAGAATCACA TTTTTTGAATGACATGGACAC-3’)(SEQ ID NO : 6)購自新 加坡Genset生物技術有限公司。這兩個引物具有相同解鏈 20溫度(Tm)72°C。引物Argl含有一個Ndel限制酶識別位點( 下劃線)’引物Arg2含有一個Xbal位點(下劃線)。將這兩個 引物(各自終濃度爲300 nM)加入到一個0.2ml小試管中的5 μΐ人肝臟5’ stretch plus cDNA文庫中(Clontech)。另外加入 DNA聚合酶(2.6單位,〇·75 μΐ),4種脫氧核糖核苷酸(各自 24 1331531Using the above method, a highly stable (tetra) arginine function has been produced which has a sufficiently high (tetra) and silky therapeutic condition without the use of a white matter degradation inhibitor 'because any arginine supplemented by muscles Huiting 2 yolkase was quickly removed. Therefore, it is possible to achieve a arginine deprivation of less than 1 〇 _ without exogenous administration of insulin in large doses. Various treatments using Benzhi are described in Example u. The examples are similar to the clinical data of the arginase administered to the patient. ^ The therapeutic side h Μ step support embodiment. 13-14 is two animal experiments on rats, (4) 23 1331531 The dose response and safe dose of the acid enzyme. Examples 15-18 are another series of animal experiments performed on nude mice to investigate the response of tumors produced by different human cancer cell lines to arginine depletion produced by the administration of modified arginase. All references cited above are hereby incorporated by reference. The practice of the invention is illustrated in the following non-limiting examples. The scope of the invention is to be limited only by the scope of the appended claims. Example 10 Example 1: Construction of recombinant strain LLC101 (a) Isolation of the gene encoding human arginase, the gene sequence of human arginase I was published in 1987 (Haraguchi, Y. et al., 1987, Proc. 84, 412-415), based on the sequence designed primers. Polymerization 15 enzyme chain reaction (pCR) was performed using the Expand High Fidelity PCR System Kit (Roche) to isolate the gene encoding human arginase. Primers Argi (5^CCAAACCATATGAGCGCCAAGTCCAGAACCATA-S5) (SEQ ID NO: 5) and Arg2 (5'-CCAAACTCTAGAATCACA TTTTTTGAATGACATGGACAC-3') (SEQ ID NO: 6) were purchased from Singapore Genset Biotechnology Co., Ltd. These two primers have the same melting temperature (Tm) of 72 °C. Primer Argl contains a Ndel restriction enzyme recognition site (underlined). Primer Arg2 contains an Xbal site (underlined). The two primers (each with a final concentration of 300 nM) were added to a 5 μΐ human liver 5' stretch plus cDNA library (Clontech) in a 0.2 ml tube. In addition, DNA polymerase (2.6 units, 〇·75 μΐ), 4 deoxyribonucleotides (24 1331531 each)
爲4μb各自終濃度爲200 μM)和反應缓衝液(5μl)及dH2O (17.75 μΐ)。使用以下條件進行pcR :預-PCR (94°C,5分 鐘),25 次PCR循環(94 °C,1 分鐘;57°C,1 分鐘;72°C ’ 1 分鐘)’後-PCR(72 t:,7分鐘)。將PCR産物(5 μΐ)在0.8% 5 瓊脂糖凝膠上分析’觀測到一個1.4 kb條帶。判斷這個DNA 含有編碼精氨酸酶的基因。 (b) 分離質粒pSGlll3 質粒pSGl 113是質粒PSG703的衍生物(ThorneweU,S. J. 等 ’ 1993,基因,133,47-53),將其通過使用 Wizard Plus 10 Minipreps DNA純化系統(Promega)根據使用說明書,從攜 帶PSG1113的大腸桿菌DH5a克隆中分離。這個質粒只在大 腸桿菌中複製,在B. subtilis中不複製,將其用作亞克隆所 述精氨酸酶基因的载體。 (c) 將所述1.4 kb PCR産物亞克隆入質粒pSG1113中以 15 形成質粒ρΑΒΙΟΙ 將使用上述方法製備的P C R産物用限制性内切酶N d e I 和Xbal(Promega)在反應介質中於37°C處理1·5小時,所述介 質由 6 mM Tris-HCl (pH 7.9),6 mMmgCl〗,150 mM NaCl ,1 mM DTT組成。在處理完成後,將反應混合物進行瓊 20 脂糖凝膠(0.8%)電泳,並使用Qiaex II凝膠提取試劑盒 (Qiagen)從凝膠中回收1.4 kb DNA片段。將質粒pSGlll3用 相同限制性内切酶以相同方式處理。處理完成後,將反應 混合物進行瓊脂糖凝膠(0.8%)電泳,並從該凝膠中回收大 約3.5kb大小的一個DNA片段。使用T4DNA連接酶將該 25 1331531 DNA片段與上述M kb DNA片段連接。該連接混合物用於 轉化大腸桿菌XLI-Blue,使用常規鈣方法進行(Sambr〇〇k, J·等,分子克隆實驗指南,第二版,冷泉港實驗室出版社, 紐約1989) ’並鋪板於含有1〇〇 pg/mi氨苄青黴素的營養瓊脂 5平板上。篩選菌落,獲得通過限制分析具有適當插入片段 的質粒。該質粒構建體稱爲ρΑΒΙΟΙ (第1圖)。0RI是大腸稃 菌複製起點,bla是氨苄青徽素抗性標記基因。用引物ArgiThe final concentration of each of 4 μb was 200 μM) and the reaction buffer (5 μl) and dH2O (17.75 μΐ). pcR was used for the following conditions: pre-PCR (94 ° C, 5 min), 25 PCR cycles (94 ° C, 1 min; 57 ° C, 1 min; 72 ° C '1 min) 'post-PCR (72 t:, 7 minutes). The PCR product (5 μM) was analyzed on a 0.8% 5 agarose gel to observe a 1.4 kb band. It is judged that this DNA contains a gene encoding arginase. (b) Isolated plasmid pSGll13 Plasmid pSGl 113 is a derivative of plasmid PSG703 (Thornewe U, SJ et al '1993, Gene, 133, 47-53), which was obtained by using Wizard Plus 10 Minipreps DNA Purification System (Promega) according to the instruction manual. Isolation was carried out from the E. coli DH5a clone carrying PSG1113. This plasmid was only replicated in E. coli and was not replicated in B. subtilis and used as a vector for subcloning the arginase gene. (c) subcloning the 1.4 kb PCR product into plasmid pSG1113 to form a plasmid pΑΒΙΟΙ. The PCR product prepared by the above method was subjected to restriction enzymes N de I and Xbal (Promega) in a reaction medium at 37°. C treatment for 1.5 hours, the medium consisted of 6 mM Tris-HCl (pH 7.9), 6 mM mgCl, 150 mM NaCl, 1 mM DTT. After the completion of the treatment, the reaction mixture was subjected to electrophoresis on a Joan 20-lipose gel (0.8%), and a 1.4 kb DNA fragment was recovered from the gel using a Qiaex II gel extraction kit (Qiagen). Plasmid pSG111 was treated in the same manner with the same restriction enzymes. After the completion of the treatment, the reaction mixture was subjected to agarose gel (0.8%) electrophoresis, and a DNA fragment of about 3.5 kb in size was recovered from the gel. The 25 1331531 DNA fragment was ligated to the above M kb DNA fragment using T4 DNA ligase. This ligation mixture was used to transform E. coli XLI-Blue using conventional calcium methods (Sambr〇〇k, J. et al., Molecular Cloning, A Guide to Molecular Cloning, Second Edition, Cold Spring Harbor Laboratory Press, New York, 1989) On a nutrient agar 5 plate containing 1 〇〇pg/mi ampicillin. Colonies were screened and plasmids with appropriate inserts were analyzed by restriction analysis. This plasmid construct is called ρΑΒΙΟΙ (Fig. 1). 0RI is the origin of replication of E. coli, and bla is the ampicillin resistance marker gene. Primer Argi
(SEQ ID NO : 5),Arg2 (SEQ ID NO : 6)和八巧6(5,-CTCTGGCCATGCCAGGGTCCACCC-3,)(SEQ ID NO : 7)進 10 行DNA測序,以證實該編碼精氨酸酶的基因(第2圖)。 (d)構建新的重組B. subtilis原噬菌體菌株LLC101 使用 Wizard Plus Minipreps DNA純化系統(promega), 從攜帶ρΑΒΙΟΙ的克隆中提取質粒ρΑΒΙΟΙ並純化。在質粗 ρΑΒΙΟΙ中(第1圖)’所述精氨酸酶基因(arg)的兩側爲〇.6 kb(SEQ ID NO: 5), Arg2 (SEQ ID NO: 6) and Baqiao 6 (5, -CTCTGGCCATGCCAGGGTCCACCC-3,) (SEQ ID NO: 7) were sequenced into 10 rows of DNA to confirm the encoding of arginase Gene (Fig. 2). (d) Construction of a new recombinant B. subtilis prophage strain LLC101 Using the Wizard Plus Minipreps DNA Purification System (promega), plasmid pΑΒΙΟΙ was extracted from clones carrying ρΑΒΙΟΙ and purified. In the crude ρΑΒΙΟΙ (Fig. 1), the arginase gene (arg) is 〇.6 kb
15 Munl-Ndel φ105噬菌體DNA片段(標記爲“φ105”)和cat基 因(第1圖和第3圖)。這個質粒DNA (1 pg)用於轉化感受態 B. subtilis 1Α304(φ105Μυ331),根據已知方法進行轉化 (Anagnostopoulos C.和 Spizizen J.,1961,細菌學雜言志81 ,741-746)。所述B. subtilis 菌株 1Α304(φ105Μυ331)得自 J. 20 Errington (Thornewell,S.等,1993,基因 133,47-53)。該 菌株根據以下出版物所述方法産生(Thornewell,S.等, 1993,基因 133,47-53及Baillie,L. W. J.等,1998,FEMS 微生物學通迅163,43-47),這兩篇文獻以其全文並入本文 作參考。將質粒ρΑΒΙΟΙ (第3圖中劃線處所示)轉化入具有 26 1331531 選擇標記(:1^的 B. subtilis 菌株 1A304 ((j)105MU331)中, 並對所述轉化體篩選Ers表型。這種轉化體應已經從雙交換 事件中産生,如第3圖所示,精氨酸酶基因(arg)的轉錄置於 強0里囷體啓動子(Leung和Erington,1995,基因154,卜6) 5控制下。粗線表示原噬菌體基因組,虛線表示B. subtilis染 色體’細線表示質粒DNA。所述基因示於第3圖,黑箭頭指 示轉錄和翻譯方向。同源區域用垂直虛線標示界限,而且 同源重組事件用,,χ”表示。 將600 μΐ轉化的細胞鋪板於含有氣黴素(5 μβ/ηιι)的瓊 10 脂平板上,從中獲得52個氣黴素抗性(CmR)菌落。隨機選 擇10個菌落’並在含有紅黴素(2〇 gg/mi)的瓊j旨平板上劃線 ,這些菌落有一個不生長,表示其是紅黴素敏感的(Ers) 。因此分離這個氣黴素抗性但紅黴素敏感的菌落,並命名 爲LLC101。在這個新構建的原噬菌體菌株染色體中,紅黴 15素抗性基因(ermC)在同源重組中通過雙交換由精氨酸酶基 因(arg)置換。0.6 kb Munl-Ndel φ105嗟菌體DNA片段(標示 爲”φ105”)和cat基因提供了用於進行重組的同源序列。以 這種方式,精氨酸酶基因被導向至B. subtilis 1A304 ((M05MU331)的原噬菌體DNA中的表達位點,並使所述精 2〇氨酸酶基因處於強溫度誘導啓動子(Leung,Y. C_和 Errington,J·,1995,基因 154,1-6)的控制下。 B. SUBTILIS LLC101細胞的發酵 實施例2A :在2L發酵罐中分批發酵 將B. subtilis LLC101菌株維.持在補加了 5mg/L氯黴素 27 的營養瓊脂〈牛肉膏1 g/L,蛋白腺10 g/L,NaCl 5 g/L及瓊 曰Og/L)平板上。爲製備分批發酵和補料分批發酵的接種物 ,將上述菌株的幾個菌落從剛製備的營養瓊脂平板中移至 兩個1L燒瓶中,每個燒瓶含有肋…發酵培養基,所述培養 基含有葡萄糖5g/L,胰化蛋白腺1〇g/L,酵母膏3g/L,檸 10 檬酸鈉 1 g/L,KH2P04 丨.5 g/L,k2HP〇4 h5 g/L及(NH4)2S〇4 3 g/L。將細菌細胞培養物在37 〇c^DpH 7 〇下,在一個軌道 搖床中以250 r.p.m培養。在生長大約9 — i i小時,〇D6_m達 到5.5 —6.0時’停止培養。然後將16〇_mL這種培養液導入乩 發酵罐中,所述發酵罐中含有144〇_mL發酵培養基(葡萄糖 5叭,騰化蛋白腺10 g/L,酵母膏3叭,擦樣酸納i机, ΚΑΡΟ, L5 g/L ’ k2HP〇4 h5 g/L及(NH4)2S〇4 3 讥)。在” °C進行分批發酵。通過加入氫氧化鈉和鹽酸將控制在7 〇 15 。通過調節㈣速度將溶解氧濃度控制在20%空氣飽和度 。當培養物密度(〇D_nm)爲大約3·9時,在3 25小時進行熱 激。在熱激期間,發酵罐的溫度從3rc提高至贼, 立即冷卻至3η:。完成加熱和冷卻循環f要大细5小時。 在熱激後3.5小時,培養物的〇〇達到大約⑽最大值。在 20 熱激後6小時收穫細胞以分離和純化精氰酸酶。在孰激後615 Munl-Ndel φ105 phage DNA fragment (labeled "φ105") and cat gene (Fig. 1 and Fig. 3). This plasmid DNA (1 pg) was used to transform competent B. subtilis 1Α304 (φ105Μυ331) and transformed according to known methods (Anagnostopoulos C. and Spizizen J., 1961, Bacteriology 81, 741-746). The B. subtilis strain 1Α304 (φ105Μυ331) was obtained from J. 20 Errington (Thornewell, S. et al., 1993, Gene 133, 47-53). This strain was produced according to the method described in the following publication (Thornewell, S. et al., 1993, Genes 133, 47-53 and Baillie, LWJ et al., 1998, FEMS Microbiology Communication 163, 43-47), This is incorporated herein by reference in its entirety. The plasmid ρ ΑΒΙΟΙ (shown at the scribe in Fig. 3) was transformed into B. subtilis strain 1A304 ((j) 105 MU331) having a 26 1331531 selection marker (: 1 ), and the transformant was screened for the Ers phenotype. This transformant should have been generated from a double-crossover event. As shown in Figure 3, the transcription of the arginase gene (arg) is placed in a strong scorpion promoter (Leung and Erington, 1995, gene 154, 6) Under the control of 5, the thick line indicates the prophage genome, and the dotted line indicates B. subtilis chromosome 'thin line indicates plasmid DNA. The gene is shown in Figure 3. The black arrow indicates the direction of transcription and translation. The homologous region is marked with a vertical dotted line. , and the homologous recombination event was expressed by χ". 600 μΐ transformed cells were plated on agar 10 plate containing pneumomycin (5 μβ/ηιι), and 52 gasmycin resistance (CmR) was obtained therefrom. Colonies. 10 colonies were randomly selected and streaked on a plate containing erythromycin (2〇gg/mi). One of these colonies did not grow, indicating that it was erythromycin-sensitive (Ers). Isolating this pneumomycin-resistant but erythromycin-sensitive colony, Also named LLC101. In the chromosome of this newly constructed prophage strain, the red mold 15 gene resistance gene (ermC) was replaced by the arginase gene (arg) by double exchange in homologous recombination. 0.6 kb Munl-Ndel The φ105 sputum DNA fragment (labeled "φ105") and the cat gene provide homologous sequences for recombination. In this way, the arginase gene is directed to the original B. subtilis 1A304 ((M05MU331)) An expression site in phage DNA, and the sperm 2 prolinease gene is under the control of a strong temperature-inducible promoter (Leung, Y. C_ and Errington, J., 1995, genes 154, 1-6) B. Fermentation of SUBTILIS LLC101 cells Example 2A: Batch fermentation in a 2L fermenter B. subtilis LLC101 strain Wei. Holding nutrient agar supplemented with 5 mg/L chloramphenicol 27 < beef extract 1 g/L , protein gland 10 g / L, NaCl 5 g / L and Qiongqi Og / L) on the plate. To prepare inoculum for batch fermentation and fed-batch fermentation, several colonies of the above strains were prepared from freshly prepared nutrients Transfer the agar plates to two 1 L flasks, each containing ribs...fermentation medium, the medium Contains glucose 5g/L, trypsin gland 1〇g/L, yeast extract 3g/L, lemon 10 sodium citrate 1 g/L, KH2P04 丨.5 g/L, k2HP〇4 h5 g/L and (NH4 2S 〇 4 3 g/L. Bacterial cell cultures were cultured at 37 rpm c ^ DpH 7 in an orbital shaker at 250 rpm. The culture was stopped when the growth was about 9 - i i hours and the 〇 D6_m reached 5.5 - 6.0. Then, 16 〇_mL of the culture solution was introduced into a mash fermenter, which contained 144 〇 _mL fermentation medium (glucose 5 lbs, tensin protein gland 10 g / L, yeast paste 3 mp, ruby acid)纳机, ΚΑΡΟ, L5 g/L 'k2HP〇4 h5 g/L and (NH4)2S〇4 3 讥). Batch fermentation at °C. Controlled at 7 〇15 by the addition of sodium hydroxide and hydrochloric acid. The dissolved oxygen concentration is controlled to 20% air saturation by adjusting the (iv) speed. When the culture density (〇D_nm) is about 3 · At 9 o'clock, heat shock was performed at 3 25 hours. During the heat shock, the temperature of the fermenter was raised from 3rc to the thief, and immediately cooled to 3η: The heating and cooling cycle f was completed for 5 hours. After heat shock 3.5 Hours, the enthalpy of the culture reached a maximum of about (10). The cells were harvested 6 hours after 20 heat shock to separate and purify the sulphate.
小時’上述菌株產生活性人精氨酸酶的量爲大約伽g/L 發酵培養基。發酵時程示於第4觸。示出參數的變化,如 ^度,㈣速度,PH和溶解氧值的該分崎酵的史圖 第5A圖。 實施例2B :在2L發酵罐中補料分批發酵 28 5 在37°C,pH7.〇和溶解氧爲20%空氣飽和度下進行補料 刀抵發酵。接種方法與實施例2A所述分批發酵中所用方法 相似。最初’生長培養基與實施例2A所述分批發酵中所用 10 。土相同。流加培養基含有200g/L葡萄糖,2.5g/LmgS〇4· 7H2〇 ’ 50队胰化蛋白跦,7.5 g/L K2HP04 和 3.75 g/L ΚΗ2Ϊ>〇4。培養基進料速度用pH-stat控制策略控制。在這個 策略中’調節進料速度以代償由葡萄糖耗竭而産生的pH提 问°在發酵大約4.5小時,當葡萄糖濃度降至非常低水平時 ,第一次進行這個控制策略。如果pH > 7.1,將4 mL流加培 養基導入發酵罐中^在加人葡萄糖後,p雌立即迅速降低 .1以下。在大約1〇分鐘後,當加入的葡萄糖完全被細菌 紀消耗後’ pH值提高至7 ux上,表示在發酵罐中應該再 加入另外4ml流加培養基。#培養物密度卿一在⑽― 15 20 3.0之間時’在5 — 6小時進行熱激。在熱激期間,發酵罐 勺恤度攸37C提局至5〇〇c,然後立即冷卻至听。完成加 熱和冷卻循環需要大·5小時。在熱激後制小時收獲細 皰以分離和純化精氨酸酶。在熱激後6小時,上述菌株產生 居性人精氨酸酶,數量爲至少大約脑恤發酵培養 酵時程示於第犯圖。示出參數變化如溫度,獅速度,阳 =溶解祕的該補料分批發酵的史圖示於第5B圖。 實施例2C··在100L發酵罐中補料分批發酵 在100L發酵罐中按比例擴大進行補料分 ,p则,溶解㈣聰空氣飽和度下進行發 3 接種物。最初,生長彡立皋其I 用10/〇 長。養基與貫施例2Α所述分批發酵中使 29 1331531 用的培養基相同。流加培養基含有3〇〇 g/L葡萄糖,3.75 g/LmgSCV 7H20,75 g/L胰化蛋白腺,h.25 g/L K2HP〇4 和5.625 g/L KHzPO4。培養基進料速度用與實施例2B所述分 批發酵中所用相似的pH-stat控制策略控制。在大約7.5小時 5當培養密度(OD6〇〇mn)在11.5—12.5之間時,進行熱激。在熱 激期間’發酵罐的溫度從37t提高至5(TC,在5(TC保持7秒 ,然後立即冷卻至37°C。完成加熱和冷卻循環需要大約〇.5 小時。在熱激後2和4小時,收穫細胞以分離和純化精氨酸 酶。在熱激2小時和4小時後,上述菌株産生活性人精氨醆 10酶’數量分別爲至少大約74mg和i24mg/L發酵培養基。、古 些數據示出在100L發酵罐中,在熱激後4小時收穫的細胞比 在熱激後2小時收穫的細胞産生更高産量的精氨酸酶。 實施例3 :分批發酵和補料分批發酵的對比 下表1對比了分批發酵和補料分批發酵的對比,對比夺 15明補料分批發酵比分批發酵在培養物〇 D ,精氨酸酶產量矛: 産率方面更勝一籌。 里σThe amount of active human arginase produced by the above strains was approximately gamma/L fermentation medium. The fermentation schedule is shown on the 4th touch. The changes in parameters, such as ^ degree, (iv) velocity, pH and dissolved oxygen value, are shown in Fig. 5A. Example 2B: Fed-batch fermentation in a 2 L fermentor 28 5 Feeding was carried out at 37 ° C, pH 7. 〇 and dissolved oxygen at 20% air saturation. The inoculation method was similar to that used in the batch fermentation described in Example 2A. The initial 'growth medium was used in the batch fermentation described in Example 2A. The soil is the same. The addition medium contained 200 g/L glucose, 2.5 g/L mgS〇4·7H2〇' 50 team trypsin, 7.5 g/L K2HP04 and 3.75 g/L ΚΗ2Ϊ>〇4. The media feed rate was controlled using a pH-stat control strategy. In this strategy, the feed rate was adjusted to compensate for the pH rise caused by glucose depletion. This fermentation strategy was first performed at about 4.5 hours of fermentation and when the glucose concentration dropped to a very low level. If pH > 7.1, 4 mL of the flow-through medium is introduced into the fermenter. ^ After the addition of human glucose, the p-female immediately decreases rapidly below .1. After about 1 minute, when the added glucose was completely consumed by the bacteria, the pH was increased to 7 ux, indicating that another 4 ml of the addition medium should be added to the fermenter. # culture density Qingyi between (10) - 15 20 3.0 ' heat shock in 5-6 hours. During the heat shock, the fermenter's spoon 攸37C is picked up to 5〇〇c, and then immediately cooled to listen. It takes about 5 hours to complete the heating and cooling cycles. The blister is harvested in an hour after heat shock to separate and purify the arginase. Six hours after heat shock, the above strain produced a human arginase, in an amount of at least about the time course of fermentation of the brain. A graph showing the change in parameters such as temperature, lion speed, and yang = dissolution of the fed batch fermentation is shown in Figure 5B. Example 2C··Fed-batch fermentation in a 100 L fermentor The feed fraction was scaled up in a 100 L fermentor, and p was dissolved in (4) Cong air saturation. Initially, growth was established with a length of 10/〇. The medium used in the batch fermentation described in Example 2 was the same as that used in 29 1331531. The addition medium contained 3 g/L glucose, 3.75 g/L mg SCV 7H20, 75 g/L trypsin gland, h.25 g/L K2HP〇4 and 5.625 g/L KHzPO4. The media feed rate was controlled using a similar pH-stat control strategy as used in the batch fermentation described in Example 2B. At about 7.5 hours 5 heat shock was performed when the culture density (OD6 〇〇 mn) was between 11.5 and 12.5. During the heat shock, the temperature of the fermenter was increased from 37t to 5 (TC, at 5 (TC for 7 seconds, then immediately cooled to 37 ° C. It takes about 55 hours to complete the heating and cooling cycle. After heat shock 2 And 4 hours, cells were harvested to isolate and purify arginase. After 2 hours and 4 hours of heat shock, the above strains produced active human spermine 10 enzymes in amounts of at least about 74 mg and i24 mg/L fermentation medium, respectively. The ancient data show that in a 100 L fermentor, cells harvested 4 hours after heat shock produced higher yields of arginase than cells harvested 2 hours after heat shock. Example 3: Batch fermentation and supplementation Comparison of Batch Fermentation Table 1 compares the comparison between batch fermentation and fed-batch fermentation. Comparison of batch 15 fermentation, batch fermentation, batch fermentation, culture 〇D, arginase production spear: yield The aspect is even better.
20純化精氨酸酶 、叶 實知例4 .纟低細胞密度補料分批發酵後,在熱激後% 如實施例2輯述纽發酵料進行補料分批發酵。以 30 1331531 3〇或60分鐘間隔監測補料分批培養的細胞密度,在開始發 酵後5.5小時當培養0D達到12.8時,將培養溫度提高至抓 進行熱激(見第4B圖和第5B圖)。 將在熱激後3小時收集的細胞培養物(47〇 在4它以 5 5,000 rPm離心20分鐘以沈澱細胞。細胞的淨重爲i 5.丨g。棄 去培養上h並將細胞沈殿貯存於—80«>c。在此溫度細胞可 穩定幾天。爲提取胞内蛋白質,將細胞沈澱重懸於14〇 ml20 Purified arginase, leaf Example 4. After low-cell density fed-batch fermentation, after the heat shock, the fermentation material was mixed as in Example 2 for fed-batch fermentation. The cell density of the fed-batch culture was monitored at 30 1331531 3〇 or 60-minute intervals. When the culture 0D reached 12.8 hours after the start of fermentation, the culture temperature was increased to capture heat shock (see Figures 4B and 5B). ). The cell culture collected 3 hours after heat shock (47 〇 at 4, it was centrifuged at 5 5,000 rPm for 20 minutes to pellet the cells. The net weight of the cells was i 5.丨g. Discard the culture and place the cells in the hall. Store at -80«>c. At this temperature the cells can be stable for a few days. To extract intracellular proteins, resuspend the cell pellet in 14〇ml
洛解緩衝液[50 mM Tris-HCl (pH 7.4),0.1 M Nacn,5 mMLotion buffer [50 mM Tris-HCl (pH 7.4), 0.1 M Nacn, 5 mM
MnS〇4 ’溶菌酶(75 pg/ml)]中。在3〇°c溫育15分鐘後,將 10混合物使用Soniprep 150儀器(MSE)以2分鐘間隔超聲8次, 每次持續10秒(共80秒)。加入大約5〇〇單位脫氧核糖核酸酶I (Sigma D 4527),並將該混合物在37°C溫育10分鐘,以消化 染色體DNA。在4°C以10,000 rpm離心20分鐘後,測定含有 蛋白質粗提物的上清中精氨酸酶活性存在情況,並通過 15 SDS-PAGE (Laemmli,1970,自然 227,680-685)分析。 將一個5-ml HiTrap整合柱(Pharmacia)用5個柱體積的 在dH20中的0.1 MNiCl2平衡。將蛋白質粗提物(140 ml)加樣 於柱中。用線性梯度(0-100%)以5 ml/分鐘流速在以下條 件下洗脫15個柱體積,所述條件是:緩衝液A =起始緩衝 2〇 液[0.02 Μ磷酸鈉緩衝液(pH 7_4),0.5 MNaCl];緩衝液B =含有0.5 Μ咪唑的起始緩衝液。洗脫圖示於第6A圖,蛋白 質凝膠示於第6Β圖。合併級分13 —20 (16 ml),並用起始 缓衝液[〇·〇2 Μ磷酸納緩衝液(pH 7.4),0.5 M NaCl]稀釋10 倍。將其加樣於第二個5-ml HiTrap螯合柱中(Pharmacia), 31 1331531 重複上述相同步驟。洗脫圖示於第7A圖,蛋白質凝膠示於 弟7B圖。合併含有精氨酸酶的級分12 — 3 0(3 8ml),使用 50-ml HiPrep 26/10脫鹽柱(Pharmacia),在以下條件下除去 鹽:流速=10 ml/分鐘,緩衝液=1〇 mM Tris-HCl (pH 7.4) 5 ,洗脫長度=1.5柱體積。通過Bradford所述方法(Bradford ’ Μ. Μ· ’ 1976,Anal. Biochem.,72,248-254)測定蛋白質 濃度。從470ml細胞培養物中純化共56.32mg的精氨酸酶。 純化的精氨酸酶産量估計爲n9.8mg/l細胞培養物或 3.73mg/g細胞淨重。 10 實施例5 :在低細胞密度補料分批發酵後,在熱激後6小時 純化精氨酸酶 如實施例4所述在一個2L發酵罐中進行補料分批發酵 。將在OD12.8熱激後6小時收集的細胞培養物(650 ml)在4 °C ’以5,000 rpm離心20分鐘以沈澱細胞。細胞淨重爲24g 15 。棄去培養上清,並將細胞沈澱貯存於-80°C。細胞在此溫 度會穩定幾天。爲提取胞内蛋白質,將細胞沈澱重懸於14〇 ml溶解緩衝液[50 mM Tris-HCl (pH 7.4),0.1 M NaCl,5 mM MnS〇4 ’溶菌酶(75pg/ml)]中。在3〇。〇溫育15分鐘後, 將混合物使用Soniprep 15〇儀器(MSE)以2分鐘間隔超聲8次 20 ’每次持續10秒(共80秒)。加入大約500單位脫氧核糖核酸 酶I (Sigma D 4527),並將該混合物在37。(:溫育10分鐘,以 消化染色體DNA。在4°C以10,000 rpm離心20分鐘後,測定 含有蛋白質粗提物的上清中的精氨酸酶活性存在情況,並 通過 SDS-PAGE(Laemmli,1970 ’ 自然 227,680-685)分 32 析0 將一個5-ml Η汀rap鼇合;^主(Pharmacia)用5個柱體積的 在dH2〇中的0.1 MNiCh平衡。將蛋白質粗提物(14〇ml)加樣 於柱中。用線性梯度(0_100%)以5 ml/分鐘流速在以下條件 5下洗脫15個柱體積,所述條件是:緩衝液A =起始緩衝液 [0.02 Μ磷酸鈉緩衝液(pH 7.4),〇.5 M NaCl];緩衝液B = 含有0.5 Μ咪唑的起始緩衝液。洗脫圖示於第8六圖,蛋白質 凝膠示於第8Β圖。合併級分π —24 (24 ml),並用起始緩 衝液[0.02 Μ磷酸鈉緩衝液(PH 7_4),0.5 M NaCl]稀釋1〇倍 】〇 。將其加樣於第二個5-ml HiTrap整合柱中(Pharmacia),重 複上述相同步驟。洗脫圖示於第9A圖,蛋白質凝膠示於第 9B圖。合併含有精氣酸酶的級分12 —24 (26 ml),使用5〇-ml HiPrep 26/10脫鹽柱(Pharmacia),在以下條件下除去鹽: 流速=10 ml/分鐘’缓衝液=1〇 niM Tris-HCl (pH 7.4), 15 洗脫長度=1.5柱體積。通過Bradford所述方法(Bradford ,Μ· Μ· ’ 1976,分析生物化學72,248-254)測定蛋白質濃 度。從650ml細胞培養物中純化共85.73mg的精氨酸酶。純 化的精氨酸酶產量估計爲132mg/l細胞培養物或3.57mg/g 細胞淨重。 20 實施例6 :在較高細胞密度熱激後6小時純化精氨酸酶 在這個特定補料分批發酵中,程式與上述實施例所述 相似,除了熱激在8小時、培養密度(OD6G〇nm)爲大約25時進 行。在熱激期間,發酵罐的溫度從37°C提高至50°C,然後 立即冷卻至37°C。完成這一加熱和冷卻循環需要大約0.5 33 1331531 小時。在熱激後6小時收穫一部分細胞培養物(760 ml)以分 離和純化精氨酸酶。此發酵中細菌細胞生長時程示於第1〇 圖。示出參數變化如溫度,授拌速度,pH和溶解氧值的該 補料分批發酵的史圖示於第11圖。 5 將在熱激後6小時收集的細胞培養物(760 ml)在4°C,以 5,000 rpm離心20分鐘以沈澱細胞。細胞淨重爲32g。棄去培 養上清’並將細胞沈殿貯存於-80μ。細胞在此溫度能穩定 幾天。爲提取胞内蛋白質’將細胞沈澱重懸於280 ml溶解MnS〇4 'lysozyme (75 pg/ml)]. After 15 minutes of incubation at 3 ° C, the 10 mixture was sonicated 8 times at 2 minute intervals using a Soniprep 150 instrument (MSE) for 10 seconds each (80 seconds total). About 5 units of deoxyribonuclease I (Sigma D 4527) was added, and the mixture was incubated at 37 ° C for 10 minutes to digest chromosomal DNA. After centrifugation at 10,000 rpm for 20 minutes at 4 ° C, the presence of arginase activity in the supernatant containing the crude protein extract was measured and analyzed by 15 SDS-PAGE (Laemmli, 1970, Nature 227, 680-685). A 5-ml HiTrap integration column (Pharmacia) was equilibrated with 5 column volumes of 0.1 MNiCl2 in dH20. A crude protein extract (140 ml) was loaded onto the column. 15 column volumes were eluted with a linear gradient (0-100%) at a flow rate of 5 ml/min under the following conditions: buffer A = initial buffer 2 mash [0.02 Μ sodium phosphate buffer (pH) 7_4), 0.5 MNaCl]; Buffer B = starting buffer containing 0.5 mM imidazole. The elution profile is shown in Figure 6A and the protein gel is shown in Figure 6. Fractions 13-20 (16 ml) were combined and diluted 10 times with the starting buffer [〇·〇2 Μphosphate buffer (pH 7.4), 0.5 M NaCl]. This was applied to a second 5-ml HiTrap chelating column (Pharmacia), 31 1331531. The same procedure as above was repeated. The elution is shown in Figure 7A and the protein gel is shown in Figure 7B. Fractions containing arginase 12-300 (38 ml) were combined, and a 50-ml HiPrep 26/10 desalting column (Pharmacia) was used to remove the salt under the following conditions: flow rate = 10 ml/min, buffer = 1 〇 mM Tris-HCl (pH 7.4) 5 , elution length = 1.5 column volume. The protein concentration was determined by the method described by Bradford (Bradford's Μ. Μ·' 1976, Anal. Biochem., 72, 248-254). A total of 56.32 mg of arginase was purified from 470 ml of cell culture. Purified arginase production was estimated to be n9.8 mg/l cell culture or 3.73 mg/g cell net weight. 10 Example 5: Purification of arginase 6 hours after heat shock after low cell density fed-batch fermentation As described in Example 4, fed-batch fermentation was carried out in a 2 L fermentor. The cell culture (650 ml) collected 6 hours after the OD 12.8 heat shock was centrifuged at 5,000 rpm for 20 minutes at 4 ° C to precipitate the cells. The net weight of the cells is 24g 15 . The culture supernatant was discarded and the cell pellet was stored at -80 °C. The cells will stabilize for a few days at this temperature. To extract intracellular proteins, the cell pellet was resuspended in 14 ml of lysis buffer [50 mM Tris-HCl (pH 7.4), 0.1 M NaCl, 5 mM MnS〇4 'lysozyme (75 pg/ml)). At 3 〇. After 15 minutes of incubation, the mixture was sonicated 8 times at 2 minute intervals using a Soniprep 15(R) instrument (MSE) for 10 seconds (80 seconds total). Approximately 500 units of deoxyribonuclease I (Sigma D 4527) was added and the mixture was at 37. (: Incubation for 10 minutes to digest chromosomal DNA. After centrifugation at 10,000 rpm for 20 minutes at 4 ° C, the presence of arginase activity in the supernatant containing the crude protein extract was determined and passed through SDS-PAGE (Laemmli) , 1970 'Nature 227, 680-685) divided into 32. A 5-ml Η 鳌 鳌 ; ^ ^ ^ Pharmacia was equilibrated with 5 column volumes of 0.1 M NiCh in dH2 。. (14 〇 ml) was applied to the column. 15 column volumes were eluted with a linear gradient (0-100%) at a flow rate of 5 ml/min under the following conditions 5: buffer A = starting buffer [ 0.02 Sodium Phosphate Buffer (pH 7.4), 〇.5 M NaCl]; Buffer B = Starting Buffer containing 0.5 mM imidazole. The elution is shown in Figure 8 and the protein gel is shown in Figure 8. Combine fractions π - 24 (24 ml) and dilute 1 〇 〇 with starting buffer [0.02 Μ sodium phosphate buffer (pH 7_4), 0.5 M NaCl]. Add it to the second 5- The same procedure as above was repeated in a ml HiTrap integration column (Pharmacia). The elution is shown in Figure 9A and the protein gel is shown in Figure 9B. The fraction containing the benzoic acid enzyme 12 is combined. 24 (26 ml), using a 5 〇-ml HiPrep 26/10 desalting column (Pharmacia), remove the salt under the following conditions: Flow rate = 10 ml / min 'buffer = 1 〇 niM Tris-HCl (pH 7.4), 15 Elution length = 1.5 column volume. Protein concentration was determined by the method described by Bradford (Bradford, Μ·Μ· '1976, Analytical Biochemistry 72, 248-254). A total of 85.73 mg of arginine was purified from 650 ml of cell culture. Enzyme. Purified arginase production is estimated to be 132 mg/l cell culture or 3.57 mg/g cell net weight. 20 Example 6: Purification of arginase at 6 hours after heat shock at higher cell density in this particular feed In the batch fermentation, the procedure was similar to that described in the above examples except that the heat shock was carried out at 8 hours and the culture density (OD6G〇nm) was about 25. During the heat shock, the temperature of the fermenter was increased from 37 ° C to 50. °C, then immediately cooled to 37 ° C. This heating and cooling cycle is required to complete approximately 0.5 33 1331531 hours. A portion of the cell culture (760 ml) is harvested 6 hours after heat shock to isolate and purify the arginase. The time course of bacterial cell growth during fermentation is shown in Figure 1. The history of the fed-batch fermentation of temperature, mixing rate, pH and dissolved oxygen values is shown in Figure 11. 5 The cell culture (760 ml) collected 6 hours after heat shock was at 4 °C. Centrifuge at 5,000 rpm for 20 minutes to pellet the cells. The net weight of the cells was 32 g. Discard the culture supernatant and store the cells in -80μ. The cells are stable for a few days at this temperature. To extract intracellular proteins' resuspend the cell pellet in 280 ml to dissolve
缓衝液[50 mM Tris-HCl (pH 7.4),0.1 M NaQ,5 mM 10 MnS〇4 ’溶菌酶(75 pg/ml)]中。.在30°C溫育15分鐘後,將 混合物使用Soniprep 150儀器(MSE)以2分鐘間隔超聲8次, 每次持續10秒(共80秒)。加入大約500單位脫氧核糖核酸酶I (Sigma D 4527),並將該混合物在37°C溫育10分鐘,以消化 染色體DNA。在4°C以10,000 rpm離心20分鐘後,測定含有 15 蛋白質粗提物的上清中精氨酸酶活性存在情況,並通過 SDS-PAGE (Laemmli ’ 1970,自然 227,680-685)分析。 將一個5-ml只汀^口繁合柱(Pharmacia)用5個柱體積的 於dH2〇中的0.1 M NiCh平衡。將蛋白質粗提物(280 mI)加樣 於柱中。用線性梯度(0_100%)以5 ml/分鐘流速在以下條件 20下洗脫15個柱體積,所述條件是:緩衝液A =起始緩衝液 [0.02 Μ磷酸鈉緩衝液(pH 7 4),〇 5 M NaC1];緩衝液B = 含有0·5 Μ咪唑的起始緩衝液。洗脫圖示於第12A圖,蛋白 質凝膠示於第12B圖。合併級分17一31 (3〇 ,並用起始 缓衝液[〇·〇2 Μ磷酸鈉緩衝液(pH 7釣,〇 5 M Na(^]稀釋 34 1331531 倍。將其加樣於第二個5-ml HiTrap鼇合柱中(Pharmacia), 重複上述相同步驟。洗脫圖示於第13A圖,蛋白質凝膠示於 第13B圖。合併含有精氨酸酶的級分10 —20 (22ml),使用 50-ml· HiPrep 26/10脫鹽柱(Pharmacia),在以下條件下除 5 去鹽:流速=10 ml/分鐘,缓衝液=10 mM Tris-HCl (pH 7.4) ,洗脫長度=1.5柱體積。然後將樣品加樣於1-ml HiTrap SP FF柱(Pharmacia)中,在以下條件下進行洗脫:流速=1 ml/分鐘,緩衝液A = 10 mM Tris-HCl (pH 7.4),緩衝液B = 含有 1 M NaCl 的 10 mM Tris-HCl (pH 7.4),線性梯度(〇 — 10 l〇〇°/。)’洗脫長度=30柱體積。洗脫圖示於第14A圖,蛋白 質凝膠示於第14B圖。合併級分A12-B7 (7 ml)並用起始缓衝 液[0_02 Μ磷酸鈉緩衝液(pH 7.4),0.5 MNaCl]稀釋10倍。 將該樣品加樣於第二個1-ml HiTrap SP FF柱(Pharmacia) 中’除了用分段梯度進行洗脫之外重複上述相同步驟。洗 15脫圖示於第15入圖,蛋白質凝膠示於第15B圖。合併級分 Λ7-Β12 (7 ml)’ 並使用 50-ml HiPrep 26/10脫鹽柱(Pharmacia) 脫鹽。通過Bradford 所述方法(Bradford,Μ· Μ.,1976,分 析生物化學72,248-254)測定蛋白質濃度。從76〇〇11細胞培 養物中純化共41.61mg的精氨酸酶。純化的精氨酸酶産量 20估計爲細胞培養物或1.3mg/g細胞淨重。 實施例7 :在不同條件下收穫和純化的精氨酸酶産率對比 下表2示出在不同收穫和純化條件下産生的精氨_ 産率的對比。些數據不出在128這個較低細胞密度熱激 後6小時收穫的細胞産生較高產率的精氨酸酶,純化後産率 35 爲 132mg/L。 表2 補料分批發酵 精氨酸酶產率(mg/L) 熱激後3小時收穫 熱激後6小時收穫 在OD 12. 8熱激 120 132 在OD 25熱激 - 55.5 實施例8A :使用氰尿醯氯(CC)啟動的甲氧基聚乙二醇製備 5 t乙二醇化酶 將50mg精氨酸酶溶解於2〇 ml PBS緩衝溶液(pH 7.4) 中至終濃度爲2.5mg/ml。在60。(:對精氨酸酶加熱啟動1〇分 鐘。在啟動後,將酶的溫度降至室溫。將丨g氰尿醯氣啟 動的甲氧基聚乙二醇(mPEG-CC)(MW=5000, Sigma)以1 • 140摩爾比率(Arginase : PEG)加入精氨酸酶中。使用磁性 攪拌棒攪拌該混合物,直至所有聚乙二醇(pEG)均溶解。 當所有PEG均溶解時,將PEG_精氨酸酶混合物&pH用 0.1 NNaOH調節爲9.0,進一步加入Na〇H將pH在9·〇進一步 保持30分鐘。通過加入01 n HC1將pH調節爲7.2而終止聚 15 乙二醇化。 將聚乙二醇化精氨酸酶在4〇c用2_3升pbs缓衝溶液 ρΗ 7·4透析以除去過量的PEG,使用Hemoflow F40S毛細管 透析器進行(FreseniusMedicalCare,德國)透析。在透析後 ,回收聚乙二醇化精氨酸酶並再次調節終濃度。 20 將聚乙二醇化精氨酸酶通過一個0.2 μπι濾膜過濾至一 個無菌容器中’並在4°C貯存。這種酶在病人體内的半衰期 36 1331531 經測試爲大約6小時(見第21圖)。Buffer [50 mM Tris-HCl (pH 7.4), 0.1 M NaQ, 5 mM 10 MnS〇4 'lysozyme (75 pg/ml)). After incubation for 15 minutes at 30 ° C, the mixture was sonicated 8 times at 2 minute intervals using a Soniprep 150 instrument (MSE) for 10 seconds each (80 seconds total). About 500 units of deoxyribonuclease I (Sigma D 4527) was added, and the mixture was incubated at 37 ° C for 10 minutes to digest chromosomal DNA. After centrifugation at 10,000 rpm for 20 minutes at 4 ° C, the presence of arginase activity in the supernatant containing the 15 protein crude extract was measured and analyzed by SDS-PAGE (Laemmli ' 1970, Nature 227, 680-685). A 5-ml Pharmacia was equilibrated with 5 column volumes of 0.1 M NiCh in dH2. A crude protein extract (280 mI) was loaded onto the column. 15 column volumes were eluted with a linear gradient (0-100%) at a flow rate of 5 ml/min under the following conditions 20: buffer A = starting buffer [0.02 Μ sodium phosphate buffer (pH 7 4) , 〇5 M NaC1]; Buffer B = starting buffer containing 0.5 mM imidazole. The elution profile is shown in Figure 12A and the protein gel is shown in Figure 12B. Combine the fractions 17 to 31 (3 〇, and use the starting buffer [〇·〇2 Μ Sodium Phosphate Buffer (pH 7 for fishing, 〇5 M Na(^) diluted 34 1331531 times. Add it to the second one. In the 5-ml HiTrap column (Pharmacia), the same procedure as above was repeated. The elution is shown in Figure 13A and the protein gel is shown in Figure 13B. The fraction containing arginase is 10-20 (22ml). Using a 50-ml·HiPrep 26/10 desalting column (Pharmacia), 5 salts were removed under the following conditions: flow rate = 10 ml/min, buffer = 10 mM Tris-HCl (pH 7.4), elution length = 1.5 Column volume. The sample was then loaded onto a 1-ml HiTrap SP FF column (Pharmacia) and eluted under the following conditions: flow rate = 1 ml/min, buffer A = 10 mM Tris-HCl (pH 7.4), Buffer B = 10 mM Tris-HCl (pH 7.4) with 1 M NaCl, linear gradient (〇 10 10 〇〇 ° / .) 'elution length = 30 column volumes. Elution diagram in Figure 14A, The protein gel is shown in Figure 14B. Fractions A12-B7 (7 ml) were combined and diluted 10-fold with starting buffer [0_02 Sodium Phosphate Buffer (pH 7.4), 0.5 M NaCl]. Two 1-ml HiTra In the p SP FF column (Pharmacia), the same procedure as above was repeated except that the fractional gradient was used for elution. The wash 15 is shown in Figure 15 and the protein gel is shown in Figure 15B. The combined fractions are 7-Β12. (7 ml)' and desalted using a 50-ml HiPrep 26/10 desalting column (Pharmacia). Protein concentration was determined by the method described by Bradford (Bradford, Μ·Μ., 1976, Analytical Biochemistry 72, 248-254). A total of 41.61 mg of arginase was purified from the 76 〇〇 11 cell culture. Purified arginase yield 20 was estimated to be cell culture or 1.3 mg/g cell net weight. Example 7: Harvesting and Purification under Different Conditions The arginase yield comparisons are shown in Table 2 below for the yields of arginine produced under different harvesting and purification conditions. These data are not produced in cells harvested at 128 hours after the lower cell density heat shock of 128. Higher yield of arginase, yield 35 after purification was 132 mg / L. Table 2 Fed-batch fermentation arginase yield (mg / L) 3 hours after heat shock harvest heat shock 6 hours after harvest OD 12. 8 heat shock 120 132 heat shock at OD 25 - 55.5 Example 8A: using cyanuric chloride (CC) Preparation of methoxy polyethylene glycol 5 t Enzymes 50mg of ethylene glycol was dissolved in arginase 2〇 ml PBS buffer solution (pH 7.4) to a final concentration of 2.5mg / ml. At 60. (: The arginase is heated for 1 min. After the start-up, the temperature of the enzyme is lowered to room temperature. The methoxypolyethylene glycol (mPEG-CC) activated by 丨g cyanuric urethane is used (MW= 5000, Sigma) was added to the arginase at a ratio of 1 • 140 molar (Arginase: PEG). The mixture was stirred using a magnetic stir bar until all the polyethylene glycol (pEG) was dissolved. When all PEG was dissolved, The PEG_arginase mixture &pH was adjusted to 9.0 with 0.1 N NaOH, and the pH was further maintained at 9 Torr for 30 minutes by further addition of Na〇H. The poly 15 PEGylation was terminated by adding 01 n HCl to adjust the pH to 7.2. The PEGylated arginase was dialyzed against 2 3 3 liters of pbs buffer solution ρ Η 7·4 to remove excess PEG, and dialysis was performed using a Hemoflow F40S capillary dialyzer (Fresenius Medical Care, Germany). The PEGylated arginase was recovered and the final concentration was adjusted again. 20 The PEGylated arginase was filtered through a 0.2 μm filter into a sterile container and stored at 4 ° C. This enzyme is in the patient. The half-life of the body 36 1331531 has been tested for approximately 6 hours (see section 21)).
實施例8B:製備在Β· SUBTILIS中表達的精氨酸酶及在低 PEG比率使用CC或SPA 汆乙二醇化首先由Davis,Abuchowski及同事(Davis, 5 F· F.等,〗978,Enzyme Eng. 4 ’ 169-173)在二十世紀七十 年代揭示。與修改藥物配方相反,將聚(乙二醇)PEG組分化 學附著於具有治療作用的蛋白質(一種已知爲,,聚乙二醇化” 的方法)代表一種新方案,其可以增強重要的藥物性質 (Harris,J. M·尊,2001 ’ 臨床藥物動力學,539-551)。 10 在1979年,S_ca等使用2,4,6-三氣+三嗪(氰尿醯 氯)作爲偶聯劑,將5,000道爾頓的曱氡基聚乙二醇(mpEG) 共4貝附著於牛肝臟精氨酸酶(Sav〇ca,κ. V.等,1979,Example 8B: Preparation of arginase expressed in Β· SUBTILIS and use of CC or SPA 汆glycolation at low PEG ratios First by Davis, Abuchowski and colleagues (Davis, 5 F·F. et al., 978, Enzyme Eng. 4 '169-173) was revealed in the 1970s. In contrast to modifying pharmaceutical formulations, the chemical attachment of a poly(ethylene glycol) PEG component to a therapeutically useful protein (a known, PEGylated) represents a new approach that can enhance important drugs. Nature (Harris, J. M. Zun, 2001 'Clinical Pharmacokinetics, 539-551). 10 In 1979, S_ca et al. used 2,4,6-tris + triazine (cyanuric chloride) as a coupling. a 5,000 Dalton thiol polyethylene glycol (mpEG) 4 shells attached to bovine liver arginase (Sav〇ca, κ. V. et al., 1979,
Biochimica et Biophysica Acta 578 ’ 47-53)。所述綴合物 (PEG-精氨酸酶)只保留其原始酶活性的65%。他們報道 15 PEG_精氨酸酶在小鼠血液循環中的壽命超過牛精氨酸酶的 壽命。注射的牛精氨酸酶的半衰期小於丨小時。他們的數據 還表明通過P E G修飾的牛精氨酸酶當在小鼠中測試時是非 免疫原性和非抗原性的。 在冰上或在室溫將重組人精氨酸酶(1 .〇68mg)溶解於 20 I25 硼酸鹽緩衝溶液(pH 8.3)中。將啟動的mPEG即 mPEG丙酸的琥珀醯亞胺(mPE(3_SPA ; MW 5 〇〇〇 ;Biochimica et Biophysica Acta 578 '47-53). The conjugate (PEG-arginase) retained only 65% of its original enzyme activity. They reported that 15 PEG_arginase has a longer life span than bovine arginase in the blood circulation of mice. The half-life of the injected bovine arginase is less than one hour. Their data also indicate that bovine arginase modified by P E G is non-immunogenic and non-antigenic when tested in mice. Recombinant human arginase (1. 〇 68 mg) was dissolved in 20 I25 borate buffer solution (pH 8.3) on ice or at room temperature. The mPEG to be activated, ie amber succinimide of mPEG propionic acid (mPE (3_SPA; MW 5 〇〇〇;
Shearwater C〇rporati〇n)或者用氰尿醯氯啟動的 mPEG(mPEG-CC ; MW 5,000 ; Sigma),以 1 : 50或 1 : 20的 精氨I PEG摩爾比率加入所述溶液中。這通過兩個步 37 1331531 驟實現,在第一步驟中,將一半的PEG—點一點地加入精 氨酸酶溶液中並在冰上輕輕混合30分鐘,以防止pH偏離8.0 ―8.5這個推薦範圍。將另一半PEG加入該溶液中並進一步 輕輕混合0.5 —23小時。然後將此混合物使用截斷值低於 5 10,000的透析膜,在4°C用dH20透析,至少更換3次dH2〇。 mPEG-SPA和mPEG-CC均使用賴氨酸的氨基基團和蛋白質 的N末端作爲修飾部位。 當在冰上或在室溫用!1^£0-8?八(1\^¥ 5,000)以1:50的 精氨酸酶:PEG摩爾比率修飾精氨酸酶時,在反應1小時後 10 大多數酶分子被修飾(第16圖)。甚至在反應23小時後,樣 品還呈現同樣狀態。用不同數量的PEG分子附著精氨酸酶 分子’産生不同分子量的分子。正如所預期的,當使用較 低摩爾比率1 : 20進行聚乙二醇化反應時,發現存在較高比 例的未聚乙二醇化形式的精氨酸酶(第17圊)。然而,針對 15 所使用的兩種精氨酸酶:PEG摩爾比率,較長的反應時間 及使用室溫而不是在冰上反應似乎不影響聚乙二醇化程度 。就mPEG-SPA (MW 5,000)而言,1 : 50的摩爾比率 和1小時的反應時間,所述精氨酸酶保留其原始活性 的72 — 76% (見小表3),這南於所報道的牛精氨酸酶 20 活性(65% ; Savoca,K. V.等,1979,BiochimiCa et Biophysica Acta 578,47-53)。 當在冰上用mPEG-CC (MW 5,000)以1 : 50的精氨酸酶 :PEG摩爾比率修飾精氨酸酶時,反應非常緩慢,需要23 個小時完成聚乙二醇化(第18A圖)。另外,大多數酶分子 38 轉變爲一個窄範圍的非常高分子量。如果使用更低的丨:20 的摩爾比率,反應將更加緩慢,如第18A圖所示。 實施例8C:製備高活性聚乙二醇化精氨酸酶 如實施例4所述在一個15L的B. Braun Biostat C不銹铜 5發酵罐中進行補料分批發酵。將在OD 12 — 13熱激後4·5小 時收集的細胞培養物(8_4 L)在4〇c以5,〇〇〇 rpm離心2〇分鐘 以沈澱細胞。棄去培養上清,並將細胞沈澱貯存在_8叫。 將細胞在此溫度穩定幾天。爲提取胞内蛋白質,將細胞沈 激重懸於1250 ml溶解緩衝液[5〇 Tris‘Hcl (pH 7.4), 10 〇.1MNaC1 ’ 5mMMnS〇4,溶菌酶(75pg/ml)]中。在30。〇 溫育20分鐘後,將混合物以每份3〇〇n^分在幾個燒杯中,並 對每份使用Soniprep 150儀器(MSE)以2分鐘間隔超聲12次 ,每次持縯10秒(共12〇秒^加入大約5〇〇〇單位脫氧核糖核 酸酶I(SigmaD 4527),並將該混合物在37t:溫育1〇分鐘, 15以消化染色體DNA。在4°C以9,000rpm離心30分鐘後,測定 含有蛋白$粗提物的上清中精氨酸酶活性存在情況,並通 過SDS-PAGE (Laemmli ’ 197〇,自然227,68〇_685)分析。 過濾蛋白質粗提物(1195 ml)並分爲兩部分,每部分含 有597.5 ml。然後將每部分加樣於i3〇_mi Ni_NTA超流 20 (Qiagen)柱(Pharmada)中。用線性梯度(〇—1〇〇%)以 5 ml/ 分鐘流速在以下條件下進行洗脫:緩衝液A =起始緩衝液 [0.02 Μ磷酸鈉緩衝液(pH 7.4),0·5 M NaCl];緩衝液B=含 有0.5M咪唑的起始緩衝液。合併含有純精氨酸酶的級分, 並在4°C以35ml/分鐘用PBS緩衝液pH 7.4更換緩衝液,使用 39 1331531Shearwater C〇rporati〇n) or mPEG (mPEG-CC; MW 5,000; Sigma) initiated with cyanuric chloride, added to the solution at a molar ratio of 1:50 or 1:20 arginine I PEG. This is achieved by two steps 37 1331531. In the first step, half of the PEG is added to the arginase solution a little bit and gently mixed on ice for 30 minutes to prevent the pH from deviating from 8.0 to 8.5. range. The other half of the PEG was added to the solution and further gently mixed for 0.5 to 23 hours. This mixture was then dialyzed using a dialysis membrane with a cut-off value of less than 5 10,000, dialyzed against dH20 at 4 °C, and replaced at least 3 times with dH2. Both mPEG-SPA and mPEG-CC use the amino group of lysine and the N-terminus of the protein as a modification site. When arginase is modified at 1:50 arginase:PEG molar ratio on ice or at room temperature with 1 : £0-8? eight (1\^¥ 5,000), after 1 hour of reaction 10 Most enzyme molecules are modified (Figure 16). The sample showed the same state even after 23 hours of reaction. Immobilization of arginase molecules with different amounts of PEG molecules produces molecules of different molecular weights. As expected, a higher ratio of unpegylated forms of arginase was found when PEGylation was carried out using a lower molar ratio of 1:20 (Section 17). However, for the two arginase enzymes used in 15: PEG molar ratio, longer reaction times and the use of room temperature rather than on ice did not seem to affect the degree of PEGylation. In the case of mPEG-SPA (MW 5,000), a molar ratio of 1:50 and a reaction time of 1 hour, the arginase retains 72-76% of its original activity (see Table 3). Reported bovine arginase 20 activity (65%; Savoca, KV et al, 1979, BiochimiCa et Biophysica Acta 578, 47-53). When arginase was modified with mPEG-CC (MW 5,000) at 1:50 arginase:PEG molar ratio on ice, the reaction was very slow and it took 23 hours to complete PEGylation (Figure 18A) . In addition, most of the enzyme molecules 38 transform into a narrow range of very high molecular weights. If a lower molar ratio of 丨:20 is used, the reaction will be slower, as shown in Figure 18A. Example 8C: Preparation of highly active PEGylated arginase A fed-batch fermentation was carried out as described in Example 4 in a 15 L B. Braun Biostat C stainless copper 5 fermentor. The cell culture (8_4 L) collected at 4.6 hours after the heat shock of OD 12-13 was centrifuged at 5 °C for 2 minutes at 4 °C to precipitate the cells. Discard the culture supernatant and store the cell pellet in _8. The cells were allowed to stabilize at this temperature for several days. To extract intracellular proteins, the cells were resuspended in 1250 ml of lysis buffer [5 〇 Tris 'Hcl (pH 7.4), 10 〇.1MNaC1 '5 mM MnS〇4, lysozyme (75 pg/ml)). At 30. After incubating for 20 minutes, the mixture was divided into several beakers at a rate of 3 〇〇 n^, and each of the Soniprep 150 instruments (MSE) was ultrasonically spun 12 times at 2 minute intervals for 10 seconds each time ( A total of 12 ^ seconds ^ Add about 5 〇〇〇 unit deoxyribonuclease I (Sigma D 4527), and the mixture was incubated at 37t: 1 minute, 15 to digest chromosomal DNA. Centrifuge at 9,000 rpm at 4 ° C 30 After a minute, the presence of arginase activity in the supernatant containing the crude protein extract was determined and analyzed by SDS-PAGE (Laemmli '197〇, Nature 227, 68〇_685). Filtration of crude protein extract (1195) Ml) is divided into two parts, each containing 597.5 ml. Each part is then loaded onto the i3〇_mi Ni_NTA Qiagen column (Pharmada) using a linear gradient (〇-1%) The 5 ml/min flow rate was eluted under the following conditions: buffer A = starting buffer [0.02 Μ sodium phosphate buffer (pH 7.4), 0·5 M NaCl]; buffer B = containing 0.5 M imidazole Start buffer. Combine fractions containing pure arginase and replace the buffer with PBS buffer pH 7.4 at 35 ml/min at 4 °C. 9 1331531
Pellicon XL设備(聚醚-¾膜截斷值=8 kDa)和實驗室規模 切向流動過濾系統(Millipore)進行這一操作。蛋白質濃度通 過Bradford所述方法測定(Bradford,Μ. M.,1976,分析生 物化學72,248-254)。從8.4L細胞培養物中純化共788mg精 5氨酸酶。純化的精氨酸酶産量估計爲94mg/l細胞培養物。 測定的比活性高達518 I.U./mg。 在PBS緩衝液中製備高比活性的聚乙二醇化精氨酸 酶。在進行聚乙二醇化之前,將純化的精氨酸酶(比活性 =518 I.U./mg)置於PBS緩衝液中。將mPEG-SPA,MW 5,000 10 (5.82 g)缓慢加入於1L燒杯中的555 ml的純化精氨酸酶 (813.64mg,1.466mg/ml)溶液中,然後在室溫攪拌2小時40 分鐘(精氨酸酶:mPEG-SPA的摩爾比率=1 : 50)。然後 使用F50(S)毛細管透析器(Fresenius Medical Care)將此混 合物用15L的PBS緩衝液通過超透充分透析,以除去所有未 15 摻入的PEG。mPEG-SPA使用賴氨酸的氨基基團和蛋白質的 N末端作爲修飾部位。經測定聚乙二醇化精氨酸酶的比活性 高達592 I.U./mg。對天然精氨酸酶和聚乙二醇化精氨酸酶 的SDS-PAGE分析結果示於第18B圖。當以img/m^pBS緩 衝液中室溫貯存至少3周時,聚乙二醇化精氨酸酶在精氨酸 2〇 酶活性和蛋白質濃度方面示出是高度穩定的。當在4〇c以 lmg/ml在PBS緩衝液中貯存時,其可以穩定至少6個月而不 降低比活性。 40 1331531 表3:當用各種啟動的PEG在不同摩爾比率和溫度聚乙_ 醇化時精氨酸酶的活性 進行 聚乙 二醇 化反 應的 時間 (小時) 精氨酸酶 活性(%)( 在室溫用1 :20的精氨 酸酶: mPEG-SP A比率進 行聚乙二 醇化) 精氨酸酶 活性(%)( 在冰上用 1:20的精 氨酸: mPEG-SP A比率進 行聚乙二 醇化) 精氨酸酶 活性(%)( 在室溫用1 • 50的精氨 酸酶: mPEG-SP A比率進 行聚乙二 醇化) 精氨酸酶 活性(%)( 在冰上用1 :50的精氨 酸酶: mPEG-SP A比率進 行聚乙二 醇化) 精氨酸酶 活性(%)( 在冰上用 ]:20的精 氨酸酶: mPEG-C C比卓進 行聚乙二 酿仆.、 精氨酸酶 活性(%)( 在冰上用 1:50的精 氨酸酶: inPEG-C C比率進 行聚乙二 0 100 100 100 100 100 畔化1 100 83 76 76 72 ND ND 2 79 76 72 68 68 64 5 83 74 74 72 65 65 23 75 72 72 64 66 66 精氨酸酶的100%活性相當於336 I.u./mg蛋白質Pellicon XL equipment (polyether-3⁄4 membrane cutoff = 8 kDa) and laboratory scale tangential flow filtration system (Millipore) for this operation. Protein concentration was determined by the method described by Bradford (Bradford, Μ. M., 1976, Analytical Biochemistry 72, 248-254). A total of 788 mg of arginase was purified from 8.4 L of cell culture. Purified arginase production was estimated to be 94 mg/l cell culture. The specific activity measured was as high as 518 I.U./mg. High specific activity PEGylated arginase was prepared in PBS buffer. Purified arginase (specific activity = 518 I.U./mg) was placed in PBS buffer prior to PEGylation. mPEG-SPA, MW 5,000 10 (5.82 g) was slowly added to a 555 ml solution of purified arginase (813.64 mg, 1.466 mg/ml) in a 1 L beaker, then stirred at room temperature for 2 hours and 40 minutes (fine Lysinase: molar ratio of mPEG-SPA = 1: 50). This mixture was then thoroughly dialyzed by ultrafiltration using 15 ml of PBS buffer using an F50(S) capillary dialyzer (Fresenius Medical Care) to remove all PEG that was not incorporated. mPEG-SPA uses the amino group of lysine and the N-terminus of the protein as a modification site. The specific activity of the PEGylated arginase was determined to be as high as 592 I.U./mg. The results of SDS-PAGE analysis of natural arginase and pegylated arginase are shown in Figure 18B. The PEGylated arginase was shown to be highly stable in terms of arginine 2 酶 enzyme activity and protein concentration when stored in the img/m^pBS buffer for at least 3 weeks at room temperature. When stored at 4 mg/ml in PBS buffer at 4 〇c, it was stable for at least 6 months without lowering the specific activity. 40 1331531 Table 3: Time (hours) of arginase activity (%) when the arginase activity was ligated with various activated PEG at different molar ratios and temperatures. Warming 1:20 arginase: mPEG-SP A ratio for PEGylation) Arginase activity (%) (Polymerization on ice with 1:20 arginine: mPEG-SP A ratio) Glycolation) Arginase activity (%) (Pegylated at room temperature with 1 • 50 arginase: mPEG-SP A ratio) Arginase activity (%) (Used on ice 1:50 arginase: mPEG-SP A ratio for PEGylation) Arginase activity (%) (for use on ice): 20 arginase: mPEG-C C Erythrocyte enzymatic activity (%) (on a 1:50 arginase: inPEG-C C ratio on ice. Polyethylene 2 100 100 100 100 100) 1 100 83 76 76 72 ND ND 2 79 76 72 68 68 64 5 83 74 74 72 65 65 23 75 72 72 64 66 66 100% activity of arginase is equivalent to 336 Iu/mg protein
5 實施例9A:對得自貫施例8A的精氨酸酶進行體内半衰期測定 將聚乙·一酵化精氣酸注射入患者體内。每天從串、者 取3ml血液樣品於EDTA中。將試管在融化的冰上預冷卻至 4〇C以防止源於體内的反應。然後將血液立即以14〇〇〇 rpm旋轉2分鐘,以除去紅細胞。吸出1.5 m丨上清(血衆), 10移至一個新的微量離心管中。然後將該血漿在37GC溫育30 分鐘。在溫育後,加入ΙΟΟμΜ濃度的精氨酸作爲底物。在 370C進行酶反應〇,1〇,30 ’ 60分鐘。在每次時間間隔,通 過取出300μ1反應樣品移至一個新的微量離心管中終止反 應’所述微量離心管中含有300μ1 1 〇%三氯乙酸。取樣品並 15以最大速度(14000 rPm)旋轉分鐘。吸出上清,用0·45μιη 濾膜過濾。最後,用氨基酸分析儀(Hitachi,L8800)分析在 不同時間間隔取的樣品。結果示於第21圖。 在研究期間如實施例8A所述製備兩批聚乙二醇化精氨 酸酶。第一批聚乙二醇化精氨酸酶用1 : 140摩爾比率的精 41 1331531 氨酸酶:PEG製備。第二批聚乙二醇化精氨酸酶用丨:% 爾比率的精氨酸酶:PEG製備。製備這兩批產物的浐摩 醇化方案和條件相同(見實施例— 在0時間點’輸注50mg第一批聚乙二醇仆林& 并化精虱酶。 5 12小時後,再輸㈣叫卜批聚乙二醇化精氨酸酶。在第 24小時進行第三次精氨酸酶輸注,使用50〇1§第—批臂 醇化精氨酸酶。 一 從第26至第72小時,連續輸注第一批聚? _ ^ 一辱化精氨 酸酶(lOOmg/天)代替間斷輸注(5〇mg/劑)。從第乃至第工 10小時,以10〇mg/天連續輸注第二批聚乙二醇化精氨醆酶料 在第I44小時,停止連續輸注精氨酸酶,從這個時間點門弘 測定半衰期。半衰期測定結果示於第22圖。第22圖中〇時^ 點等於第21圖中第144小時。 所得結果提示精氨酸酶活性的半衰期可以分爲兩個階 15段。聚乙二醇化酶的第一個半衰期爲大約6小時。相對活性 從100%降至50%需要大約6小時(見第22圖)。然而,第二個 半衰期爲大約21天。相對活性從50%降至25°/。需要大約21天。 這種雙重半衰期作用可能由於許多因素所致,例如在聚乙二 醇化中使用較高數量的mPEG-CC及使用特異的輸注方案。 2〇實施例9B :使用在人血漿中的方法測定聚乙二醇化精氨酸 酶在體外的半衰期 將純化的精氨酸酶(lmg)溶解於在冰上的丨加 125mM硼酸鹽緩衝溶液(pH 8.3)中。將啟動的PEg (mPEG-SPA,MW5,000)(7.l4mg)以精氨酸酶:: 42 1331531 50摩爾比率緩慢加入該蛋白質溶液中。根據實施例8B所述 方法將此混合物在冰上攪拌2.5小時。 將t乙一醇化精氨酸酶(305.6 μΐ)以lmg/ml濃度加入 人血漿(lml)中,聚乙二醇化精氨酸酶的終濃度爲〇 24ing/mi 5 。將此混合物分爲20等份’置於微量離心管中(每個微量 離心管中65 μΐ),然後在37°C溫育。從每個微量離心管中取 1 — 2μ1混合物用於測試精氨酸酶活性。結果示於第2〇圖。 經測定半衰期爲大約3天。相對活性從1 〇〇%降至50%需要大 約3天。這是通過第20圖所示曲線測定的。 10實施例10: B. subtilis-表達的人精氨酸酶及聚乙二醇化的 、分離和純化的重組人精氨酸酶的鑒定 ⑷通jj_SDS-PAGE和光成傻消丨定精氨酸酶活性 將通過Ikemoto等所述方法(ikem〇t〇等,1990,生物化 學270,697-703)獲得的純化的大腸桿菌表達的精氨酸酶與 15通過本發明方法獲得的純化的B. subtilis表達的重組人精氨 酸蛛進行對比(第19A圖和第19B圖)。用Lumi-imagerTM的5 Example 9A: In vivo half-life determination of arginase obtained from Example 8A Injecting poly(ethyl)-enzymatic acid into a patient. A 3 ml blood sample was taken from the string and in the EDTA every day. The tube was pre-cooled to 4 ° C on melted ice to prevent reaction from the body. The blood was then immediately spun at 14 rpm for 2 minutes to remove red blood cells. Aspirate 1.5 m of supernatant (blood) and 10 to a new microcentrifuge tube. The plasma was then incubated for 30 minutes at 37GC. After the incubation, arginine at a concentration of ΙΟΟμΜ was added as a substrate. The enzymatic reaction was carried out at 370C for 1 〇, 30 '60 minutes. At each time interval, the reaction was stopped by taking a 300 μl reaction sample and transferring it to a new microcentrifuge tube containing 300 μl of 1% trichloroacetic acid. Take the sample and rotate it at maximum speed (14000 rPm) for a minute. The supernatant was aspirated and filtered through a 0.45 μm filter. Finally, samples taken at different time intervals were analyzed using an amino acid analyzer (Hitachi, L8800). The results are shown in Fig. 21. Two batches of PEGylated arginase were prepared as described in Example 8A during the study. The first batch of pegylated arginase was prepared using a 1:140 molar ratio of sperm 41 1331531 lysinase: PEG. The second batch of PEGylated arginase was prepared using 丨:% ratio of arginase: PEG. The preparations and conditions for the preparation of the two batches of the product were the same (see Example - infusion at the time of 0 '50 mg of the first batch of polyethylene glycol servant & and the spermatinase. 5 12 hours later, then again (four) Called PEG-argininase. The third arginase infusion was performed at 24 hours, using 50〇1§ first-batch alcohol arginase. From the 26th to the 72nd hour, Continuous infusion of the first batch of _ ^ a sterilized arginase (100 mg / day) instead of intermittent infusion (5 〇 mg / dose). From the first to the first 10 hours, 10 〇 mg / day continuous infusion of the second The PEGylated arginine enzyme was stopped at the first 44 hours, and continuous infusion of arginase was stopped. From this time point, the half-life was measured. The half-life measurement results are shown in Fig. 22. In Fig. 22, the time is equal to Figure 144, 144 hours. The results suggest that the half-life of arginase activity can be divided into two orders of 15 segments. The first half-life of PEGylase is about 6 hours. The relative activity is reduced from 100% to 50. % takes about 6 hours (see Figure 22). However, the second half-life is about 21 days. Relative activity 50% is reduced to 25°/. It takes about 21 days. This double half-life effect may be due to many factors, such as the use of higher amounts of mPEG-CC in PEGylation and the use of specific infusion protocols. Example 9B: Determination of the half-life of PEGylated arginase in vitro using a method in human plasma. Purified arginase (1 mg) was dissolved in ice and 125 mM borate buffer (pH 8.3). The activated PEg (mPEG-SPA, MW 5,000) (7.14 mg) was slowly added to the protein solution at a molar ratio of arginase:: 42 1331531 50. This mixture was prepared according to the method described in Example 8B. Stir on ice for 2.5 hours. Add t-ethylated arginase (305.6 μM) to human plasma (1 ml) at a concentration of 1 mg/ml, and the final concentration of PEGylated arginase is 〇24ing/mi 5 . The mixture was divided into 20 equal portions' placed in a microcentrifuge tube (65 μΐ in each microcentrifuge tube) and then incubated at 37 ° C. 1 - 2 μl mixture was taken from each microcentrifuge tube for testing of refined ammonia Acidase activity. The results are shown in Figure 2. The half-life was determined to be about 3 days. It takes about 3 days to reduce the activity from 1% to 50%. This is determined by the curve shown in Figure 20. 10 Example 10: B. subtilis-expressed human arginase and PEGylated Identification of isolated, purified and purified recombinant human arginase (4) arginase activity by jj_SDS-PAGE and photosynthetic sputum will be determined by Ikemoto et al. (ikem〇t〇 et al., 1990, Biochemistry 270, 697 -703) The purified E. coli expressed arginase obtained was compared with the purified human arginine spider expressed by the purified B. subtilis obtained by the method of the present invention (Fig. 19A and Fig. 19B). With Lumi-imagerTM
Lumianalyst 32 程式(Roche Molecular Biochemicals)對第 19A圖所示總蛋白質條帶進行密度分析,表明本發明方法産 生的精氨酸酶的純度爲99.9%以上(第19B圖)。然而,80 — 2〇 1〇〇%純的精氨酸酶也可以作爲活性成分製備藥物組合物 。在優選的實施方案中’使用80 — 100%純的重組精氨酸酶 。在更優選的實施方案中’使用SDS-PAGE隨後進行光成像 分析,本發明的重組精氨酸酶的純度爲90-1〇〇〇/0。 fb)通過偶聯反應測定比 43 1331531 在一個系統中監測通過精氨酸酶從L-精氨酸中釋放尿 素的速率’所述系統中含有尿素酶,L-榖氨醯胺脫氫酶和 NADPH (Ozer,R,1985,Biochem· Med. 33,367-371)。 爲製備主混合物’將0.605 g Tris,0.0731g α-嗣戊二酸和 5 〇.4355g精氨酸溶解於40 ml dH20中。用1 M HC1將pH調 節爲8.5 ’然後在此混合物中加入〇.〇67g尿素酶。用HC1將 pH進一步調節爲8.3,之後加入0.0335g榖氨醯胺脫氫酶和 0.0125g NADPH。用dH20將終體積調節爲5〇ml,以形成主 混合物。將此主混合物(1 ml)吸入一個石英比色杯中。爲測 10 定精氨酸酶活性’加入l-5mg精氨酸酶,隨後在3〇°C追蹤 340nm吸光度(Awe)的降低1 —3分鐘。1 I.U.的精氨酸酶解 釋爲在給定條件下1分鐘釋放Ιμιηοΐ尿素的酶的量。本發明 的純化的重組人精氨酸酶的比活性計算爲518 I.U./mg蛋 白質,這明顯高於報道的純化的人紅細胞精氨酸酶的活性 15 數值(204 I.U./mg蛋白質;Ikemoto 等,1989,Ann. Clin.The Lumianalyst 32 program (Roche Molecular Biochemicals) performed a density analysis on the total protein bands shown in Figure 19A, indicating that the purity of the arginase produced by the method of the present invention was 99.9% or more (Fig. 19B). However, 80 - 2 〇 1% pure arginase can also be used as an active ingredient to prepare a pharmaceutical composition. In a preferred embodiment '80-100% pure recombinant arginase is used. In a more preferred embodiment, the recombinant arginase of the present invention has a purity of 90-1 〇〇〇/0 using SDS-PAGE followed by photoimage analysis. Fb) Determination of the rate of release of urea from L-arginine by arginase in a system by a coupling reaction ratio 43 1331531. The system contains urease, L-prolinamide dehydrogenase and NADPH (Ozer, R, 1985, Biochem. Med. 33, 367-371). To prepare the main mixture, 0.605 g of Tris, 0.0731 g of α-glutaric acid and 5 〇. 4355 g of arginine were dissolved in 40 ml of dH20. The pH was adjusted to 8.5 ' with 1 M HCl and then 〇. g 67 g urease was added to the mixture. The pH was further adjusted to 8.3 with HCl, followed by the addition of 0.0335 g of indoleamine dehydrogenase and 0.0125 g of NADPH. The final volume was adjusted to 5 〇 ml with dH20 to form a main mixture. This main mixture (1 ml) was drawn into a quartz cuvette. To measure arginase activity, '1-5 mg of arginase was added, followed by a 1-3 nm decrease in absorbance (Awe) at 3 °C for 1-3 minutes. The arginase of 1 I.U. is interpreted as the amount of enzyme that releases Ιμηηοΐ urea for 1 minute under the given conditions. The specific activity of the purified recombinant human arginase of the present invention was calculated to be 518 IU/mg protein, which was significantly higher than the reported activity of purified human erythrocyte arginase 15 (204 IU/mg protein; Ikemoto et al. 1989, Ann. Clin.
Biochem. 26 ’ 547-553)和大腸桿菌表達的分離的和純化的 重組人精氨酸酶的活性數值(389 I_U./mg蛋白質;Ikemoto 等,1990,生物化學雜誌270,697-703)。 使用mPEG-SPA (MW 5,000),以1 : 50摩爾比率和2小 20 時40分鐘的反應時間’聚乙二醇化精氨酸酶保留多如達原 始活性的114°/。的活性(見實施例8C)。這意味著所述聚乙二 醇化人精氨酸酶的比活性爲592 I.U./mg。 使用mPEG-CC (MW 5,000),聚乙二醇化人精氨酸酶保 留其原始酶活性的64-68% (表3),與聚乙二醇化牛精氨酸 44 1331531 酶活性相似(Savoca,Κ. V.等 ’ 1979,Biochimica et Biophysica Acta 578,47-53)。 (V)通過雷露化LC/MS射天然精氨酸酶迮行結槿京枓 根據第2B圖所示氨基酸序列,B_ subtilis-表達並純化的 5 重組人精氨酸酶含有329個氨基酸殘基,理論分子量爲35, 647.7 Da。對天然精氨酸酶同時進行HPLC/UV和質譜分析 提供的分子量爲35,634 Da。發現觀測到的天然精氨酸酶 的分子量與得自6x組氨酸標記的人精氨酸酶的預期氨基 酸序列(第2B圖)的理論分子量35,647.7 Da完全符合。通過 10 基於LC/MS的HPLC/UV檢測發現純度爲98%,通過基於在 215nm相對應答的HPLC/UV檢測的LC/MS發現純度爲1 〇〇%。 (d)通過凝膠過濾層析對天然精氨酸醢釦聚乙二醇化籍 氨酸酶進扞钴_宗枓 在—個HiLoad 16/60 superdex凝膠過濾柱(Pharmacia) 15中’在於pBS緩衝液中的大約2_8mg/ml蛋白質濃度進行凝膠 過渡層析’發現天然精氨酸酶的分子量爲大約78 kDa,聚 乙二醇化精氨酸酶(實施例8C中製備的)分子量爲大約 688 kDa。由於單體精氨酸酶的分子量爲大約36 kDa,該結 果提示天然精氨酸酶在PBS緩衝液中以二聚體形式存在。 20 (e)三氣結構研究 使用圓二色性(CD),在JASCO J810型CD分光計中分 析純化的精氨酸酶的二級結構。在於10mM磷酸鉀缓衝液 (pH 7·4)中的相等蛋白質濃度,當從195 —240nm掃描時,發 現天然精氨酸酶的CD光譜與聚乙二醇化精氨酸酶(在實施 45 1331531 例8C中製備的)的CD光譜非常相似,表明天然形式和聚乙 二醇化形式的精氨酸酶具有幾乎相同的二級結構。 (f) pl點測定 使用一個Bio-Rad 111型小IEF電池,發現天然精氨酸酶 5 (在實施例8C中製備)的等電點(pi)爲9.0,這與文獻中公佈 的數值 9.1 一致(Christopher *Wayne,1996,Comp.Biochem. Physiol. 114B,107-132) 〇 (g) 功能定性及動力犖性皙測定 使用Ikemoto等所報道的方法(1990,生物化學雜誌270 10 ’ 697-703)測定精氨酸酶活性,天然精氨酸酶的、爲丨9 ± 0.7 mM ’ Vmax 爲 518μπιο1 尿素/分鐘/ mM·】,kcat爲2.0 土 0.5 / 秒,kcat/Km爲1 ·3 ± 0.4 /mM/秒。發現純化的天然精氨酸酶 的!*^值與文獻中公佈的人肝臟精氨酸酶的數值(26 mM) (Carvaja卜Ν·等,1999)非常相似。另外,達到天然精氨酸 15 酶的最大活性需要大約1 mM的Μη2+離子和3〇~5〇。〇的 溫度。 聚乙二醇化精氨酸酶的Km爲2.9 ± 〇.3 ,v a v max^ 360 μηιοί尿素/分鐘/mM。聚乙二醇化精氨酸酶的、值與天 然精氨酸酶的數值非常相似,提示該酶對精氨酸的結合親 20和性在聚乙二醇化後得以保留。另外,達到聚乙二醇化精 氨酸酶的最大活性需要大約1 mM的Mn2+離子,4〇5〇〇c 的溫度及pH10。 精氨酸酶的功能性質在聚乙二醇化之前和之後相似, 表明mPEG-SPA分子共價附著於精氨酸酶總體上改良了其 46 1331531 性質。 實施例11 :利用外源給予精氨酸酶的治療方案 在治療期間每天取患者血液樣品,以瞭解精氨酸水平 ,精氨酸酶活性,全血圖和凝血圖。如果認爲需要,至少 5 每隔幾天測試肝功和腎功。 在開始輸注精氨酸酶後每15分鐘測生命迹象(BP,脈 搏,呼吸頻率,血氧讀數),共測1小時,然後每小時測一 次直至穩定。之後,由經治醫生判斷。 在輸注精氨酸酶之前20分鐘,經靜脈内給予1 Omg 10 dipheneramine,在每次輸注精氨酸酶之前或根據經治醫生 判斷經靜脈内給予1 〇〇mg氫化考的松。 在第一天輸注精氨酸酶30分鐘。之後,每周輸注精氨 酸酶持續至少8周。如果觀測到抗腫瘤活性,可以持續進行 輸注。 15 實施例12 :外源施用精氨酸酶的治療方案實例 在2001年8月初,用聚乙二醇化重組精氨酸酶對一名54 歲的中國婦女進行治療,該婦女患有轉移的直腸癌,廣泛 轉移到肺部,所有標準治療均無效。其主要症狀是咳嗷, 無食欲及便秘。其癌症標記CEA爲1100 U/ml。在治療前同 20 意用聚乙二醇化重組精氨酸酶進行治療。 治療方法學 給予850mg床乾的重組精氨酸酶I。將此藥物在PBS中 重配並聚乙二醇化。發現聚乙二醇化酶具有全部活性。 結果 47 1331531 結果示於第28圖和29。第28圖示出在5天的時間精氨酸 滿意地耗竭爲1 — 5 μΜ(也見於第21圖)。第29圖示出CEA水 平在4周内從1100降至800。 1)與化療不同’這種治療對骨髓無抑制作用且不導致 5 脫髮。 2)這種治療可以以受控方式耗竭精氨酸’在所希望的5 天時間保持精氨酸水平在治療範圍内(1_8 μΜ),體外數據提 示提供最佳腫瘤殺傷力。 10 3)沒有明顯的副作用’患者耐受這種治療,只是有輕 Μ的碩痛,這也許不是由於治療而直接導致。Biochem. 26 '547-553) and the activity value of isolated and purified recombinant human arginase expressed by E. coli (389 I_U./mg protein; Ikemoto et al., 1990, J. Biol. Chem. 270, 697-703). Using mPEG-SPA (MW 5,000), the PEGylated arginase retained as much as 114 °/ of the original activity at a 1:50 molar ratio and a reaction time of 2 hours 20 minutes and 40 minutes. Activity (see Example 8C). This means that the specific activity of the polyethylene glycolated human arginase is 592 I.U./mg. Using mPEG-CC (MW 5,000), PEGylated human arginase retains 64-68% of its original enzymatic activity (Table 3), similar to the pegylated bovine arginine 44 1331531 enzyme activity (Savoca, Κ. V. et al '1979, Biochimica et Biophysica Acta 578, 47-53). (V) Shooting natural arginase by derivatization LC/MS, 槿 槿 槿 枓 According to the amino acid sequence shown in Figure 2B, B_ subtilis-expressed and purified 5 recombinant human arginase contains 329 amino acid residues The theoretical molecular weight is 35, 647.7 Da. Simultaneous HPLC/UV and mass spectrometry analysis of the native arginase provides a molecular weight of 35,634 Da. The molecular weight of the observed natural arginase was found to be in complete agreement with the theoretical molecular weight of 35,647.7 Da from the expected amino acid sequence of the 6x histidine-tagged human arginase (Fig. 2B). The purity was found to be 98% by HPLC/UV detection based on LC/MS. The purity was found to be 1% by LC/MS based on HPLC/UV detection at 215 nm relative response. (d) by gel filtration chromatography on natural arginine decarboxylated PEGylation enzyme into samarium cobalt _ 枓 枓 in a HiLoad 16/60 superdex gel filtration column (Pharmacia) 15 'in pBS Gel transition chromatography was performed at a protein concentration of approximately 2-8 mg/ml in buffer. The molecular weight of the natural arginase was found to be approximately 78 kDa, and the molecular weight of the PEGylated arginase (prepared in Example 8C) was approximately 688. kDa. Since the molecular weight of the monomeric arginase is about 36 kDa, this result suggests that the natural arginase is present as a dimer in PBS buffer. 20 (e) Three-gas structure study The secondary structure of the purified arginase was analyzed in a JASCO J810 CD spectrometer using circular dichroism (CD). In the equivalent protein concentration in 10 mM potassium phosphate buffer (pH 7.4), when scanning from 195-240 nm, the CD spectrum of natural arginase and PEGylated arginase were found (in the implementation of 45 1331531 cases) The CD spectra prepared in 8C are very similar, indicating that the native form and the pegylated form of the arginase have nearly identical secondary structures. (f) pl point measurement Using a Bio-Rad 111 type small IEF battery, the isoelectric point (pi) of natural arginase 5 (prepared in Example 8C) was found to be 9.0, which is in comparison with the value published in the literature 9.1. Consistency (Christopher *Wayne, 1996, Comp. Biochem. Physiol. 114B, 107-132) 〇(g) Functional characterization and dynamic sputum determination using the method reported by Ikemoto et al. (1990, J. Biol. Chem. 270 10 ' 697- 703) Determination of arginase activity, natural arginase, 丨9 ± 0.7 mM 'Vmax is 518μπιο1 urea / min / mM ·, kcat is 2.0 soil 0.5 / sec, kcat / Km is 1 · 3 ± 0.4 / mM / sec. The !*^ value of the purified natural arginase was found to be very similar to the human liver arginase value (26 mM) published in the literature (Carvaja Buddhism et al., 1999). In addition, the maximum activity of the native arginine 15 enzyme requires approximately 1 mM of Μη2+ ions and 3〇~5〇. The temperature of 〇. The Km of the PEGylated arginase was 2.9 ± 〇.3, v a v max^ 360 μηιοί urea/min/mM. The value of PEGylated arginase is very similar to that of natural arginase, suggesting that the binding affinity of the enzyme to arginine is retained after PEGylation. In addition, achieving a maximum activity of PEGylated arginase requires about 1 mM of Mn2+ ions, a temperature of 4〇5〇〇c, and a pH of 10. The functional properties of arginase are similar before and after PEGylation, indicating that the covalent attachment of the mPEG-SPA molecule to the arginase generally improves its 46 1331531 nature. Example 11: Treatment regimen for exogenous administration of arginase A patient blood sample was taken daily during treatment to understand arginine levels, arginase activity, whole blood maps and coagulation maps. If you think you need it, test liver function and kidney function at least 5 every few days. Signs of life (BP, pulse, respiratory rate, blood oxygen readings) were measured every 15 minutes after the start of infusion of arginase for a total of 1 hour and then measured every hour until stable. After that, it is judged by the doctor. Twenty minutes before the infusion of arginase, 1 Omg of 10 dipheneramine was administered intravenously, and 1 mg of hydrocortisone was administered intravenously before each infusion of arginase or according to the judgment of the treating physician. The arginase was infused for 30 minutes on the first day. Thereafter, the arginase is infused weekly for at least 8 weeks. If anti-tumor activity is observed, an infusion can be continued. 15 Example 12: Example of a treatment regimen for exogenous administration of arginase In early August 2001, a 54-year-old Chinese woman was treated with a pegylated recombinant arginase, which had a metastatic rectum Cancer, extensively transferred to the lungs, all standard treatments are ineffective. The main symptoms are cough, loss of appetite and constipation. Its cancer marker CEA is 1100 U/ml. Treatment with PEGylated recombinant arginase was performed before treatment. Therapeutic Methodology 850 mg bed dry recombinant arginase I was administered. This drug was reconstituted in PBS and PEGylated. The PEGylase was found to have full activity. Results 47 1331531 The results are shown in Figures 28 and 29. Figure 28 shows that arginine was satisfactorily depleted to 1 - 5 μΜ over 5 days (see also Figure 21). Figure 29 shows that the CEA level has dropped from 1100 to 800 in 4 weeks. 1) Unlike chemotherapy, this treatment has no inhibitory effect on bone marrow and does not cause 5 hair loss. 2) This treatment can deplete arginine in a controlled manner. The arginine level is maintained within the therapeutic range for the desired 5 days (1_8 μΜ), and in vitro data provides the best tumor lethality. 10 3) No obvious side effects. The patient is tolerant of this treatment, but there is a dull pain, which may not be directly caused by treatment.
15 2015 20
4)在治療後觀測到疾病的生物化學和放射線指征均得 以改善’ CEA降低30%,胸部乂光片示出上部區域病變消除。 貫施例13:用精氨酸酶處理實驗室大鼠進行體内精級耗竭 在這個實施例中,在第〇天對4組大鼠(每組兩隻,一雄 雌)、·’。予不同劑2:的精酶,所述精氨酸酶得自實施例 8C在經腹膜内注射重組人精氨酸酶之前第〇天,在第I — 天,然後每隔兩天,從大鼠尾靜脈取血液樣品。 。23圖所π ’在所有測試组中均實現精氨酸水」 可仏測到,絲現爲劑量依賴性,給抑〇 IU。在# 後一天精氨酸耗竭。給予刪UM早晨給予Γυ/ 午、”。予另外5GGLU_)’有4天時間精氨酸完全耗竭。單; J 1500LU.有6天時間精氨酸耗竭。將劑量加件至3 瓜,精氨酸完全耗竭持續時間不表現爲有任何延長。 因此’經腹膜内給予測LU的聚乙二醇化精氨酉 48 1331531 表現爲是精氨酸耗竭的最佳劑量,有6天時間精氨酸水平不 可檢測到。 實施例14 :正常大鼠與從第1天至第5天通過精氨酸酶産生 的零精氨酸水平的大鼠之間血液成分水平變化的對比 5 在第0天給予精氨酸酶之前從一組5只大鼠中取心内動 脈血樣品。第〇天的樣品作爲未處理對照。總蛋白質,白蛋 白’球蛋白,SGOT/AST,SGPT/ALT,血紅蛋白,纖維蛋 白原水平,A.P.T.T·/秒,凝血酶原/秒,白細胞(WBC)和血 小板數目,由Pathlab醫學實驗室有限公司測定,該公司位 10 於香港灣仔Jaffe道90 —92號河南大廈二層。然後將大鼠經 腹膜内注射一劑1500 I.U.精氨酸酶。在所有大鼠中達到零 精氨酸水平。從第1 — 5天,每天處死一隻大鼠,取心内動 脈血樣品,並由PathLab醫學實驗室測定。如PathLab醫學實 驗室所證實,結果示出所有蛋白質均在正常範圍内。 15實施例丨5 :在攜帶Hep3B腫瘤的裸鼠内對精氨酸耗竭的應答 將人肝細胞瘤細胞系(Hep3B2.卜7)皮下接種於6只 BALB/c裸鼠的右側腹部,以使腫瘤生長。對隨機選擇的3 只小鼠經腹膜内一周一次給予得自實施例8C的500 I.U.聚 乙二醇化精氨酸酶,其他3只小鼠不給予任何精氨酸酶處理 20 作爲對照。每兩天用數學圓規測定一次植入小鼠内的實體腫 瘤原位生長情況,以確定腫瘤大小,根據以下公式計算: 腫瘤大小(mm)=兩個垂直直徑和一個對角直徑的平均值 每天還記錄每組中小鼠的死亡數。 如第24圖所示,在實驗開始後的前20天中,對照組中 49 1331531 每天腫瘤大小的增長速度是用聚乙二醇化精氨酸酶處理組 的大約6倍。對照組中有2只小鼠在24天内死亡,而用聚乙 二醇化精氨酸酶處理的小鼠可以存活至少75天。 實施例16:在攜帶PLC/PRF/5腫瘤的裸鼠中對精氨酸耗竭的應答 5 在這個實施例中’將人肝細胞瘤的實體腫瘤 (PLC/PRF/5)經皮下植入1〇只BALB/c裸鼠的背部,以使腫瘤 生長。對隨機選擇的5只小鼠經腹膜内一周一次給予得自實 施例8C的500 I.U.聚乙二醇化精氨酸酶,而其他$只小鼠經 腹膜内給予200 μΐ磷酸鹽緩衝鹽水(pBS)作爲對照。每兩天 10用數學圓規測定一次植入小鼠的實體腫瘤原位生長情況, 以測定腫瘤大小和質量。腫瘤大小如實施例15所述測定, 腫瘤質量根據以下公式計算: 腫瘤質量(mg)=長度X寬度2/2 (假定比重爲丨〇 g/cm3) (其中長度是最長的垂直直徑,寬度是最短的垂直直徑) 15 如第25A圖所示’在實驗開始後的前39天内’對照組中 腫瘤大小的增長速度爲大約6 5 mm/天’在用聚乙二醇化精 氨酸酶處理組中’腫瘤大小增長速度爲大約5.3 mm/天。如 第25B圖所示’對照組中每天腫瘤質量的增長速度是處理組 的大約1.8倍。 20實施例17.在構帶HuH_7腫瘤的裸鼠内對精氨酸耗竭的應答 在這個貫知例中,將—種實體腫瘤人肝細胞瘤 經皮下植入10只BALB/c裸鼠的背部,以使腫瘤生長。對隨 機選擇的5 〃、小乳經腹膜内—周一次給予得自實施例所 述方法中的5〇〇 ι·υ_聚乙二醇化精氛酸酶,其他5只小鼠每 50 1331531 周經腹膜内給予200μ1碟酸鹽緩衝鹽水(pbs)作爲對照。每 兩天通過數學圓規測定小鼠中植入的實體腫瘤的原位生長 情況,以確定腫瘤大小和質量,如實施例15和16所述。 如第26A圖所示,在實驗開始後的前18天内,對照組中 5腫瘤每天的生長速度爲大約6.0 mm/天,用聚乙二醇化精氨 酸酶處理組中腫瘤大小的增長迷度爲大約5 6]11111/天。如第 圖所示,對肋巾Μ質#的增長速度是處理組的大約 1.4倍。 實施例18 :在齡MCF-7軸的裸鼠中對精氨酸耗竭的應答 10 在&個實施例中’將人乳腺癌細胞系(MCF-7)經皮下接 種於4只BALB/c裸鼠的右側腹部,以使腫瘤生長。對隨機 選擇的3只小鼠經腹膜内一周—次給予得自實施例8c所述 方法的500 I.U.聚乙二醇化精氨酸酶,最後一隻不給予任何 精氨酸酶處理以作爲對照。每隔兩天用數學圓規測定小鼠 15植入的實體腫瘤的原位生長情況,以確定腫瘤的大小,如 實施例15所述。 如第27圖所不,用聚乙二醇化精氨酸酶處理的小鼠中 接種的腫瘤在實驗的20天内消失。 必需注思本文所用的及在權利要求中所用的單數形式 20術語”一個,,“這個,,除非特別指出,S包括複數形式。因此 ,例如種藥物製品’’包括不同製品的混合物,,,治療方法 ”包括本領域技術人員已知的等價的步驟和方法等等。 除非另外,出’本文所用所有技術和科學術語具有與 本領域技術人員通常理解的相同的含義。儘管與本文所述 51 1331531 的那些相似或相同的任何方法和材料可以用於本發明的實 踐和測s式中,但本文描述了優選的方法和材料。本文私 的所有出版物在此並入參考,以闡述和揭示與所弓丨用的内 容相關聯的特殊内容。本發明已經充分地進行了描述,本 5領域技術人員可以在本發明範圍内對其加以修改。戶斤有言 種修改包含在本發明的範圍内。 本發明的藥物組合物的配方可以是固體,溶浪,乳浪 ,分散液,膠囊,脂質體等形式使用,其中在本發明的實 際應用中所得配方含有一或多種修飾的人精氨酸酶作爲法 10 15 204) Biochemical and radiographic indications of the disease observed after treatment were all improved by a 30% reduction in CEA, and chest radiographs showed elimination of lesions in the upper region. Example 13: Treatment of laboratory rats with arginase for in vivo sperm depletion In this example, four groups of rats (two in each group, one male and one female), on the third day. Different enzyme 2: the arginase obtained from Example 8C on the first day before intraperitoneal injection of recombinant human arginase, on day I, then every two days, from large Blood samples were taken from the tail vein. . In Fig. 23, π' achieved arginine water in all test groups. It can be detected that the silk is dose-dependent and inhibits IU. After one day, arginine was depleted. Give UM morning to give Γυ / noon, ". to another 5GGLU_) 'There is 4 days of arginine completely depleted. Single; J 1500LU. There are 6 days of arginine depletion. Add the dose to 3 melon, refined ammonia The duration of complete acid depletion does not appear to be prolonged. Therefore, 'pegylated arginine 48 1331531, which is administered intraperitoneally, shows that it is the optimal dose for arginine depletion, and there is a 6-day arginine level. Not detectable. Example 14: Comparison of changes in blood component levels between normal rats and rats with zero arginine levels produced by arginase from day 1 to day 5 on day 0 Intracardiac arterial blood samples were taken from a group of 5 rats. The day of the day was used as an untreated control. Total protein, albumin 'globulin, SGOT/AST, SGPT/ALT, hemoglobin, fibrinogen Level, APTT·/sec, prothrombin/sec, white blood cell (WBC) and platelet count, determined by Pathlab Medical Laboratories, Inc., located at the second floor of Henan Building, 90-92 Jaffe Road, Wanchai, Hong Kong. Rat intraperitoneal injection of a dose of 1 500 IU arginase. Zero arginine levels were achieved in all rats. From day 1-5, one rat was sacrificed daily and intracardiac arterial blood samples were taken and determined by PathLab Medical Laboratory. The results confirmed by the laboratory showed that all proteins were within the normal range. 15 Example 丨5: Response to arginine depletion in nude mice bearing Hep3B tumors Human hepatoma cell line (Hep3B2. The right abdomen of 6 BALB/c nude mice was subcutaneously inoculated to grow the tumor. Three randomly selected mice were intraperitoneally administered with 500 IU of PEGylated arginase from Example 8C once a week. The other 3 mice were not given any arginase treatment as a control. The in situ growth of solid tumors in the implanted mice was determined every two days using a mathematical compass to determine the tumor size, calculated according to the following formula: Tumor size (mm) = average of two vertical diameters and one diagonal diameter. The number of deaths of mice in each group was also recorded every day. As shown in Fig. 24, in the first 20 days after the start of the experiment, the control group was 49 1331531 per day. Tumor size The growth rate was approximately 6 times higher in the PEGylated arginase treated group. 2 mice in the control group died within 24 days, while mice treated with PEGylated arginase survived at least 75. Example 16: Response to arginine depletion in nude mice bearing PLC/PRF/5 tumors 5 In this example, subcutaneous implantation of solid tumors of human hepatoma (PLC/PRF/5) The back of one BALB/c nude mouse was inserted to allow tumor growth. Five randomly selected mice were administered intraperitoneally once a week to 500 IU of PEGylated arginase from Example 8C, while others One mouse was intraperitoneally administered with 200 μM phosphate buffered saline (pBS) as a control. The in situ growth of solid tumors implanted in mice was measured every two days using a mathematical compass to determine tumor size and quality. Tumor size was determined as described in Example 15, and tumor mass was calculated according to the following formula: Tumor mass (mg) = length X width 2/2 (assuming specific gravity is 丨〇g/cm3) (where length is the longest vertical diameter, width is The shortest vertical diameter) 15 As shown in Figure 25A, 'in the first 39 days after the start of the experiment, the growth rate of the tumor in the control group was about 65 mm/day' in the PEGylated arginase-treated group. The 'tumor size growth rate is about 5.3 mm / day. As shown in Fig. 25B, the growth rate of tumor mass per day in the control group was about 1.8 times that of the treatment group. 20 Example 17. Response to arginine depletion in nude mice constituting HuH_7 tumors In this example, a solid tumor human hepatoma was implanted subcutaneously into the back of 10 BALB/c nude mice. To make the tumor grow. The randomly selected 5 〃, small milk was intraperitoneally-weekly administered with 5 〇〇··· PEGylated aptamase from the method described in the examples, and the other 5 mice were every 10 1331531 weeks. 200 μl of disc salt buffered saline (pbs) was administered intraperitoneally as a control. The in situ growth of solid tumors implanted in mice was determined by mathematical compasses every two days to determine tumor size and quality as described in Examples 15 and 16. As shown in Figure 26A, the growth rate of 5 tumors per day in the control group was approximately 6.0 mm/day during the first 18 days after the start of the experiment, and the growth of tumor size in the PEGylated arginase treatment group was increased. It is about 5 6] 11111 / day. As shown in the figure, the growth rate of the ribbed enamel # is about 1.4 times that of the treatment group. Example 18: Response to arginine depletion in nude mice of the MCF-7 axis of age 10 In &Examples, human breast cancer cell line (MCF-7) was subcutaneously inoculated into 4 BALB/c The right abdomen of nude mice is used to grow the tumor. Three randomly selected mice were intraperitoneally administered with 500 I.U. PEGylated arginase from the method described in Example 8c one week, and the last one was administered without any arginase treatment as a control. The in situ growth of the solid tumor implanted in mouse 15 was measured every two days using a mathematical compass to determine the size of the tumor as described in Example 15. As shown in Figure 27, tumors inoculated with PEGylated arginase-treated mice disappeared within 20 days of the experiment. The singular forms 20, as used herein, and the terms used in the claims, "a," ", unless otherwise specified, "includes the plural. Thus, for example, a pharmaceutical product 'comprising a mixture of different articles, a method of treatment" includes equivalent steps and methods known to those skilled in the art, etc. Unless otherwise, all technical and scientific terms used herein have The same meanings are generally understood by those skilled in the art. Although any methods and materials similar or identical to those of 51 1331531 described herein can be used in the practice and testing of the present invention, preferred methods and materials are described herein. All publications in the specification are hereby incorporated by reference in their entirety for the entire disclosure of the disclosure of the disclosure of the disclosures of Modifications thereto are included in the scope of the present invention. The formulation of the pharmaceutical composition of the present invention may be used in the form of a solid, a wave, a milk wave, a dispersion, a capsule, a liposome or the like, wherein The resulting formulation in the practice of the invention contains one or more modified human arginase enzymes as a method 10 15 20
性成分,與適於腸道或非腸道施用的有機或無機戴體或賦 形劑混合。所述活性成分可以是精氨酸酶,例如 f有用於 月劑、小丸、膠囊、栓劑、溶液、乳液、懸浮汤* 义和適於生 産固體、半固體或液體形式製劑的任何其他形式的a規非 毒性的藥物可接受的載體。除了辅助劑之外,逆 %可以使用 穩定劑,增稠劑和色素及香味劑❶所述藥物配 — 中包含的 —或多種精氨酸酶活性成分的量足以對靶過程、Sexual ingredients, mixed with an organic or inorganic body or excipient suitable for enteral or parenteral administration. The active ingredient may be an arginase, for example, f for use in monthly preparations, pellets, capsules, suppositories, solutions, emulsions, suspensions, and any other form suitable for the production of solid, semi-solid or liquid form preparations. A non-toxic pharmaceutically acceptable carrier. In addition to the adjuvant, the counter% may be used in a stabilizer, a thickener and a pigment and a fragrance, and the amount of the arginase active ingredient contained in the drug is sufficient for the target process,
病產生所需作用。 症狀或疾 含有本發明活性成分的藥物配方可以是適 ,,, 服形式 勺’例如片劑’ 口含片(troches) ’鍵劑,水性或沛 王題;浮· ,分散粉末或顆粒,乳液,硬或軟膠囊,咬糖 ‘ ' „ 一 成或酏劑。 口服配方可以根據本領域已知生産藥物配方的住仑 , 備。片劑可以無包衣,或者可以通過已知技術包^方法製 遲在胃腸道中的崩解和吸收,從而在更長的時間 以延 作用。它們也可以包衣職滲透性_劑以控物持續 52 1331531 在一些情況中,口服配方可以是硬明膠膠囊,其中活 性成分與惰性固體稀釋劑例如碳酸鈣,磷酸鈣,高嶺土等 混合。它們也可以是軟明膠膠囊形式,其中活性成分與水 或油介質例如花生油、液體石蠟或橄欖油混合。 5 所述藥物配方也可以是無菌注射溶液或懸浮液。這種 懸浮液可以根據已知方法配製,使用適當的分散或增濕劑 或懸浮劑。所述無菌注射製品也可以是在無毒腸道外可接 受的稀釋劑或溶劑中的無菌注射溶液或懸浮液,例如於1, 4-丁二醇中的溶液。無菌的不易發揮的油常規用作溶劑或 10 懸浮介質。爲此目的可以應用任何柔和的不易揮發油,包 括合成的甘油一酯或甘油二酯,脂肪酸(包括油酸),天然植 物油如芝麻油,椰子油,花生油,棉花子油,或者合成的 脂肪酸載體,如油酸乙酯等。如果需要,可以摻入緩衝劑 ,葡萄糖溶液防腐劑,抗氧化劑等或者它們可以用作溶質 15 以溶解可溶的酶。 所述藥物配方也可以作爲輔助治療劑,與其他化療劑 一起使用。 在權利要求書中,具有與SEQ ID No. 9所示氨基酸序列 基本相同的氨基酸序列的精氨酸酶是指所述序列與SEQ ID 20 No. 9所示序列至少30%相同,或者使用本文所述精氨酸酶 活性分析示出SEQ ID No. 9所示的酶和與其基本相似的酶 在酶活性方面無明顯差異。提供6個組氨酸是爲了便於純 化,在其氨基末端提供額外的甲硫氨酸基團是爲了使翻譯 開始。本領域技術人員理解可以使用其他形式的純化方 53 1331531 法,因此”基本相似的”精氨酸酶不需要與SEQ ID No. 3的 序列有任何同源性。在一些細菌菌株中,與SEq SEQ ID No. 9可以有至少40%同源性。一些哺乳動物精氨酸 酶與SEQ ID No. 9可以有至少70°/。同源性。 5 序列表 SEQIDNO : 1 (第 2A圖) SEQIDNO : 2&3(第2B圖:核苷酸序列(SEQIDNO : 2);和氨基 酸序歹|J(SEQIDNO : 3)) SEQIDNO : 4 : 6xHis標記MHHHHHH 10 SEQIDNO: 5: 5,-CCAAACCATATGAGCGCCAAGTCCAGAACCATA-3, (Arg 1) SEQIDNO : 6 : 5,-CCAAACTCTAGAATCACATTTTTTGAATGACATGGACAC-3, (Arg 2) 15 SEQ ID NO : 7 : 5,-CTCTGGCCATGCCAGGGTCCACCC-3, (Arg 6) SEQ ID NO : 8 & 9 :(第2C圖:核苷酸序列(SEQ ID NO : 8);氨 基酸序列(SEQIDNO : 9))。 I:圖式簡單說明3 第1圖示出ρΑΒΙΟΙ的質粒圖。這個質粒攜帶編碼精氨 20 酸酶的基因(arg),而且只在大腸桿菌中複製,不在B. subtilis 中複製。 弟2A圖’第2B圖和第2C圖不出人精氨酸酶I的核皆酸 序列及其推導的氨基酸序列。第2A圖示出質粒ρΑΒΙΟΙ的 EcoRI/MunI至Xbal位點的核苷酸序列(SEQ ID NO : 1)。核 54 1331531 苷酸(nt) 1 — 6,EcoRI/MunI位點;nt 481 — 486,啓動子 1 的 -35區域;nt 504 —509,啓動子 1 的-10區域;nt 544 —549, 啓動子2的-35區域;nt 566 — 571,啓動子2的-10區域;nt 600 —605,核糖體結合位點;nt 614 —616,起始密碼子; 5 nt 632 —637,Ndel位點;nt 1601 — 1603,終止密碼子;nt 1997 —2002,Xbal位點。 第2 B圖示出經修飾的人精氨酸酶的編碼核苷酸序列 (SEQ ID NO : 2)及其相應編碼的氨基酸序列(seq id NO • 3)。第2A圖中核苷酸614— 1603是修飾的精氨酸酶氨基酸 10序列的編碼區。Ν末端的6組氨酸(SEQ ID NO: 4)標記以下 劃線標示。翻譯終止密碼子以*標示。 第2C圖不出正常人精氨酸的編碼核苷酸序列(seq IDNO: 8)及其相應編碼的氨基酸序列(seqidn〇: %。 第3圖是構建可表達精氨酸酶的B如議s原喔菌體的 15 示意圖。 第4A圖和第4B圖示出在2L發酵罐中重組Bacill —菌株LLC⑻的發酵時程。第4A圖示出得自分批發 的結果。第侧示出得自補料分批發酵的結果。 20The disease produces the desired effect. Symptoms or diseases The pharmaceutical preparation containing the active ingredient of the present invention may be a suitable, and, in the form of a spoon, such as a tablet, a troches, a water-based or a Pei-wang problem; a float, a dispersed powder or granule, an emulsion , hard or soft capsules, biting sugar ' ' „10% or elixirs. Oral formulations can be prepared according to the production of pharmaceutical formulations known in the art. Tablets can be uncoated or can be packaged by known techniques Delaying disintegration and absorption in the gastrointestinal tract, thereby extending the effect over a longer period of time. They can also coat the osmotic agent to control the duration of 52 1331531. In some cases, the oral formulation can be a hard gelatin capsule. The active ingredient is mixed with an inert solid diluent such as calcium carbonate, calcium phosphate, kaolin, etc. They may also be in the form of a soft gelatin capsule in which the active ingredient is mixed with a water or oil medium such as peanut oil, liquid paraffin or olive oil. The formulation may also be a sterile injectable solution or suspension. The suspension may be formulated according to known methods using a suitable dispersing or moisturizing or suspending agent. The bacterial injection preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example, a solution in 1,4-butanediol. A sterile, non-operable oil is conventionally used as a solvent or 10 Suspension medium. Any soft, non-volatile oil can be used for this purpose, including synthetic mono- or diglycerides, fatty acids (including oleic acid), natural vegetable oils such as sesame oil, coconut oil, peanut oil, cottonseed oil, or synthetic A fatty acid carrier such as ethyl oleate, etc. If necessary, a buffer, a glucose solution preservative, an antioxidant or the like may be incorporated or they may be used as a solute 15 to dissolve a soluble enzyme. The pharmaceutical formulation may also be used as an adjuvant treatment. The agent is used together with other chemotherapeutic agents. In the claims, an arginase having an amino acid sequence substantially identical to the amino acid sequence shown in SEQ ID No. 9 means that the sequence is as shown in SEQ ID No. 9. The sequence is at least 30% identical, or the enzyme shown in SEQ ID No. 9 and the enzyme substantially similar thereto are shown in the enzyme using the arginase activity assay described herein. There is no significant difference in sex. Six histidines are provided for ease of purification, and additional methionine groups are provided at the amino terminus for translation initiation. Those skilled in the art understand that other forms of purification can be used 53 1331531 Thus, the "substantially similar" arginase does not require any homology to the sequence of SEQ ID No. 3. In some bacterial strains, there may be at least 40% homology to SEq SEQ ID No. 9. Some mammalian arginase enzymes may have at least 70° homology to SEQ ID No. 9. 5 Sequence Listing SEQ ID NO: 1 (Figure 2A) SEQ ID NO: 2 & 3 (Figure 2B: Nucleotide sequence ( SEQ ID NO: 2); and amino acid sequence 歹|J (SEQ ID NO: 3)) SEQ ID NO: 4: 6xHis tag MHHHHHH 10 SEQ ID NO: 5: 5, -CCAAACCATATGAGCGCCAAGTCCAGAACCATA-3, (Arg 1) SEQ ID NO: 6: 5, -CCAAACTCTAGAATCACATTTTTTGAATGACATGGACAC-3 , (Arg 2) 15 SEQ ID NO: 7 : 5, -CTCTGGCCATGCCAGGGTCCACCC-3, (Arg 6) SEQ ID NO: 8 & 9 : (2C: nucleotide sequence (SEQ ID NO: 8); amino acid Sequence (SEQ ID NO: 9)). I: Schematic description of the figure 3 Fig. 1 shows a plasmid map of ρΑΒΙΟΙ. This plasmid carries the gene (arg) encoding the arginine 20 acidase and is only replicated in E. coli and not in B. subtilis. 2A and 2C show the nucleotide sequence of human arginase I and its deduced amino acid sequence. Figure 2A shows the nucleotide sequence of the EcoRI/MunI to Xbal site of the plasmid pΑΒΙΟΙ (SEQ ID NO: 1). Nuclei 54 1331531 Glycosyl (nt) 1 — 6, EcoRI/MunI site; nt 481 — 486, promoter-35 region; nt 504-509, promoter 1-10 region; nt 544-549, promoter -35 region of subunit 2; nt 566-571, region-10 of promoter 2; nt 600-605, ribosome binding site; nt 614-616, initiation codon; 5 nt 632-637, Ndel locus ;nt 1601 — 1603, stop codon; nt 1997 — 2002, Xbal locus. Figure 2B shows the nucleotide sequence encoding the modified human arginase (SEQ ID NO: 2) and its corresponding encoded amino acid sequence (seq id NO • 3). Nucleotides 616-1603 in Figure 2A are the coding regions for the modified arginase amino acid 10 sequence. The 6-histidine (SEQ ID NO: 4) label at the end of the sputum is underlined. The translation stop codon is indicated by *. Figure 2C shows the nucleotide sequence encoding the normal human arginine (seq IDNO: 8) and its corresponding encoded amino acid sequence (seqidn〇: %. Figure 3 is the construction of B expressing arginase) Schematic diagram of s protoplasts. Figures 4A and 4B show the fermentation time course of recombinant Bacill-strain LLC (8) in a 2 L fermentor. Figure 4A shows the results obtained from sub-wholesale. The result of fed-batch fermentation. 20
第5A圖和第糊示出發酵史圖,示出參數的變化如 度’娜速度,pH和溶解氧的數值。第5a圖示出分批發 的史圖。第5B圖示出補料分批發酵的史圖。 第6A圖和第6B圖示出a為4 出在熱墩後3小時通過第一個5丨 合㈣人精氨_進行生物化學純化後的結果 糾圖示概C運行參數和蛋㈣洗㈣第鋼示出; 55 1331531 所述柱中收集的5μ 1 11 —31各級分的SDS_pAGE (12 %)分 析。蛋白質凝膠用考馬斯亮藍染色並脫色,以示出蛋白質 條帶《泳道M:低分子量範圍的標記(1 μ§/條帶;Bi〇_Rad) ’ MW (道爾頓):97,400 ; 66,200 ; 45,000 ; 31,000 ; 21,500 5 ; 14,400。 10 15 20Figure 5A and the second paste show the fermentation history, showing changes in parameters such as degree 'na speed, pH and dissolved oxygen values. Figure 5a shows the history of the wholesale. Figure 5B shows a history of fed batch fermentation. Fig. 6A and Fig. 6B show the results of a biochemical purification after the first 5 ( (4) human arginine _ for 3 hours after the hot pier, and the operation parameters and egg (four) washing (4) The first steel shows; 55 1331531 SDS_pAGE (12%) analysis of 5 μ 1 11 - 31 fractions collected in the column. The protein gel was stained with Coomassie brilliant blue and decolorized to show the protein band "lane M: low molecular weight range label (1 μ§/band; Bi〇_Rad) 'MW (Dalton): 97,400; 66,200 45,000; 31,000; 21,500 5; 14,400. 10 15 20
第7A圖和第7B圖示出在熱激後3小時通過第二個5ml H^Trap鼇合柱對人精氨酸酶進行純化的結果。第7A圖示出 FPLC運行參數及蛋白質洗脫圖。第7B圖示出從所述柱收集 的1 μ19-39各級分的SDS_page〇2%)分析。蛋白質凝膠 用考馬斯亮歸色並脫色,以示出蛋白質條帶。泳道^[:低 分子里範圍標§己(1 gg/條帶;Bi〇_Rad),MW (道爾頓)· ,66,200 ; 45,0〇〇 ; 31,〇〇〇 ; 21,500 ; 14,400。 第8A圖和第8B圖示出在熱激後6小時通過第一個5ml HiTrap鼇合柱對人精氨酸酶進行純化的結果。第8A圖示出Figures 7A and 7B show the results of purification of human arginase by a second 5 ml H^Trap binding column 3 hours after heat shock. Figure 7A shows FPLC operating parameters and protein elution profiles. Figure 7B shows an SDS_page 〇 2% analysis of 1 μ19-39 fractions collected from the column. The protein gel was color-coded with Coomassie and decolorized to show the protein bands. Lane ^[: low molecular range § hex (1 gg / band; Bi 〇 _Rad), MW (Dalton) ·, 66, 200; 45, 0 〇〇; 31, 〇〇〇; 21,500; 14,400. Figures 8A and 8B show the results of purification of human arginase by the first 5 ml HiTrap gel column 6 hours after heat shock. Figure 8A shows
FPLC運行參數及蛋白質洗脫圖。第8B圖示出從所述柱收集 的2.5μ1 1〇 —32各級分的SDS-PAGE (12 %)分析。蛋白質凝 膠用考馬斯亮藍染色並脫色,以示出蛋白質條帶。泳道Μ 低刀子i範圍標冗(1叫/條帶;Bi〇_Rad),mw (道爾頓) .97,400 , 66,20〇 ; 45,〇〇〇 ; 31,000 ; 21,500 ; 14,400。 第9A圖和第9Bg]示出在熱激後6小時通過第二個加 ΗΐΤΓ&Ρ鼇合柱對人精氨酸酶進行純化的結果。第9A圖示d FPLC運仃參數及蛋白質洗脫圖。第卯圖示出從所述柱收| W 8〜E6各級分的SDS-PAGE(12%)分析。蛋白質凝瑪 用考馬斯域染色並脫色,以示出蛋自質絲。泳道M:伯 56 1331531 分子量範圍標記(1 gg/條帶;Bio-Rad) ’ MW (道爾頓):97,400 ;66,200 ; 45,000 ; 31,000 ; 21,500 ; 14,400。 第10圖示出當在較高細胞密度進行熱激時細菌細胞生 長的時程。當培養密度(OD6〇Gnm)爲大約25時,在8小時進行 5 熱激。 第11圖疋^在較南雄度進彳亍熱激時補料分批發酵的史 圖。這個圖示出參數變化如溫度,搜拌速度,pH和溶解氧 數值。 第12A圖和第12B圖示出在熱激6小時後(在〇j)25的較 10高細胞密度)’通過第一個5ml HiTrap整合柱對人精氨酸酶 進行純化的結果。第12A圖示出FPLC運行參數和蛋白質洗 脫圖。第12B圖示出從所述柱中收集的5 μΐ每種級分—45 的SDS-PAGE (12 %)分析結果。將蛋白質凝膠用考馬斯亮誃 染色並脫色,以示出蛋白質條帶。泳道Μ :低分子量範圍 15 的標記(1 gg/條帶;Bio-Rad),MW (道爾頓):97,40〇 ; 66 200 ,45,000 , 31,000 , 21,500 ; 14,400。泳道”粗提物” .5μΐ加 樣於柱中之前的細胞粗提物。 第13Α圖和第13Β圖示出在熱激後6小時(在〇D25的較 高細胞密度),通過第二個5ml HiTrap鼇合杈對人精氨酸酶 20進行純化的結果。第13A圖示出FPLC運行參數和蛋白質、先 脫圖。第13B圖示出從所述柱中收集的5 μΐ每種級分7 —% 的SDS-PAGE (12 %)分析結果。將蛋白質凝膠用考馬斯京藍 染色並脫色’以示出蛋白質條帶。泳道Μ :低分子量範圍 的標記(1 μ§/條帶;Bio-Rad),MW (道爾頓):97,4〇〇 . 66 mo 57 1331531 ’· 45,000 ; 31,000 ; 21,500 ; 14,400。 第14A圖和第14B圖示出在熱激後6小時(在〇D25的較 高細胞密度),通過第一個lml HiTrapSP FF鼇合柱對人精氨 酸酶進行純化的結果。第14A圖示出FPLC運行參數和蛋白 5 質洗脫圖。第14B圖示出從所述柱中收集的5 μΐ每種級分 Α11 - Β7的SDS-PAGE (12 %)分析結果。將蛋白質凝膠用考 馬斯亮藍染色並脫色,以示出蛋白質條帶。泳道Μ :低分 子量範圍的標記(1 pg/條帶;Bio-Rad),MW (到道爾頓):97,4〇〇 ;66,200 ; 45,000 ; 31,000 ; 21,500 ; 14,400。 10 第15八圖和第15B圖示出在熱激後6小時(在OD25的較 高細胞密度),通過第二個lml HiTrap SP FF鼇合柱對人精 氨酸酶進行純化的結果。第15A圖示出FPLC運行參數和蛋 白貝洗脫圖。第15B圖示出從所述柱中收集的5 μΐ每種級分 Α6 — Β12的SDS-PAGE (12 %)分析結果。將蛋白質凝膠用考 15馬斯亮藍染色並脫色,以示出蛋白質條帶。泳道Μ :低分子 I範圍的標記〇Hg/條帶;Bio-Rad),MW(道爾頓):97,400 ; 66,200 ; 45,000 ; 31,〇〇〇 ; 21,500 ; 14,400 = 第16A圖和第16B圖是對用mPEG-SPA (MW 5,〇〇〇)修 飾的人精氨酸酶進行的8〇3_1>八(}]5 (15%)分析’所用精氨 2〇酸酶與PEG的比率爲1 : 50。第16A圖示出當在冰上進行反 應時的結果。泳道1 :低分子量範圍蛋白質標記;泳道2 : 未加入PEG的精氨酸酶(5.35 pg)(對照組);泳道3 :反應後1 小時’泳道4 :反應後0.5小時;泳道5 :反應後2小時;泳 道6 ·反應後3小時;泳道7 :反應後4小時;泳道8 :反應後 58 1331531 5小時;泳道9 :反應後23小時。第16B圖示出在室溫進行反 應的結果。泳道1 :低分子量範圍蛋白質標記;泳道2 :未 加入PEG的精氨酸酶(5.35pg)(對照組);泳道3 :反應後1小 時;泳道4 :反應後0.5小時;泳道5 :反應後2小時;泳道6 5 :反應後3小時;泳道7 :反應後4小時;泳道8 :反應後5小 時;泳道9 :反應後23小時。 第17A圖和第17B圖是對用mPEG-SPA (MW 5,000)修 飾的人精氨酸酶進行的SDS-PAGE (15%)分析,所用精氨 酸酶與PEG的比率爲1 ·· 20。第17A圖示出當在冰上進行反 10 應時的結果。泳道1 :低分子量範圍蛋白質標記;泳道2 : 未加入PEG的精氨酸酶(5.35 pg)(對照組);泳道3 :反應後1 小時;泳道4 :反應後0.5小時;泳道5 :反應後2小時;泳 道6 :反應後3小時;泳道7 :反應後4小時;泳道8 :反應後 5小時;泳道9 :反應後23小時。第17B圖示出在室溫進行反 15 應的結果。泳道1 :低分子量範圍蛋白質標記;泳道2 :未 加入PEG的精氨酸酶(5.35 gg)(對照組);泳道3 :反應後1 小時;泳道4 ··反應後0.5小時;泳道5 :反應後2小時;泳 道6 :反應後3小時;泳道7 :反應後4小時;泳道8 :反應後 5小時;泳道9 :反應後23小時。 20 第18A圖是對用mPEG-CC (MW 5,000)修飾的人精氨酸 酶進行的SDS-PAGE (15%)分析。將反應在冰上進行。泳 道1 :低分子量範圍蛋白質標記;泳道2 :未加入pEG的精 氨酸酶(5.35 pg)(對照組);泳道3 :用1 : 50摩爾比率的精氨 醆酶:PEG反應後2小時;泳道4 :空白;泳道5 :用1 : 50 59 1331531 摩爾比率的精氨酸酶:PEG反應後23小時;泳道6 :用1 : 20摩爾比率的精氨酸酶:PEG反應後2小時;泳道7 :用1 • 20摩爾比率的精氨酸酶:PEG反應後5小時;泳道8 :用 1· 20摩爾比率的精氨酸酶:PEG反應後23小時。 5 第18B圖示出對天然精氨酸酶和聚乙二醇化精氨酸酶 進打的SDS-PAGE (12❶/。)分析,所述精氨酸酶是高活性及穩 定的。泳道1 :低分子量範圍蛋白質標記(Bi〇_rad);泳道2 •天然精氨酸酶(1 Mg);泳道3 :聚乙二醇化精氨酸酶(1 pg) ;泳道4 :超透析後的聚乙二醇化精氨酸酶〇.5 μβ)。 10 第19Α圖和第19Β圖示出分離的重組人精氨酸酶純度 的測定。第19Α圖示出泳道1 :得自Ikemoto等所述方法 (Ikemoto等1990,生物化學雜誌270, 697-703)的5 pg純化的 大腸桿菌表達的重組人精氨酸酶。泳道2 :得自本發明方法 的5 pg純化的B. subtilis表達的重組人精氨酸酶。第19B圖示 15 出用 Lumi-imager™ 的 Lumianalyst 32 程式(Roche Molecular Biochemicals)對第19A圖中所示蛋白質條帶的密 度分析。上方:第19A圖的泳道1的結果。下方:第19A圖 的泳道2的結果。 第20圖是聚乙二醇化的精氨酸酶在人血漿中的體外穩 20 定性示意圖。 第21圖和第22圖示出得自實施例8A所述方法的聚乙二 醇化精氨酸酶在體内的半衰期測定。第21圖示出根據本發 明方法生產的聚乙二醇化精氨酸酶的體内活性’使用實施 例9 A所述活性測試測得。 60 1331531 第22圖是測定聚乙二醇化精氨酸酶的第一次半衰期和 第二次半衰期的示意圖。 第23圖是4組實驗室大鼠中精氨酸耗竭對比,所述大鼠 經腹膜内給予不同劑量的聚乙二醇化重組人精氨酸酶 5 (500 I.U.,1000 I.U.,1500 I.U.和3000 I.U.)。 第24圖示出2組裸鼠的存活率、平均腫瘤大小和腫瘤生 長速度對比,所述裸鼠通過植入Hep3B細胞而産生腫瘤。 一組經腹膜内給予500 I.U.劑量的精氨酸酶進行處理,另一 對照組不用精氨酸酶處理。 10 第25A圖和第25B圖示出2組裸鼠的平均腫瘤大小和平 均腫瘤重量對比,所述裸鼠通過植入PLC/PRF/5細胞而産生 腫瘤。一組經腹膜内給予500 I.U.劑量的精氨酸酶進行處理 ,另一對照組不用精氨酸酶處理。 第26A圖和第26B圖示出2組裸鼠的平均腫瘤大小和平 15 均腫瘤重量對比,所述裸鼠通過植入HuH-7細胞而産生腫瘤 。一組經腹膜内給予500 I.U.劑量的精氨酸酶進行處理,另 一對照組不用精氨酸酶處理。 第27圖示出2組裸鼠的平均腫瘤大小對比,所述裸鼠通 過植入MCF-7細胞而産生腫瘤。一組經腹膜内施用500 I.U. 20 劑量的精氨酸酶進行處理,另一對照組不用精氨酸酶處理。 第2 8圖和第2 9圖分別示出如實施例12所述進行治療期 間,患者的體内精氨酸和CEA水平。 【圖式之主要元件代表符號表】 無 61FPLC operating parameters and protein elution profiles. Figure 8B shows an SDS-PAGE (12%) analysis of 2.5 μl 1 〇 -32 fractions collected from the column. The protein gel was stained with Coomassie Brilliant Blue and destained to show the protein band.泳 Μ low knife i range standard redundancy (1 call / strip; Bi〇_Rad), mw (Dalton) .97,400, 66,20〇; 45, 〇〇〇; 31,000; 21,500; 14,400 . Fig. 9A and Fig. 9Bg] show the results of purification of human arginase by a second twisting & kneading column 6 hours after heat shock. Figure 9A shows the d FPLC operating parameters and protein elution profiles. The figure shows the SDS-PAGE (12%) analysis of the fractions from the column | W 8 to E6. Protein condensate was stained and discolored with the Coomassie field to show the egg self-filament. Lane M: Bo 56 1331531 Molecular weight range label (1 gg/band; Bio-Rad) 'MW (Dalton): 97,400; 66,200; 45,000; 31,000; 21,500; 14,400. Figure 10 shows the time course of bacterial cell growth when heat shock is performed at a higher cell density. When the culture density (OD6 〇 Gnm) was about 25, 5 heat shock was performed at 8 hours. Figure 11 史 ^ History of fed-batch fermentation in the heat of the southern male. This graph shows parameter changes such as temperature, picking speed, pH and dissolved oxygen values. Fig. 12A and Fig. 12B show the results of purification of human arginase by the first 5 ml HiTrap integration column after 6 hours of heat shock (at a higher cell density of 25). Figure 12A shows FPLC operating parameters and protein elution profiles. Figure 12B shows the results of SDS-PAGE (12%) analysis of 5 μM of each fraction collected from the column. The protein gel was stained with Coomassie brilliant and decolorized to show the protein bands. Lanes Μ: low molecular weight range 15 markers (1 gg / band; Bio-Rad), MW (Dalton): 97, 40 〇; 66 200, 45,000, 31,000, 21,500; 14,400. Lane "crude extract". 5 μΐ of the crude cell extract before being added to the column. Fig. 13 and Fig. 13 show the results of purification of human arginase 20 by a second 5 ml HiTrap 6 6 6 hours after heat shock (higher cell density at 〇D25). Figure 13A shows the FPLC operating parameters and protein, and the first release. Figure 13B shows the results of SDS-PAGE (12%) analysis of 7 μ% of each fraction collected from the column. The protein gel was stained with Coomassie Blue and destained' to show the protein bands. Lane Μ: marker of low molecular weight range (1 μ§/band; Bio-Rad), MW (Dalton): 97,4〇〇. 66 mo 57 1331531 ‘· 45,000; 31,000; 21,500; 14,400. Figures 14A and 14B show the results of purification of human arginase by the first lml HiTrapSP FF binding column 6 hours after heat shock (higher cell density at 〇D25). Figure 14A shows FPLC operating parameters and protein elution profiles. Figure 14B shows the results of SDS-PAGE (12%) analysis of 5 μM of each fraction Α11 - Β7 collected from the column. The protein gel was stained with Coomassie brilliant blue and destained to show the protein bands. Lane Μ: marker of low molecular weight range (1 pg/band; Bio-Rad), MW (to Dalton): 97, 4〇〇; 66, 200; 45,000; 31,000; 21,500; 14,400. 10 Figures 15 and 15B show the results of purification of human arginase by a second lml HiTrap SP FF binding column 6 hours after heat shock (higher cell density at OD25). Figure 15A shows the FPLC operating parameters and the protein elution profile. Figure 15B shows the results of SDS-PAGE (12%) analysis of 5 μM of each fraction Α6 - Β12 collected from the column. The protein gel was stained with Coomassie Brilliant Blue and destained to show the protein bands. Lane Μ: low molecular I range marker 〇Hg/band; Bio-Rad), MW (Dalton): 97,400; 66,200; 45,000; 31, 〇〇〇; 21,500; 14,400 = Figure 16A and Figure 16B The ratio of arginine 2 tannase to PEG used for 8 〇 3_1 > eight (}] 5 (15%) analysis of human arginase modified with mPEG-SPA (MW 5, 〇〇〇) 1 : 50. Figure 16A shows the results when the reaction was carried out on ice. Lane 1: low molecular weight range protein labeling; lane 2: arginase without PEG (5.35 pg) (control); lane 3 : 1 hour after the reaction 'lane 4: 0.5 hours after the reaction; lane 5: 2 hours after the reaction; lane 6 · 3 hours after the reaction; lane 7: 4 hours after the reaction; lane 8: 58 1331531 after the reaction 5 hours; : 23 hours after the reaction. Figure 16B shows the results of the reaction at room temperature. Lane 1: low molecular weight range protein labeling; lane 2: arginase without PEG (5.35 pg) (control); lane 3 : 1 hour after the reaction; Lane 4: 0.5 hours after the reaction; Lane 5: 2 hours after the reaction; Lane 6 5: 3 hours after the reaction; Lane 7: 4 hours after the reaction; Lane 8 : 5 hours after the reaction; Lane 9: 23 hours after the reaction. Figures 17A and 17B are SDS-PAGE (15%) analysis of human arginase modified with mPEG-SPA (MW 5,000), used The ratio of arginase to PEG is 1 ··20. Figure 17A shows the results when anti-10 is performed on ice. Lane 1: low molecular weight range protein label; lane 2: arginine without PEG added Enzyme (5.35 pg) (control group); Lane 3: 1 hour after reaction; Lane 4: 0.5 hour after reaction; Lane 5: 2 hours after reaction; Lane 6: 3 hours after reaction; Lane 7: 4 hours after reaction; Lane 8: 5 hours after the reaction; Lane 9: 23 hours after the reaction. Figure 17B shows the results of the reverse reaction at room temperature. Lane 1: low molecular weight range protein labeling; lane 2: arginine without PEG added Enzyme (5.35 gg) (control group); Lane 3: 1 hour after reaction; Lane 4 · 0.5 hours after reaction; Lane 5: 2 hours after reaction; Lane 6: 3 hours after reaction; Lane 7: 4 hours after reaction Lane 8: 5 hours after the reaction; Lane 9: 23 hours after the reaction. 20 Figure 18A shows human arginine modified with mPEG-CC (MW 5,000) SDS-PAGE (15%) analysis was performed. The reaction was carried out on ice. Lane 1: low molecular weight range protein labeling; lane 2: arginase without pEG (5.35 pg) (control); lane 3: 1:50 molar ratio of arginase: 2 hours after PEG reaction; Lane 4: blank; Lane 5: 1:50 59 1331531 molar ratio of arginase: 23 hours after PEG reaction; Lane 6: used 1: 20 molar ratio of arginase: 2 hours after PEG reaction; Lane 7: 1 • 20 molar ratio of arginase: 5 hours after PEG reaction; Lane 8: using 1·20 molar ratio of refined ammonia Acidase: 23 hours after PEG reaction. 5 Figure 18B shows an SDS-PAGE (12 ❶/.) analysis of natural arginase and PEGylated arginase, which are highly active and stable. Lane 1: low molecular weight range protein labeling (Bi〇_rad); lane 2 • natural arginase (1 Mg); lane 3: PEGylated arginase (1 pg); lane 4: after ultradialysis Pegylated arginase 〇.5 μβ). 10 Figure 19 and Figure 19 show the determination of the purity of the isolated recombinant human arginase. Figure 19 shows Lane 1: 5 pg of purified E. coli expressed recombinant human arginase obtained from the method described by Ikemoto et al. (Ikemoto et al. 1990, J. Biol. Chem. 270, 697-703). Lane 2: 5 pg of purified recombinant human arginase expressed by B. subtilis from the method of the invention. Figure 19B shows the density analysis of the protein bands shown in Figure 19A using the Lumianalyst 32 program of Lumi-imagerTM (Roche Molecular Biochemicals). Top: Results of Lane 1 of Figure 19A. Below: Results of Lane 2 in Figure 19A. Figure 20 is a graphical representation of the in vitro stability of PEGylated arginase in human plasma. Figures 21 and 22 show the half-life determination of the poly(ethylene glycol) arginase from the method described in Example 8A in vivo. Figure 21 shows the in vivo activity of PEGylated arginase produced by the method of the present invention as measured using the activity assay described in Example 9A. 60 1331531 Figure 22 is a graphical representation of the first half-life and the second half-life of a PEGylated arginase. Figure 23 is a comparison of arginine depletion in four groups of laboratory rats administered intraperitoneally with different doses of PEGylated recombinant human arginase 5 (500 IU, 1000 IU, 1500 IU and 3000). IU). Fig. 24 shows a comparison of survival rate, mean tumor size, and tumor growth rate of two nude mice which were tumor-produced by implantation of Hep3B cells. One group was treated with an intraperitoneal administration of 500 I.U. of arginase and the other control group was not treated with arginase. 10 Figures 25A and 25B show the mean tumor size and the mean tumor weight comparison of two groups of nude mice which were tumorigenic by implantation of PLC/PRF/5 cells. One group was treated with an intraperitoneal administration of 500 I.U. arginase and the other control group was not treated with arginase. Figures 26A and 26B show the mean tumor size and the mean tumor weight comparison of two groups of nude mice which were tumorigenic by implantation of HuH-7 cells. One group was treated with an intraperitoneal administration of a 500 I.U. dose of arginase, and the other control group was not treated with arginase. Figure 27 shows the average tumor size comparison of two groups of nude mice which were tumorigenic by implantation of MCF-7 cells. One group was treated with an intraperitoneal administration of 500 I.U. 20 doses of arginase and the other control group was not treated with arginase. Figures 28 and 29 show the arginine and CEA levels in the patient during treatment as described in Example 12, respectively. [The main components of the diagram represent the symbol table] None 61
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW092124884A TWI331531B (en) | 2003-09-09 | 2003-09-09 | Pharmaceutical preparation and method of treatment of human malignancies with arginine deprivation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW092124884A TWI331531B (en) | 2003-09-09 | 2003-09-09 | Pharmaceutical preparation and method of treatment of human malignancies with arginine deprivation |
Publications (1)
Publication Number | Publication Date |
---|---|
TWI331531B true TWI331531B (en) | 2010-10-11 |
Family
ID=45074648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW092124884A TWI331531B (en) | 2003-09-09 | 2003-09-09 | Pharmaceutical preparation and method of treatment of human malignancies with arginine deprivation |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI331531B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113144178A (en) * | 2014-04-29 | 2021-07-23 | 康达医药科技有限公司 | Methods and compositions for modulating the immune system using arginase I |
-
2003
- 2003-09-09 TW TW092124884A patent/TWI331531B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113144178A (en) * | 2014-04-29 | 2021-07-23 | 康达医药科技有限公司 | Methods and compositions for modulating the immune system using arginase I |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5307042B2 (en) | Pharmaceuticals and methods for treating human malignancies by depleting arginine | |
US20240100145A1 (en) | Vlp enteroviral vaccines | |
CZ2003848A3 (en) | Treatment method of disorders connected with bcl-2 by making use of antisense bcl-2 oligomers | |
JP2002531050A (en) | Use of methioninase in anti-methionine and anti-homocysteine chemotherapy | |
CN113811611A (en) | Nontoxic CAS9 enzyme and application thereof | |
FI90353B (en) | Plasmid for expression of human manganese superoxide dismutase in bacteria and method for producing and recovering enzymatically active human manganese superoxide dismutase | |
WO2022171783A1 (en) | Curing disease by transcription regulatory gene editing | |
EP1908478B1 (en) | Pharmaceutical preparation and method of treatment of human malignancies with arginine deprivation | |
US20160287675A1 (en) | Treatment for cancer | |
JP2002501032A (en) | Acute intermittent porphyria (AIP) and other methods of treating porphyria | |
TWI331531B (en) | Pharmaceutical preparation and method of treatment of human malignancies with arginine deprivation | |
US20240335476A1 (en) | Systems and methods for the treatment of hemoglobinopathies | |
WO2006058486A1 (en) | Use of arginase in combination with 5fu and other compounds for treatment of human malignancies | |
JP2003505057A (en) | Production of rhPBGD and novel therapeutic methods for treating patients with acute intermittent porphyria (AIP) and other porphyrias | |
KR20050024361A (en) | Pharmaceutical preparation and method of treatment of human malignancies with arginine deprivation | |
JP2002536015A (en) | Nitro reductase enzyme | |
JPS62226928A (en) | Organ function improver | |
US20080292609A1 (en) | Use of Arginase in Combination with 5FU and Other Compounds for Treatment of Human Malignancies | |
CN115873850A (en) | Adenine base editing system and application thereof | |
CN118786212A (en) | SARM1 expression reduction for cell therapy | |
JPH10309193A (en) | Production of protein containing mammal selenocysteine in escherichia coli | |
EP2739738A1 (en) | Use of integrase for targeted gene expression | |
JPH0514684B2 (en) | ||
JPH03161447A (en) | Carcinostatic agent containing heat-resistant neutral protease |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK4A | Expiration of patent term of an invention patent |