TWI330417B - - Google Patents

Download PDF

Info

Publication number
TWI330417B
TWI330417B TW96115532A TW96115532A TWI330417B TW I330417 B TWI330417 B TW I330417B TW 96115532 A TW96115532 A TW 96115532A TW 96115532 A TW96115532 A TW 96115532A TW I330417 B TWI330417 B TW I330417B
Authority
TW
Taiwan
Prior art keywords
light
die
electrode
substrate
layer
Prior art date
Application number
TW96115532A
Other languages
Chinese (zh)
Other versions
TW200843141A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW96115532A priority Critical patent/TW200843141A/en
Publication of TW200843141A publication Critical patent/TW200843141A/en
Application granted granted Critical
Publication of TWI330417B publication Critical patent/TWI330417B/zh

Links

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

1330417 九、發明說明: 【發明所屬之技術領域】 本發明係關於發光元件結構,尤其是有關於一種採用延 " 伸基板的發光元件結構與製造方法。 【先前技術】 III-V或II-VI族元素化合物半導體材料所構成的發光二 極體(light emitting diode’LED)是一種具各種能隙(bandgap) φ 的發光元件,它所發出之光線由紅外光一直到紫外光,涵蓋 了所有可見光的波段。近年來隨著高亮度氮化鎵(GaN)藍/ 綠光發光二極體的快速發展,像是全彩發光二極體顯示器、 白先發光二極體、及發光二極體交通號誌等,得以實用化, 而其他各種發光二極體的應用也更加普及。 發光二極體元件的基本結構包含P型及N型的半導體元 素化合物磊晶層(epitaxial layer),以及其間的主動層(active ^ layer)(或稱為發光層)。發光二極趙元件的發光效率高低係 取決於主動層的内部量子效率(internal quantum efficiency) ’ 以及該元件的光取出效率(light extraction efficiency)。增加内 部量子效率的方法’主要是改善主動層的長晶品質及其蠢晶 層額的結構設計,而增加光取出效率的關鍵,則在於減少主 動層所發出的光在發光二極體内部全反射、吸收··等等所造成 的能量損失。 目前一般氮化鎵發光二極體元件的正負電極係成型於元 5 1330417 件的同一面。由於正負電極會遮敝光線(因此會降低光取出 效率),所以氮化鎵發光二極體目前常採用覆晶式(flip-chip) 的結構。第la圖所示係習知覆晶式發光二極體結構之剖面示 意圈。如圖所示,晶粒100的正負電極(未圖示)是向下面 對不透明的基板106和電路板110,然後以凸塊(bump) 102 和銲墊104連接,再由銲墊104以金/鋁導線108和電路板110 連接。一般還會另外在朝向基板106的晶粒100底面鍍上反 • 射層(未圖示),以將向下的光線反射朝上射出。採用覆晶式 結構的缺點是金/鋁導線108脆弱易斷,容易在製程及使用過 程中斷裂,造成發光二極體元件的失效。 發光二極體另一傳統的結構方式為表面黏著式的結構, 這種結構方式又可分為支架型與電路板型二種。支架型是利 用金屬支架與耐高溫塑膠材料射出成型,作為發光二極體晶 粒固定的基座,而電路板型則是以複合材料電路板作為發光 • 二極體晶粒固定的基座,隨後再進行打線、封膠等動作。第 lb圖所示係習知電路板型發光二極體結構之剖面示意圈。如 圖所示,為了將向下的光線反射朝上射出,晶粒100是設置 於壁面具有金屬電極112與反射層114的凹槽内。支架型與 電路板型的共同缺點是:不耐高溫,特別是發光二極體元件 與其他電路板線路接合時需過高溫爐(約250-300°C),導致元 件容易產生異常不良現象;另外,散熱性不佳,元件在運作 6 時通常會隨著熱量的累積(尤其是高功率的發光二極體),發 生發光效率跟品質的下降;同時,元件微小化時其反射凹槽 基本上在傳統製程中是很難製作的。 【發明内容】 因此,本發明提出一種實用可行的發光元件結構與製造 方法,來製備高效率、散熱性佳的發光元件。 本發明適用於半導體之發光元件(例如發光二極體),其 主要特徵係將半導體發光元件設置於一延伸基板上,然後將 半導體發光元件的電極重新配置於較大之延伸基板上。本發 明除了製程相當簡單,極具工業價值外,本發明所提出的發 光元件結構還具有以下優點: (1) 有效的避免大面積電極遮蔽光線,將半導體發光元件 的發光面積有效的裸露出來,提高其光取出效率。 (2) 將原先較小的散熱面積擴大到新的延伸基板上,大幅 提昇散熱效果,有效的延長其使用壽命。 (3) 本發明利用電極重新配置,有效的增加發光面積,故 可以用較小的半導體發光元件得到與原來較大面積半導體發 光元件同樣的發光效果,大幅降低生產的成本。 茲配合所附圖示、實施例之詳細說明及申請專利範圍, 將上述及本發明之其他目的與優點詳述於後。然而,當可了 解所附圖示純係為解說本發明之精神而設,不當視為本發明 範疇之定義。有關本發明範疇之定義,請參照所附之申請專 利範圍。 【實施方式】 請注意到,本發明適用於半導體之發光元件,例如發光 二極體或是半導體雷射等,但為了簡化起見,以下說明主要 是以發光二極體為例。第2a〜2c圖所示係本發明第一實施例 之發光元件結構之透視、剖面、與上視示意圈。本實施例所 適用的發光二極體晶粒1其p-n-電極係位於晶粒的上下兩 面、且所發射的光線係可從正反二面透出者。這樣的發光二 極體晶粒1通常是採用透明、導電性的二極體基板 (substrate),如果發光二極體晶粒1是採用不透明、或是非 導電性的二極體基板,發光二極體晶粒1需以化學蝕刻或機 械研磨或雷射掃瞄方式去除基板,使發光二極體晶粒1的磊 晶層露出。請注意到,本發明對於發光二極體晶粒1 (或是 其他類似的發光元件)所採用的技術(例如包括各種現存習 知的或未來可能的、如以III-V族及II-VI族的半導體發光技 術)、製程、與形狀並不特別設限。 本發明接著需提供一導電性的延伸基板2,延伸基板2 的材質可以是矽、玻璃、碳化矽、砷化鎵、氮化鎵/鋁、藍寶 石、氧化鈹等化合物晶體、或是金屬、或是具有鑽石/碳化矽 膜之晶圓等,延伸基板2本身可具導電性、或是其一表面設 置有導電層而延伸基板2該表面的面積應適當的大於晶粒 的面積此外在延伸基板2的適當位置處,預先設置有導 電性的黏接層3。 如圖所示,本發明接著使用固晶設備,將晶粒1正面朝 下,固著於預先製作好的黏接層3上。本發明也可以延伸基 板2製作成大片晶圓’ ‘然後將多顆晶粒1固接在晶圓上排列 整齊,前後左右距離一致。 接下來本發明以半導體鑛膜'黃光微蝕刻等技術製作 絕緣層4。絕緣層4是涵蓋晶粒1朝上的反面的-部分,然 後沿晶粒1 i邊表面向下延伸,最後再沿著延伸基板2的 上表面延伸一適當範圍。 本發月接者再製作晶粒1的電極,其中的第一電極5是 以金屬薄膜與晶粒1朝上的反面、未被絕緣層4覆蓋的部分 接合,然後沿著絕緣層4 一直延伸的延伸基板2上。請注意 第-電極5之範圍’除了與晶粒丨接合的部分外,都在絕緣 層4的範圍内。另外的第二電極6,因為延伸基板2的導電 性則疋直接製作在延伸基板2的上表面上的適當位置處。另 外也請注意到,本發明在沒有犧牲發光二極體晶粒丨的發光 面積下,大幅增加了電極的面積,除了可以承載更大電流外, 連同增大的延伸基板2,散熱的效果可以大幅的提升。 如則所述,若是將延伸基板2製作成大片晶圓,然後將 1330417 多顆晶粒1固接在晶圓上的話,則在完成前述每個晶粒1的 第一電極5、第二電極6後,可接著將這些晶粒1予以切割 分離。 接下來,本發明就可以採用習知的封裝作法,例如在電 極5、6上製作焊接墊、然後再進行打線、以環氧樹脂塑模、 切割(如果有需要的話)而完成晶粒1的製備。這些習知的 製程在此就不贅述。 # 第3a〜3c圖所示係本發明第二實施例之發光二極體結構 之透視、剖面、與上視示意圈。其與第2a〜2c圖所示的第一 實施例結構相同,差別只在本實施例的第一電極5、第二電 極6設置有垂直貫通電極5、6與延伸基板2的穿孔(via)7以 便於與其他的電路板建立電氣連結。其施作的過程也和前一 實施例幾乎完全一樣,不過在第一電極5、第二電極6製備 完成前,先利用鑽孔設備完成鑽孔7,再進行前述其他的步 籲 驟。 第4a〜4c圖所示係本發明第三實施例之發光二極體結構 之透視、剖面、與上視示意圈。本實施例所適用的發光二極 體晶粒1其電極均位於其同一面。氮化鎵發光二極體通常就 是採用這種電極配置方式。通常這類發光二極體最上層是P 形層,而其一側蝕刻到暴露出N形層,而發光二極體的電極 即分別形成於P形層和N形層上。 本發明首先提供一導電性或非導電性的延伸基板2,延 伸基板2的材質可以是矽 '玻璃、碳化矽、砷化鎵、氮化鎵/ 鋁、藍寶石、氧化鈹等化合物晶體、或是金屬、或是具有鑽 石/碳化石夕膜之晶圓等。延伸基板2的面積應適當的大於晶粒 1的面積。延伸基板2的適當位置處,預先設置有導電性或 非導電性的黏接層3。 如圖所示’本發明接著使用固晶設備,將晶粒1反面朝 下(正面朝上),固著於預先製作好的黏接層3上。本發明也 可以延伸基板2製作成大片晶IB ’然後將多顆晶粒1固接在 晶圓上排列整齊,前後左右距離一致。 接下來,本發明以半導體鍍膜、黃光微蝕刻等技術製作 絕緣層4。絕緣層4的―部份是涵蓋p形層上表面的一部分, 然後/。晶粒1 -側邊表面向下延伸’最後再沿著延伸基板2 的上表面延伸—適當範圍。絕緣層4的另一部份則是涵蓋N 形層上表面的-部分’然後沿晶*立1另-側邊表面向下延 伸,最後再沿著延伸基板2的上表面延伸一適當範圍。 本發明接著再製作晶粒1的電極。其中的第-電極5是 :金屬薄膜與晶粒1的P形層上表面、未被絕緣層4覆蓋的 /刀接合’然後沿著絕緣層4 -直延伸的延伸基板2上。請 1範圍’除了與晶粒i接合的部分外,都在 €緣層4的範圍内。另外的第二電極6是以金屬薄膜與晶粒 1330417 1的N形層上表面、未被絕緣層4覆蓋的部分接合,然後沿 著絕緣層4 一直延伸的延伸基板2上。請注意第二電極6之 範圍,除了與晶粒1接合的部分外,都在絕緣層4的範圍内。 ' 另外也請注意到,本發明在沒有犧牲發光二極體晶粒1的發 .* · 光面積下,大幅增加了電極的面積,除了可以承載更大電流 外,連同增大的延伸基板2,散熱的效果可以大幅的提升。 如前所述,若是將延伸基板2製作成大片晶圓,然後將 # 多顆晶粒1固接在晶圓上的話,則在完成前述每個晶粒1的 第一、第二電極5、6後,可接著將這些晶粒1予以切割分離。 如有需要,也可以和前述實施例一樣在完成電極前製作 : 穿孔7。最後,完成前述步驟後本發明就可以採用習知的封 . 裝作法,例如在電極5、6上製作焊接墊、然後再進行打線、 以環氧樹脂塑模、切割(如果有需要的話)而完成晶粒1的 製備。這些習知的製程在此就不贅述。 • 藉由以上較佳具體實施例之詳述,係希望能更加清楚描 述本創作之特徵與精神,而並非以上述所揭露的較佳具體實 施例來對本創作之範疇加以限制。相反地,其目的是希望能 涵蓋各種改變及具相等性的安排於本創作所欲申請之專利範 圍的範_内。 【圖式簡單說明】 第la圖所示係習知覆晶式發光二極體結構之剖面示意圈。 12 1330417 第lb圖所示係習知電路板型發光二極體結構之剖面示意 圈。 第2a〜2c圖所示係依據本發明一第一實施例之發光二極體 結構之透視、剖面、與上視示意圈。 第3a〜3c圖所示係依據本發明一第二實施例之發光二極體 結構之透視、剖面、與上視示意圈。 第4a〜4c圖所示係依據本發明一第三實施例之發光二極體 結構之透視、剖面、與上視示意圈。 【主要元件符號說明】 1 晶粒 2 延伸基板 3 黏接層 4 絕緣層 5 第一電極 6 第二電極 7 穿孔 100 晶粒 102 凸塊 104 銲墊 106 基板 108 金/鋁導線 110 電路板 112 金屬電極 114 反射層 、申請專利範圍: 1. 一種發光元件結構,係適用一半導體晶粒,該半導體晶 粒之P、N電極係分位於元件相對之正反二面之,該發光 元件結構至少包含: 131330417 IX. Description of the Invention: [Technical Field] The present invention relates to a light-emitting element structure, and more particularly to a light-emitting element structure and a manufacturing method using a stretched substrate. [Prior Art] A light emitting diode (LED) composed of a III-V or II-VI element compound semiconductor material is a light-emitting element having various bandgap φ, which emits light by Infrared light goes all the way to ultraviolet light, covering all bands of visible light. In recent years, with the rapid development of high-brightness gallium nitride (GaN) blue/green light-emitting diodes, such as full-color light-emitting diode displays, white light-emitting diodes, and light-emitting diode traffic signs, etc. It has been put into practical use, and the application of various other light-emitting diodes has become more popular. The basic structure of the light-emitting diode element includes a P-type and an N-type semiconductor element compound epitaxial layer, and an active ^ layer (also referred to as a light-emitting layer) therebetween. The luminous efficiency of the luminescent diode element depends on the internal quantum efficiency of the active layer and the light extraction efficiency of the element. The method of increasing the internal quantum efficiency is mainly to improve the long crystal quality of the active layer and the structural design of the stray layer. The key to increasing the light extraction efficiency is to reduce the light emitted by the active layer inside the light-emitting diode. Energy loss caused by reflection, absorption, etc. At present, the positive and negative electrodes of a general gallium nitride light-emitting diode element are formed on the same side of the element 5 1330417. Since the positive and negative electrodes conceal light (and thus reduce light extraction efficiency), gallium nitride light-emitting diodes are currently often used in a flip-chip structure. Figure la is a cross-sectional representation of a conventional flip-chip light-emitting diode structure. As shown, the positive and negative electrodes (not shown) of the die 100 are facing downwardly toward the opaque substrate 106 and the circuit board 110, and then connected by a bump 102 and a pad 104, and then by the pad 104. The gold/aluminum wire 108 is connected to the circuit board 110. In addition, a counter-reflecting layer (not shown) is additionally plated on the bottom surface of the die 100 facing the substrate 106 to reflect downward rays upward. The disadvantage of using a flip-chip structure is that the gold/aluminum wire 108 is fragile and fragile, and is easily broken during the manufacturing process and during use, resulting in failure of the light-emitting diode element. Another conventional structure of the light-emitting diode is a surface-adhesive structure, which can be divided into two types: a bracket type and a circuit board type. The bracket type is formed by using a metal bracket and a high temperature resistant plastic material as a base for fixing the LED of the light emitting diode, and the circuit board type is a composite circuit board as a base for the light emitting and the diode die. Then, the action of threading, sealing, and the like is performed. Figure lb shows a cross-sectional schematic circle of a conventional circuit board type LED structure. As shown, in order to reflect the downward light upwards, the die 100 is disposed in a recess having a metal electrode 112 and a reflective layer 114 on the wall surface. The common disadvantage of the bracket type and the circuit board type is that it is not resistant to high temperature, especially when the LED component is connected with other circuit boards, it is required to pass a high temperature furnace (about 250-300 ° C), which causes the component to be prone to abnormality; In addition, the heat dissipation is not good, and the component usually has a decrease in luminous efficiency and quality with the accumulation of heat (especially a high-power light-emitting diode) when operating at 6. At the same time, when the component is miniaturized, its reflection groove is basically It is very difficult to make in the traditional process. SUMMARY OF THE INVENTION Accordingly, the present invention provides a practical and feasible light-emitting element structure and manufacturing method for preparing a light-emitting element with high efficiency and good heat dissipation. The present invention is applicable to a light-emitting element of a semiconductor (e.g., a light-emitting diode). The main feature is that the semiconductor light-emitting element is disposed on an extended substrate, and then the electrode of the semiconductor light-emitting element is re-arranged on the larger extended substrate. In addition to the relatively simple process and high industrial value, the light-emitting element structure proposed by the invention has the following advantages: (1) effectively avoiding large-area electrodes from shielding light, and effectively exposing the light-emitting area of the semiconductor light-emitting element. Improve its light extraction efficiency. (2) Extend the original smaller heat dissipation area to the new extension substrate to greatly improve the heat dissipation effect and effectively extend its service life. (3) The present invention utilizes the electrode rearrangement to effectively increase the light-emitting area, so that the semiconductor light-emitting element can be used to obtain the same light-emitting effect as the original large-area semiconductor light-emitting element, and the production cost can be greatly reduced. The above and other objects and advantages of the present invention will be described in detail with reference to the accompanying drawings and claims. However, it is to be understood that the appended drawings are merely illustrative of the scope of the invention. For the definition of the scope of the invention, please refer to the attached patent application. [Embodiment] It is to be noted that the present invention is applicable to a light-emitting element of a semiconductor, such as a light-emitting diode or a semiconductor laser. However, for the sake of simplicity, the following description mainly exemplifies a light-emitting diode. 2a to 2c are views showing a perspective view, a cross section, and a top view of the light-emitting element structure of the first embodiment of the present invention. The light-emitting diode crystal 1 to which the present embodiment is applied has its p-n-electrode system located on the upper and lower sides of the crystal grain, and the emitted light can be transmitted from the front and back sides. Such a light-emitting diode die 1 is usually a transparent, conductive diode substrate, and if the light-emitting diode die 1 is an opaque or non-conductive diode substrate, the light-emitting diode The bulk crystal grain 1 needs to be removed by chemical etching or mechanical polishing or laser scanning to expose the epitaxial layer of the light-emitting diode die 1. Please note that the present invention employs techniques for the light-emitting diode die 1 (or other similar light-emitting elements) (eg, including various existing or future possibilities, such as III-V and II-VI). The family's semiconductor light-emitting technology), process, and shape are not specifically limited. The present invention further provides a conductive extension substrate 2, which may be made of a compound crystal such as germanium, glass, tantalum carbide, gallium arsenide, gallium nitride/aluminum, sapphire or yttrium oxide, or a metal, or Is a wafer having a diamond/carbonized tantalum film, etc., the extension substrate 2 itself may be electrically conductive, or a surface thereof may be provided with a conductive layer, and the area of the surface of the extended substrate 2 should be appropriately larger than the area of the crystal grain. At a suitable position of 2, a conductive adhesive layer 3 is provided in advance. As shown, the present invention is followed by the use of a die bonding apparatus to position the die 1 face down and to the previously prepared adhesive layer 3. The present invention can also extend the substrate 2 into a large wafer ‘ and then align the plurality of dies 1 on the wafer, and the front, back, left and right distances are uniform. Next, the present invention produces the insulating layer 4 by a technique such as a semiconductor mineral film 'yellow micro-etching. The insulating layer 4 is a portion covering the reverse side of the crystal grain 1 and then extends downward along the side surface of the crystal grain 1 i and finally extends along the upper surface of the extension substrate 2 by an appropriate range. The present invention further fabricates an electrode of the die 1, wherein the first electrode 5 is joined by a metal film to a portion opposite to the upper side of the die 1 and not covered by the insulating layer 4, and then extends along the insulating layer 4 The extension substrate 2 is on. Note that the range of the first electrode 5 is in the range of the insulating layer 4 except for the portion joined to the die. The other second electrode 6 is formed directly at an appropriate position on the upper surface of the extension substrate 2 because the conductivity of the extension substrate 2 is made. In addition, please note that the present invention greatly increases the area of the electrode without sacrificing the light-emitting area of the light-emitting diode die. In addition to carrying a larger current, together with the increased extended substrate 2, the heat dissipation effect can be Great improvement. As described above, if the extension substrate 2 is formed into a large wafer, and then 1330417 multiple crystal grains 1 are fixed on the wafer, the first electrode 5 and the second electrode of each of the foregoing crystal grains 1 are completed. After 6, the crystal grains 1 can be cut and separated. Next, the present invention can be carried out by a conventional packaging method, such as making a solder pad on the electrodes 5, 6, and then performing wire bonding, molding with an epoxy resin, cutting (if necessary), and completing the die 1. preparation. These conventional processes are not described here. #图3a~3c show a perspective, a cross-section, and a top view of the light-emitting diode structure of the second embodiment of the present invention. It has the same structure as the first embodiment shown in FIGS. 2a to 2c, and the difference is that only the first electrode 5 and the second electrode 6 of the present embodiment are provided with vias of the vertical through electrodes 5, 6 and the extension substrate 2. 7 to facilitate electrical connection with other boards. The process of its application is also almost identical to that of the previous embodiment, but before the preparation of the first electrode 5 and the second electrode 6, the drilling 7 is completed by the drilling apparatus, and the other steps are performed. 4a to 4c are perspective, cross-sectional, and top-view schematic circles of the light-emitting diode structure of the third embodiment of the present invention. The light-emitting diode crystal 1 to which the present embodiment is applied has electrodes on the same side. Gallium nitride light-emitting diodes usually use this electrode configuration. Usually, the uppermost layer of such a light-emitting diode is a P-shaped layer, and one side thereof is etched to expose an N-shaped layer, and electrodes of the light-emitting diode are formed on the P-shaped layer and the N-shaped layer, respectively. The invention firstly provides a conductive or non-conductive extended substrate 2, and the material of the extended substrate 2 may be a compound crystal of 矽'glass, tantalum carbide, gallium arsenide, gallium nitride/aluminum, sapphire or yttrium oxide, or Metal, or wafer with diamond/carbonized stone film. The area of the extension substrate 2 should be appropriately larger than the area of the crystal grains 1. An adhesive layer 3 which is electrically or non-conductive is provided in advance at an appropriate position of the extension substrate 2. As shown in the figure, the present invention is then attached to the previously prepared adhesive layer 3 by using a die bonding apparatus with the crystal grains 1 facing downward (face up). In the present invention, the substrate 2 can also be formed into a large crystal IB ’ and then the plurality of crystal grains 1 can be fixedly arranged on the wafer, and the front, back, left and right distances are uniform. Next, the present invention produces the insulating layer 4 by a technique such as semiconductor plating or yellow light micro-etching. The "part of the insulating layer 4" covers a portion of the upper surface of the p-type layer, and then /. The die 1 - the side surface extends downward 'and finally extends along the upper surface of the extension substrate 2 - an appropriate range. The other portion of the insulating layer 4 is a portion which covers the upper surface of the N-shaped layer and then extends downward along the surface of the other side of the crystal, and finally extends along the upper surface of the extending substrate 2 by an appropriate range. The invention then reproduces the electrodes of the die 1. The first electrode 5 is a metal thin film which is bonded to the upper surface of the P-type layer of the crystal grain 1, the / knife joint which is not covered by the insulating layer 4, and then extends along the insulating layer 4 - extending the substrate 2. The range 1 is in the range of the edge layer 4 except for the portion joined to the die i. The other second electrode 6 is bonded to a portion of the upper surface of the N-shaped layer of the die 1330417 1 which is not covered by the insulating layer 4, and then extends along the insulating substrate 4. Note that the range of the second electrode 6 is in the range of the insulating layer 4 except for the portion joined to the die 1. 'Also note that the present invention greatly increases the area of the electrode without sacrificing the light-emitting area of the light-emitting diode die 1, in addition to supporting a larger current, together with the increased extension substrate 2 The effect of heat dissipation can be greatly improved. As described above, if the extension substrate 2 is formed into a large wafer, and then the plurality of crystal grains 1 are fixed on the wafer, the first and second electrodes 5 of each of the foregoing crystal grains 1 are completed. After 6, the crystal grains 1 can be cut and separated. If necessary, it can also be fabricated before the completion of the electrode as in the previous embodiment: perforation 7. Finally, after the completion of the foregoing steps, the present invention can be carried out by conventional sealing methods, such as making solder pads on the electrodes 5, 6, and then performing wire bonding, molding with epoxy resin, and cutting (if necessary). The preparation of the crystal grains 1 was completed. These conventional processes are not described here. The features and spirit of the present invention are more clearly described in the above detailed description of the preferred embodiments, and the scope of the present invention is not limited by the preferred embodiments disclosed herein. Rather, it is intended to cover a variety of changes and equivalence arrangements within the scope of the patent application to which the creative is intended. [Simple description of the drawing] The first drawing shows a cross-sectional schematic circle of a conventional flip-chip light-emitting diode structure. 12 1330417 Figure lb shows a schematic cross-section of a conventional printed circuit board type LED structure. 2a to 2c are perspective, cross-sectional, and top-view schematic circles of the light-emitting diode structure according to a first embodiment of the present invention. 3a to 3c are perspective, cross-sectional, and top-view schematic circles of the light-emitting diode structure according to a second embodiment of the present invention. 4a to 4c are perspective, cross-sectional, and top-view schematic circles of a light-emitting diode structure according to a third embodiment of the present invention. [Main component symbol description] 1 die 2 extension substrate 3 adhesive layer 4 insulation layer 5 first electrode 6 second electrode 7 perforation 100 die 102 bump 104 pad 106 substrate 108 gold/aluminum wire 110 circuit board 112 metal Electrode 114 reflective layer, patent application scope: 1. A light-emitting device structure is applied to a semiconductor die, the P and N electrode portions of the semiconductor die are located on opposite sides of the device, and the light-emitting device structure includes at least : 13

Claims (1)

1330417 第lb圖所示係習知電路板型發光二極體結構之剖面示意 圈。 第2a〜2c圖所示係依據本發明一第一實施例之發光二極體 結構之透視、剖面、與上視示意圈。 第3a〜3c圖所示係依據本發明一第二實施例之發光二極體 結構之透視、剖面、與上視示意圈。 第4a〜4c圖所示係依據本發明一第三實施例之發光二極體 結構之透視、剖面、與上視示意圈。 【主要元件符號說明】 1 晶粒 2 延伸基板 3 黏接層 4 絕緣層 5 第一電極 6 第二電極 7 穿孔 100 晶粒 102 凸塊 104 銲墊 106 基板 108 金/鋁導線 110 電路板 112 金屬電極 114 反射層 、申請專利範圍: 1. 一種發光元件結構,係適用一半導體晶粒,該半導體晶 粒之P、N電極係分位於元件相對之正反二面之,該發光 元件結構至少包含: 13 1330417 一具導電性之延伸基板,該晶粒係以該正面朝下以 一導電性黏接層固接於該延伸基板之一上表面; 一絕緣層,係涵蓋該晶粒朝上之該反面之一部分, 然後沿該晶粒之一側邊表面向下延伸,最後再沿著該延 伸基板之該上表面延伸一適當範圍; 一第一電極,係與該晶粒朝上之該反面、未被該絕 緣層覆蓋之部分接合,然後沿著該絕緣層一直延伸到該 # 延伸基板上;以及 一第二電極,係位於該延伸基板之該上表面之適當 位置處。 : 2.如申請專利範圍第1項之發光元件結構,其中,該延伸 基板之材質係矽、玻璃、碳化矽、砷化鎵、氮化鎵/鋁、 藍寶石、氧化鈹化合物晶體、金屬、具有鑽石/碳化矽膜 之晶圓其中之一。 • 3.如申請專利範圍第2項之發光元件結構,其中,該延伸 基板之材質如不具導電性,則該上表面設置有一導電層。 4. 如申請專利範圍第1項之發光元件結構,其中,該第一、 第二電極至少其中之一具有一垂直貫通該電極與該延伸 基板之穿孔。 5. —種發光元件結構,係適用一正面有分別暴露出P電極 與N電極之一半導體晶粒,至少包含: 14 1330417 ' 一延伸基板,該晶粒係以該正面朝上以一黏接層固 接於該延伸基板之一上表面; 一絕緣層,其一第一部份係涵蓋該晶粒之P形層之 • _ ' 一部分,然後沿該晶粒之一側邊表面向下延伸,最後再 沿著該延伸基板之該上表面延伸一適當範圍,其另一第 二部份係涵蓋該晶粒之N形層之一部分,然後沿該晶粒 之另一側邊表面向下延伸,最後再沿著該延伸基板之該 ^ 上表面延伸一適當範圍; 一第一電極,係與該晶粒P形層之上表面、未被該 絕緣層第一部份覆蓋之部分接合,然後沿著該絕緣層第 - 一部份一直延伸到該延伸基板上;以及 . 一第二電極,係與該晶粒N形層之上表面、未被該 絕緣層第二部分覆蓋之部分接合,然後沿著該絕緣層第 二部分一直延伸到該延伸基板上。 • 6.如申請專利範圍第5項之發光元件結構,其中,該延伸 基板之材質係矽、玻璃、碳化矽、砷化鎵、氮化鎵/鋁、 藍寶石、氧化鈹化合物晶體、金屬、具有鑽石/碳化矽膜 之晶圓其中之一。 7.如申請專利範圍第5項之發光元件結構,其中,該第一、 第二電極至少其中之一具有一垂直貫通該電極與該延伸 基板之穿孔。 15 8. 如申請專利範圍第1項之發光元件結構,其中,該半導 體晶粒係一發光二極體。 9. 如申請專利範圍第1項之發光元件結構,其中,該半導體 晶粒係一半導體雷射。 10. —種發光元件結構製造方法,係適用係適用一半導體晶 粒,該半導體晶粒之P、N電極係分位於元件相對之正反 二面,該製造方法至少包含下列步驟: 提供一具導電性之延伸基板; 將該晶粒以該正面朝下以一導電性黏接層固接於該 延伸基板之一上表面; 提供一絕緣層,該絕緣層係涵蓋該晶粒朝上之該反 面之一部分,然後沿該晶粒之一側邊表面向下延伸,最 後再沿著該延伸基板之該上表面延伸一適當範圍; 提供一第一電極,該第一電極係與該晶粒朝上之該 反面、未被該絕緣層覆蓋之部分接合,然後沿著該絕緣 層一直延伸到該延伸基板上;以及 提供一第二電極,該第二電極係位於該延伸基板之 該上表面之適當位置處。 11. 如申請專利範圍第10項之製造方法,其中,該延伸基板 之材質係矽、玻璃、碳化矽、砷化鎵、氮化鎵/鋁、藍寶 石、氧化鈹化合物晶體、金屬、具有鑽石/碳化矽膜之晶1330417 Figure lb shows a cross-sectional schematic of a conventional circuit board type LED structure. 2a to 2c are perspective, cross-sectional, and top-view schematic circles of the light-emitting diode structure according to a first embodiment of the present invention. 3a to 3c are perspective, cross-sectional, and top-view schematic circles of the light-emitting diode structure according to a second embodiment of the present invention. 4a to 4c are perspective, cross-sectional, and top-view schematic circles of a light-emitting diode structure according to a third embodiment of the present invention. [Main component symbol description] 1 die 2 extension substrate 3 adhesive layer 4 insulation layer 5 first electrode 6 second electrode 7 perforation 100 die 102 bump 104 pad 106 substrate 108 gold/aluminum wire 110 circuit board 112 metal Electrode 114 reflective layer, patent application scope: 1. A light-emitting device structure is applied to a semiconductor die, the P and N electrode portions of the semiconductor die are located on opposite sides of the device, and the light-emitting device structure includes at least : 13 1330417 An electrically conductive extension substrate, the die is fixed to an upper surface of the extension substrate by a conductive adhesive layer facing downward; an insulating layer covering the die facing upward a portion of the reverse surface, then extending downward along a side surface of the die, and finally extending along the upper surface of the extended substrate by a suitable range; a first electrode and the opposite side of the die facing upward a portion not covered by the insulating layer, and then extending along the insulating layer to the #extending substrate; and a second electrode located on the extended substrate The appropriate position. 2. The light-emitting device structure according to claim 1, wherein the material of the extension substrate is ruthenium, glass, tantalum carbide, gallium arsenide, gallium nitride/aluminum, sapphire, yttrium oxide compound crystal, metal, and One of the diamond/carburized tantalum wafers. 3. The light-emitting device structure of claim 2, wherein the material of the extension substrate is not electrically conductive, and the upper surface is provided with a conductive layer. 4. The light-emitting device structure of claim 1, wherein at least one of the first and second electrodes has a through hole extending perpendicularly through the electrode and the extension substrate. 5. A light-emitting device structure, wherein a front surface has a semiconductor die exposing a P electrode and an N electrode, respectively, comprising at least: 14 1330417 'an extended substrate, the die is bonded with the front side facing upward The layer is fixed on an upper surface of the extension substrate; a first layer of the insulating layer covers a portion of the P-shaped layer of the die and then extends downward along a side surface of the die Finally extending along a suitable range of the upper surface of the extension substrate, and another second portion covering a portion of the N-shaped layer of the die and then extending down the other side surface of the die And finally extending along the upper surface of the extended substrate by a suitable range; a first electrode is bonded to a surface of the upper surface of the P-shaped layer of the die, which is not covered by the first portion of the insulating layer, and then a first portion extending along the first portion of the insulating layer to the extension substrate; and a second electrode bonded to a surface of the upper surface of the N-shaped layer of the crystal grain that is not covered by the second portion of the insulating layer, Then along the second part of the insulating layer It extends to the extended substrate. 6. The light-emitting device structure of claim 5, wherein the material of the extension substrate is ruthenium, glass, tantalum carbide, gallium arsenide, gallium nitride/aluminum, sapphire, yttrium oxide compound crystal, metal, and One of the diamond/carburized tantalum wafers. 7. The light-emitting device structure of claim 5, wherein at least one of the first and second electrodes has a through hole extending perpendicularly through the electrode and the extension substrate. The light-emitting device structure of claim 1, wherein the semiconductor die is a light-emitting diode. 9. The light-emitting device structure of claim 1, wherein the semiconductor die is a semiconductor laser. 10. A method for fabricating a light-emitting device structure, which is applicable to a semiconductor die, wherein P and N electrodes of the semiconductor die are located on opposite sides of the component, and the manufacturing method comprises at least the following steps: An electrically conductive extension substrate; the die is fixed to an upper surface of the extension substrate with the conductive adhesive layer facing downward; an insulating layer is provided, the insulating layer covering the die facing upward a portion of the reverse side, then extending downward along a side surface of the die, and finally extending along an appropriate range of the upper surface of the extended substrate; providing a first electrode, the first electrode and the die The reverse surface, the portion not covered by the insulating layer is bonded, and then extends along the insulating layer to the extension substrate; and a second electrode is disposed on the upper surface of the extension substrate In the right place. 11. The manufacturing method of claim 10, wherein the material of the extension substrate is ruthenium, glass, tantalum carbide, gallium arsenide, gallium nitride/aluminum, sapphire, yttrium oxide compound crystal, metal, and diamond/ Carbide film
TW96115532A 2007-04-30 2007-04-30 Semiconductor lighting device and manufacturing method thereof TW200843141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96115532A TW200843141A (en) 2007-04-30 2007-04-30 Semiconductor lighting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96115532A TW200843141A (en) 2007-04-30 2007-04-30 Semiconductor lighting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW200843141A TW200843141A (en) 2008-11-01
TWI330417B true TWI330417B (en) 2010-09-11

Family

ID=44822232

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96115532A TW200843141A (en) 2007-04-30 2007-04-30 Semiconductor lighting device and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TW200843141A (en)

Also Published As

Publication number Publication date
TW200843141A (en) 2008-11-01

Similar Documents

Publication Publication Date Title
TWI422065B (en) Light emitting diode chip, package structure of the same, and fabricating method thereof
EP1905103B1 (en) Method of fabricating a light emitting diode having a thermal conductive substrate
JP5349260B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP5414579B2 (en) Semiconductor light emitting device
KR101313973B1 (en) Thin-film led with p and n contacts electrically isolated from the substrate
TWI528595B (en) Wafer level led package and method of fabricating the same
JP4325412B2 (en) LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
TWI528508B (en) Method for manufacturing ceramic package structure of high power light emitting diode
CN106981550B (en) Easy-packaging easy-heat-dissipation inverted high-voltage LED chip
US20100127294A1 (en) Side view type light-emitting diode package structure, and manufacturing method and application thereof
TW201322437A (en) High voltage AC light-emitting diode structure
TWI397989B (en) Light emitting element array
KR101873503B1 (en) Wafer level led package and method of fabricating the same
KR20180000032A (en) Semiconductor light emitting device package
CN109155351A (en) Semiconductor light-emitting apparatus
TWI472067B (en) Optical package and method of manufacturing the same
US20110140137A1 (en) Led device and method of manufacturing the same
US20160072016A1 (en) Solid-state light emitters having substrates with thermal and electrical conductivity enhancements and method of manufacture
KR101209026B1 (en) Method of manufacturing LED having vertical structure
JP4614773B2 (en) Semiconductor light emitting device
TWI453952B (en) Light emitting element and manufacturing method thereof
US20140374698A1 (en) Light emitting diode chip and method for manufacturing same
JP2016092016A (en) Illuminant
TWI330417B (en)
JP2001085750A (en) Nitride semiconductor light-emitting chip

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees