TWI330844B - High-bandwidth magnetoresistive random access memory devices - Google Patents

High-bandwidth magnetoresistive random access memory devices Download PDF

Info

Publication number
TWI330844B
TWI330844B TW96115827A TW96115827A TWI330844B TW I330844 B TWI330844 B TW I330844B TW 96115827 A TW96115827 A TW 96115827A TW 96115827 A TW96115827 A TW 96115827A TW I330844 B TWI330844 B TW I330844B
Authority
TW
Taiwan
Prior art keywords
memory
write
memory unit
magnetic moment
magnetic
Prior art date
Application number
TW96115827A
Other languages
Chinese (zh)
Other versions
TW200836192A (en
Inventor
Chien Chung Hung
Yuan Jen Lee
Ming Jer Kao
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/707,100 external-priority patent/US7463510B2/en
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Publication of TW200836192A publication Critical patent/TW200836192A/en
Application granted granted Critical
Publication of TWI330844B publication Critical patent/TWI330844B/en

Links

Landscapes

  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Description

1330844 P51950188TW 23746twf.doc/n 九、發明說明: : 【發明所屬之技術領域】 t 本發明一般而言是關於高頻寬磁電阻性隨機存取記憶 .體(MRAM ’ magnetoresistive random access memory)褒 2 置以及其操作方法。 【先前技術】 MRAM裝置已被建議用來做為對諸如靜態隨機存取 | δ己憶體(SRAM,static random access memory )、動態隨機 存取記憶體(DRAM,dynamic random access memory)以 及快閃記憶體(flash memory )之習知記憶體裝置的替代。 裝置使用磁電阻效應來儲存資料,磁電阻效應指材 料之電阻隨材料所感受之磁場(magnetic field )而改變的 現象。與此等習知記憶體比較,MRAM裝置在速度、整合 密度、功率消耗、輻射硬度以及耐久性方面顯示優越性。 圖1繪示包含記憶體胞之陣列的示範性MRAM裝置 1〇〇。僅繪示記憶體胞之一的記憶體胞1〇2。MRAM裝置 1〇〇包含多個寫入位元線(bit line) 1〇4以及多個寫入字元 .線(word line) 106。寫入位元線1〇4與寫入字元線丨〇6實 質上彼此垂直。每一記憶體胞對應於一寫入位元線1〇4以 " 及一寫入字元線106。 記憶體胞102包含固定磁區1〇8、自由磁區11〇以及 夹入於固定磁區108與自由磁區11〇之間的穿隧阻障 112。牙隨阻障112可包括(例如)氧化銘(Al2〇3)或氧 化鎂(MgO)。 1330844 P51950188TW 23746twf.doc/n 固定磁區108可包括固定鐵磁體或合成反鐵磁性 ·- ( SAF,synthetic anti-ferromagnetic)結構。圖 1 緣示固定 ; 磁區108包括三層SAF結構,其包含將反鐵磁性耦接分隔 .層118夾入中間之兩個鐵磁性層114以及116。鐵磁性層 ^ 114以及116可包括(例如)姑鐵(CoFe)、錄鐵(NiFe) 或鈷鐵硼(CoFeB)。反鐵磁性耦接分隔(spacer)層U8可 包括(例如)釕(Ru)或銅(Cu)。反鐵磁性耦接分隔層 • 118之厚度經選擇以使得鐵磁性層114與116反鐵磁性地 彼此耦接。 自由磁區110可包括早一個自由磁層(magnetic layer) 或SAF結構。圖1繪不自由磁區]_]_〇包含將反鐵磁性:^接 分隔層124夾入中間之兩個鐵磁性層120以及122。鐵磁 性層120以及122可包括(例如)鈷鐵(coFe)、鈷鐵硼 (CoFeB)或鎳鐵(NiFe)。反鐵磁性耗接分隔層124可包 括(例如)釕(Ru)或銅(Cu)。反鐵磁性搞接分隔層124 之厚度經選擇以使得鐵磁性層120與122反鐵磁性地彼此 •輕接。若鐵磁性層120與122之磁矩(magnetic moment) . 顯著不同’則SAF結構可與單一個自由磁層等效。 在固定磁區108與寫入字元線106之間順序地提供反 鐵磁性固定層126、缓衝層(buffer layer) 128、底部電極 130以及介電層(dielectric layer) 132。反鐵磁性固定層 126可包括(例如)链猛(ptMn)或猛銀(Mnlr)。緩衝層 128可包括(例如)鎳鐵(NiFe)、鎳鐵鉻(NiFeCr)或錄 鐵結(NiFeCo)。在自由磁區110上提供頂部電極134,且 1330844 P51950188TW 23746twf.doc/n 在頂部電極134與寫入位元線1〇4之間提供介電層i36。 ·- 反鐵磁性固定層126固定了固定磁區1〇8之磁矩,以 ··: 使得當施加適度磁場時,固定磁區108之磁矩不會旋轉。 ; 反之,自由磁區110之磁矩在外部磁場下能夠自由旋轉。 ".®定磁 108具有沿寫入字元線之方向的易軸(easy 簡),且自由磁區U〇具有彼此反平行且亦沿寫入字元線 106之方向的兩個易軸。如習知技術,本文中所使用之易 , 軸是指在沒有外部磁場或偏壓場時,異方性材料 (anisotropic material)之磁偶極矩(脱辦加dip〇ie 的本質方位。 牙隧阻障112之電子穿隧阻障以及記憶體胞1〇2之電 阻隨磁場而改變。舉例而言,當鐵磁性層116以及12〇之 各別磁矩向量(magnetic momentvect〇r)彼此平行時穿 隧阻障112具有低電子穿隧阻障,且記憶體胞1〇2具有低 電阻。當鐵磁性層116以及120之各別磁矩向量彼此反平 行叶,牙隧阻障112具有高電子穿隧阻障,且記憶體胞1〇2 具有高電阻。因此,記憶體胞1〇2可儲存藉由其電阻之值 .-·所界疋的一位元之“1”或“0” ^舉例而言,記憶體胞102 之高電阻可表示一位元之“1”,且記憶體胞1〇2之低電阻 • 可表示一位元之“〇” ,或相反。 可藉由調整鐵磁性層120以及122之磁矩向量(所謂 的“自旋轉向,’)以旋轉鐵磁性層120以及122之磁矩向 量來將一位元之資料寫入至記憶體胞1〇2中,以使得鐵磁 性層120之磁矩向量與鐵磁性層116之磁矩向量平行或反 1330844 P51950188TW 23746twf.doc/n ^ ^適當供至寫入位元線撕以 =Μ線廳以誘發外部韻’外部磁場改變鐵磁性 層120以及122之磁矩。通過寫入位元線ι〇4讀位電流 Id誘發圓形數位磁場Hd,且通過寫入字元線1〇6之字電流 Iw誘發圓形字元磁場Hw。磁場Hd以及Hw之強度分別愈 數位電流ID以及字元電流Iw成比例。假定寫入位元線辦 在=憶體胞H)2上方,且寫入字元線1%在記憶體胞1〇2 下方。因此,如圖1情指示,當數位電流1〇自左至右流 動日τ hd只質上在自紙外側至在記憶體胞之平面中之 紙内的方向上。反之,當數位電流Id自右至左流動時,% 實質上在自紙内側離開在記憶體胞102之平面中之紙的方 向上。類似地’如圖丨中所指示字電流^自紙外侧流 至紙内時,Hw實質上在記憶體胞102之平中 的方向上。為了將一位元之資料寫入至記憶=至: 先提供通過寫入字元線1G6的字元電流w以在記憶體胞 102之平面中產生在垂直於自由磁區11〇之易軸之方向上 的字元磁場Hw。因此,鐵磁性層120之磁矩向量在大致 垂直於自由磁區110之易轴的方向上對準。接著,提供通 過寫入位元線104的數位電流ID以產生在自由磁區11〇之 易軸之一者的方向上之數位磁場Hd。因此,鐵磁性層12〇 之磁矩與自由磁區110之易轴之—者對準。若數位磁場^^ 在與固定磁區1〇8之易軸平行的方向上,則將一位元之 〇寫入至5己思體胞102中。右數位磁場hd在與固定磁 區108之易轴反平行的方向上,則將一位元之“1”寫入至 1330844 Ρ51950188TW 23746twf.doc/n 記憶體胞102中。 記憶體胞102可藉由感測其電阻而讀取。MRAM裝置 100包含多個讀取字元線(未圖示)以及多個讀取位元線。 每—記憶體胞對應於一讀取字元線以及一讀取位元線且包 含耦接對應讀取字元線之電晶體。MRAM裝置100亦包含 夕個感測放大器(sense amplifjer),其每一者耗接至讀取 位元線之一者以感測通過其之電流。如圖1績示,電晶體 138搞接至δ己憶體胞102之底部電極130,且感測放大器 140耦接至記憶體胞1〇2之頂部電極134。對應讀取字元線 耦接至電晶體138之閘極。對應讀取位元線耦接至頂部電 極134為了凟取儲存於記憶體胞1〇2中之資料,啟動對 應讀取字元線以及讀取位元線以選擇記憶體胞1()2。因此 接通^晶體^38,在頂部電極134與底部電極13〇之間施 力電C且藉由感測放大器140來感測通過記憶體胞1〇2 之電流。如圖1繪示,感測放大器140亦經耦接以感測通 過參考胞(未圖示)之參考電流。感測放大器⑽將通過 Ί二胞1〇2之電流與參考電流比較以確定記憶體胞102 之狀態。 、在二、樣中,5己憶體胞1〇2之頂部電極134可經由形 成於介電層136中之令屋4·人j· η -、 j- Ύ金屬4王基(未圖不)而電連接至對應 位元線二ι〇4。因此,—位元線充當寫入位元線與讀取 声t的美國專利第6,757,189號揭露了一種高密 又 '"置,其中高密度MRAM裝置之每一記憶體胞 1330844 P51950188TW 23746twf.doc/n 包含用於儲存多個資料位元之多個磁記憶體單位。圖2繪 -· 示如Hung等人中所揭露之高密度MRAM裝置2〇〇。曰 /; 如圖2繪示,MRAM裝置200包含多個記憶體胞202, ·、 其中繪示202〗、皿2、地3、2〇24。每一記憶體胞202對 ? 應於一位元線61^、一讀取字元線RWL以及兩個寫入字元 ,WWL。每一記憶體胞2〇2包含並聯連接之兩個記憶體 單位102]以及1〇22。舉例而言,記憶體胞2〇2ι包含兩個 # S己憶體單位1021與1022以及電晶體138。記憶體單位102l 以及1022之每一者具有與圖丨中之記憶體胞1〇2相同的結 構二每一位元線BL擔當寫入位元線與讀取位元線。記憶 體單位102〗以及1〇22並聯連接於電晶體138之汲極與對 應位兀線BL之間。電晶體138之源極接地。電晶體138 之閘極連接至對應讀取字元線RWL。在圖2中,記憶體胞 202〗以及2022之記憶體單位1021對應於第一寫入字元線 WWL1 ;記憶體胞202l以及2〇22之記憶體單位1〇22對應 癱於第二寫入字元線WWL2 ;記憶體胞2023以及2〇24之呓 憶體單位lG2l對應於第-寫人字元線wu ;⑽體胞 .20¾以及搬4之記憶體單们%對應於第二寫入字元線 WWL4。另外,記憶體胞202ι以及2〇22對應於第一讀取字 • 元線RWL1;記憶體胞2〇23以及2024對應於第二讀取字元 線RWL2 ;記憶體胞搬〗以及纖3對應於第一位元線 BL1,且記憶體胞2022以及2024對應於第二位元線]5]12。 位兀線BL1以及BL2之每-者亦經由電晶體2〇4而輕接 至感測放大器140。因為每一記憶體胞2〇2包含兩個記憶 1330844 P51950188TW 23746twf.doc/n 體單位102】以及1022,所以MRAM 200具有高資料儲存 密度。 、 MRAM200 經製造以使得 R]max//R2max、Rimax//R2rain、1330844 P51950188TW 23746twf.doc/n IX. Description of the invention: [Technical field of the invention] t The present invention generally relates to a high frequency wide magnetoresistive random access memory (MRAM 'magneticoresistive random access memory) Its method of operation. [Prior Art] MRAM devices have been proposed for use as, for example, static random access memory (SRAM), dynamic random access memory (DRAM), dynamic random access memory (DRAM), and flash memory. An alternative to the conventional memory device of flash memory. The device uses a magnetoresistance effect to store data. The magnetoresistance effect refers to the phenomenon that the resistance of a material changes with the magnetic field felt by the material. Compared with these conventional memories, MRAM devices show superiority in terms of speed, integration density, power consumption, radiation hardness, and durability. 1 illustrates an exemplary MRAM device including an array of memory cells. Only the memory cell 1〇2 of one of the memory cells is shown. The MRAM device 1 includes a plurality of write bit lines 1〇4 and a plurality of write characters. Word line 106. The write bit line 1〇4 and the write word line 丨〇6 are substantially perpendicular to each other. Each memory cell corresponds to a write bit line 1〇4 with " and a write word line 106. The memory cell 102 includes a fixed magnetic domain 1〇8, a free magnetic domain 11〇, and a tunneling barrier 112 sandwiched between the fixed magnetic domain 108 and the free magnetic domain 11〇. The dental barrier 112 can include, for example, oxidized (Al2〇3) or magnesium oxide (MgO). 1330844 P51950188TW 23746twf.doc/n The fixed magnetic field 108 may comprise a fixed ferromagnetic or synthetic anti-ferromagnetic (SAF) structure. 1 is fixed; the magnetic region 108 includes a three-layer SAF structure including two ferromagnetic layers 114 and 116 sandwiching the antiferromagnetic coupling. The ferromagnetic layers ^ 114 and 116 may include, for example, guar iron (CoFe), iron (NiFe) or cobalt iron boron (CoFeB). The antiferromagnetic coupling spacer layer U8 may include, for example, ruthenium (Ru) or copper (Cu). The thickness of the antiferromagnetic coupling spacer layer 118 is selected such that the ferromagnetic layers 114 and 116 are antiferromagnetically coupled to each other. Free magnetic region 110 may include a previous free magnetic layer or SAF structure. Figure 1 depicts the non-free magnetic region]____ contains two ferromagnetic layers 120 and 122 which are antiferromagnetically sandwiched between the spacer layers 124. The ferromagnetic layers 120 and 122 may include, for example, cobalt iron (coFe), cobalt iron boron (CoFeB), or nickel iron (NiFe). The antiferromagnetic detachment spacer layer 124 may include, for example, ruthenium (Ru) or copper (Cu). The thickness of the antiferromagnetic splicing spacer layer 124 is selected such that the ferromagnetic layers 120 and 122 are antiferromagnetically connected to each other. If the magnetic moments of the ferromagnetic layers 120 and 122 are significantly different, the SAF structure can be equivalent to a single free magnetic layer. An antiferromagnetic pinned layer 126, a buffer layer 128, a bottom electrode 130, and a dielectric layer 132 are sequentially provided between the fixed magnetic region 108 and the write word line 106. The antiferromagnetic pinned layer 126 may comprise, for example, a chain spur (ptMn) or a silver sulphide (Mnlr). The buffer layer 128 may include, for example, nickel iron (NiFe), nickel iron chromium (NiFeCr), or iron deposit (NiFeCo). A top electrode 134 is provided on the free magnetic region 110, and 1330844 P51950188TW 23746twf.doc/n provides a dielectric layer i36 between the top electrode 134 and the write bit line 1〇4. The antiferromagnetic pinned layer 126 fixes the magnetic moment of the fixed magnetic domain 1〇8 so that the magnetic moment of the fixed magnetic domain 108 does not rotate when a moderate magnetic field is applied. On the contrary, the magnetic moment of the free magnetic domain 110 is free to rotate under an external magnetic field. ".The magnetizing 108 has an easy axis (easy) along the direction of the writing word line, and the free magnetic field U〇 has two easy axes that are anti-parallel to each other and also in the direction of the writing word line 106. . As is well known in the art, the axis refers to the magnetic dipole moment of the anisotropic material in the absence of an external magnetic field or bias field (the essential orientation of the dislocation plus dip〇ie. The electron tunneling barrier of the tunneling barrier 112 and the resistance of the memory cell 1〇2 vary with the magnetic field. For example, when the ferromagnetic layers 116 and 12 are each magnetic momentvect〇r parallel to each other The tunneling barrier 112 has a low electron tunneling barrier, and the memory cell 1〇2 has a low resistance. When the respective magnetic moment vectors of the ferromagnetic layers 116 and 120 are antiparallel to each other, the tunneling barrier 112 has a high The electron tunneling barrier, and the memory cell 1〇2 has a high resistance. Therefore, the memory cell 1〇2 can store the value of its resistance by the “1” or “0” of the one-dimensional element of the boundary. For example, the high resistance of memory cell 102 can represent a one-bit "1", and the low resistance of memory cell 1〇2 can represent a one-bit "〇", or vice versa. Adjusting the magnetic moment vectors of the ferromagnetic layers 120 and 122 (so-called "spin rotation,") to rotate the ferromagnetic layer 120 And a magnetic moment vector of 122 to write the data of the one-bit element into the memory cell 1〇2 such that the magnetic moment vector of the ferromagnetic layer 120 is parallel to the magnetic moment vector of the ferromagnetic layer 116 or inverse 1330844 P51950188TW 23746twf. Doc/n ^ ^ Appropriate for writing to the bit line to tear to = Μ line hall to induce external rhyme 'external magnetic field to change the magnetic moment of ferromagnetic layers 120 and 122. Read bit current Id by writing bit line ι〇4 The circular digital magnetic field Hd is induced, and the circular character magnetic field Hw is induced by the word current Iw written to the word line 1 。 6. The strengths of the magnetic fields Hd and Hw are proportional to the digit current ID and the word current Iw, respectively. The in-line line is above the memory cell H)2, and the write word line 1% is below the memory cell 1〇2. Therefore, as shown in Figure 1, when the digital current 1〇 flows from left to right Day τ hd is only in the direction from the outside of the paper to the paper in the plane of the memory cell. Conversely, when the digital current Id flows from right to left, % is essentially left inside the paper in the memory cell. In the direction of the paper in the plane of 102. Similarly, the word current ^ as indicated in Figure 流 flows from the outside of the paper to In the paper, Hw is substantially in the direction of the memory cell 102. In order to write the data of one bit to the memory = to: first provide the word current w by writing the word line 1G6 to memorize The character magnetic field Hw in the plane perpendicular to the easy axis of the free magnetic domain 11 is generated in the plane of the body cell 102. Therefore, the magnetic moment vector of the ferromagnetic layer 120 is in a direction substantially perpendicular to the easy axis of the free magnetic region 110. Alignment. Next, a digital current ID written by the bit line 104 is supplied to generate a digital magnetic field Hd in the direction of one of the easy axes of the free magnetic region 11A. Therefore, the magnetic moment of the ferromagnetic layer 12 is aligned with the easy axis of the free magnetic domain 110. If the digital magnetic field ^^ is in a direction parallel to the easy axis of the fixed magnetic region 1〇8, a one-dimensional 〇 is written into the five-body cell 102. The right digit magnetic field hd is written in the direction parallel to the easy axis of the fixed magnetic field 108, and the one-bit "1" is written into the 1330844 Ρ51950188TW 23746twf.doc/n memory cell 102. The memory cell 102 can be read by sensing its resistance. The MRAM device 100 includes a plurality of read word lines (not shown) and a plurality of read bit lines. Each memory cell corresponds to a read word line and a read bit line and includes a transistor coupled to the corresponding read word line. The MRAM device 100 also includes a sense amplifier, each of which is consuming one of the read bit lines to sense the current passing therethrough. As shown in FIG. 1, the transistor 138 is connected to the bottom electrode 130 of the δ memory cell 102, and the sense amplifier 140 is coupled to the top electrode 134 of the memory cell 1〇2. The corresponding read word line is coupled to the gate of the transistor 138. The corresponding read bit line is coupled to the top electrode 134. In order to retrieve the data stored in the memory cell 1〇2, the corresponding read word line is read and the bit line is read to select the memory cell 1()2. Therefore, the transistor 38 is turned on, and a current C is applied between the top electrode 134 and the bottom electrode 13A and the current through the memory cell 1〇2 is sensed by the sense amplifier 140. As shown in FIG. 1, the sense amplifier 140 is also coupled to sense a reference current through a reference cell (not shown). The sense amplifier (10) compares the current through the clamped cell 1〇2 with the reference current to determine the state of the memory cell 102. In the second sample, the top electrode 134 of the cell 1 〇 2 can be passed through the dielectric layer 136 to form a house 4 · human j · η -, j - Ύ metal 4 king base (not shown And electrically connected to the corresponding bit line 2 ι〇4. Thus, U.S. Patent No. 6,757,189, which is incorporated herein by reference, discloses a high-density &", wherein each memory cell of the high-density MRAM device is 1330844 P51950188TW 23746twf. Doc/n contains multiple magnetic memory units for storing multiple data bits. Figure 2 depicts a high density MRAM device as disclosed in Hung et al. As shown in FIG. 2, the MRAM device 200 includes a plurality of memory cells 202, wherein 202, 202, 3, and 2 are shown. Each memory cell 202 corresponds to a bit line 61^, a read word line RWL, and two write characters, WWL. Each memory cell 2〇2 contains two memory cells 102] and 1〇22 connected in parallel. For example, the memory cell 2〇2ι contains two #S memory units 1021 and 1022 and a transistor 138. Each of the memory units 102l and 1022 has the same structure as the memory cell 1〇2 in the figure. Each bit line BL serves as a write bit line and a read bit line. The memory unit 102 and 1〇22 are connected in parallel between the drain of the transistor 138 and the corresponding bit line BL. The source of transistor 138 is grounded. The gate of transistor 138 is coupled to the corresponding read word line RWL. In FIG. 2, the memory unit 1021 of the memory cells 202 and 2022 corresponds to the first write word line WWL1; the memory units 1102 of the memory cells 2021 and 2〇22 correspond to the second write. Word line WWL2; memory cells 2023 and 2〇24 memory unit lG2l correspond to first-write character line wu; (10) body cell. 203⁄4 and move 4 memory list % corresponding to second write Word line WWL4. In addition, the memory cells 2021 and 2〇22 correspond to the first read word • the element line RWL1; the memory cells 2〇23 and 2024 correspond to the second read word line RWL2; the memory cell and the fiber 3 correspond to The first bit line BL1, and the memory cells 2022 and 2024 correspond to the second bit line]5]12. Each of the bit lines BL1 and BL2 is also lightly connected to the sense amplifier 140 via the transistor 2〇4. Since each memory cell 2〇2 contains two memories 1330844 P51950188TW 23746twf.doc/n body unit 102] and 1022, the MRAM 200 has a high data storage density. MRAM200 is manufactured so that R]max//R2max, Rimax//R2rain,

Rlmin//R2max、R丨min//R2min皆具有不同值,其中Ri腿為記憶 體單位102〗之高電阻,Rlmin為記憶體單位1〇2丨之低電阻, R2max為記憶體單位1022之高電阻,R2min為記憶體單位χ 〇22 之低電阻,且R//R2表示並聯連接之兩個電阻&以及。 首先藉由啟動對應讀取字元線RWL來選擇待讀取之記憶 體胞202之一者,且感測放大器14〇偵測通過對應位元線 BL之電流。感測放大器14〇將所偵測之電流與三個中間參 考電流 Refl、Ref2、Ref3 比較,其中 Refi、 刀別對應於Rlmax//R2max、Rlmax//R2min、心此氣匪以及 R]mm//R2min之間的二個參考電阻值、R2、R3。假定(例 如)尺]職//尺2臟〉Rl > Rlmax//R2min > R2 > Rlmin//R2max > R3 >心眺胤^。因此,若所偵測之電流在Refl與Ref2之間, 則所選擇之記憶體胞202〗的電阻為Rlmax//R2mi〆因此,所 選擇之記憶體胞202的記憶體單位102ι將一位元之“Γ 儲存於其中,且所選擇之記憶體胞2〇2的記憶體單位1〇22 將一位元之“〇”儲存於其中。 圖3Α繪示時脈信號CLK以及第一讀取字元線RWL1 與第一位元線BL1上的用於讀取記憶體胞2〇2ι之一連串 信號。在時脈信號CLK之上升邊緣上,在第一讀取字元線 RWL1上提供啟動信號(例如,正電壓),且提供啟動信號 以接通耦接至第一位元線BL1之電晶體204。因此,接通 12 1330844 P51950188TW 23746twf.doc/n 圮憶體胞202〗之電晶體138以及耦接至第一位元線BLl 之電晶體204 ’且跨越記憶體胞202〗之記憶體單位102!以 及1022施加電壓偏壓。感測放大器140偵測通過第一位元 線BL1之電流(亦即’通過記憶體胞2〇2ι之記憶體單位 1〇2丨以及1〇22的電流)且將所偵測之電流與三個參考值 Refl、Ref2、Ref3比較。基於比較之結果,感測放大器同 時輸出兩個位元之資料D0以及D1。在圖3A中,D0以及 D1之陰影區域為傳輸資料之時段,且D〇以及D1之清晰 區域為不傳輸資料或鎖存先前資料之時段。因此,每—記 憶體胞202能夠在一時脈週期(cl〇ck cycle)期間輸出兩 個位元之資料,且用於讀取MRAM裝置2〇〇之頻寬或 MRAM裝置200之讀取頻寬加倍。 然而,根據Hung等人,在一時脈週期中僅可將—位 元之資料,入至每-記憶體胞2。2中,且將兩個位元之資 料寫入至每一記憶體胞202中需要兩個時脈週期。於—實 例’圖3B繪示寫入字元線wwu與WWL2以及第一位 元線BL1上的用於將資料寫入至記憶體胞2〇2〗中之—連 串信號。特別是,藉由首先提供通過第一寫入字元線 WWL1之電流且接著提供通過第—位元線BU的在適當 之方向上的電流來在第一時脈週期中將一位元之資料寫入 至記憶體胞202!之記憶體單位1〇2ι中。在第二時脈週期 中,藉由錢提供通過第二以字元線WWL2之電流且接 著提供通過第-位7L線BL1的在適當之方向上的電流來將 -位元之資料寫人至記憶體胞搬!之記憶體單位1〇22 13 1330844 P51950188TW 23 746twf.doc/n 中,為通過第-位元線BL1之電流界定記憶體單位舰 與記憶體I位撤2之狀態,所^須料條元之八1 離地寫入至記憶鮮位1G2l叹叫巾。類似地、= 3B中’ BL1之陰影區域為傳輪資料之時段,且扯 晰區域為不傳輸資料之時段。 /月 因此,雖然MRAM裝置之讀取頻寬藉由 記憶體胞202中包含並聯連接之兩個記憶體單位而加倍, 但用於寫入MRAM裝置200之頻寬(亦即,MRam 2〇〇之寫人頻寬)受到限制,因為對於寫人每—兩位^己 憶體胞202而言需要兩個時脈週期。 ° 【發明内容】 發明之實施例,提供—猶彡成於基板上之磁電阻性 近機存取記憶體(MRAM)裝置,包括:讀取位元線 =兩個以上寫入位元線;讀取字元線;寫入字元線,’並 :質i垂i於?入位元線;以及記憶體胞,其對應於讀取 凡:、頃取字凡線、寫人字元線以及兩個或兩個以上寫 線’其中記憶體胞包括第—記憶體 憶體單位,每-各耽賴單㈣應於各職人位 =記單位包括:自由磁區’其具有第-易軸;固定 固二^具有第二易轴;以及穿隨阻障,其在自由磁區與 之間’其中第—記憶體單位具有兩個電阻之-祐亚1 — §己憶體單位之自由磁區的磁矩與固定磁區之磁 的磁2=第—電阻;以及當第一記憶體^^立之自由磁區 磁矩。固定磁區之磁矩反平行時的第二電阻,盆中第二 1330844 P51950188TW 23 746twf.doc/n §己憶體早位具有兩個電阻之—者 由磁區的磁矩與固定磁區之磁 二早位之自 千㈣的弟四電阻,其中第—電阻、:反 以及第四電阻為不同電阻值,且其中第_ 第-橫截面積且第二記憶體單位::藉有Rlmin//R2max, R丨min//R2min all have different values, wherein the Ri leg is the high resistance of the memory unit 102, Rlmin is the low resistance of the memory unit 1〇2丨, and R2max is the memory unit 1022. The resistance, R2min is the low resistance of the memory unit χ 〇22, and R//R2 represents the two resistors & First, one of the memory cells 202 to be read is selected by activating the corresponding read word line RWL, and the sense amplifier 14 detects the current through the corresponding bit line BL. The sense amplifier 14 比较 compares the detected current with three intermediate reference currents Refl, Ref2, and Ref3, where Refi and the tool correspond to Rlmax//R2max, Rlmax//R2min, the heart, and R]mm/ Two reference resistor values between /R2min, R2, R3. Assume (for example) ruler position / / ruler 2 dirty > Rl > Rlmax / / R2min > R2 > Rlmin / / R2max > R3 > heart 眺胤 ^. Therefore, if the detected current is between Refl and Ref2, the resistance of the selected memory cell 202 is Rlmax//R2mi. Therefore, the memory unit 102ι of the selected memory cell 202 will be a bit. The memory unit 1〇22 of the selected memory cell 2〇2 stores the one-bit “〇” therein. Figure 3Α shows the clock signal CLK and the first read word. A series of signals on the first bit line BL1 for reading the memory cells 2 〇 2 ι on the first bit line BL1. On the rising edge of the clock signal CLK, a start signal is provided on the first read word line RWL1 ( For example, a positive voltage), and an enable signal is provided to turn on the transistor 204 coupled to the first bit line BL1. Therefore, the transistor 138 of 12 1330844 P51950188TW 23746twf.doc/n memory cell 202 is turned on and A voltage bias is applied to the transistor 204' coupled to the first bit line BL1 and across the memory cells 102! and 1022 of the memory cell 202. The sense amplifier 140 detects the current through the first bit line BL1 ( That is, the memory unit through the memory cell 2〇2ι 1〇2丨 and 1〇22 Current) and compares the detected current with three reference values Refl, Ref2, Ref3. Based on the result of the comparison, the sense amplifier simultaneously outputs two bits of data D0 and D1. In Figure 3A, D0 and D1 The shaded area is the period during which the data is transmitted, and the clear areas of D and D1 are periods in which no data is transferred or the previous data is latched. Therefore, each memory cell 202 can output two during a cl〇ck cycle. One bit of data, and is used to read the bandwidth of the MRAM device 2 or the read bandwidth of the MRAM device 200. However, according to Hung et al., only the data of the bit can be used in one clock cycle. Into each memory cell 2. 2, and writing two bits of data into each memory cell 202 requires two clock cycles. In the example - Figure 3B shows the write character Lines wwu and WWL2 and a series of signals on the first bit line BL1 for writing data into the memory cell 2, in particular, by first providing a first write word line WWL1 Current and then provide power in the appropriate direction through the first bit line BU Flowing to write the data of one bit to the memory unit 1〇2ι of the memory cell 202 in the first clock cycle. In the second clock cycle, the second character is provided by the money The current of line WWL2 and then provide the current in the appropriate direction through the -7L line BL1 to write the data of the - bit to the memory cell! Memory unit 1〇22 13 1330844 P51950188TW 23 746twf. In doc/n, in order to define the state of the memory unit ship and the memory I bit 2 by the current of the first bit line BL1, the 8 1 of the material element is written to the memory fresh bit 1G2l sigh towel. Similarly, the shaded area of 'BL1 in =3B is the time period of the transfer data, and the ambiguous area is the time period during which no data is transmitted. Therefore, although the read bandwidth of the MRAM device is doubled by including two memory cells connected in parallel in the memory cell 202, the bandwidth for writing to the MRAM device 200 (ie, MRam 2〇〇) The write bandwidth is limited because two clock cycles are required for each person to remember the cell 202. [Invention] Embodiments of the invention provide a magnetoresistive near-machine memory (MRAM) device that is formed on a substrate, comprising: a read bit line = two or more write bit lines; Read the word line; write the word line, 'and: the quality i i i in the bit line; and the memory cell, which corresponds to the reading of:, take the word line, write the character line And two or more write lines 'where the memory cells include the first-memory memory unit, each--------------------------------------------------------------------------------------------------- ; fixed solid two ^ has a second easy axis; and wear-resistant barrier, in the free magnetic region and between the 'the first memory unit has two resistance - You Ya 1 - § memory unit free magnetic The magnetic moment of the zone and the magnetic 2 of the fixed magnetic zone = the first resistance; and the free magnetic zone magnetic moment when the first memory is established. The second resistance when the magnetic moment of the fixed magnetic domain is anti-parallel, the second 1330844 P51950188TW 23 746twf.doc/n in the basin § The early position has two resistances - the magnetic moment of the magnetic zone and the fixed magnetic zone The magnetic four early resistance from the thousand (four) brother four resistors, wherein the first - resistance, the inverse and the fourth resistance are different resistance values, and wherein the first - cross-sectional area and the second memory unit::

及第二讀取電流之平面叫第= 積為、·々弟一棱截面積之2倍。 述,將7可文 解。蔣供貼认^ 次』措由貝心本發明來瞭 ,將借助於在附加之申請專利範圍中特別指出之 及組合來魏域成本發明之特徵以及優點。 ,瞭解’别文之—般描述與下文之詳細描述為示範性 ^。釋性的且意欲提供對如所錄的本發明之進一步解And the plane of the second read current is called the second product, which is twice the cross-sectional area of the 々. Said, will be 7 can be literated. The present invention has been developed by the present invention, and the features and advantages of the invention will be derived from the specific scope and combination of the appended claims. , to understand the general description of the text and the detailed description below as exemplary. Interpretive and intended to provide a further solution to the invention as recorded

【實施方式】 現將對本發明之本實施例作出詳細參考,在隨附圖式 兒月貝加例之實例。無論在何情況下可能,貫穿圖式 使用相同參考數字來指封目同或相似元件。 古本發明如實施例,提供不僅具有高讀取效率而且具有 问寫入效率之高頻寬MRAM裝置,以及用於 MRAM裝置之方法。 门领見 圖4A繪示與本發明之第一實施例一致的MRam裝置 P51950188TW 23746twf.doc/n 400。MRAM裝置400包含記憶體胞4〇2之陣列,繪示記 憶體胞之四者402〗、4022、4023、4024。每一記憶體胞4〇2 對應於讀取位元線RBL、讀取字元線RWL、寫入字元線 WWL以及若干(在圖4A中特定言之為兩個)寫入位元線 WBL。母一記憶體胞402包含並聯連接於電晶體4〇6與對 應讀取位元線RBL之間的作為記憶體單位4〇4ι以及4〇\ 之兩個記憶體單位404,其中電晶體4〇6之閘極連接至對2 應讀取字元線RWL。每一記憶體單位4〇4對應於寫入位元 線WBL之一者。如圖4A繪示,記憶體胞4〇2ι以及4〇22 對應於第一讀取位元線RBL0 ;記憶體胞4〇2ι以及4〇22之 此憶體單位4G(對應於第—寫人位元線WBL();且記憶體 胞4〇1以及4022之記憶體單位4〇42對應於第二寫入位元 線WBU。記憶體胞搬3以及搬*對應於第二讀取位元線 ’ §己憶體胞4〇23以及4〇24之記憶體單位4⑽1對應於 第t寫入位元線WBL2;且記憶體胞4023以及4024之記憶 體單位侧2對應於第四寫入位元線WBU。記憶體胞‘ 以及40¾對應於第一讀取字元線^^〇以及第一寫入字元 線WWL0 ;且記憶體胞術2以及術4對應於第二讀取字 j RWLl以及f二寫人字元線wwu。感測放大器· 、=選擇電晶體410㈣接至每—讀取位元線鹽^以债測 L過所選擇之記憶體胞402的電流。 圖4B繪不記憶體單位4〇4之橫截面圖。記憶體單位 形成^對應寫入字元線WWL與對應寫入位元線wbl 之間。假疋寫入位元線WBL在記憶體單位4〇4上方寫 1330844 P51950188TW 23746twf.doc/n 入字元線WWL在記憶體單位404下方,且寫入位元線 WBL以及寫入字元線WWL大致彼此垂直。然而,應瞭解, 術語“上方”以及“下方”為取決於吾人觀察記憶體單位 404之角度的相對術語。記憶體單位404包含固定磁區 420、自由磁區422以及夾入於固定磁區420與自由磁區 422之間的穿隧阻障424。穿隧阻障424可包括(例如)氧 化鋁(A10x)或氧化鎂(MgO)。 固定磁區420可包括固定鐵磁體或合成反鐵磁性 (SAF )結構。圖4B繪不固定磁區420包括三層SAF会士 構’其包含兩個鐵磁性層426以及428,其間夾有反鐵磁 性耦接分隔層430。鐵磁性層426以及428可包括(例如) 始鐵(CoFe)、錄鐵(NiFe)或銘鐵蝴(c〇FeB)。反鐵磁 性耦接分隔層430可包括(例如)釕(Ru)或銅(Cu)。 反鐵磁性耦接分隔層430之厚度經選擇以使得鐵磁性層 426以及428反鐵磁性地彼此麵接。 自由磁區422可包括SAF,SAF包含兩個鐵磁性層432 以及434以及夾入中間的反鐵磁性耦接分隔層436。鐵磁 性層432以及434可包括(例如)鈷鐵(c〇Fe)、鈷鐵硼 (CoFeB)或鎳鐵(NiFe)。反鐵磁性耦接分隔層436可包 括(例如)釕(RU)或銅(Cu)。反鐵磁性耦接分隔層436 之厚度經選擇以使得鐵磁性層432以及434反鐵磁性地彼 此耦接。雖然圖4B僅繪示自由磁區422包含三個層,但 亦可使用單一個自由磁層或具有三個以上層之多層SAF 結構。舉例而言,自由磁區422可包括藉由糕接分隔層而 17 < S:) 1330844 P51950188TW 23746twf.doc/n 分離的三個或三個以上鐵磁性層。 在固定磁區420與寫入字元線WWL之間順序地提供 反鐵磁性固定層438、緩衝層440、底部電極442以及介電 層444。反鐵磁性固定層438可包括(例如)鉑錳(ρΜη) 或錳銥(Mnli·)。緩衝層440可包括(例如)鎳鐵(NiFe) ' 鎳鐵鉻(NiFeCr)或鎳鐵鈷(NiFeCo)。在自由磁區422 上提供頂部電極446 ’且在頂部電極446與對應寫入位元 線WBL之間提供介電層448。 反鐵磁性固定層438固定在固定磁區42〇之磁矩,以 使得當施加適度磁場時,固定磁區42〇之磁矩不會旋轉。 反之,自由磁區422之磁矩在外部磁場下能夠自由旋轉。 如本發明之第一實施例,固定磁區42〇具有易軸Ep, 且自由磁區422具有正易軸E+以及負易軸E,其中所有的 fp、E+以及E·皆與對應寫入字元線以及寫入位元線成約45 2的角度,且E+與E_彼此反平行。圖4C為說明當自頂部觀 察記憶體單位404時,記憶體單位4〇4中之關於對應寫入 位兀線WBL以及寫入字元線WWL之方向的磁矩之平面 圖。在圖4C中,x軸沿對應寫入位元線WBL之方向,且 y軸沿對應寫入字元線WWL之方向。正X軸在沿圖4B中 所示之寫入位元線WBL自左至右的方向上,且正y轴在 沿圖4B中所示之寫入字元線WWL自纸外側至紙之平面 内的方向上。在沒有外部磁場時,鐵磁性層426、428、432 以及434之磁矩向量與易軸之一者對準。在圖4C中鐵 磁性層428之磁矩向量A與易軸Ep對準,鐵磁性層426 18 1330844 P51950188TW 23746twf.doc/n 之,矩向量B與磁矩向量A反平行,鐵磁性層432之磁矩 向量C與負易軸E-對準’且鐵磁性層434之磁矩向量1)與 ; 正易轴E+對準。在圖4B與圖4C中以及本文之其他圖中 . 標記為磁矩向量A-D的標有箭頭之線僅指示此等磁矩向量 之大致方向,而並不指示其相對強度。 穿隧阻障424之電子穿隧阻障以及記憶體單位4〇4之 電阻隨磁場而改變。舉例而言,當鐵磁性層428之磁矩向 φ 量A與鐵磁性層432之磁矩向量c彼此平行時,穿隧阻障 424具有低電子穿隧阻障,且記憶體單位4〇4具有低電阻。 當鐵磁性層428之磁矩向量A與鐵磁性層432之磁矩向量 C彼此反平行時,穿隧阻障424具有高電子穿隧阻障,且 s己憶體單位404具有高電阻。因此,記憶體單位4〇4可儲 存藉由其電阻之值所界定的一位元之“丨,,或“〇” 。舉例 而言,記憶體單位404之高電阻可表示一位元之“Γ,,且 記憶體單位404之低電阻可表示一位元之“〇,,,或相反。 如本發明之第一實施例,裝置铖 鲁得記憶體胞402之每-者的電阻具有對應於對^己憶體胞 402之不同狀態的不同值。記憶體單位4〇4〗以及4〇42之不 " 同電阻值例如可藉由使每一記憶體單位成形以具有不同實 體大小而達成。實體大小可藉由調整當讀取記憶體胞402 時實質上垂直於電流之流動的平面中之記憶體單位之橫戴 面積而達成。在一態樣中,記憶體單位4〇4ι之橫截面積可 經製造以為記憶體單位4042之橫截面積的約2倍。在此熊 樣中,因此’ έ己憶體單位40七之磁電阻將低於記憶體單位 19 1330844 P51950188TW 23746twf.doc/n 於其中;2) 儲存於其中 於其中;3) 儲存於其中 4042之磁電阻,因為記憶體單位404l由於其較大橫戴命積 而具有較大實體大小。接著,記憶體胞402〗具有四個可^ 狀態:1) “00”,當記憶體單位404〗已將一位元之%, 儲存於其中’且記憶體單位4〇42已將一位元之轉存 01 ’當s己憶體早位404ι已將一位元之“q,, 且記憶體單位4042已將一位元之“Γ轉存 10” ’當記憶體單位404】已將一位元之 且§己憶體早位4042已將一位元之“0 ‘‘姆^ 於其中;以及4) “11” ,當記憶體單位4〇4丨已將一饮子 之“1”儲存於其中,且記憶體單位4〇42已將一位元疋 ‘1”儲存於其中。接著,記憶體胞402ι亦具有分別對應 於其四個可能狀態的四個可能電阻值。換言之% Rimax"R2max、Rlmax//R2min、Rlmin//R2max、 不同值’其中Rlmax為每一記憶體單位之高電阻反 為每-記〒單位4G+之低電阻,尺2匪為每—記憶^ 位4〇42之问電阻,R2min為每—記憶體單位之低電限 因此,可藉由確定所選擇之記憶體胞402之電阻而在〜眭 脈週期中自所選擇之記憶體胞402讀取兩個位元之資' 將讀、體胞搬!作為實例考慮。圖5繪科脈信號c认 α及讀取位讀腿^上的用 ^記憶體胞搬1之—連串信號。在時脈信號CLK之上升 L在5|取子兀線贿⑶上提供啟動信號(例如,正 j ) ’錯此^通魄至讀取字元線RWLG之電晶體4〇6, &供啟動信號(未’)以#_接至讀取位元線舰〇 20 1330844 P51950188TW 23746twf.doc/n 之選擇電晶體410來啟動讀取位元線RBLO。因此跨越記 憶體胞402〗之記憶體單位404】以及4042施加讀取位元線 RBL0與電晶體406之間的跨電壓,且感測放大器408债 測通過讀取位元線RBL0之電流(亦即,通過記憶體胞 之記憶體單位404】以及4042之電流)。感測放大器408將 所偵測之電流與三個中間參考電流值Refl、Ref2、Ref3比 較 ’ Ref卜 Ref2、Ref3 對應於 Rlraax//R2max、R]max//R2min、[Embodiment] A detailed reference will be made to this embodiment of the present invention, and an example will be added to the accompanying drawings. The same reference numbers are used throughout the drawings to refer to the same or similar elements. The present invention, as an embodiment, provides a high-frequency wide MRAM device having not only high reading efficiency but also writing efficiency, and a method for the MRAM device. Door Collar Figure 4A illustrates a MRam device P51950188TW 23746twf.doc/n 400 consistent with the first embodiment of the present invention. The MRAM device 400 includes an array of memory cells 4〇2, depicting four of the memory cells 402, 4022, 4023, 4024. Each memory cell 4〇2 corresponds to a read bit line RBL, a read word line RWL, a write word line WWL, and a plurality of (specifically two in FIG. 4A) write bit lines WBL. . The mother-memory cell 402 includes two memory units 404 as memory units 4〇4ι and 4〇\ connected in parallel between the transistor 4〇6 and the corresponding read bit line RBL, wherein the transistor 4〇 The gate of 6 is connected to the pair 2 and the word line RWL should be read. Each memory unit 4〇4 corresponds to one of the write bit lines WBL. As shown in FIG. 4A, the memory cells 4〇2ι and 4〇22 correspond to the first read bit line RBL0; the memory cells 4〇2ι and 4〇22 of the memory unit 4G (corresponding to the first-writer) The bit line WBL(); and the memory unit 4〇42 of the memory cells 4〇1 and 4022 correspond to the second write bit line WBU. The memory cell transfer 3 and the move* correspond to the second read bit The memory unit 4(10)1 of the line ''remembering cells 4〇23 and 4〇24 corresponds to the t-th write bit line WBL2; and the memory unit side 2 of the memory cells 4023 and 4024 corresponds to the fourth write bit a line WBU. The memory cells 'and 403⁄4 correspond to the first read word line ^^ and the first write word line WWL0; and the memory cell 2 and the 4 correspond to the second read word j RWLl And f writes the human character line wwu. The sense amplifier ·, = select transistor 410 (four) is connected to each of the read bit line salt ^ to measure the current through the selected memory cell 402. Figure 4B depicts A cross-sectional view of the memory unit 4〇4. The memory unit is formed between the corresponding write word line WWL and the corresponding write bit line wbl. The dummy write bit line WBL is in the memory unit 4〇4 Square write 1330844 P51950188TW 23746twf.doc/n The entry word line WWL is below the memory unit 404, and the write bit line WBL and the write word line WWL are substantially perpendicular to each other. However, it should be understood that the terms "above" and " The lower portion is a relative term that depends on the angle at which the memory unit 404 is observed. The memory unit 404 includes a fixed magnetic region 420, a free magnetic region 422, and a tunneling resistance sandwiched between the fixed magnetic region 420 and the free magnetic region 422. Barrier 424. Tunneling barrier 424 can include, for example, aluminum oxide (A10x) or magnesium oxide (MgO). Fixed magnetic region 420 can include a fixed ferromagnetic or synthetic antiferromagnetic (SAF) structure. Figure 4B depicts no fixed magnetic The region 420 includes a three-layer SAF structure comprising two ferromagnetic layers 426 and 428 with an antiferromagnetic coupling spacer layer 430 interposed therebetween. The ferromagnetic layers 426 and 428 may include, for example, iron (CoFe), Recording iron (NiFe) or Ming iron butterfly (c〇FeB). The antiferromagnetic coupling separation layer 430 may include, for example, ruthenium (Ru) or copper (Cu). The thickness of the antiferromagnetic coupling separation layer 430 is selected. So that the ferromagnetic layers 426 and 428 are antiferromagnetically opposite each other. The free magnetic region 422 may include a SAF, the SAF includes two ferromagnetic layers 432 and 434, and an antiferromagnetic coupling separation layer 436 sandwiched therebetween. The ferromagnetic layers 432 and 434 may include, for example, cobalt iron (c〇Fe) ), cobalt iron boron (CoFeB) or nickel iron (NiFe). The antiferromagnetic coupling separation layer 436 may include, for example, ruthenium (RU) or copper (Cu). The thickness of the antiferromagnetic coupling spacer layer 436 is selected such that the ferromagnetic layers 432 and 434 are antiferromagnetically coupled to each other. Although FIG. 4B only shows that the free magnetic region 422 includes three layers, a single free magnetic layer or a multilayer SAF structure having three or more layers may be used. For example, the free magnetic region 422 can include three or more ferromagnetic layers separated by a cake separation layer 17 < S:) 1330844 P51950188TW 23746twf.doc/n. An antiferromagnetic pinned layer 438, a buffer layer 440, a bottom electrode 442, and a dielectric layer 444 are sequentially provided between the fixed magnetic domain 420 and the write word line WWL. The antiferromagnetic pinned layer 438 may include, for example, platinum manganese (ρΜη) or manganese germanium (Mnli·). The buffer layer 440 may include, for example, nickel iron (NiFe) 'nickel iron chromium (NiFeCr) or nickel iron cobalt (NiFeCo). A top electrode 446' is provided over the free magnetic region 422 and a dielectric layer 448 is provided between the top electrode 446 and the corresponding write bit line WBL. The antiferromagnetic pinned layer 438 is fixed to the magnetic moment of the fixed magnetic region 42〇 so that the magnetic moment of the fixed magnetic region 42〇 does not rotate when a moderate magnetic field is applied. Conversely, the magnetic moment of the free magnetic domain 422 is free to rotate under an external magnetic field. As in the first embodiment of the present invention, the fixed magnetic region 42A has an easy axis Ep, and the free magnetic region 422 has a positive easy axis E+ and a negative easy axis E, wherein all of the fp, E+, and E· are corresponding to the written word. The meta-line and the write bit line are at an angle of about 45 2, and E+ and E_ are anti-parallel to each other. Fig. 4C is a plan view showing the magnetic moment in the memory unit 4〇4 with respect to the direction corresponding to the write bit line WBL and the write word line WWL when the memory unit 404 is viewed from the top. In Fig. 4C, the x-axis is in the direction corresponding to the write bit line WBL, and the y-axis is in the direction corresponding to the write word line WWL. The positive X-axis is in the direction from the left to the right along the write bit line WBL shown in FIG. 4B, and the positive y-axis is from the outside of the paper to the plane of the paper along the write word line WWL shown in FIG. 4B. Inside the direction. In the absence of an external magnetic field, the magnetic moment vectors of the ferromagnetic layers 426, 428, 432, and 434 are aligned with one of the easy axes. In FIG. 4C, the magnetic moment vector A of the ferromagnetic layer 428 is aligned with the easy axis Ep, and the ferromagnetic layer 426 18 1330844 P51950188TW 23746twf.doc/n, the moment vector B is anti-parallel to the magnetic moment vector A, and the ferromagnetic layer 432 The magnetic moment vector C is aligned with the negative easy axis E- and the magnetic moment vector 1 of the ferromagnetic layer 434 is aligned with the positive easy axis E+. In Figures 4B and 4C and in other figures herein. The arrows labeled with the magnetic moment vectors A-D indicate only the general direction of the magnetic moment vectors and do not indicate their relative strength. The electron tunneling barrier of the tunneling barrier 424 and the resistance of the memory unit 4〇4 vary with the magnetic field. For example, when the magnetic moment φ amount A of the ferromagnetic layer 428 and the magnetic moment vector c of the ferromagnetic layer 432 are parallel to each other, the tunneling barrier 424 has a low electron tunneling barrier, and the memory unit 4 〇 4 Has a low resistance. When the magnetic moment vector A of the ferromagnetic layer 428 and the magnetic moment vector C of the ferromagnetic layer 432 are antiparallel to each other, the tunneling barrier 424 has a high electron tunneling barrier, and the suffix unit 404 has a high resistance. Therefore, the memory unit 4〇4 can store a one-dimensional “丨,, or “〇”, which is defined by the value of its resistance. For example, the high resistance of the memory unit 404 can represent a single element. Γ,, and the low resistance of the memory unit 404 can represent a one-dimensional "〇,,, or vice versa. As in the first embodiment of the present invention, the resistance of each of the devices 记忆 记忆 memory cells 402 has a corresponding Different values for different states of the memory cell 402. The memory unit 4〇4〗 and 4〇42 are not the same resistance value, for example, by forming each memory unit to have different physical sizes. The physical size can be achieved by adjusting the cross-sectional area of the memory unit in a plane that is substantially perpendicular to the flow of current when the memory cell 402 is read. In one aspect, the memory unit is 4〇4ι The cross-sectional area can be fabricated to be about 2 times the cross-sectional area of the memory unit 4042. In this bear sample, therefore, the magnetoresistance of the έ 忆 体 unit 40 VII will be lower than the memory unit 19 1330844 P51950188TW 23746twf.doc /n in it; 2) stored in it 3) The magnetoresistance stored in 4042, because the memory unit 404l has a larger physical size due to its larger transverse wear product. Then, the memory cell 402 has four OK states: 1) "00" When the memory unit 404 〗 has stored a % of one yuan, stored in it 'and the memory unit 4 〇 42 has transferred a single yuan to 01 ' when s remembrance early 404 ι has a one yuan "q,, and the memory unit 4042 has transferred the one-bit "Γ" to 10" 'When the memory unit 404' has already been one-bit and the § already remembered the early position 4042 has one bit "0" ''m ^ in it; and 4) "11", when the memory unit 4〇4丨 has stored a "1" of a drink, and the memory unit 4〇42 has a one yuan疋1 "Stored in it." Next, memory cell 402i also has four possible resistance values corresponding to their four possible states, respectively. In other words, % Rimax"R2max, Rlmax//R2min, Rlmin//R2max, different values' where Rlmax is the high resistance of each memory unit and the low resistance is 4G+ per unit, and the ruler is 2 memory per memory^ The resistance of the bit 4〇42, R2min is the low power limit of each memory unit. Therefore, it can be read from the selected memory cell 402 in the ~眭 pulse period by determining the resistance of the selected memory cell 402. Take two bits of capital' will read, physically move! Consider as an example. Figure 5 depicts the co-signal of the pulse signal c and the read-and-receive leg ^. The rising signal L of the clock signal CLK provides a start signal (for example, positive j) on the 5|receiving line (3), and the transistor 4〇6, & The enable signal (not ') is connected to the read bit line RBLO by #_ to the select transistor 410 of the read bit line ship 20 1330844 P51950188TW 23746twf.doc/n. Therefore, the memory voltage between the read bit line RBL0 and the transistor 406 is applied across the memory cells 404] and 4042 of the memory cell 402, and the sense amplifier 408 measures the current through the bit line RBL0 (also That is, the memory unit 404] and the current of 4042 are stored by the memory cell. The sense amplifier 408 compares the detected current with three intermediate reference current values Refl, Ref2, and Ref3 Ref Ref2, Ref3 corresponds to Rlraax//R2max, R]max//R2min,

Rlmin//R2max、R]min//R2min 之間的參考電阻值 Rl、R2、R3 0 假疋(例如)Rlmax//R2max > Rl > Rlmax//R2mh > R2 > Rlxnin//R2max > R3 > Rlmin//R2min。因此’若所偵測之電流在 Refl與Ref2之間’則記憶體胞4〇2ι之電阻為Rima//R2_。 因此,5己憶體胞402!之記憶體單位4〇4丨將一位元之“1” 儲存於其中,且記憶體胞402!之記憶體單位4〇42將一位 兀之0儲存於其中。因此,在一時脈週期期間,可自每 一記憶體胞402讀出兩個位元之資料。在繪示信號之序列 的圖5以及隨後之圖形中,陰影區域指示傳輸資料之時 段,清晰區域指科傳輸轉或·先前⑽之時段,且 不同類型之陰影指示可能或可能不彼此相同的分離位元之 資料。 如不贫明之第 入 -展置400亦具有高寫 是,在一時脈週期期間’可將兩個位元之資 雍田所選擇之記憶體胞402巾。如本發明之第二實施 ㈣態觸發寫人方法以將兩個位元之資料寫 裝置400的所選擇之記憶體胞402中。根據 21 1330844Reference resistance value Rl, R2, R3 0 between Rlmin//R2max, R]min//R2min false 疋 (for example) Rlmax//R2max > Rl > Rlmax//R2mh > R2 > Rlxnin//R2max > R3 > Rlmin//R2min. Therefore, if the detected current is between Refl and Ref2, the resistance of the memory cell 4〇2 is Rima//R2_. Therefore, the memory unit 454丨 of the memory cell of the memory cell 402 stores a one-digit "1" therein, and the memory unit of the memory cell 402! 4〇42 stores a zero of the 兀0 among them. Thus, during one clock cycle, two bits of data can be read from each memory cell 402. In Fig. 5 and subsequent figures showing the sequence of signals, the shaded area indicates the period in which the data is transmitted, the clear area refers to the period in which the transmission is transferred or the previous (10), and the different types of shading indicate separations that may or may not be identical to each other. Bit information. If the first entry is not poor - the display 400 also has a high write, during the one-clock cycle, the memory of the two cells can be selected by the field. The second embodiment of the present invention (4) triggers the writer method to write the data of two bits into the selected memory cell 402 of device 400. According to 21 1330844

P51950188TW 23746twf.doc/n 雙細發寫人方法’首先將待寫人至記,It體單位中的_位 兀之資料與儲存於記憶體單位中之資料比較。若待寫入之 育料與儲存於記憶體單位中之資料相同,則不執行^入= 作。=則,改變或“雙態觸發(toggle trigger),,記憶體單位 之狀態。必要時,可同時雙態觸發所選擇之記憶體胞4⑽ 的§己憶體單位4〇4!與4042。參看圖6以及圖7 (a)至圖7 (e)描述第二實施例。假定選擇記憶體胞4〇ι用於寫入 操作。 ’ 為了雙態觸發寫入記憶體單位404之一者,將寫入電 流提供至對應寫入字元線WWL以及寫入位元線Wbl以 誘發外部磁場,藉此改變其鐵磁性層432之磁矩。圖4b 以及圖4C繪示提供至寫入位元線WBL以及寫入字元線 WWL之電流與藉此所誘發的外部磁場之間的關係。通過 寫入字元線WWL之字電流Iw誘發圓形字磁場Hw,且通 過寫入位元線WBL之數位電流ID誘發圓形數位磁場Hd。 磁場Hw以及Hd之強度分別與字電流Iw以及數位電流1〇 成比例。並且,如圖4B中所繪示,當字電流iw為正(亦 即,在正y轴方向上)時,Hw實質上在記憶體單位4〇4 之平面中的正X軸方向上;當數位電流ID為正(亦即,在 正X軸方向上)時’ HD實質上在記憶體單位404之平面中 的正y軸方向上。 圖6緣示用於將資料寫入至記憶體胞4〇2〗中的藉由周 邊電路(peripheral circuit)(未圖示)(下文中被稱作寫入 電路)所提供的寫入字元線WWL0、寫入位元線WBL0以 22 1330844 P51950188TW 23746twf.doc/n 及寫入位兀線WBLl上之一連串信號。如圖6繪示,時脈 1唬CLK在時間t〇處上升。在時間t〇與時間、之間,邏 輯電路(未圖示)讀取記憶體胞4〇2ι,將記憶體胞4〇2i 中之育料與待寫入至記憶體胞4〇2】中之資料比較,且確定 是否應雙態觸發記憶體單位404ι以及4〇42之一或兩者。 叙疋s己憶體單位404!儲存的位元資料與待寫入至其中的 位元資料相同,且記憶體單位4〇42儲存的位元資料與待寫 入至其中的位元資料不同,因此,應雙態觸發記憶體單位 4042,而不應雙態觸發記憶體單位4〇4ι。 接著,寫入電路順序地提供數位電流以及字電流以雙 態觸發記憶體單位4042。特定言之,在時間t2處,經由寫 入位元線WBL1而提供正數位電流;在時間t]處,經由 寫入字元線WWL0而提供正字電流Iw ;在時間^處,切 斷iD ;且在時間處,切斷iw。時脈信號CLK在時間、 處下降。經過t〇至k之時段,不經由寫入位元線WBL〇而 提供電流。 由於如圖6中所示而提供之字電流以及位元電流,雙 態觸發記憶體單位4042,且記憶體單位404〗之狀態保持不 變。圖7 (a)至圖7 (e)說明圖6中所示之iD以及:^雙 態觸發寫入記憶體單位4〇42的過程。圖7(a)至圖7(e) 的下文之描述中的磁矩向量C以及D指記憶體單位4〇42 之磁矩向量C以及D。 圖7 ( a)繪示當未提供字電流或數位電流時,在時間 t〇以及t!處的鐵磁性層432之磁矩向量C以及鐵磁性層434 23 1330844 P51950188TW 23746twf. doc/nP51950188TW 23746twf.doc/n Double-sentence method “Firstly, the person to be written is recorded, and the data of the _ position in the It unit is compared with the data stored in the memory unit. If the feed to be written is the same as the data stored in the memory unit, then ^== does not execute. = Then, change or "toggle trigger", the state of the memory unit. If necessary, it can simultaneously trigger the selected memory cell 4(10) of the memory cell 4(4) 4〇4! and 4042. Figure 6 and Figures 7(a) through 7(e) depict a second embodiment. It is assumed that the memory cell 4〇 is selected for the write operation. 'For one of the two-state trigger write memory unit 404, The write current is supplied to the corresponding write word line WWL and the write bit line Wbl to induce an external magnetic field, thereby changing the magnetic moment of the ferromagnetic layer 432. FIG. 4b and FIG. 4C illustrate the supply to the write bit line. The relationship between the WBL and the current written to the word line WWL and the external magnetic field induced thereby. The circular word magnetic field Hw is induced by the word current Iw written to the word line WWL, and is written by the bit line WBL. The digital current ID induces a circular digital magnetic field Hd. The intensities of the magnetic fields Hw and Hd are proportional to the word current Iw and the digital current 1〇, respectively, and, as illustrated in FIG. 4B, when the word current iw is positive (ie, at In the positive y-axis direction, Hw is substantially in the positive X-axis direction in the plane of the memory unit 4〇4 Upper; when the digital current ID is positive (ie, in the positive X-axis direction), HD is substantially in the positive y-axis direction in the plane of the memory unit 404. Figure 6 is used to write data to The write word line WWL0 and the write bit line WBL0 provided by a peripheral circuit (not shown) (hereinafter referred to as a write circuit) in the memory cell 4以2 are 22 1330844 P51950188TW 23746twf.doc/n and write a series of signals on the bit line WBLl. As shown in Figure 6, the clock 1 CLK rises at time t 。. Between time t 〇 and time, between the logic circuit ( (not shown) read the memory cell 4〇2ι, compare the material in the memory cell 4〇2i with the data to be written into the memory cell 4〇2], and determine whether the memory should be triggered by the two states. One or both of 404 ι and 4 〇 42. 疋 疋 己 单位 单位 404! The stored bit data is the same as the bit data to be written to it, and the memory unit 4 〇 42 stored bit data Different from the bit data to be written to it, therefore, the memory unit 4042 should be triggered in a dual state, and should not be triggered by a double state. The memory unit is 4〇4. Next, the write circuit sequentially supplies the digit current and the word current to the binary state memory unit 4042. Specifically, at time t2, the positive bit current is supplied via the write bit line WBL1. At time t], the positive word current Iw is supplied via the write word line WWL0; at time ^, iD is turned off; and at time, iw is turned off. The clock signal CLK falls at time, after t During the period from 〇k to k, no current is supplied via the write bit line WBL〇. Since the word current and the bit current are supplied as shown in Fig. 6, the binary state triggers the memory unit 4042, and the state of the memory unit 404 is kept unchanged. Fig. 7 (a) to Fig. 7 (e) illustrate the process of writing the memory unit 4 〇 42 by the iD shown in Fig. 6 and the ? The magnetic moment vectors C and D in the following description of Figs. 7(a) to 7(e) refer to the magnetic moment vectors C and D of the memory unit 4〇42. Figure 7 (a) shows the magnetic moment vector C of the ferromagnetic layer 432 at time t 〇 and t! and the ferromagnetic layer 434 23 1330844 P51950188TW 23746twf. doc/n when word current or digital current is not supplied.

之磁矩向量D。磁矩向量C在自由磁區422之負易軸E 的方向上’且磁矩向量D在自由磁區422之正易軸£+的方 向上。 圖7(b)繪示當提供1〇從而誘發實質上在正y 上之數位磁場HD時,在時間t2處的磁矩向量c以及^ 在,位磁場HDT,魏向量c以及!)辦倾轉。磁矩 向量c在負X軸與正丫軸之間的方向上。磁矩向量d X軸與自由磁區422之正易軸艮之間的方向上。 圖7⑷繪示當提供^從而誘發實質上在正 向上之字磁場〜時,在時間t3處的磁矩向量c以及d。 因此,磁矩向量c以及D _再猶針旋轉。磁矩向量c 接近正y轴,且磁矩向量D可越過正X轴。 圖7⑷1 會示當切斷1d時在時間U處之磁矩向量c 以及D。因此’磁矩向量c以及D接續再稱針旋轉。磁 矩向量^可越過正#且接近自由磁H 422之正易轴E+。 磁矩向量D接近負X轴。 圖7(〇繪示當亦切斷Iw時在時間丈5處之磁矩向量c 以fD。因為磁矩向量C比靠近自由磁區422之負易軸E. 更#近正易軸E+,所以磁矩向量[接續再順時針旋轉且與 自由磁區422之正易軸E+對準。因為磁矩向量d比靠近自 由磁區422之正易轴E+更靠近負易軸e,所以磁矩向量〇 接續再順時針旋轉且與自由磁區422之負易軸E-對準。 因此’在圖6中所示之以及^的序列之後,鐵磁 性層432之磁矩向量C以及鐵磁性層434之磁矩向量D已 24 1330844 P51950188TW 23746twf.doc/nThe magnetic moment vector D. The magnetic moment vector C is in the direction of the negative easy axis E of the free magnetic region 422 and the magnetic moment vector D is in the direction of the positive easy axis of the free magnetic region 422. Fig. 7(b) shows the magnetic moment vectors c and ^ at the time t2 when the digital magnetic field HD is substantially induced on the positive y, and the magnetic field HDT, the Wei vector c, and the ! turn. The magnetic moment vector c is in the direction between the negative X-axis and the positive x-axis. The direction between the magnetic moment vector d X-axis and the positive easy axis of the free magnetic region 422. Fig. 7(4) shows the magnetic moment vectors c and d at time t3 when the magnetic field is substantially induced in the forward direction. Therefore, the magnetic moment vectors c and D_ are rotated again. The magnetic moment vector c is close to the positive y-axis and the magnetic moment vector D can cross the positive X-axis. Figure 7(4)1 shows the magnetic moment vectors c and D at time U when 1d is cut. Therefore, the magnetic moment vectors c and D continue to rotate the needle. The magnetic moment vector ^ can cross positive # and approach the positive easy axis E+ of the free magnetic H 422. The magnetic moment vector D is close to the negative X axis. Fig. 7 (〇 shows that the magnetic moment vector c at time 5 is also fD when Iw is also cut off. Since the magnetic moment vector C is closer to the negative easy axis E. of the free magnetic region 422, the near positive axis E+, Therefore, the magnetic moment vector [continuously rotates clockwise and is aligned with the positive easy axis E+ of the free magnetic region 422. Since the magnetic moment vector d is closer to the negative easy axis e than the positive easy axis E+ near the free magnetic region 422, the magnetic moment The vector 〇 continues to rotate clockwise and is aligned with the negative easy axis E- of the free magnetic region 422. Thus, after the sequence shown in Figure 6, the magnetic moment vector C of the ferromagnetic layer 432 and the ferromagnetic layer Magnetic moment vector D of 434 has been 24 1330844 P51950188TW 23746twf.doc/n

交換位置。特定言之,鐵磁性層432之磁矩向量c已旋轉 了 18〇°。因此,若記憶體單位4042先前已將一位元之“〇,, 儲存,其t,則圖6中所示之匕以及〗一序列已將一位 元ί 1寫入至記憶體單位4042中;若記憶體單位4042 先前已將一位元之“广,儲存於其中,則圖6中所示之1〇 以及IW的序列已將一位元之“〇”寫入至記憶體單位4〇42 中。 _類似地,當需要雙態觸發記憶體單位4〇七與4042時, 同時經由記憶體單位404l與綱2之寫入位元線WBL而提 供數位電流以同時寫入記憶體單位404〗以及彻2。圖8緣 1 寫^字祕WWLG、寫人位元線佩0以及寫人位雄 上的用於雙態觸發寫入記憶體單位404〗與記情體單 —連串錢。—般熟f此項技術者縣歸解雙 I,寫人記憶體單位4G4i與姻2之過程,朋此 文中不詳細描述此過程。 + ,如本發明之實施例,在一時脈週期内,可自 資料〇的所?擇之記憶體胞4 〇 2讀取兩個位元之 5 立7之資料寫入至MRAM裝置400的所選 擇,記憶,術中。換言之,嫩歲裝置 ^^ 南頃取頻寬而且具有高寫入頻寬。 、有 :中:數位電流Id僅提供至待雙態觸發之記憶 體單位•圖9 wL〇、寫入位兀線WBL0以及寫入位元 25 1330844 P51950188TW 23746twf.doc/n 線WBL1上的用於雙態觸發寫入僅記憶體單位4042之一連 串信號。特定言之’在時間h處,分別經由寫入位元線 WBL0以及WBL1而提供正數位電流ID〇以及正數位電流 ID1 ;在時間處,經由寫入字元線WWL0而提供正字電 流Iw ;在時間U處,切斷ID1 ;在時間I;5處,切斷;[w ;且 在時間t6處’亦切斷ID〇。時脈信號CLK在時間t7處下降。 與圖6中所示之一連串信號比較,當施加圖9中所示 之一連串信號時’記憶體單位4042經受相同信號且將被雙 悲觸發。然而’§己憶體单位4041經受不同信號序列且將不 會雙態觸發。圖10 (a)至圖1〇 (e)說明經過圖9中所示 之信號序列的記憶體單位404!之狀態。圖1〇 (a)至圖10 (e)的下文之描述中的磁矩向量c以及D指記憶體單位 404!之磁矩向量C以及D。 圖10 (a)繪示當未提供字電流或數位電流時,在時 間t〇以及h處的鐵磁性層432之磁矩向量c以及鐵磁性層 434之磁矩向量D。磁矩向量c在自由磁區422之負易軸 E_的方向上,且磁矩向量d在自由磁區422之正易軸E+ 的方向上。 圖10(b)繪示當提供Id〇從而誘發實質上在正y軸方 向上之數位磁場HD〇時,在時間t2處的磁矩向量c以及D。 在數位磁場HD〇下,磁矩向量c以及D順時針旋轉。磁矩 向量C在負X轴與正y軸之間的方向上。磁矩向量D在正 X軸與自由磁區422之正易軸E+之間的方向上。 圖10 (C)繪示當提供Iw從而誘發實質上在正X轴方 26 1330844Exchange location. Specifically, the magnetic moment vector c of the ferromagnetic layer 432 has been rotated by 18 〇. Therefore, if the memory unit 4042 has previously "one," stored, and t, then the sequence shown in Figure 6 and the sequence have written a bit ί 1 into the memory unit 4042. If the memory unit 4042 has previously stored a single bit "wide", the sequence of 1〇 and IW shown in Figure 6 has written a one-bit "〇" to the memory unit. 42 in. Similarly, when the two-state trigger memory unit 4〇7 and 4042 are required, the digital current is simultaneously supplied via the memory unit 404l and the write bit line WBL of the class 2 to simultaneously write the memory unit 404〗 and 2. Figure 8 edge 1 write ^ word secret WWLG, write people bit line 0 and write the person on the two for the two-state trigger write memory unit 404〗 and the record body - a series of money. - Generally familiar with this technology, the county resolves the double I, and writes the process of the human memory unit 4G4i and marriage 2, which is not described in detail in this article. + , as in the embodiment of the present invention, in a clock cycle, can be self-contained? Select the memory cell 4 〇 2 to read the data of the two bits 5 to write to the MRAM device 400 for selection, memory, and intraoperative. In other words, the young device ^^ South takes the bandwidth and has a high write bandwidth. , Yes: Medium: The digital current Id is only supplied to the memory unit to be toggled. • Figure 9 wL〇, write bit line WBL0, and write bit 25 1330844 P51950188TW 23746twf.doc/n line WBL1 The two-state trigger writes a series of signals that are only one of the memory units 4042. Specifically, at time h, the positive bit current ID 〇 and the positive bit current ID1 are respectively supplied via the write bit lines WBL0 and WBL1; at time, the positive word current Iw is supplied via the write word line WWL0; At time U, ID1 is cut off; at time I; 5, cut off; [w; and at time t6' also cuts ID〇. The clock signal CLK falls at time t7. In comparison with a series of signals shown in Fig. 6, when a series of signals shown in Fig. 9 is applied, the memory unit 4042 is subjected to the same signal and will be triggered by double sorrow. However, the unit number 4041 is subject to different signal sequences and will not be toggled. Fig. 10 (a) to Fig. 1 (e) illustrate the state of the memory unit 404! through the signal sequence shown in Fig. 9. The magnetic moment vectors c and D in the following description of Figs. 1a to 10(e) refer to the magnetic moment vectors C and D of the memory unit 404!. Figure 10 (a) shows the magnetic moment vector c of the ferromagnetic layer 432 and the magnetic moment vector D of the ferromagnetic layer 434 at times t 〇 and h when no word current or digital current is supplied. The magnetic moment vector c is in the direction of the negative easy axis E_ of the free magnetic region 422, and the magnetic moment vector d is in the direction of the positive easy axis E+ of the free magnetic region 422. Fig. 10(b) shows magnetic moment vectors c and D at time t2 when Id〇 is supplied to induce a digital magnetic field HD〇 substantially in the positive y-axis direction. Under the digital magnetic field HD, the magnetic moment vectors c and D rotate clockwise. The magnetic moment vector C is in the direction between the negative X-axis and the positive y-axis. The magnetic moment vector D is in the direction between the positive X-axis and the positive easy axis E+ of the free magnetic region 422. Figure 10 (C) shows when Iw is provided to induce substantially positive X-axis 26 1330844

P51950188TW 23746twf.doc/n 向上之子磁場時,在時間h處的磁矩向量c以及D。 因此,磁矩向量C以及D接續再順時針旋轉。磁矩向量c 接近正y軸,且磁矩向量d可越過正X轴。 圖10(d)繪示當切斷Iw時在時間、處之磁矩向量c 以及D。因此,磁矩向量c以及D逆時針旋轉且返回至與 圖10 (b)中所示之相同位置。 /、 圖10(e)繪示當亦切斷IDG時在時間丨5處之磁矩向量 C以及D。磁矩向量C以及D接續再逆時針旋轉且返回至 與圖10 (a)中所示之相同位置。 因此,在圖9中所示之ID0以及Iw的序列之後,呓憶 體單位401的鐵磁性層432之磁矩向量c以及鐵磁性層 434之磁矩向量D保持於相同位置處,且記憶體單位 之狀禮尚未改變。 如本發明之實施例,鐵磁性層428之磁矩向量A以及 鐵磁性層426之磁矩向量b可經調整以在自由磁區似中 ,生如磁場偏壓Hbias的邊緣(或雜散)磁場,以使得僅 需要弱磁場Hw以及Hd來雙態觸發寫入記憶體單位侧。 圖11繪示當不存在磁場偏壓時用於雙態觸發寫入記 憶體早位404之必需磁場Hw以及%,以及當自由磁區似 ^正易轴E+的方向上存在磁場偏壓H_時用於雙態觸發 ^入記憶鮮位4G4之必需磁場H,w以及%。當寫入記 位404需要較弱磁場〜以及%時,可施加較低字 :灿IW以及較低數位電流1〇。因此,磁場偏壓Is導致 減小之功率洁权。 / ^3· 27 1330844 P51950188TW 23746twf.doc/n 與本發明之第三實施例一致,提供用於當 MRAM 裝 . 置400之5己憶體單位404經受磁場偏壓時操作MRAM裝 ··: 4樣的方法。可施加如圖5中所說明之信號的相同序列 ' 以讀取MRAM裝置400。然而,為了寫入MRAM裝置400, -/ 當記憶體胞402在磁場偏壓下時,施加具有兩個雙向電流 -脈衝(亦即,具有負部分與正部分之電流脈衝)之一連串 寫入電流以雙態觸發寫入記憶體胞4〇2。舉例而言,圖12 .繪不當記憶體胞402!之記憶體單位4〇4丨以及4〇42處於在 自由磁區422的正易轴E+之方向上的磁場偏壓 時,寫入字元線WWL0、寫入位元線WBL〇以及寫入位元 線WBL1上的用於將資料寫入至記憶體胞4〇2〗中之一連串 信號。如圖12繪示,時脈信號CLK在時間t〇處上升。在 時間t〇與時間tl之間,邏輯電路(未圖示)讀取記憶體胞 仙二丨’將圯憶體胞402!中之資料與待寫入至記憶體胞4〇2ι 中之資料比較,且確定是否應雙態觸發記憶體單位4〇4ι以 及4042之一或兩者。假定待寫入至記憶體單位4〇七中的 ► 位元之資料與儲存於記憶體單位4〇4]中的位元之資料相 同,且待寫入至記憶體單位4042中的位元之資料與儲存於 記憶體單位4042中的位元之資料不同。因此,雙態觸發記 憶體單位4042,而未雙態觸發記憶體單位404!。 接著’在時間t2處’經由寫入字元線WWL0而提供負 子電流Iwi ;在時間h處’經由寫入位元線WBL1而提供 正數位電流iD1;在時間u處,切斷Iwi,且經由寫入字元 線WWL0而提供正字電%Iw2;在時間“處,切斷Ι〇ι,且 28 1330844 P51950188TW 23746twf.doc/n 經由寫入位元線WBL1而提供負數位電流Id2 ;在時間t6 處’切斷IW2 ;且在時間tv處,亦切斷1〇2。時脈作號clk 在時間ts處下降。經過t〇至ts之時段,未經由寫入位元線 WBL0而提供電流。 圖13 (a)至圖13 (g)說明圖12中所示之^、Idi、 Iw2以及Id2雙態觸發寫入記憶體單位4042之過程。圖π (a)至圖13 (g)的下文之描述中的磁矩向量c以及D 指記憶體單位4042之磁矩向量C以及D。 圖13 (a)纟會示當未提供字電流或數位電流時,在時 間t0以及&處的鐵磁性層432之磁矩向量c以及鐵磁性層 434之磁矩向量d。由於HBIAS,磁矩向量c以及D可逆 時針旋轉且分別接近或越過負y軸以及軸。 =圖13 ( b )繪示,在時間t;2處,提供負字電流Iwi, 產生實f上在負X軸方向上(亦即,與也…成135S之角 度)的予磁場HW1。換言之,HW1部分地偏移Hbias。因此, 磁矩向量C以及D分別接近易軸E以及E+。 圖13 (c)繪示當提供Im從而誘發實質上在正y軸方 向上之數位磁場Hdi時,在時間h處的磁矩向量c以及ρ。 因此,磁矩向量C以及D順時針旋轉。磁矩向量c可越 過負X軸,且磁矩向量D接近正χ轴。 圖13 (d)繪示當切斷且接通Iw2從而誘發實質上 軸方向上之字磁場幵从2時,在時間t4處的磁矩向量 以及因此,磁矩向量c以及D接續再順時針旋轉。 、矩向里C接近正y轴,且磁矩向量D可越過正χ軸。 29 1330844 P51950188TW 23746twf.doc/n 圖13 (e)繪示當切斷Im且接 舳卜夕鉍办成士e w 口士+ + ^丄m«而誘發在負y 軸上之數位磁场HD2k,在時間t5處的磁矩向量c以及卜 磁矩向量C以及D接續再順時針旋轉。磁 過正y軸,且磁矩向量D接近負7軸。 越 以及^ “時在時間t6處之磁矩向量C =D接續再順時針旋轉。現磁矩向 ί易磁矩向量D可越過負y軸並接近 圖13 (g)繪示當切斷lD2時在時間t?處之磁矩向量c =D。因為在時間t7之前,磁矩向量c更靠近正易軸 H向」„向量D更靠近負易軸£方向所以磁矩向 =女疋於靠近正易抽E+方向之位置中,且磁矩向量D 安定於靠近負易軸E_方向之位置中。 因此’在圖12巾所示之字電加及触電流的序列之 後,鐵磁性| 432之磁矩向量C以及鐵磁性層4M之磁矩 向量\已改變位置。特定言之,鐵磁性層极之磁矩向量 C已自靠近負易軸民的位置旋轉至靠近正易軸艮的位置。 因此,若記憶體單位4042先前已將一位元之“〇,,儲存於 其中’則圖12中所示之字電流以及數位電流的序列已將一 位^之“1”寫入至記憶體單位4〇42中;若記憶體單位4〇42 先前已將一位元之“丨”儲存於其中,則圖12中所示之字 電流以及數位電流的序列已將一位元之“〇”寫入至記憶 體單位4042中。 ° 類似地,當需要雙態觸發記憶體單位4〇41與4〇42時,P51950188TW 23746twf.doc/n The magnetic moment vectors c and D at time h for the upward magnetic field. Therefore, the magnetic moment vectors C and D continue to rotate clockwise. The magnetic moment vector c is close to the positive y-axis and the magnetic moment vector d can cross the positive X-axis. Fig. 10(d) shows the magnetic moment vectors c and D at time, when Iw is cut. Therefore, the magnetic moment vectors c and D rotate counterclockwise and return to the same position as shown in Fig. 10(b). /, Fig. 10(e) shows the magnetic moment vectors C and D at time 丨5 when the IDG is also cut. The magnetic moment vectors C and D are successively rotated counterclockwise and returned to the same position as shown in Fig. 10(a). Therefore, after the sequence of ID0 and Iw shown in FIG. 9, the magnetic moment vector c of the ferromagnetic layer 432 of the memory unit 401 and the magnetic moment vector D of the ferromagnetic layer 434 are maintained at the same position, and the memory The ceremony of the unit has not changed. As with the embodiment of the present invention, the magnetic moment vector A of the ferromagnetic layer 428 and the magnetic moment vector b of the ferromagnetic layer 426 can be adjusted to produce an edge (or spur) of the magnetic field bias Hbias in the free magnetic domain. The magnetic field is such that only the weak magnetic fields Hw and Hd are required to be binary-triggered to the memory unit side. 11 illustrates the necessary magnetic field Hw and % for the two-state trigger write to the memory early bit 404 when there is no magnetic field bias, and the magnetic field bias H_ when the free magnetic region is in the direction of the positive axis E+. It is used for the two-state triggering of the necessary magnetic fields H, w and % of the fresh memory 4G4. When the write bit 404 requires a weaker magnetic field ~ and %, a lower word can be applied: a Can IW and a lower digit current of 1 〇. Therefore, the magnetic field bias Is results in a reduced power cleanup. / ^3· 27 1330844 P51950188TW 23746twf.doc/n Consistent with the third embodiment of the present invention, it is provided to operate the MRAM device when the 5 memory unit 404 of the MRAM device 400 is subjected to a magnetic field bias. Kind of method. The same sequence ' of signals as illustrated in Figure 5 can be applied to read the MRAM device 400. However, in order to write to the MRAM device 400, -/ when the memory cell 402 is under a magnetic field bias, a series of write currents having two bidirectional current-pulses (i.e., current pulses having a negative portion and a positive portion) are applied. Write to the memory cell 4〇2 in a two-state trigger. For example, FIG. 12 shows that the memory unit 4〇4丨 and 4〇42 of the memory cell 402 are in a magnetic field bias in the direction of the positive easy axis E+ of the free magnetic region 422, and the character is written. The line WWL0, the write bit line WBL〇, and the write bit line WBL1 are used to write data to a series of signals in the memory cell. As shown in FIG. 12, the clock signal CLK rises at time t〇. Between the time t 〇 and the time t1, the logic circuit (not shown) reads the data of the memory cell celestial 丨 'will remember the data in the cell 402! and the data to be written into the memory cell 4 〇 2 ι Compare and determine if one or both of the memory units 4〇4ι and 4042 should be toggled. It is assumed that the data of the ► bit to be written to the memory unit 4〇7 is the same as the data of the bit stored in the memory unit 4〇4], and is to be written to the bit in the memory unit 4042. The data is different from the data stored in the memory unit 4042. Therefore, the two-state trigger memory unit 4042, while the two-state trigger memory unit 404!. Then 'at time t2' provides a negative sub-current Iwi via write word line WWL0; at time h 'provides positive digital current iD1 via write bit line WBL1; at time u, Iwi is turned off, and The positive word power %Iw2 is supplied via the write word line WWL0; at time ", the cut is made, and 28 1330844 P51950188TW 23746twf.doc/n provides the negative bit current Id2 via the write bit line WBL1; At t6, 'IW2 is cut off; and at time tv, 1〇2 is also cut off. The clock number clk falls at time ts. After t〇 to ts, the current is not supplied via the write bit line WBL0. Figure 13 (a) to Figure 13 (g) illustrate the process of writing the memory unit 4402 of ^, Idi, Iw2 and Id2 shown in Figure 12. Figure π (a) to Figure 13 (g) The magnetic moment vectors c and D in the following description refer to the magnetic moment vectors C and D of the memory unit 4042. Figure 13 (a) shows that when the word current or digital current is not supplied, at times t0 and & The magnetic moment vector c of the ferromagnetic layer 432 and the magnetic moment vector d of the ferromagnetic layer 434. Due to the HBIAS, the magnetic moment vectors c and D are reversible and respectively rotated Or cross the negative y-axis and the axis. = Figure 13 (b) shows that at time t; 2, the negative word current Iwi is supplied, resulting in a real f-axis in the negative X-axis direction (ie, and also ... 135S) The pre-magnetic field HW1. In other words, HW1 is partially offset by Hbias. Therefore, the magnetic moment vectors C and D are respectively close to the easy axes E and E+. Figure 13 (c) shows that when Im is provided to induce substantially the positive y-axis The magnetic moment vector c and ρ at time h in the direction of the digital magnetic field Hdi. Therefore, the magnetic moment vectors C and D rotate clockwise. The magnetic moment vector c can cross the negative X axis, and the magnetic moment vector D approaches the positive Figure 13 (d) shows the magnetic moment vector at time t4 when Iw2 is turned off and Iw2 is turned on to induce a magnetic field 幵 from 2 in the substantially axial direction, and therefore, the magnetic moment vectors c and D continue Rotate clockwise. The moment C is close to the positive y axis, and the magnetic moment vector D can cross the positive axis. 29 1330844 P51950188TW 23746twf.doc/n Figure 13 (e) shows when I cut off and picks up The digital magnetic field HD2k induced on the negative y-axis and the magnetic moment vector c and the magnetic moment vector C at time t5 are obtained by the 士士士士士+ + ^丄m« D continues to rotate clockwise. The magnetic is over the positive y-axis, and the magnetic moment vector D is close to the negative 7 axis. The more and the moment, the magnetic moment vector C = D at time t6 continues to rotate clockwise. The current magnetic moment vector ί can be crossed over the negative y-axis and close to Fig. 13 (g) shows the magnetic moment vector c = D at time t? when lD2 is cut. Because before time t7, the magnetic moment vector c is closer to the positive easy axis H to "„ vector D is closer to the negative easy axis, so the magnetic moment is in the position close to the positive easy pumping E+ direction, and the magnetic moment vector D is stabilized in the position close to the E_ direction of the negative easy axis. Therefore, after the sequence of the word electric current and the current current shown in Fig. 12, the magnetic moment vector C of the ferromagnetic | 432 and the magnetic moment of the ferromagnetic layer 4M The vector \ has changed position. In particular, the magnetic moment vector C of the ferromagnetic layer has been rotated from a position close to the negative axis to a position close to the positive axis. Therefore, if the memory unit 4042 has previously been a bit The element "〇, stored in it" then the sequence of word current and digital current shown in Figure 12 has written a "1" of a ^ to the memory unit 4〇42; if the memory unit is 4〇 42 A bit "丨" has been previously stored therein, and the sequence of word currents and digit currents shown in FIG. 12 has written a one-bit "〇" into the memory unit 4042. ° Similarly, when a two-state trigger memory unit of 4〇41 and 4〇42 is required,

30 1330844 P51950188TW 23746twf.doc/n 同%經由記憶體單位4〇4i與4〇42之寫入位元線WBL而提 - 供數位電流以同時寫入記憶體單位404〗以及4042。圖14 .; 繪不寫入字兀線WWL0、寫入位元線WBL0以及寫入位元 ' ,WBL1上的用於雙態觸發寫入記憶體單位綱1與記憶體 - 單位4042之一連串信號。一般熟習此項技術者現應易瞭解 雙態觸發寫入記憶體單位4〇41與4〇42之過程,且因此在 本文中不詳細描述此過程。 • 在圖12中’將數位電流Im以及ID2僅提供至待雙態 觸發之έ己憶體單位4〇42。然而,與本發明之第三實施例一 致’亦可將數位電流提供至並不待雙態觸發之記憶體單位 404。圖15繪不寫入字元線WWL〇、寫入位元線WBL〇以 及寫入位兀線WBL1上的用於雙態觸發寫入僅記憶體單位 4042之一連串信號。特定言之,在時間t2處,經由寫入字 元線WWLG而提供負字電流^ ;在時間^處,分別經由 =入位兀線WBL0以及寫入位元線WBL丨而提供正數位電 流1DQ ^及正數位電流ID1 ;在時間u處,切斷IW1,且經 由寫入字疋線WWL0而提供正字電流^2 ;在時間t5處, _ 切=Idi’且經由寫入位元線WBL1而提供負數位電流ID2; 在日寸間砣處,切斷W2;且在時間〖7處,亦皆切斷1〇0與1〇2。 時脈信號CLK在時間t8處下降。 _ 一圖Η中所示之一連串信號比較,當施加圖15中所 ^之一連串信號時’記憶體單位4〇42經受相同信號且將雙 ^觸發。然而,記憶體單位4〇4ι經受不同信號序列且將不 ㈢雙態觸發。圖16 (a)至圖16⑷說明經過圖15中所 1330844 P51950188TW 23746twf.doc/n 不之信號序列的記憶體單位40\之狀態。圖16 (a)至圖 16 (e)的下文之描述中的磁矩向量c以及D指記憶體單 位404]之磁矩向量C以及D。 圖16 (a)繪不當未提供字電流或數位電流時,在時 間t〇以及處的鐵磁性層432之磁矩向量c以及鐵磁性層 434之磁矩向畺D。由於hbias,磁矩向量c以及D可逆 時針旋轉且分別接近或越過負x轴以及正χ轴。 如圖16 (b)繪示,在時間t2處,提供負字電流IW1, 產生實質上在負X軸方向上(亦即,與H函成n5Q之角 度)的字磁場HWi。換言之,Hwi部分地偏移Hbias。因此, 磁矩向量C以及D順時針旋轉且分別接近或越過易軸民 以及E+。 圖16(c)繪示當提供Id〇從而誘發實質上在正y軸方 向上之數位磁場HD〇時,在時間t3處的磁矩向量 C以及D。 因此磁矩向ic以及D順時針旋轉。磁矩向量匚可越 過負X軸,且磁矩向量D接近正乂軸。 圖丨6 (d)繪示當切斷Iwi且接通Iw2從而誘發在正X 轴方向上之字磁場Hwz時,在時間U處的磁矩向量c以及 因此,磁矩向量C以及D接續再順時針旋轉。磁矩向 量c接近正y軸,且磁矩向量D可越過正乂軸。 圖16(e)繪示當切斷Iw2時在時間k處之磁矩向量c 以及D磁矩向量c以及D逆時針旋轉。磁矩向量c朝向 負X軸旋轉回,且磁矩向量D朝向正X轴旋轉回並可越過 正X軸。因此,磁矩向量c更靠近負易軸£,且磁矩向量 32 Hr 133084430 1330844 P51950188TW 23746twf.doc/n The same % is provided via the write bit line WBL of the memory unit 4〇4i and 4〇42 - for the digital current to be simultaneously written to the memory unit 404 and 4042. Figure 14: Drawing a word line WWL0, writing a bit line WBL0, and writing a bit ', a pair of signals for writing a memory unit unit 1 and a memory unit 4042 on the WBL1 . It is now well known to those skilled in the art to understand the process of writing a memory unit 4 〇 41 and 4 〇 42 in a binary state, and therefore this process is not described in detail herein. • In Figure 12, the digital current Im and ID2 are only provided to the έ 忆 体 unit 4 〇 42 to be toggled. However, consistent with the third embodiment of the present invention, the digital current can also be supplied to the memory unit 404 which is not to be toggled. Fig. 15 depicts a series of signals for writing a memory-only unit 4042 for a two-state trigger write on the write bit line WWL, the write bit line WBL, and the write bit line WBL1. Specifically, at time t2, the negative word current ^ is supplied via the write word line WWLG; at time ^, the positive bit current 1DQ is supplied via the =in 兀 line WBL0 and the write bit line WBL 分别, respectively. ^ and positive digit current ID1; at time u, IW1 is turned off, and the positive word current ^2 is supplied via the write word line WWL0; at time t5, _cut = Idi' and via the write bit line WBL1 Negative digit current ID2 is provided; W2 is cut off between day and day; and at time 7 is also cut off 1〇0 and 1〇2. The clock signal CLK falls at time t8. A series of signal comparisons shown in Fig. 15, when a series of signals in Fig. 15 is applied, the memory unit 4〇42 is subjected to the same signal and will be double-triggered. However, the memory unit 4〇4ι is subject to different signal sequences and will not (three) toggle. Fig. 16 (a) to Fig. 16 (4) illustrate the state of the memory unit 40\ which passes through the signal sequence of 1330844 P51950188TW 23746twf.doc/n in Fig. 15. The magnetic moment vectors c and D in the following description of Figs. 16(a) to 16(e) refer to the magnetic moment vectors C and D of the memory unit 404]. Fig. 16(a) depicts the magnetic moment vector c of the ferromagnetic layer 432 at the time t〇 and the magnetic moment 畺D of the ferromagnetic layer 434 when the word current or the digital current is not provided. Due to hbias, the magnetic moment vectors c and D can be rotated counterclockwise and approach or cross the negative x-axis and the positive x-axis, respectively. As shown in Fig. 16(b), at time t2, the negative word current IW1 is supplied, resulting in a word magnetic field HWi substantially in the negative X-axis direction (i.e., at an angle of n5Q from the H function). In other words, Hwi is partially offset by Hbias. Therefore, the magnetic moment vectors C and D rotate clockwise and approach or pass the easy axis and E+, respectively. Fig. 16(c) shows magnetic moment vectors C and D at time t3 when Id〇 is supplied to induce a digital magnetic field HD〇 substantially in the positive y-axis direction. Therefore, the magnetic moment rotates clockwise to ic and D. The magnetic moment vector 匚 can cross the negative X axis, and the magnetic moment vector D is close to the positive 乂 axis. Figure 6 (d) shows the magnetic moment vector c at time U and thus the magnetic moment vectors C and D when the Iwi is turned off and Iw2 is turned on to induce the word magnetic field Hwz in the positive X-axis direction. clockwise rotation. The magnetic moment vector c is close to the positive y-axis and the magnetic moment vector D can cross the positive 乂 axis. Fig. 16(e) shows the magnetic moment vector c and the D moment vector c and D counterclockwise rotation at time k when Iw2 is cut. The magnetic moment vector c is rotated back toward the negative X-axis, and the magnetic moment vector D is rotated back toward the positive X-axis and can cross the positive X-axis. Therefore, the magnetic moment vector c is closer to the negative easy axis, and the magnetic moment vector 32 Hr 1330844

P51950188TW 23746twf.doc/n D更靠近正易轴E+。 在時間ty處,切斷ID〇.因為在時間h之前,礤矩向量 C更靠近負易轴E_方向,且磁矩向量D更靠近正易軸 方向,所以磁矩向量C以及D返回至如圖16 (a)中所示+ 的其各別原始位置。 因此,在如圖15中所示2Iwi、Id〇以及Iwz的序列之 後,記憶體單位404,的鐵磁性層432之磁矩向量c以及鐵 磁性層434之磁矩向量D保持於相同位置處,且記憶體單 位404!尚未改變狀態。 & 如本發明之實施例,可同時選擇記憶體胞4〇2之一個 以上。舉例而言,可藉由啟動一讀取字元線rwl以及 個讀取位元線RBL來讀取記憶體胞4〇2之一個以上;可 由啟動-寫人字元線WWL以及多個寫人位场職匕^ 寫入記憶體胞402之-個以上。$ 了讀取所選擇之 將諸如圖5中所示之信號的適當之信號同時二 =所有的所選擇之記憶體胞術。為了寫入 體胞術,將諸如圖6、圖8、圖9、圖12、圖14释=己: 『因的為適在當之:號同時施加至所有的所選擇 G體胞402。因為在-時脈週期中 ;:兩個位元之資料或將兩個位元之資料寫 -胞:02巾’所?在每—時脈週期内自裝置· 之记,L體胞402讀取或寫入至MRAM ' 中的貝狀位兀的數目為啊 之數目的兩倍°因此’與本發明之實_-致乍 33 1330844 P51950188TW 23746twf.doc/n MRAM裝置400的方法不僅提供MRAM 4〇〇之高讀取頻 ' I而且提供MRAM400之高寫入頻寬。 5 如本發明之實施例’ MRAM 400亦包含用於使得高讀 • 取以及寫入頻寬可用於存取MRAM 400之外部裝置的適 i 當之介面。 記憶體裝置經由包含許多資料線以及控制信號線之資 料匯w排而與外部裝置進行通信。資料匯流排中之資料線 • 的數目等於記憶體裝置可同時提供或接收的資料之位元的 數目,此數目亦被稱作字大小。因為習知記憶體裝置之每 一。己憶體胞儲存僅一位元之資料,所以習知記憶體裝置之 ,大小等於可同時選擇之記憶體胞的數目。舉例而言,若 =憶體^置使8個記憶體胞經同時選擇,則記憶體裝置連 至包含8個資料線之資料匯流排以便平行發送且接收8 個位元之資料。 7、、、:而如上文所論述,如本發明之實施例的MRam • 具有高讀取頻寬以及高寫人頻寬。在-態樣中, i於= MRAM 400時,MRAM裝置400可連接至包含 ..時選擇之記憶體胞搬的數目之兩倍的許多資料線 :·匯流排:舉例而言,若同時選擇8個記憶體胞402, xu ^ 3 16個貧料線之資料匯流排連接至MRAM裝置400 之字同時,送16個位元之資料。因此,MRAM裝置400 署小疋使8個記憶體胞經同時選擇的習知MRAM裳 直之子大小的兩倍。 、 在另悲樣中,當正存取MRAM 400時,MRAM裝 34 1330844 P51950188TW 23746twf.doc/n 看圖17,當移位暫存器452iCL信號自“〇”上升至” 時,將移位暫存器452之輸出q〇設定為D〇 ;當移位暫存 器454之CL信號自“〇,,上升至^,,時,將移位暫存器 45^之輸出Q1設定為D1。將時脈信號CLK提供至移位暫 f器=52作為其CL信號。將為藉由反相器458而反相之 時脈信號CLK的肢相之時脈信號板提供絲位暫存器 454作為其CL信號。多工器456接收Q〇以及⑴做為^ 入’且根據選擇(SL)信號而輸出Q0以及Q1之一者。 :3;!S“L為“1,,時,多工器456之輸出卿T為 CLK^供至夕〇日寺輸出⑵作為D〇UT。將0^脈信號 CLK扣供至多工器456作為其SL信號。 而將=個二域,圖17巾所7^ 1/0電路的輸出部分450 而=兩個位凡之貧料排人件列的過程之兩個示範 時^ f第—週期做為實例考慮。當 日嫌域CLK在第—週_始時上料,移田 將DO移出做為輸出Q〇 - =週移出做為輪·因此, …號在:相 1且在第-職之後铜期為τ =週期為 之前半週期的期間輸出Q0做為D〇UT,=::週期 後半週期的期間輸出Qi做為D0UT *週期之 期内串列輪出雨侗/ - 因此,在一時脈週 增出兩個位兀之資物以及D1。在第二週期= 36 1330844 P51950188TW 23746twf.doc/a 及隨後之時脈週期中重複相同過程。 如一般熟習此項技術者可瞭解,MRAM 400(^0 路的輸入部分可類似地經建構以使能夠—時脈週期内串列 傳送的兩個位元之㈣並列化。因此,此轉树示於 形中或描述於本文中。 藉由將兩個位元之資料排入佇列以便在一時脈週期中 串列傳輸且將在一時脈週期内接收的兩個位元之資料重排 以便並列傳輸,如本發明之實施例的MRAM裝置4⑻之 I/O電路可以達到每線資料傳送速率是裝置的 每線資料速率之兩倍。 ~ 藉由增大字的大小或增大每線資料傳送速率,可全面 利用如本發明之實施例的MRAM裝置4〇〇之高讀取以及 寫入頻寬。 圖4A繪示MRAM裝置400之每一記憶體胞4〇2包含 兩個δ己憶體單位404。然而,與本發明之實施例一致, MRAM裝置之每一記憶體胞可包含兩個以上記憶體單 位。圖19繪示與本發明之第四實施例一致的MRAM裝置 500。MRAM裝置500包含記憶體胞502之陣列,繪示記 憶體胞之四者502丨、5022、5023、5024。每一記憶體胞502 對應於讀取位元線RBL、讀取字元線RWL、寫入字元線 WWL以及三個寫入位元線wbL。圖19繪示每一記憶體 胞502包含並聯連接於電晶體506與對應讀取位元線rbl 之間的三個記憶體單位504(亦即,記憶體單位504^ 5042-以及5043)’其中電晶體506之閘極連接至對應讀取字元 37 1330844 P51950188TW 23746twf.doc/n 線RWL。每一記憶體單位504對應於三個寫入位元線WBL 之一者。如圖19繪示,記憶體胞502〗以及5022對應於第 一讀取位元線RBL0、第一寫入位元線WBL0、第二寫入 位元線WBL1以及第三寫入位元線WBL2 ;記憶體胞5023 以及5024對應於第二讀取位元線RBL1、第四寫入位元線 WBL3、第五寫入位元線WBL4以及第六寫入位元線 WBL5 ;記憶體胞502〗以及5023對應於第一讀取字元線 RWL0以及第一寫入字元線WWL0 ;且記憶體胞5〇22以及 5024對應於第二讀取字元線RWL1以及第二寫入字元線 WWL1。感測放大器508經由選擇電晶體510而輕接至每 一讀取位元線RBL以偵測通過記憶體胞5〇2之一所選擇者 的電流。 如本發明之第四實施例,MRAM裝置500之每一記憶 體胞502中的記憶體單位504^5042以及5043經製造以使 得記憶體胞502之每一者的電阻具有對應於對應記憶體胞 502之不同狀態的不同值。換言之,8個並聯電阻 Rlmax//R2max//R3max、Rimax//R2max//R3min、Rimax//R2min//R3max、 Rlmax"R2min"R3min、Rimin//R2max"R3max、Rimin//R2max"R3min、 Rlmin//R2inin//R3max、R]min//R2min//R3min 皆具有不同值,其中 Rlmax為記憶體單位504!之高電阻,Rlmin為記憶體單位5〇4! 之低電阻’ R2max為記憶體單位5042之高電阻,R2min為記 憶體單位5042之低電阻,R3max為記憶體單位5〇43之高電 阻’且R3min為記憶體單位5〇43之低電阻。因此,三個位 元之資料可儲存於每一記憶體胞502中且可同時讀出。特 38 1330844 1330844P51950188TW 23746twf.doc/n D is closer to the positive axis E+. At time ty, the ID 切断 is cut off. Since the moment vector C is closer to the negative easy axis E_ direction before the time h, and the magnetic moment vector D is closer to the positive easy axis direction, the magnetic moment vectors C and D are returned to The respective original positions of + as shown in Figure 16 (a). Therefore, after the sequence of 2Iwi, Id〇, and Iwz as shown in FIG. 15, the magnetic moment vector c of the ferromagnetic layer 432 of the memory unit 404, and the magnetic moment vector D of the ferromagnetic layer 434 are maintained at the same position, And the memory unit 404! has not changed state. & As an embodiment of the present invention, one or more of the memory cells 4 〇 2 can be simultaneously selected. For example, one or more of the memory cells 4 〇 2 can be read by starting a read word line rw1 and a read bit line RBL; the start-write character line WWL and the plurality of writers can be read. The field job ^ is written to more than one memory cell 402. $ Reads the selected signal, such as the signal shown in Figure 5, at the same time = all selected memory cells. In order to write to the somatic technique, such as Fig. 6, Fig. 8, Fig. 9, Fig. 12, Fig. 14 will be interpreted as follows: "Because it is suitable: the number is simultaneously applied to all selected G cells 402. Because in the -clock cycle;: two bits of data or the data of two bits - cell: 02 towel? In the case of the self-device in each clock cycle, the number of shell-shaped ridges read or written by the L-body 402 into the MRAM ' is twice the number of ah. Therefore, 'the actual invention _-乍 33 1330844 P51950188TW 23746twf.doc/n The method of the MRAM device 400 not only provides a high read frequency 'I of MRAM 4' but also provides a high write bandwidth of the MRAM 400. 5 MRAM 400, as in the embodiment of the present invention, also includes an appropriate interface for enabling high read and write bandwidths to be used to access external devices of MRAM 400. The memory device communicates with the external device via a data sink comprising a plurality of data lines and control signal lines. The number of data lines in the data bus is equal to the number of bits of data that the memory device can simultaneously provide or receive. This number is also referred to as the word size. Because of each of the conventional memory devices. It has been recalled that the somatic cell stores only one bit of data, so the size of the conventional memory device is equal to the number of memory cells that can be selected at the same time. For example, if the = memory is set so that the 8 memory cells are simultaneously selected, the memory device is connected to the data bus containing 8 data lines for parallel transmission and receiving 8 bits of data. 7, . . . , and as discussed above, MRam as in embodiments of the present invention has a high read bandwidth and a high write bandwidth. In the -state, when i is = MRAM 400, the MRAM device 400 can be connected to a number of data lines that are twice the number of memory banks selected when:: Busbars: for example, if simultaneously selected Eight memory cells 402, xu ^ 3 16 lean line data bus is connected to the MRAM device 400 and send 16 bits of data. As a result, the MRAM device 400 has doubled the size of the 8 memory cells through the simultaneous selection of the conventional MRAM. In another sad case, when accessing the MRAM 400, the MRAM is loaded with 34 1330844 P51950188TW 23746twf.doc/n. See Figure 17, when the shift register 452iCL signal rises from "〇" to ", it will shift. The output q〇 of the register 452 is set to D〇; when the CL signal of the shift register 454 rises from “〇, to ^, the output Q1 of the shift register 45^ is set to D1. The clock signal CLK is supplied to the shift register = 52 as its CL signal. A clock register 454 for the limb phase of the clock signal CLK which is inverted by the inverter 458 is supplied as its CL signal. The multiplexer 456 receives Q〇 and (1) acts as 'in' and outputs one of Q0 and Q1 in accordance with the selection (SL) signal. :3;!S "L is "1,", when the output of the multiplexer 456 is CLK^ is supplied to the Xixiji Temple output (2) as D〇UT. The 0 pulse signal CLK is supplied to the multiplexer 456 as its SL signal. In the case of = two fields, the output portion 450 of the 7^1/0 circuit of Fig. 17 and the two demonstrations of the two rows of the poor material row are considered as examples. When the suspicion domain CLK is loaded at the beginning of the first week, the shifting field moves the DO out as the output Q〇-=week shift out as the wheel. Therefore, the ... number is in phase 1 and the copper period is τ after the first job. = period is the period of the previous half cycle output Q0 as D〇UT, =:: period during the second half cycle of the cycle output Qi as D0UT * period of the cycle is raining / / therefore, increase in one clock cycle Two squatting assets and D1. The same process is repeated in the second cycle = 36 1330844 P51950188TW 23746twf.doc/a and subsequent clock cycles. As will be appreciated by those skilled in the art, the MRAM 400 (the input portion of the ^0 circuit can be similarly constructed to enable - parallelization of the two bits of the serial transmission in the clock cycle (4). Therefore, this transformation tree Shown in the text or described herein by rearranging the data of two bits into a queue to rearrange the transmissions in one clock cycle and rearrange the data of the two bits received in one clock cycle so that Parallel transmission, the I/O circuit of the MRAM device 4 (8) according to the embodiment of the present invention can achieve a data transfer rate per line which is twice the data rate per line of the device. ~ By increasing the size of the word or increasing the data transmission per line The rate can be fully utilized for the high read and write bandwidth of the MRAM device 4 according to an embodiment of the present invention. FIG. 4A illustrates that each memory cell 4〇2 of the MRAM device 400 includes two delta-resonants. Unit 404. However, consistent with embodiments of the present invention, each memory cell of an MRAM device can include more than two memory units. Figure 19 illustrates an MRAM device 500 consistent with a fourth embodiment of the present invention. 500 includes an array of memory cells 502, painted The memory cells are 502 丨, 5022, 5023, 5024. Each memory cell 502 corresponds to a read bit line RBL, a read word line RWL, a write word line WWL, and three write bits. Line wbL. Figure 19 illustrates that each memory cell 502 includes three memory units 504 connected in parallel between the transistor 506 and the corresponding read bit line rbl (i.e., memory units 504^5042- and 5043). Wherein the gate of the transistor 506 is connected to the corresponding read character 37 1330844 P51950188TW 23746twf.doc/n line RWL. Each memory unit 504 corresponds to one of the three write bit lines WBL. It is shown that the memory cells 502 and 5022 correspond to the first read bit line RBL0, the first write bit line WBL0, the second write bit line WBL1, and the third write bit line WBL2; The cells 5023 and 5024 correspond to the second read bit line RBL1, the fourth write bit line WBL3, the fifth write bit line WBL4, and the sixth write bit line WBL5; the memory cells 502 and 5023 correspond to The first read word line RWL0 and the first write word line WWL0; and the memory cells 5〇22 and 5024 correspond to the second read The line RWL1 and the second write word line WWL1. The sense amplifier 508 is lightly connected to each of the read bit lines RBL via the selection transistor 510 to detect the one selected by one of the memory cells 5〇2. Current. As in the fourth embodiment of the present invention, the memory units 504^5042 and 5043 in each memory cell 502 of the MRAM device 500 are fabricated such that the resistance of each of the memory cells 502 has a corresponding memory. Different values for different states of the body cell 502. In other words, 8 parallel resistors Rlmax//R2max//R3max, Rimax//R2max//R3min, Rimax//R2min//R3max, Rlmax"R2min"R3min, Rimin//R2max"R3max, Rimin//R2max"R3min, Rlmin//R2inin//R3max, R]min//R2min//R3min all have different values, where Rlmax is the high resistance of the memory unit 504!, Rlmin is the memory unit 5〇4! The low resistance 'R2max is the memory The high resistance of the body unit 5042, R2min is the low resistance of the memory unit 5042, R3max is the high resistance of the memory unit 5〇43 and R3min is the low resistance of the memory unit 5〇43. Therefore, three bits of data can be stored in each memory cell 502 and can be read simultaneously. Special 38 1330844 1330844

P51950188TW 23746twf.doc/n 別是,感測放大器508將通過所選擇之記憶體胞502的所 偵測之電流與七個中間參考電流值Ref 1〜Ref7比較(Refi 〜Ref7對應於八個並聯電阻之間的參考電阻值),且找到八 個並聯電阻中最靠近所選擇之記憶體胞502的電阻之一 者。一旦找到對應並聯電阻,即確定所選擇之記憶體胞5〇2 之記憶體單位504的狀態且同時輸出三個位元之資料 DO、D1 以及 D2 〇 兴不贫阳之第四實施例一致,記憶體單位5〇4ι、5〇42 以及5043之不同電阻值可藉由(例如)使每一記憶體單位 成形以具有不同實體大小而達成。實體大小可藉由調整當 讀取記憶體胞502時實質上垂直於電流之流動的平面中之 6己憶體單位的橫截面積而達成。舉例而言,記憶體單位綱1 可經製造以料比記憶鮮位5G42大的實體觀面積,且 記憶體單位5042可_造以具有比記單位綱3大的 實體橫截_。實赌截面積愈大,磁電崎低。更特定 言ί ΐ此實财,記龍單位5叫將具有最低磁電阻,P51950188TW 23746twf.doc/n In other words, the sense amplifier 508 compares the detected current through the selected memory cell 502 with seven intermediate reference current values Ref 1 Ref7 (Refi Ref7 corresponds to eight parallel resistors). The reference resistance value between) is found, and one of the eight parallel resistances closest to the selected memory cell 502 is found. Once the corresponding parallel resistance is found, that is, the state of the memory unit 504 of the selected memory cell 5〇2 is determined, and the data of the three bits simultaneously outputting DO, D1, and D2 is the same as the fourth embodiment of the present invention. The different resistance values of the memory units 5〇4ι, 5〇42, and 5043 can be achieved by, for example, shaping each memory unit to have different physical sizes. The size of the entity can be achieved by adjusting the cross-sectional area of the 6 memory units in the plane that is substantially perpendicular to the flow of current when the memory cell 502 is read. For example, the memory unit can be manufactured to have a larger solid area than the memory fresh position 5G42, and the memory unit 5042 can be made to have a larger physical cross-section than the unit. The larger the real gambling cross-sectional area, the lower the magnetic power. More specific ί ΐ 实 实 实 实 实 实 实 实 实 实 记 记 记 记 记 记 记 记 记

s己憶體單位5042將且有齡女诚雪Q 2肝八有#乂大磁電阻,且記憶體單位5〇43 將具有最大磁電阻。 為了寫入所選擇之記憶體胞5〇2, 首先讀取儲存於所選擇之記情體胎⑽㈣路(未圖不) 中的㈣之記憶體單位504 、貝料,且將其與待寫入至記情I#置你山 ^ 骽早位504中之資料比 軚右记憶體早位綱已將與待寫^ 一位亓夕咨也— #朴丄 土甲之貪枓相同的 變或“餘雜觸發,,子」二興二則不執行寫入操作。否則,改 d觸發雜體單位之狀態。若需要雙態觸發所 39 1330844 P51950188TW 23746twf.doc/n 選擇之s己憶體胞502的記憶體單位so#之一個以上者,則 可將寫入電流同時提供至對應寫入字元線以及對應於待雙 態觸發之記憶體單位的寫入位元線。 熱習此項技術者可瞭解關於讀取以及寫入所選擇之記 憶體胞502的程序’且在本文中不詳細描述此等程序。 當在存取MRAM 500時,MRAM裝置5〇〇可被連接 至=料匯流排,其包含有同時選擇之記憶體胞5〇2的數目 之三倍的多條資料線。舉例而言,若同時選擇8個記憶體 胞5〇2,則包含24個資料線之資料匯流排可連接至mram 裝置5〇G讀並顺纽發送24個位元之資料。因此, 裝置5GG之字大小是可關時選擇8個記憶體胞的 習知MRAM裝置之字大小的三倍。 或者,當在存取MRAM 5〇〇時,Mram裝置5⑼可 j至包含等於同時選擇之記憶體胞5()2之數 =線之資^騎。舉例而言,若_響8個記憶體胞 、i貝料匯流排包含僅8條資料線。然而,應规裝 三個位由:線之每-者而每時脈週期傳送 於將路。舉例而言,1/0電路可具有用 佇列的記憶體胞502讀取的三個位元之資料排入 出部分,以使得第一位元在時脈週期之第一個四 之一调,摘輯送,第二位元在時脈週期之第二個四分 之-攝送,且第三位元在時脈週期之第三個四分 至所傳送。I/G電路柯包含料㈣化待寫入 斤、擇之記憶體胞502 $三個位元之資料 1330844 P51950188TW 23746twf.doc/n 兀並列傳送至寫入電路以便同時寫入至所選擇之記愤體胞The sufficiency unit 5042 will have an age-old female Cheng Xue Q 2 liver eight with #乂 large magnetoresistance, and the memory unit 5〇43 will have the maximum magnetoresistance. In order to write the selected memory cell 5〇2, first read the memory unit 504 and the bedding stored in the selected memorandum (10) (four) way (not shown), and write it to be written. Entering the record I# set your mountain ^ 骽 骽 504 504 504 504 504 504 504 504 504 504 504 504 504 504 504 504 504 504 504 504 504 504 504 504 504 504 504 504 504 504 504 504 504 Or "remaining trigger,," "Secondary" does not perform the write operation. Otherwise, change d to trigger the state of the miscellaneous unit. If a two-state trigger is required, 39 1330844 P51950188TW 23746twf.doc/n, if more than one memory unit so# of the memory cell 502 is selected, the write current can be simultaneously supplied to the corresponding write word line and correspondingly The write bit line of the memory unit to be toggled. Those skilled in the art will be aware of procedures for reading and writing selected memory cells 502' and such procedures are not described in detail herein. When the MRAM 500 is accessed, the MRAM device 5 can be connected to the = bus, which contains a plurality of data lines having three times the number of simultaneously selected memory cells 5 〇 2 . For example, if 8 memory cells 5 〇 2 are selected at the same time, the data bus containing 24 data lines can be connected to the mram device 5 〇 G read and send 24 bits of data. Therefore, the size of the device 5GG is three times the size of a conventional MRAM device that selects eight memory cells when it is off. Alternatively, when accessing the MRAM 5, the Mram device 5 (9) may be j to include a number equal to the number of simultaneously selected memory cells 5 () 2 = line. For example, if _ ring 8 memory cells, i shell material bus bar contains only 8 data lines. However, three bits should be installed by: each of the lines and every clock cycle transmitted to the way. For example, the 1/0 circuit may have a data output portion of three bits read by the memory cell 502 of the array so that the first bit is adjusted in the first one of the clock cycles. The second bit is sent in the second quarter of the clock cycle, and the third bit is transmitted in the third quarter of the clock cycle. The I/G circuit contains the material (4) to be written into the battery, selects the memory cell 502 $ three bits of data 1330844 P51950188TW 23746twf.doc/n 兀 is paralleled to the write circuit for simultaneous writing to the selected record Indignation

* 5〇2之記憶體單位504中的輸入部分。因此,雖然MRAM • 500之字大小並未改變,但每線資料傳送速率增至三倍。 - 如本發明之第四實施例,I/C)電路可包括用於此二用 Γ 之任何合適邏輯電路。舉例而言,圖20繪示與本發明之第 四實施例一致的MRAM裝置500之I/O電路的^出部分 550的例子。如圖20繪示,輸出部分55〇包含三個移位暫 .存器552、554以及556,以及多工器558。移位暫存器552、 554以及556分別自感測放大器508接收資料輸出d〇、di 以f D2,且分別在時脈信號(CL)之上升邊緣上輸出相 同寅料作為Q0、Q1以及Q2。提供兩個外部時脈信號clk 1 以及CLK2以產生用於移位暫存器552、554以及556之時 脈信號’其中CLK2之頻率為CLK1之頻率的兩倍。特定 言之,移位暫存器552之時脈信號為AND(CLK1,CLK2), 移位暫存器554之時脈信號為AND(CLK1,沉〇),且移位 暫存益556之時脈信號為aND(clki,CLK2),其中江石以 > 及0^2為分別藉由反相器56〇以及562反相之CLK1以及 CLK2。因此,當AND(CLK1,CLK2)上升時,移位暫存器 552將00移出作為Q0;當AND(CLK1,丽)上升時,移 位暫存器554將D1移出作為Q1;且當AND(涵,CLK2) 上升時,移位暫存器556將D2移出作為Q2。 多工器558接收Q〇、Q1以及Q2作為輸入,且根據 兩個選擇信號SL1以及SL2而輸出Q0、Q1以及Q2之一 者。特別言之’當SL1與SL2皆為丫時,輸出Q〇做 1330844 P51950188TW 23746twf.doc/n 為DOUT ’备SL1為“i”且su為“〇,,時輸出qi做 為DOUT,且當SL1為“〇,’且su為“Γ 做為DOUT。當SL1與SL2皆為“〇,,時 將輸出DOUT設定為浮動。 °° 圖21 s兄明藉由輸出部分55〇而將D〇、以、m排入 仔列的過程之兩個時脈週期,例如第—週期以及第二週 期。熟習此項技術者應可瞭解將三個位元之資料排入仔列* The input portion of the memory unit 504 of 5〇2. Therefore, although the MRAM • 500 word size has not changed, the data transfer rate per line has tripled. - As in the fourth embodiment of the invention, the I/C) circuit may comprise any suitable logic circuit for this dual purpose. For example, FIG. 20 illustrates an example of the output portion 550 of the I/O circuit of the MRAM device 500 in accordance with the fourth embodiment of the present invention. As shown in FIG. 20, the output portion 55A includes three shift registers 552, 554, and 556, and a multiplexer 558. The shift registers 552, 554, and 556 respectively receive the data outputs d〇, di from the sense amplifier 508 at f D2, and output the same data on the rising edges of the clock signal (CL) as Q0, Q1, and Q2, respectively. . Two external clock signals clk 1 and CLK2 are provided to generate a clock signal for shifting registers 552, 554, and 556, where CLK2 is twice as fast as CLK1. Specifically, the clock signal of the shift register 552 is AND (CLK1, CLK2), the clock signal of the shift register 554 is AND (CLK1, sinking), and the time of the temporary storage is 556. The pulse signal is aND (clki, CLK2), wherein the river stone is followed by > and 0^2 by CLK1 and CLK2 which are inverted by inverters 56 and 562, respectively. Therefore, when AND(CLK1, CLK2) rises, shift register 552 shifts 00 out as Q0; when AND(CLK1, MN) rises, shift register 554 shifts D1 out as Q1; and when AND(( When CLK, CLK2) rises, shift register 556 shifts D2 out as Q2. The multiplexer 558 receives Q〇, Q1, and Q2 as inputs, and outputs one of Q0, Q1, and Q2 based on the two selection signals SL1 and SL2. In particular, when both SL1 and SL2 are 丫, the output Q〇 is 1330844. P51950188TW 23746twf.doc/n is DOUT 'slave SL1 is “i” and su is “〇, when output qi is DOUT, and when SL1 It is “〇,” and su is “Γ as DOUT. When both SL1 and SL2 are “〇,, the output DOUT is set to float. °° Figure 21 shows the two clock cycles of the process of dividing D〇, 、, m into the train by the output section 55〇, for example, the first cycle and the second cycle. Those skilled in the art should be able to understand the three-digit data.

的過程,因此在本文中不詳細描述此過程。 MRAM 500 之 I/O 雪 <?女 & & X 、 %路的輸入部分可類似地經建構, 而亦未繪示於圖形中或描述於本文中。 因此如本發明之第四實施例,在 射具有三敝憶料_ MRAM裝置能_增至j 之子大小或以增至二倍之每線資料傳送速率每時脈週期傳 是可同時選擇的記憶體胞之數目之三倍的多個位元資 料。 、The process is therefore not described in detail in this article. The input portion of the MRAM 500 I/O Snow <? Female && X, % Road can be similarly constructed, and is not shown in the figures or described herein. Therefore, according to the fourth embodiment of the present invention, the memory can be simultaneously selected when the number of sub-sequences can be increased by a sub-segmental _ MRAM device can be increased to j or doubled. Multiple bit data of three times the number of body cells. ,

類似地’如本發明之實施例,MRAM裝置可在盆中之 ,一記憶體胞中具有四個或四個以上記憶體單位,;;增大 且可以增大之字大小或增大之每線資料傳送速率 、,至由 > 料匯流排而與外部裝置進行通信。 一本,明之實施例的上文之描述為了便利起見假定,以 方式提供子u或數位電流以使得磁矩向量C以及D在 某:方向上旋轉。然而’應瞭解,磁矩向量C以及D可在 順=與逆時針方向上旋轉。舉例而言,與圖6中所示之 、彳5號對比,且亦與本發明之第二實施例一致,為了 42 1330844 雙態觸發寫入記憶體胞402】之記憶體單位4〇42,可在時間 , t2與時間%之間經由寫入字元線WWL0而提供正字電流Similarly, as in the embodiment of the present invention, the MRAM device can have four or more memory units in a memory cell in the basin;; increase and increase the size of the word or increase each The line data transfer rate is communicated to the external device by the > material bus. One of the above descriptions of the embodiments of the present invention assumes, for convenience, that sub-u or digital currents are provided in a manner such that the magnetic moment vectors C and D rotate in a certain direction. However, it should be understood that the magnetic moment vectors C and D can be rotated in the cis = counterclockwise direction. For example, in contrast to FIG. 6 and FIG. 5, and in accordance with the second embodiment of the present invention, the memory unit 4〇42 of the memory cell 402 is written for the 42 1330844 binary state trigger. The positive word current can be supplied via the write word line WWL0 between time, t2 and time %

Iw ’且可在時間h與時間h之間經由寫入位元線wbli提 - 供正數位電流Id。因此,與圖7 (a)至圖7 (e)中所示之 : 順時針旋轉對照,磁矩向量C以及D將逆時針旋轉。對於 另一實例而言,與圖12中所示之一連串信號對比,且亦與 本發明之第三實施例一致,為了寫入記憶體胞4〇2ι之記,/隐 • 體單位4042,可在時間t2與時間U之間提供負數位電流: 可在時間t4與時間t6之間提供正數位電流’可在時間^與 1間之間提供正字元電流,且可在時間&與時間卜之間 提供負字元電流。因此,與圖13 (a)至圖13 (g) ι^所; 之順時針旋轉對照,磁矩向量C以及D將逆時針旋轉。丁 在上文之描述中,假定易軸E+以及E與χ軸以及 f約45^之角度。然而,應瞭解,易轴不必與χ轴以 轴成特定角度’而是可與X轴或y軸成任何角度。可相應 如本發明之第二實施例,| 以及數位線成任意角度時, 入記憶體單位404,其中赤 • 也L改用於寫入έ己憶體單位4〇4或5〇4之方法。舉例而二 ’當自由磁區之易軸與讀取字元線Iw ' and may be provided between the time h and the time h via the write bit line wbli - for the positive bit current Id. Therefore, as shown in Figs. 7(a) to 7(e): In the clockwise rotation, the magnetic moment vectors C and D will rotate counterclockwise. For another example, compared with a series of signals shown in FIG. 12, and also in accordance with the third embodiment of the present invention, in order to write the memory cell 4〇2ι, / hidden body unit 4042, Negative bit current is provided between time t2 and time U: a positive bit current can be provided between time t4 and time t6' can provide a positive word current between time ^ and 1 and can be in time & Negative word current is provided between. Therefore, in contrast to the clockwise rotation of Figs. 13(a) to 13(g); the magnetic moment vectors C and D will rotate counterclockwise. In the above description, it is assumed that the easy axis E+ and E are at an angle of about 45^ with the χ axis and f. However, it should be understood that the easy axis does not have to be at a particular angle to the axis of the x-axis but may be at any angle to the x or y axis. Correspondingly, according to the second embodiment of the present invention, | and the digit line are at an arbitrary angle, the memory unit 404 is used, wherein the method of writing the •• 也L is used to write the έ 忆 体 unit 4 〇 4 or 5 〇 4 . For example, the 'easy axis and the read word line of the free magnetic area

43 1330844 P51950188TW 23746twf.doc/n 雖然本發明已以較佳實施例揭露如上,然其並 限定本發明,任何熟習此技藝者,在不脫離本發明之^以 和範圍内,當可作些許之更動與潤飾,因此本發明之 範圍當視後附之申請專利範圍所界定者為準。 Ά 【圖式簡單說明】 併入且組成此說明書之部分的隨附圖式說明本發明之 實施例,且連同描述用來解釋本發明之特徵、優點二及原 理。 、43 13 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The embodiments of the present invention are described in the accompanying drawings, and are in the ,

圖1繪示習知MRAM裝置之記憶體胞。 圖2繪示習知高密度MRAM裝置。 圖3A繪示用於讀取圖2中之高密度MRAM裝置之記 憶體胞的一連串信號。 圖3B繪示用於寫入圖2中之高密度MRAM裝置之記 憶體胞的一連串信號。 圖4A繪示依據本發明之第一實施例的MRAM裝置。FIG. 1 illustrates a memory cell of a conventional MRAM device. 2 depicts a conventional high density MRAM device. Figure 3A illustrates a series of signals for reading the memory cells of the high density MRAM device of Figure 2. Figure 3B illustrates a series of signals for writing the memory cells of the high density MRAM device of Figure 2. 4A illustrates an MRAM device in accordance with a first embodiment of the present invention.

圖4B緣示圖4A中所示之MRAM裝置之記憶體單位 的橫截面圖。 圖4C為說明圖4A中所示之厘^河裝置之記憶體單 位中的磁矩的平面圖。 圖5繪示用於讀取圖4A中所示之MRAM裝置之記憶 體胞的一連串信號。 圖6 1會示依據本發明之第二實施例,用於寫入圖4A 中所不之MRAM裝置之記憶體胞的一連串信號。 圖7 (a)至圖7 (e)說明圖6中所示之一連串信號寫 1330844 P51950188TW 23746twf.doc/n 入圖4A申所示之MRAM裝置的記憶體單位的過程。 圖8繪示用於寫入圖4A中所示iMRAM裝置之記憶 體胞的多個記憶體單位的一連串信號。 圖9繪示用於寫入圖4八中所示iMRAM裝置之記憶 體單位的一連串信號。 圖10 (a)至圖10 (e)說明經受圖9中所示之一連串 信號的記憶體單位之狀態。 圖11說明磁場偏壓對用於寫入圖4A中所示之MRAM 裝置之記憶體單位的磁場的效應。 圖12繪示依據本發明之第三實施例,當MRAM裝置 在磁場偏壓下時用於寫入圖4A中所示之MRAM裝置之記 憶體胞的一連串信號。 圖13 (a)至圖13 (g)說明圖12中所示之一連串信 號寫入圖4A中所示之MRAM裝置的記憶體單位的過程。 圖Η繪示用於寫入圖4A中所示之mram裝置之多 個s己憶體早位的一連串信號。 圖15繪示與本發明之第三實施例一致的用於寫入圖 4A中所示之MRAM裝置之記憶體單位的一連串信號。 圖16 (a)至圖16 (e)說明經受圖15中所示之一連 串信號的記憶體單位之狀態。 圖Π繪示圖4A中所示之MRAM裝置之示範性1/〇 電路的部分。 圖18說明藉由圖17中所示之I/O電路之部分所執― 的過程之兩個時脈週期實例。 丁 {:Λ 45 1330844 P51950188TW 23746tw£doc/n 圖19繪不依據本發明之第 ^ 、弟四實施例的MRAM裝置。 圖20繪示圖19中所示之衣夏 分實例 之MRAM裝置之I/O電路的部 圖21說明藉由圖20中所示之1/〇 的過程之兩個示範性時脈週期。 之部分所執行 【主要元件符號說明】 100 : MRAM 裝置 102 :記憶體胞 102】、1〇22 :記憶體單位 104:寫入位元線 106 :寫入字元線 108 :固定磁區 110 :自由磁性區域 112 :穿隧阻障 114、116 .鐵磁性層 118 :反鐵磁性耦接分隔層 120、122 :鐵磁性層 124 :反鐵磁性耦接分隔層 126 :反鐵磁性固定層 128 :緩衝層 130 :底部電極 132、136 :介電層 134 :頂部電極 138 =電晶體 46 1330844 P51950188TW 23746twf.doc/n 140 :感測放大器 200 : MRAM 裝置/MRAM 202、202广2024 :記憶體胞 204 :電晶體Fig. 4B is a cross-sectional view showing the memory unit of the MRAM device shown in Fig. 4A. Fig. 4C is a plan view showing the magnetic moment in the memory unit of the PCT apparatus shown in Fig. 4A. Figure 5 illustrates a series of signals for reading the memory cells of the MRAM device shown in Figure 4A. Figure 6 1 shows a series of signals for writing memory cells of the MRAM device not shown in Figure 4A in accordance with a second embodiment of the present invention. Figures 7(a) through 7(e) illustrate the process of one of the series of signal writes shown in Figure 6 1330844 P51950188TW 23746twf.doc/n into the memory unit of the MRAM device shown in Figure 4A. Figure 8 illustrates a series of signals for writing a plurality of memory cells of a memory cell of the iMRAM device shown in Figure 4A. Figure 9 illustrates a series of signals used to write the memory units of the iMRAM device shown in Figure 48. Fig. 10 (a) to Fig. 10 (e) illustrate the state of the memory unit subjected to the series of signals shown in Fig. 9. Figure 11 illustrates the effect of magnetic field bias on the magnetic field used to write the memory unit of the MRAM device shown in Figure 4A. Figure 12 is a diagram showing a series of signals for writing a memory cell of the MRAM device shown in Figure 4A when the MRAM device is under a magnetic field bias in accordance with a third embodiment of the present invention. Figures 13(a) through 13(g) illustrate the process of writing a series of signals shown in Figure 12 to the memory unit of the MRAM device shown in Figure 4A. The figure shows a series of signals for writing the plurality of s replies of the mram device shown in Fig. 4A. Figure 15 is a diagram showing a series of signals for writing the memory unit of the MRAM device shown in Figure 4A in accordance with a third embodiment of the present invention. 16(a) to 16(e) illustrate the state of the memory unit subjected to the series of signals shown in Fig. 15. The figure depicts a portion of an exemplary 1/〇 circuit of the MRAM device shown in Figure 4A. Figure 18 illustrates an example of two clock cycles of the process performed by the portion of the I/O circuit shown in Figure 17. D: {: Λ 45 1330844 P51950188 TW 23746 tw doc / n Figure 19 depicts an MRAM device not according to the fourth embodiment of the present invention. Figure 20 is a diagram showing the I/O circuit of the MRAM device of the garment-sharing example shown in Figure 19. Figure 21 illustrates two exemplary clock cycles by the process of 1/〇 shown in Figure 20. [Parts of the main component symbol description] 100: MRAM device 102: memory cell 102], 1〇22: memory unit 104: write bit line 106: write word line 108: fixed magnetic area 110: Free magnetic region 112: tunneling barriers 114, 116. Ferromagnetic layer 118: antiferromagnetic coupling spacer layer 120, 122: ferromagnetic layer 124: antiferromagnetic coupling spacer layer 126: antiferromagnetic pinned layer 128: Buffer layer 130: bottom electrode 132, 136: dielectric layer 134: top electrode 138 = transistor 46 1330844 P51950188TW 23746twf.doc / n 140: sense amplifier 200: MRAM device / MRAM 202, 202 wide 2024: memory cell 204 :Crystal

400 : MRAM 裝置/MRAM 402、402广4024 :記憶體胞 4〇4、404!、4042 :記憶體單位 406 :電晶體 408 :感測放大器 410 :選擇電晶體 420 .固定磁區 422 :自由磁區 424 :穿隧阻障 426、428 :鐵磁性層 430 :反鐵磁性耦接分隔層 432、434 :鐵磁性層 436 :反鐵磁性耦接分隔層 438 :反鐵磁性固定層 440 :緩衝層 442 :底部電極 444、448 :介電層 446 :頂部電極 450 :輸出部分 452、454 :移位暫存器 47 1330844 P51950188TW 23746twf.doc/n 456 :多工器 458 :反相器400: MRAM device/MRAM 402, 402 wide 4024: memory cell 4〇4, 404!, 4042: memory unit 406: transistor 408: sense amplifier 410: select transistor 420. fixed magnetic region 422: free magnetic Region 424: tunneling barriers 426, 428: ferromagnetic layer 430: antiferromagnetic coupling spacer layers 432, 434: ferromagnetic layer 436: antiferromagnetic coupling spacer layer 438: antiferromagnetic pinned layer 440: buffer layer 442: bottom electrode 444, 448: dielectric layer 446: top electrode 450: output portion 452, 454: shift register 47 1330844 P51950188TW 23746twf.doc/n 456: multiplexer 458: inverter

500 : MRAM 裝置/MRAM 502、502!、5022、5023、5024 :記憶體胞 504、50^、5042、5043 :記憶體單位 506 電晶體 508 感測放大器 510 選擇電晶體 550 輸出部分 552、554、556 :移位暫存器 558 :多工器 560、562 :反相器500 : MRAM device / MRAM 502, 502!, 5022, 5023, 5024: memory cells 504, 50^, 5042, 5043: memory unit 506 transistor 508 sense amplifier 510 select transistor 550 output portion 552, 554, 556: Shift register 558: multiplexer 560, 562: inverter

4848

Claims (1)

1330844 P51950188TW 23746twf.doc/n 述第三記憶體單位具有一第三橫截面積; 其中所述第一橫截面積以及所述第二橫截面積之每 一者大於所述第三橫截面積,且其中所述第三橫截面積 對應於實質上垂直於一第三讀取電流之平面。1330844 P51950188TW 23746twf.doc/n The third memory unit has a third cross-sectional area; wherein each of the first cross-sectional area and the second cross-sectional area is greater than the third cross-sectional area, And wherein the third cross-sectional area corresponds to a plane substantially perpendicular to a third read current.
TW96115827A 2007-02-16 2007-05-04 High-bandwidth magnetoresistive random access memory devices TWI330844B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/707,100 US7463510B2 (en) 2006-01-20 2007-02-16 High-bandwidth magnetoresistive random access memory devices

Publications (2)

Publication Number Publication Date
TW200836192A TW200836192A (en) 2008-09-01
TWI330844B true TWI330844B (en) 2010-09-21

Family

ID=44839724

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96115827A TWI330844B (en) 2007-02-16 2007-05-04 High-bandwidth magnetoresistive random access memory devices

Country Status (1)

Country Link
TW (1) TWI330844B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733567B (en) * 2019-10-15 2021-07-11 力旺電子股份有限公司 Memory device and memory array

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733567B (en) * 2019-10-15 2021-07-11 力旺電子股份有限公司 Memory device and memory array

Also Published As

Publication number Publication date
TW200836192A (en) 2008-09-01

Similar Documents

Publication Publication Date Title
TWI313457B (en) High-bandwidth magnetoresistive random access memory devices and methods of operation thereof
JP5441881B2 (en) Magnetic memory with magnetic tunnel junction
KR101145690B1 (en) Magnetic random access memory array with free layer locking mechanism
CN101925960B (en) Magnetic Tunnel Junction Device with Separate Read and Write Paths
CN100466093C (en) Magnetoresistive storage device with double-tunnel junction
CN110660420B (en) MRAM memory cell
US8411494B2 (en) Three-dimensional magnetic random access memory with high speed writing
KR100548997B1 (en) Magnetic tunnel junction structures having a laminated free layer and magnetic random access memory cells employing the same
EP2124228B1 (en) Magnetic random access memory with an elliptical junction
US20150311901A1 (en) A nonvolatile magnetic logic device
JP2008546129A (en) High-speed magnetic memory device using spin transfer and magnetic element used therefor
US20120155153A1 (en) Scalable Magnetic Memory Cell With Reduced Write Current
JP2011507243A (en) Magnetic memory device and method with heat-assisted writing procedure
JP2008518439A (en) "Spin transfer type" MRAM with angle-dependent selectivity
JP2008159612A (en) Semiconductor memory device
JP4834403B2 (en) MRAM memory using magnetic writing lines
US20140252438A1 (en) Three-Dimensional Magnetic Random Access Memory With High Speed Writing
JP3788964B2 (en) Magnetic random access memory
RU2573457C2 (en) Multibit cell with synthetic storage layer
US7746686B2 (en) Partitioned random access and read only memory
TWI324770B (en)
US7826254B2 (en) Magnetic storage device and method for producing the same
TWI330844B (en) High-bandwidth magnetoresistive random access memory devices
US20130121068A1 (en) Magnetic memory cell
JP2004311513A (en) Magnetic memory device and its manufacturing method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees